Loading...
1/*
2 abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com>
3
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 2 of the License, or
7 (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
13
14 You should have received a copy of the GNU General Public License
15 along with this program; if not, write to the Free Software
16 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17*/
18/*
19 This driver supports the sensor part of the first and second revision of
20 the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because
21 of lack of specs the CPU/RAM voltage & frequency control is not supported!
22*/
23
24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26#include <linux/module.h>
27#include <linux/sched.h>
28#include <linux/init.h>
29#include <linux/slab.h>
30#include <linux/jiffies.h>
31#include <linux/mutex.h>
32#include <linux/err.h>
33#include <linux/delay.h>
34#include <linux/platform_device.h>
35#include <linux/hwmon.h>
36#include <linux/hwmon-sysfs.h>
37#include <linux/dmi.h>
38#include <linux/io.h>
39
40/* Banks */
41#define ABIT_UGURU_ALARM_BANK 0x20 /* 1x 3 bytes */
42#define ABIT_UGURU_SENSOR_BANK1 0x21 /* 16x volt and temp */
43#define ABIT_UGURU_FAN_PWM 0x24 /* 3x 5 bytes */
44#define ABIT_UGURU_SENSOR_BANK2 0x26 /* fans */
45/* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
46#define ABIT_UGURU_MAX_BANK1_SENSORS 16
47/* Warning if you increase one of the 2 MAX defines below to 10 or higher you
48 should adjust the belonging _NAMES_LENGTH macro for the 2 digit number! */
49/* max nr of sensors in bank2, currently mb's with max 6 fans are known */
50#define ABIT_UGURU_MAX_BANK2_SENSORS 6
51/* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
52#define ABIT_UGURU_MAX_PWMS 5
53/* uGuru sensor bank 1 flags */ /* Alarm if: */
54#define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE 0x01 /* temp over warn */
55#define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE 0x02 /* volt over max */
56#define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE 0x04 /* volt under min */
57#define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG 0x10 /* temp is over warn */
58#define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG 0x20 /* volt is over max */
59#define ABIT_UGURU_VOLT_LOW_ALARM_FLAG 0x40 /* volt is under min */
60/* uGuru sensor bank 2 flags */ /* Alarm if: */
61#define ABIT_UGURU_FAN_LOW_ALARM_ENABLE 0x01 /* fan under min */
62/* uGuru sensor bank common flags */
63#define ABIT_UGURU_BEEP_ENABLE 0x08 /* beep if alarm */
64#define ABIT_UGURU_SHUTDOWN_ENABLE 0x80 /* shutdown if alarm */
65/* uGuru fan PWM (speed control) flags */
66#define ABIT_UGURU_FAN_PWM_ENABLE 0x80 /* enable speed control */
67/* Values used for conversion */
68#define ABIT_UGURU_FAN_MAX 15300 /* RPM */
69/* Bank1 sensor types */
70#define ABIT_UGURU_IN_SENSOR 0
71#define ABIT_UGURU_TEMP_SENSOR 1
72#define ABIT_UGURU_NC 2
73/* In many cases we need to wait for the uGuru to reach a certain status, most
74 of the time it will reach this status within 30 - 90 ISA reads, and thus we
75 can best busy wait. This define gives the total amount of reads to try. */
76#define ABIT_UGURU_WAIT_TIMEOUT 125
77/* However sometimes older versions of the uGuru seem to be distracted and they
78 do not respond for a long time. To handle this we sleep before each of the
79 last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries. */
80#define ABIT_UGURU_WAIT_TIMEOUT_SLEEP 5
81/* Normally all expected status in abituguru_ready, are reported after the
82 first read, but sometimes not and we need to poll. */
83#define ABIT_UGURU_READY_TIMEOUT 5
84/* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
85#define ABIT_UGURU_MAX_RETRIES 3
86#define ABIT_UGURU_RETRY_DELAY (HZ/5)
87/* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
88#define ABIT_UGURU_MAX_TIMEOUTS 2
89/* utility macros */
90#define ABIT_UGURU_NAME "abituguru"
91#define ABIT_UGURU_DEBUG(level, format, arg...) \
92 if (level <= verbose) \
93 printk(KERN_DEBUG ABIT_UGURU_NAME ": " format , ## arg)
94/* Macros to help calculate the sysfs_names array length */
95/* sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
96 in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0 */
97#define ABITUGURU_IN_NAMES_LENGTH (11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
98/* sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
99 temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0 */
100#define ABITUGURU_TEMP_NAMES_LENGTH (13 + 11 + 12 + 13 + 20 + 12 + 16)
101/* sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
102 fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0 */
103#define ABITUGURU_FAN_NAMES_LENGTH (11 + 9 + 11 + 18 + 10 + 14)
104/* sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
105 pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0 */
106#define ABITUGURU_PWM_NAMES_LENGTH (12 + 24 + 2 * 21 + 2 * 22)
107/* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
108#define ABITUGURU_SYSFS_NAMES_LENGTH ( \
109 ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
110 ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
111 ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)
112
113/* All the macros below are named identical to the oguru and oguru2 programs
114 reverse engineered by Olle Sandberg, hence the names might not be 100%
115 logical. I could come up with better names, but I prefer keeping the names
116 identical so that this driver can be compared with his work more easily. */
117/* Two i/o-ports are used by uGuru */
118#define ABIT_UGURU_BASE 0x00E0
119/* Used to tell uGuru what to read and to read the actual data */
120#define ABIT_UGURU_CMD 0x00
121/* Mostly used to check if uGuru is busy */
122#define ABIT_UGURU_DATA 0x04
123#define ABIT_UGURU_REGION_LENGTH 5
124/* uGuru status' */
125#define ABIT_UGURU_STATUS_WRITE 0x00 /* Ready to be written */
126#define ABIT_UGURU_STATUS_READ 0x01 /* Ready to be read */
127#define ABIT_UGURU_STATUS_INPUT 0x08 /* More input */
128#define ABIT_UGURU_STATUS_READY 0x09 /* Ready to be written */
129
130/* Constants */
131/* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
132static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
133/* Min / Max allowed values for sensor2 (fan) alarm threshold, these values
134 correspond to 300-3000 RPM */
135static const u8 abituguru_bank2_min_threshold = 5;
136static const u8 abituguru_bank2_max_threshold = 50;
137/* Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
138 are temperature trip points. */
139static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
140/* Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
141 special case the minium allowed pwm% setting for this is 30% (77) on
142 some MB's this special case is handled in the code! */
143static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
144static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };
145
146
147/* Insmod parameters */
148static int force;
149module_param(force, bool, 0);
150MODULE_PARM_DESC(force, "Set to one to force detection.");
151static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1,
152 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
153module_param_array(bank1_types, int, NULL, 0);
154MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n"
155 " -1 autodetect\n"
156 " 0 volt sensor\n"
157 " 1 temp sensor\n"
158 " 2 not connected");
159static int fan_sensors;
160module_param(fan_sensors, int, 0);
161MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
162 "(0 = autodetect)");
163static int pwms;
164module_param(pwms, int, 0);
165MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
166 "(0 = autodetect)");
167
168/* Default verbose is 2, since this driver is still in the testing phase */
169static int verbose = 2;
170module_param(verbose, int, 0644);
171MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
172 " 0 normal output\n"
173 " 1 + verbose error reporting\n"
174 " 2 + sensors type probing info\n"
175 " 3 + retryable error reporting");
176
177
178/* For the Abit uGuru, we need to keep some data in memory.
179 The structure is dynamically allocated, at the same time when a new
180 abituguru device is allocated. */
181struct abituguru_data {
182 struct device *hwmon_dev; /* hwmon registered device */
183 struct mutex update_lock; /* protect access to data and uGuru */
184 unsigned long last_updated; /* In jiffies */
185 unsigned short addr; /* uguru base address */
186 char uguru_ready; /* is the uguru in ready state? */
187 unsigned char update_timeouts; /* number of update timeouts since last
188 successful update */
189
190 /* The sysfs attr and their names are generated automatically, for bank1
191 we cannot use a predefined array because we don't know beforehand
192 of a sensor is a volt or a temp sensor, for bank2 and the pwms its
193 easier todo things the same way. For in sensors we have 9 (temp 7)
194 sysfs entries per sensor, for bank2 and pwms 6. */
195 struct sensor_device_attribute_2 sysfs_attr[
196 ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
197 ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
198 /* Buffer to store the dynamically generated sysfs names */
199 char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH];
200
201 /* Bank 1 data */
202 /* number of and addresses of [0] in, [1] temp sensors */
203 u8 bank1_sensors[2];
204 u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
205 u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
206 /* This array holds 3 entries per sensor for the bank 1 sensor settings
207 (flags, min, max for voltage / flags, warn, shutdown for temp). */
208 u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
209 /* Maximum value for each sensor used for scaling in mV/millidegrees
210 Celsius. */
211 int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
212
213 /* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
214 u8 bank2_sensors; /* actual number of bank2 sensors found */
215 u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
216 u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */
217
218 /* Alarms 2 bytes for bank1, 1 byte for bank2 */
219 u8 alarms[3];
220
221 /* Fan PWM (speed control) 5 bytes per PWM */
222 u8 pwms; /* actual number of pwms found */
223 u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
224};
225
226static const char *never_happen = "This should never happen.";
227static const char *report_this =
228 "Please report this to the abituguru maintainer (see MAINTAINERS)";
229
230/* wait till the uguru is in the specified state */
231static int abituguru_wait(struct abituguru_data *data, u8 state)
232{
233 int timeout = ABIT_UGURU_WAIT_TIMEOUT;
234
235 while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
236 timeout--;
237 if (timeout == 0)
238 return -EBUSY;
239 /* sleep a bit before our last few tries, see the comment on
240 this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined. */
241 if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP)
242 msleep(0);
243 }
244 return 0;
245}
246
247/* Put the uguru in ready for input state */
248static int abituguru_ready(struct abituguru_data *data)
249{
250 int timeout = ABIT_UGURU_READY_TIMEOUT;
251
252 if (data->uguru_ready)
253 return 0;
254
255 /* Reset? / Prepare for next read/write cycle */
256 outb(0x00, data->addr + ABIT_UGURU_DATA);
257
258 /* Wait till the uguru is ready */
259 if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
260 ABIT_UGURU_DEBUG(1,
261 "timeout exceeded waiting for ready state\n");
262 return -EIO;
263 }
264
265 /* Cmd port MUST be read now and should contain 0xAC */
266 while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
267 timeout--;
268 if (timeout == 0) {
269 ABIT_UGURU_DEBUG(1,
270 "CMD reg does not hold 0xAC after ready command\n");
271 return -EIO;
272 }
273 msleep(0);
274 }
275
276 /* After this the ABIT_UGURU_DATA port should contain
277 ABIT_UGURU_STATUS_INPUT */
278 timeout = ABIT_UGURU_READY_TIMEOUT;
279 while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
280 timeout--;
281 if (timeout == 0) {
282 ABIT_UGURU_DEBUG(1,
283 "state != more input after ready command\n");
284 return -EIO;
285 }
286 msleep(0);
287 }
288
289 data->uguru_ready = 1;
290 return 0;
291}
292
293/* Send the bank and then sensor address to the uGuru for the next read/write
294 cycle. This function gets called as the first part of a read/write by
295 abituguru_read and abituguru_write. This function should never be
296 called by any other function. */
297static int abituguru_send_address(struct abituguru_data *data,
298 u8 bank_addr, u8 sensor_addr, int retries)
299{
300 /* assume the caller does error handling itself if it has not requested
301 any retries, and thus be quiet. */
302 int report_errors = retries;
303
304 for (;;) {
305 /* Make sure the uguru is ready and then send the bank address,
306 after this the uguru is no longer "ready". */
307 if (abituguru_ready(data) != 0)
308 return -EIO;
309 outb(bank_addr, data->addr + ABIT_UGURU_DATA);
310 data->uguru_ready = 0;
311
312 /* Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
313 and send the sensor addr */
314 if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
315 if (retries) {
316 ABIT_UGURU_DEBUG(3, "timeout exceeded "
317 "waiting for more input state, %d "
318 "tries remaining\n", retries);
319 set_current_state(TASK_UNINTERRUPTIBLE);
320 schedule_timeout(ABIT_UGURU_RETRY_DELAY);
321 retries--;
322 continue;
323 }
324 if (report_errors)
325 ABIT_UGURU_DEBUG(1, "timeout exceeded "
326 "waiting for more input state "
327 "(bank: %d)\n", (int)bank_addr);
328 return -EBUSY;
329 }
330 outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
331 return 0;
332 }
333}
334
335/* Read count bytes from sensor sensor_addr in bank bank_addr and store the
336 result in buf, retry the send address part of the read retries times. */
337static int abituguru_read(struct abituguru_data *data,
338 u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
339{
340 int i;
341
342 /* Send the address */
343 i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
344 if (i)
345 return i;
346
347 /* And read the data */
348 for (i = 0; i < count; i++) {
349 if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
350 ABIT_UGURU_DEBUG(retries ? 1 : 3,
351 "timeout exceeded waiting for "
352 "read state (bank: %d, sensor: %d)\n",
353 (int)bank_addr, (int)sensor_addr);
354 break;
355 }
356 buf[i] = inb(data->addr + ABIT_UGURU_CMD);
357 }
358
359 /* Last put the chip back in ready state */
360 abituguru_ready(data);
361
362 return i;
363}
364
365/* Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
366 address part of the write is always retried ABIT_UGURU_MAX_RETRIES times. */
367static int abituguru_write(struct abituguru_data *data,
368 u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
369{
370 /* We use the ready timeout as we have to wait for 0xAC just like the
371 ready function */
372 int i, timeout = ABIT_UGURU_READY_TIMEOUT;
373
374 /* Send the address */
375 i = abituguru_send_address(data, bank_addr, sensor_addr,
376 ABIT_UGURU_MAX_RETRIES);
377 if (i)
378 return i;
379
380 /* And write the data */
381 for (i = 0; i < count; i++) {
382 if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
383 ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
384 "write state (bank: %d, sensor: %d)\n",
385 (int)bank_addr, (int)sensor_addr);
386 break;
387 }
388 outb(buf[i], data->addr + ABIT_UGURU_CMD);
389 }
390
391 /* Now we need to wait till the chip is ready to be read again,
392 so that we can read 0xAC as confirmation that our write has
393 succeeded. */
394 if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
395 ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
396 "after write (bank: %d, sensor: %d)\n", (int)bank_addr,
397 (int)sensor_addr);
398 return -EIO;
399 }
400
401 /* Cmd port MUST be read now and should contain 0xAC */
402 while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
403 timeout--;
404 if (timeout == 0) {
405 ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after "
406 "write (bank: %d, sensor: %d)\n",
407 (int)bank_addr, (int)sensor_addr);
408 return -EIO;
409 }
410 msleep(0);
411 }
412
413 /* Last put the chip back in ready state */
414 abituguru_ready(data);
415
416 return i;
417}
418
419/* Detect sensor type. Temp and Volt sensors are enabled with
420 different masks and will ignore enable masks not meant for them.
421 This enables us to test what kind of sensor we're dealing with.
422 By setting the alarm thresholds so that we will always get an
423 alarm for sensor type X and then enabling the sensor as sensor type
424 X, if we then get an alarm it is a sensor of type X. */
425static int __devinit
426abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
427 u8 sensor_addr)
428{
429 u8 val, test_flag, buf[3];
430 int i, ret = -ENODEV; /* error is the most common used retval :| */
431
432 /* If overriden by the user return the user selected type */
433 if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR &&
434 bank1_types[sensor_addr] <= ABIT_UGURU_NC) {
435 ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor "
436 "%d because of \"bank1_types\" module param\n",
437 bank1_types[sensor_addr], (int)sensor_addr);
438 return bank1_types[sensor_addr];
439 }
440
441 /* First read the sensor and the current settings */
442 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
443 1, ABIT_UGURU_MAX_RETRIES) != 1)
444 return -ENODEV;
445
446 /* Test val is sane / usable for sensor type detection. */
447 if ((val < 10u) || (val > 250u)) {
448 pr_warn("bank1-sensor: %d reading (%d) too close to limits, "
449 "unable to determine sensor type, skipping sensor\n",
450 (int)sensor_addr, (int)val);
451 /* assume no sensor is there for sensors for which we can't
452 determine the sensor type because their reading is too close
453 to their limits, this usually means no sensor is there. */
454 return ABIT_UGURU_NC;
455 }
456
457 ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
458 /* Volt sensor test, enable volt low alarm, set min value ridicously
459 high, or vica versa if the reading is very high. If its a volt
460 sensor this should always give us an alarm. */
461 if (val <= 240u) {
462 buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
463 buf[1] = 245;
464 buf[2] = 250;
465 test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG;
466 } else {
467 buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE;
468 buf[1] = 5;
469 buf[2] = 10;
470 test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG;
471 }
472
473 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
474 buf, 3) != 3)
475 goto abituguru_detect_bank1_sensor_type_exit;
476 /* Now we need 20 ms to give the uguru time to read the sensors
477 and raise a voltage alarm */
478 set_current_state(TASK_UNINTERRUPTIBLE);
479 schedule_timeout(HZ/50);
480 /* Check for alarm and check the alarm is a volt low alarm. */
481 if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
482 ABIT_UGURU_MAX_RETRIES) != 3)
483 goto abituguru_detect_bank1_sensor_type_exit;
484 if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
485 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
486 sensor_addr, buf, 3,
487 ABIT_UGURU_MAX_RETRIES) != 3)
488 goto abituguru_detect_bank1_sensor_type_exit;
489 if (buf[0] & test_flag) {
490 ABIT_UGURU_DEBUG(2, " found volt sensor\n");
491 ret = ABIT_UGURU_IN_SENSOR;
492 goto abituguru_detect_bank1_sensor_type_exit;
493 } else
494 ABIT_UGURU_DEBUG(2, " alarm raised during volt "
495 "sensor test, but volt range flag not set\n");
496 } else
497 ABIT_UGURU_DEBUG(2, " alarm not raised during volt sensor "
498 "test\n");
499
500 /* Temp sensor test, enable sensor as a temp sensor, set beep value
501 ridicously low (but not too low, otherwise uguru ignores it).
502 If its a temp sensor this should always give us an alarm. */
503 buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
504 buf[1] = 5;
505 buf[2] = 10;
506 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
507 buf, 3) != 3)
508 goto abituguru_detect_bank1_sensor_type_exit;
509 /* Now we need 50 ms to give the uguru time to read the sensors
510 and raise a temp alarm */
511 set_current_state(TASK_UNINTERRUPTIBLE);
512 schedule_timeout(HZ/20);
513 /* Check for alarm and check the alarm is a temp high alarm. */
514 if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
515 ABIT_UGURU_MAX_RETRIES) != 3)
516 goto abituguru_detect_bank1_sensor_type_exit;
517 if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
518 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
519 sensor_addr, buf, 3,
520 ABIT_UGURU_MAX_RETRIES) != 3)
521 goto abituguru_detect_bank1_sensor_type_exit;
522 if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
523 ABIT_UGURU_DEBUG(2, " found temp sensor\n");
524 ret = ABIT_UGURU_TEMP_SENSOR;
525 goto abituguru_detect_bank1_sensor_type_exit;
526 } else
527 ABIT_UGURU_DEBUG(2, " alarm raised during temp "
528 "sensor test, but temp high flag not set\n");
529 } else
530 ABIT_UGURU_DEBUG(2, " alarm not raised during temp sensor "
531 "test\n");
532
533 ret = ABIT_UGURU_NC;
534abituguru_detect_bank1_sensor_type_exit:
535 /* Restore original settings, failing here is really BAD, it has been
536 reported that some BIOS-es hang when entering the uGuru menu with
537 invalid settings present in the uGuru, so we try this 3 times. */
538 for (i = 0; i < 3; i++)
539 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
540 sensor_addr, data->bank1_settings[sensor_addr],
541 3) == 3)
542 break;
543 if (i == 3) {
544 pr_err("Fatal error could not restore original settings. %s %s\n",
545 never_happen, report_this);
546 return -ENODEV;
547 }
548 return ret;
549}
550
551/* These functions try to find out how many sensors there are in bank2 and how
552 many pwms there are. The purpose of this is to make sure that we don't give
553 the user the possibility to change settings for non-existent sensors / pwm.
554 The uGuru will happily read / write whatever memory happens to be after the
555 memory storing the PWM settings when reading/writing to a PWM which is not
556 there. Notice even if we detect a PWM which doesn't exist we normally won't
557 write to it, unless the user tries to change the settings.
558
559 Although the uGuru allows reading (settings) from non existing bank2
560 sensors, my version of the uGuru does seem to stop writing to them, the
561 write function above aborts in this case with:
562 "CMD reg does not hold 0xAC after write"
563
564 Notice these 2 tests are non destructive iow read-only tests, otherwise
565 they would defeat their purpose. Although for the bank2_sensors detection a
566 read/write test would be feasible because of the reaction above, I've
567 however opted to stay on the safe side. */
568static void __devinit
569abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
570{
571 int i;
572
573 if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) {
574 data->bank2_sensors = fan_sensors;
575 ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
576 "\"fan_sensors\" module param\n",
577 (int)data->bank2_sensors);
578 return;
579 }
580
581 ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
582 for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
583 /* 0x89 are the known used bits:
584 -0x80 enable shutdown
585 -0x08 enable beep
586 -0x01 enable alarm
587 All other bits should be 0, but on some motherboards
588 0x40 (bit 6) is also high for some of the fans?? */
589 if (data->bank2_settings[i][0] & ~0xC9) {
590 ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
591 "to be a fan sensor: settings[0] = %02X\n",
592 i, (unsigned int)data->bank2_settings[i][0]);
593 break;
594 }
595
596 /* check if the threshold is within the allowed range */
597 if (data->bank2_settings[i][1] <
598 abituguru_bank2_min_threshold) {
599 ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
600 "to be a fan sensor: the threshold (%d) is "
601 "below the minimum (%d)\n", i,
602 (int)data->bank2_settings[i][1],
603 (int)abituguru_bank2_min_threshold);
604 break;
605 }
606 if (data->bank2_settings[i][1] >
607 abituguru_bank2_max_threshold) {
608 ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
609 "to be a fan sensor: the threshold (%d) is "
610 "above the maximum (%d)\n", i,
611 (int)data->bank2_settings[i][1],
612 (int)abituguru_bank2_max_threshold);
613 break;
614 }
615 }
616
617 data->bank2_sensors = i;
618 ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
619 (int)data->bank2_sensors);
620}
621
622static void __devinit
623abituguru_detect_no_pwms(struct abituguru_data *data)
624{
625 int i, j;
626
627 if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) {
628 data->pwms = pwms;
629 ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
630 "\"pwms\" module param\n", (int)data->pwms);
631 return;
632 }
633
634 ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
635 for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
636 /* 0x80 is the enable bit and the low
637 nibble is which temp sensor to use,
638 the other bits should be 0 */
639 if (data->pwm_settings[i][0] & ~0x8F) {
640 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
641 "to be a pwm channel: settings[0] = %02X\n",
642 i, (unsigned int)data->pwm_settings[i][0]);
643 break;
644 }
645
646 /* the low nibble must correspond to one of the temp sensors
647 we've found */
648 for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
649 j++) {
650 if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
651 (data->pwm_settings[i][0] & 0x0F))
652 break;
653 }
654 if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
655 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
656 "to be a pwm channel: %d is not a valid temp "
657 "sensor address\n", i,
658 data->pwm_settings[i][0] & 0x0F);
659 break;
660 }
661
662 /* check if all other settings are within the allowed range */
663 for (j = 1; j < 5; j++) {
664 u8 min;
665 /* special case pwm1 min pwm% */
666 if ((i == 0) && ((j == 1) || (j == 2)))
667 min = 77;
668 else
669 min = abituguru_pwm_min[j];
670 if (data->pwm_settings[i][j] < min) {
671 ABIT_UGURU_DEBUG(2, " pwm channel %d does "
672 "not seem to be a pwm channel: "
673 "setting %d (%d) is below the minimum "
674 "value (%d)\n", i, j,
675 (int)data->pwm_settings[i][j],
676 (int)min);
677 goto abituguru_detect_no_pwms_exit;
678 }
679 if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
680 ABIT_UGURU_DEBUG(2, " pwm channel %d does "
681 "not seem to be a pwm channel: "
682 "setting %d (%d) is above the maximum "
683 "value (%d)\n", i, j,
684 (int)data->pwm_settings[i][j],
685 (int)abituguru_pwm_max[j]);
686 goto abituguru_detect_no_pwms_exit;
687 }
688 }
689
690 /* check that min temp < max temp and min pwm < max pwm */
691 if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
692 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
693 "to be a pwm channel: min pwm (%d) >= "
694 "max pwm (%d)\n", i,
695 (int)data->pwm_settings[i][1],
696 (int)data->pwm_settings[i][2]);
697 break;
698 }
699 if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
700 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
701 "to be a pwm channel: min temp (%d) >= "
702 "max temp (%d)\n", i,
703 (int)data->pwm_settings[i][3],
704 (int)data->pwm_settings[i][4]);
705 break;
706 }
707 }
708
709abituguru_detect_no_pwms_exit:
710 data->pwms = i;
711 ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
712}
713
714/* Following are the sysfs callback functions. These functions expect:
715 sensor_device_attribute_2->index: sensor address/offset in the bank
716 sensor_device_attribute_2->nr: register offset, bitmask or NA. */
717static struct abituguru_data *abituguru_update_device(struct device *dev);
718
719static ssize_t show_bank1_value(struct device *dev,
720 struct device_attribute *devattr, char *buf)
721{
722 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
723 struct abituguru_data *data = abituguru_update_device(dev);
724 if (!data)
725 return -EIO;
726 return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
727 data->bank1_max_value[attr->index] + 128) / 255);
728}
729
730static ssize_t show_bank1_setting(struct device *dev,
731 struct device_attribute *devattr, char *buf)
732{
733 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
734 struct abituguru_data *data = dev_get_drvdata(dev);
735 return sprintf(buf, "%d\n",
736 (data->bank1_settings[attr->index][attr->nr] *
737 data->bank1_max_value[attr->index] + 128) / 255);
738}
739
740static ssize_t show_bank2_value(struct device *dev,
741 struct device_attribute *devattr, char *buf)
742{
743 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
744 struct abituguru_data *data = abituguru_update_device(dev);
745 if (!data)
746 return -EIO;
747 return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
748 ABIT_UGURU_FAN_MAX + 128) / 255);
749}
750
751static ssize_t show_bank2_setting(struct device *dev,
752 struct device_attribute *devattr, char *buf)
753{
754 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
755 struct abituguru_data *data = dev_get_drvdata(dev);
756 return sprintf(buf, "%d\n",
757 (data->bank2_settings[attr->index][attr->nr] *
758 ABIT_UGURU_FAN_MAX + 128) / 255);
759}
760
761static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
762 *devattr, const char *buf, size_t count)
763{
764 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
765 struct abituguru_data *data = dev_get_drvdata(dev);
766 u8 val = (simple_strtoul(buf, NULL, 10) * 255 +
767 data->bank1_max_value[attr->index]/2) /
768 data->bank1_max_value[attr->index];
769 ssize_t ret = count;
770
771 mutex_lock(&data->update_lock);
772 if (data->bank1_settings[attr->index][attr->nr] != val) {
773 u8 orig_val = data->bank1_settings[attr->index][attr->nr];
774 data->bank1_settings[attr->index][attr->nr] = val;
775 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
776 attr->index, data->bank1_settings[attr->index],
777 3) <= attr->nr) {
778 data->bank1_settings[attr->index][attr->nr] = orig_val;
779 ret = -EIO;
780 }
781 }
782 mutex_unlock(&data->update_lock);
783 return ret;
784}
785
786static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
787 *devattr, const char *buf, size_t count)
788{
789 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
790 struct abituguru_data *data = dev_get_drvdata(dev);
791 u8 val = (simple_strtoul(buf, NULL, 10)*255 + ABIT_UGURU_FAN_MAX/2) /
792 ABIT_UGURU_FAN_MAX;
793 ssize_t ret = count;
794
795 /* this check can be done before taking the lock */
796 if ((val < abituguru_bank2_min_threshold) ||
797 (val > abituguru_bank2_max_threshold))
798 return -EINVAL;
799
800 mutex_lock(&data->update_lock);
801 if (data->bank2_settings[attr->index][attr->nr] != val) {
802 u8 orig_val = data->bank2_settings[attr->index][attr->nr];
803 data->bank2_settings[attr->index][attr->nr] = val;
804 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
805 attr->index, data->bank2_settings[attr->index],
806 2) <= attr->nr) {
807 data->bank2_settings[attr->index][attr->nr] = orig_val;
808 ret = -EIO;
809 }
810 }
811 mutex_unlock(&data->update_lock);
812 return ret;
813}
814
815static ssize_t show_bank1_alarm(struct device *dev,
816 struct device_attribute *devattr, char *buf)
817{
818 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
819 struct abituguru_data *data = abituguru_update_device(dev);
820 if (!data)
821 return -EIO;
822 /* See if the alarm bit for this sensor is set, and if the
823 alarm matches the type of alarm we're looking for (for volt
824 it can be either low or high). The type is stored in a few
825 readonly bits in the settings part of the relevant sensor.
826 The bitmask of the type is passed to us in attr->nr. */
827 if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
828 (data->bank1_settings[attr->index][0] & attr->nr))
829 return sprintf(buf, "1\n");
830 else
831 return sprintf(buf, "0\n");
832}
833
834static ssize_t show_bank2_alarm(struct device *dev,
835 struct device_attribute *devattr, char *buf)
836{
837 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
838 struct abituguru_data *data = abituguru_update_device(dev);
839 if (!data)
840 return -EIO;
841 if (data->alarms[2] & (0x01 << attr->index))
842 return sprintf(buf, "1\n");
843 else
844 return sprintf(buf, "0\n");
845}
846
847static ssize_t show_bank1_mask(struct device *dev,
848 struct device_attribute *devattr, char *buf)
849{
850 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
851 struct abituguru_data *data = dev_get_drvdata(dev);
852 if (data->bank1_settings[attr->index][0] & attr->nr)
853 return sprintf(buf, "1\n");
854 else
855 return sprintf(buf, "0\n");
856}
857
858static ssize_t show_bank2_mask(struct device *dev,
859 struct device_attribute *devattr, char *buf)
860{
861 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
862 struct abituguru_data *data = dev_get_drvdata(dev);
863 if (data->bank2_settings[attr->index][0] & attr->nr)
864 return sprintf(buf, "1\n");
865 else
866 return sprintf(buf, "0\n");
867}
868
869static ssize_t store_bank1_mask(struct device *dev,
870 struct device_attribute *devattr, const char *buf, size_t count)
871{
872 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
873 struct abituguru_data *data = dev_get_drvdata(dev);
874 int mask = simple_strtoul(buf, NULL, 10);
875 ssize_t ret = count;
876 u8 orig_val;
877
878 mutex_lock(&data->update_lock);
879 orig_val = data->bank1_settings[attr->index][0];
880
881 if (mask)
882 data->bank1_settings[attr->index][0] |= attr->nr;
883 else
884 data->bank1_settings[attr->index][0] &= ~attr->nr;
885
886 if ((data->bank1_settings[attr->index][0] != orig_val) &&
887 (abituguru_write(data,
888 ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
889 data->bank1_settings[attr->index], 3) < 1)) {
890 data->bank1_settings[attr->index][0] = orig_val;
891 ret = -EIO;
892 }
893 mutex_unlock(&data->update_lock);
894 return ret;
895}
896
897static ssize_t store_bank2_mask(struct device *dev,
898 struct device_attribute *devattr, const char *buf, size_t count)
899{
900 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
901 struct abituguru_data *data = dev_get_drvdata(dev);
902 int mask = simple_strtoul(buf, NULL, 10);
903 ssize_t ret = count;
904 u8 orig_val;
905
906 mutex_lock(&data->update_lock);
907 orig_val = data->bank2_settings[attr->index][0];
908
909 if (mask)
910 data->bank2_settings[attr->index][0] |= attr->nr;
911 else
912 data->bank2_settings[attr->index][0] &= ~attr->nr;
913
914 if ((data->bank2_settings[attr->index][0] != orig_val) &&
915 (abituguru_write(data,
916 ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
917 data->bank2_settings[attr->index], 2) < 1)) {
918 data->bank2_settings[attr->index][0] = orig_val;
919 ret = -EIO;
920 }
921 mutex_unlock(&data->update_lock);
922 return ret;
923}
924
925/* Fan PWM (speed control) */
926static ssize_t show_pwm_setting(struct device *dev,
927 struct device_attribute *devattr, char *buf)
928{
929 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
930 struct abituguru_data *data = dev_get_drvdata(dev);
931 return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
932 abituguru_pwm_settings_multiplier[attr->nr]);
933}
934
935static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
936 *devattr, const char *buf, size_t count)
937{
938 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
939 struct abituguru_data *data = dev_get_drvdata(dev);
940 u8 min, val = (simple_strtoul(buf, NULL, 10) +
941 abituguru_pwm_settings_multiplier[attr->nr]/2) /
942 abituguru_pwm_settings_multiplier[attr->nr];
943 ssize_t ret = count;
944
945 /* special case pwm1 min pwm% */
946 if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
947 min = 77;
948 else
949 min = abituguru_pwm_min[attr->nr];
950
951 /* this check can be done before taking the lock */
952 if ((val < min) || (val > abituguru_pwm_max[attr->nr]))
953 return -EINVAL;
954
955 mutex_lock(&data->update_lock);
956 /* this check needs to be done after taking the lock */
957 if ((attr->nr & 1) &&
958 (val >= data->pwm_settings[attr->index][attr->nr + 1]))
959 ret = -EINVAL;
960 else if (!(attr->nr & 1) &&
961 (val <= data->pwm_settings[attr->index][attr->nr - 1]))
962 ret = -EINVAL;
963 else if (data->pwm_settings[attr->index][attr->nr] != val) {
964 u8 orig_val = data->pwm_settings[attr->index][attr->nr];
965 data->pwm_settings[attr->index][attr->nr] = val;
966 if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
967 attr->index, data->pwm_settings[attr->index],
968 5) <= attr->nr) {
969 data->pwm_settings[attr->index][attr->nr] =
970 orig_val;
971 ret = -EIO;
972 }
973 }
974 mutex_unlock(&data->update_lock);
975 return ret;
976}
977
978static ssize_t show_pwm_sensor(struct device *dev,
979 struct device_attribute *devattr, char *buf)
980{
981 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
982 struct abituguru_data *data = dev_get_drvdata(dev);
983 int i;
984 /* We need to walk to the temp sensor addresses to find what
985 the userspace id of the configured temp sensor is. */
986 for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
987 if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
988 (data->pwm_settings[attr->index][0] & 0x0F))
989 return sprintf(buf, "%d\n", i+1);
990
991 return -ENXIO;
992}
993
994static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
995 *devattr, const char *buf, size_t count)
996{
997 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
998 struct abituguru_data *data = dev_get_drvdata(dev);
999 unsigned long val = simple_strtoul(buf, NULL, 10) - 1;
1000 ssize_t ret = count;
1001
1002 mutex_lock(&data->update_lock);
1003 if (val < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
1004 u8 orig_val = data->pwm_settings[attr->index][0];
1005 u8 address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
1006 data->pwm_settings[attr->index][0] &= 0xF0;
1007 data->pwm_settings[attr->index][0] |= address;
1008 if (data->pwm_settings[attr->index][0] != orig_val) {
1009 if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1010 attr->index,
1011 data->pwm_settings[attr->index],
1012 5) < 1) {
1013 data->pwm_settings[attr->index][0] = orig_val;
1014 ret = -EIO;
1015 }
1016 }
1017 }
1018 else
1019 ret = -EINVAL;
1020 mutex_unlock(&data->update_lock);
1021 return ret;
1022}
1023
1024static ssize_t show_pwm_enable(struct device *dev,
1025 struct device_attribute *devattr, char *buf)
1026{
1027 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1028 struct abituguru_data *data = dev_get_drvdata(dev);
1029 int res = 0;
1030 if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
1031 res = 2;
1032 return sprintf(buf, "%d\n", res);
1033}
1034
1035static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
1036 *devattr, const char *buf, size_t count)
1037{
1038 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1039 struct abituguru_data *data = dev_get_drvdata(dev);
1040 u8 orig_val, user_val = simple_strtoul(buf, NULL, 10);
1041 ssize_t ret = count;
1042
1043 mutex_lock(&data->update_lock);
1044 orig_val = data->pwm_settings[attr->index][0];
1045 switch (user_val) {
1046 case 0:
1047 data->pwm_settings[attr->index][0] &=
1048 ~ABIT_UGURU_FAN_PWM_ENABLE;
1049 break;
1050 case 2:
1051 data->pwm_settings[attr->index][0] |=
1052 ABIT_UGURU_FAN_PWM_ENABLE;
1053 break;
1054 default:
1055 ret = -EINVAL;
1056 }
1057 if ((data->pwm_settings[attr->index][0] != orig_val) &&
1058 (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1059 attr->index, data->pwm_settings[attr->index],
1060 5) < 1)) {
1061 data->pwm_settings[attr->index][0] = orig_val;
1062 ret = -EIO;
1063 }
1064 mutex_unlock(&data->update_lock);
1065 return ret;
1066}
1067
1068static ssize_t show_name(struct device *dev,
1069 struct device_attribute *devattr, char *buf)
1070{
1071 return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
1072}
1073
1074/* Sysfs attr templates, the real entries are generated automatically. */
1075static const
1076struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
1077 {
1078 SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
1079 SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
1080 store_bank1_setting, 1, 0),
1081 SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
1082 ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0),
1083 SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
1084 store_bank1_setting, 2, 0),
1085 SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
1086 ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0),
1087 SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
1088 store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1089 SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
1090 store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1091 SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
1092 store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
1093 SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
1094 store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
1095 }, {
1096 SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
1097 SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
1098 ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0),
1099 SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
1100 store_bank1_setting, 1, 0),
1101 SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
1102 store_bank1_setting, 2, 0),
1103 SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
1104 store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1105 SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
1106 store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1107 SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
1108 store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
1109 }
1110};
1111
1112static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
1113 SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
1114 SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
1115 SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
1116 store_bank2_setting, 1, 0),
1117 SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
1118 store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1119 SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
1120 store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1121 SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
1122 store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
1123};
1124
1125static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
1126 SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
1127 store_pwm_enable, 0, 0),
1128 SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
1129 store_pwm_sensor, 0, 0),
1130 SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
1131 store_pwm_setting, 1, 0),
1132 SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
1133 store_pwm_setting, 2, 0),
1134 SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
1135 store_pwm_setting, 3, 0),
1136 SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
1137 store_pwm_setting, 4, 0),
1138};
1139
1140static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
1141 SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
1142};
1143
1144static int __devinit abituguru_probe(struct platform_device *pdev)
1145{
1146 struct abituguru_data *data;
1147 int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
1148 char *sysfs_filename;
1149
1150 /* El weirdo probe order, to keep the sysfs order identical to the
1151 BIOS and window-appliction listing order. */
1152 const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
1153 0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
1154 0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
1155
1156 if (!(data = kzalloc(sizeof(struct abituguru_data), GFP_KERNEL)))
1157 return -ENOMEM;
1158
1159 data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
1160 mutex_init(&data->update_lock);
1161 platform_set_drvdata(pdev, data);
1162
1163 /* See if the uGuru is ready */
1164 if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
1165 data->uguru_ready = 1;
1166
1167 /* Completely read the uGuru this has 2 purposes:
1168 - testread / see if one really is there.
1169 - make an in memory copy of all the uguru settings for future use. */
1170 if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1171 data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
1172 goto abituguru_probe_error;
1173
1174 for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1175 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
1176 &data->bank1_value[i], 1,
1177 ABIT_UGURU_MAX_RETRIES) != 1)
1178 goto abituguru_probe_error;
1179 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
1180 data->bank1_settings[i], 3,
1181 ABIT_UGURU_MAX_RETRIES) != 3)
1182 goto abituguru_probe_error;
1183 }
1184 /* Note: We don't know how many bank2 sensors / pwms there really are,
1185 but in order to "detect" this we need to read the maximum amount
1186 anyways. If we read sensors/pwms not there we'll just read crap
1187 this can't hurt. We need the detection because we don't want
1188 unwanted writes, which will hurt! */
1189 for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
1190 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1191 &data->bank2_value[i], 1,
1192 ABIT_UGURU_MAX_RETRIES) != 1)
1193 goto abituguru_probe_error;
1194 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
1195 data->bank2_settings[i], 2,
1196 ABIT_UGURU_MAX_RETRIES) != 2)
1197 goto abituguru_probe_error;
1198 }
1199 for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
1200 if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
1201 data->pwm_settings[i], 5,
1202 ABIT_UGURU_MAX_RETRIES) != 5)
1203 goto abituguru_probe_error;
1204 }
1205 data->last_updated = jiffies;
1206
1207 /* Detect sensor types and fill the sysfs attr for bank1 */
1208 sysfs_attr_i = 0;
1209 sysfs_filename = data->sysfs_names;
1210 sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH;
1211 for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1212 res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
1213 if (res < 0)
1214 goto abituguru_probe_error;
1215 if (res == ABIT_UGURU_NC)
1216 continue;
1217
1218 /* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */
1219 for (j = 0; j < (res ? 7 : 9); j++) {
1220 used = snprintf(sysfs_filename, sysfs_names_free,
1221 abituguru_sysfs_bank1_templ[res][j].dev_attr.
1222 attr.name, data->bank1_sensors[res] + res)
1223 + 1;
1224 data->sysfs_attr[sysfs_attr_i] =
1225 abituguru_sysfs_bank1_templ[res][j];
1226 data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1227 sysfs_filename;
1228 data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
1229 sysfs_filename += used;
1230 sysfs_names_free -= used;
1231 sysfs_attr_i++;
1232 }
1233 data->bank1_max_value[probe_order[i]] =
1234 abituguru_bank1_max_value[res];
1235 data->bank1_address[res][data->bank1_sensors[res]] =
1236 probe_order[i];
1237 data->bank1_sensors[res]++;
1238 }
1239 /* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
1240 abituguru_detect_no_bank2_sensors(data);
1241 for (i = 0; i < data->bank2_sensors; i++) {
1242 for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) {
1243 used = snprintf(sysfs_filename, sysfs_names_free,
1244 abituguru_sysfs_fan_templ[j].dev_attr.attr.name,
1245 i + 1) + 1;
1246 data->sysfs_attr[sysfs_attr_i] =
1247 abituguru_sysfs_fan_templ[j];
1248 data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1249 sysfs_filename;
1250 data->sysfs_attr[sysfs_attr_i].index = i;
1251 sysfs_filename += used;
1252 sysfs_names_free -= used;
1253 sysfs_attr_i++;
1254 }
1255 }
1256 /* Detect number of sensors and fill the sysfs attr for pwms */
1257 abituguru_detect_no_pwms(data);
1258 for (i = 0; i < data->pwms; i++) {
1259 for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) {
1260 used = snprintf(sysfs_filename, sysfs_names_free,
1261 abituguru_sysfs_pwm_templ[j].dev_attr.attr.name,
1262 i + 1) + 1;
1263 data->sysfs_attr[sysfs_attr_i] =
1264 abituguru_sysfs_pwm_templ[j];
1265 data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1266 sysfs_filename;
1267 data->sysfs_attr[sysfs_attr_i].index = i;
1268 sysfs_filename += used;
1269 sysfs_names_free -= used;
1270 sysfs_attr_i++;
1271 }
1272 }
1273 /* Fail safe check, this should never happen! */
1274 if (sysfs_names_free < 0) {
1275 pr_err("Fatal error ran out of space for sysfs attr names. %s %s",
1276 never_happen, report_this);
1277 res = -ENAMETOOLONG;
1278 goto abituguru_probe_error;
1279 }
1280 pr_info("found Abit uGuru\n");
1281
1282 /* Register sysfs hooks */
1283 for (i = 0; i < sysfs_attr_i; i++)
1284 if (device_create_file(&pdev->dev,
1285 &data->sysfs_attr[i].dev_attr))
1286 goto abituguru_probe_error;
1287 for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1288 if (device_create_file(&pdev->dev,
1289 &abituguru_sysfs_attr[i].dev_attr))
1290 goto abituguru_probe_error;
1291
1292 data->hwmon_dev = hwmon_device_register(&pdev->dev);
1293 if (!IS_ERR(data->hwmon_dev))
1294 return 0; /* success */
1295
1296 res = PTR_ERR(data->hwmon_dev);
1297abituguru_probe_error:
1298 for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1299 device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1300 for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1301 device_remove_file(&pdev->dev,
1302 &abituguru_sysfs_attr[i].dev_attr);
1303 platform_set_drvdata(pdev, NULL);
1304 kfree(data);
1305 return res;
1306}
1307
1308static int __devexit abituguru_remove(struct platform_device *pdev)
1309{
1310 int i;
1311 struct abituguru_data *data = platform_get_drvdata(pdev);
1312
1313 hwmon_device_unregister(data->hwmon_dev);
1314 for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1315 device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1316 for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1317 device_remove_file(&pdev->dev,
1318 &abituguru_sysfs_attr[i].dev_attr);
1319 platform_set_drvdata(pdev, NULL);
1320 kfree(data);
1321
1322 return 0;
1323}
1324
1325static struct abituguru_data *abituguru_update_device(struct device *dev)
1326{
1327 int i, err;
1328 struct abituguru_data *data = dev_get_drvdata(dev);
1329 /* fake a complete successful read if no update necessary. */
1330 char success = 1;
1331
1332 mutex_lock(&data->update_lock);
1333 if (time_after(jiffies, data->last_updated + HZ)) {
1334 success = 0;
1335 if ((err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1336 data->alarms, 3, 0)) != 3)
1337 goto LEAVE_UPDATE;
1338 for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1339 if ((err = abituguru_read(data,
1340 ABIT_UGURU_SENSOR_BANK1, i,
1341 &data->bank1_value[i], 1, 0)) != 1)
1342 goto LEAVE_UPDATE;
1343 if ((err = abituguru_read(data,
1344 ABIT_UGURU_SENSOR_BANK1 + 1, i,
1345 data->bank1_settings[i], 3, 0)) != 3)
1346 goto LEAVE_UPDATE;
1347 }
1348 for (i = 0; i < data->bank2_sensors; i++)
1349 if ((err = abituguru_read(data,
1350 ABIT_UGURU_SENSOR_BANK2, i,
1351 &data->bank2_value[i], 1, 0)) != 1)
1352 goto LEAVE_UPDATE;
1353 /* success! */
1354 success = 1;
1355 data->update_timeouts = 0;
1356LEAVE_UPDATE:
1357 /* handle timeout condition */
1358 if (!success && (err == -EBUSY || err >= 0)) {
1359 /* No overflow please */
1360 if (data->update_timeouts < 255u)
1361 data->update_timeouts++;
1362 if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) {
1363 ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
1364 "try again next update\n");
1365 /* Just a timeout, fake a successful read */
1366 success = 1;
1367 } else
1368 ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
1369 "times waiting for more input state\n",
1370 (int)data->update_timeouts);
1371 }
1372 /* On success set last_updated */
1373 if (success)
1374 data->last_updated = jiffies;
1375 }
1376 mutex_unlock(&data->update_lock);
1377
1378 if (success)
1379 return data;
1380 else
1381 return NULL;
1382}
1383
1384#ifdef CONFIG_PM
1385static int abituguru_suspend(struct platform_device *pdev, pm_message_t state)
1386{
1387 struct abituguru_data *data = platform_get_drvdata(pdev);
1388 /* make sure all communications with the uguru are done and no new
1389 ones are started */
1390 mutex_lock(&data->update_lock);
1391 return 0;
1392}
1393
1394static int abituguru_resume(struct platform_device *pdev)
1395{
1396 struct abituguru_data *data = platform_get_drvdata(pdev);
1397 /* See if the uGuru is still ready */
1398 if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT)
1399 data->uguru_ready = 0;
1400 mutex_unlock(&data->update_lock);
1401 return 0;
1402}
1403#else
1404#define abituguru_suspend NULL
1405#define abituguru_resume NULL
1406#endif /* CONFIG_PM */
1407
1408static struct platform_driver abituguru_driver = {
1409 .driver = {
1410 .owner = THIS_MODULE,
1411 .name = ABIT_UGURU_NAME,
1412 },
1413 .probe = abituguru_probe,
1414 .remove = __devexit_p(abituguru_remove),
1415 .suspend = abituguru_suspend,
1416 .resume = abituguru_resume,
1417};
1418
1419static int __init abituguru_detect(void)
1420{
1421 /* See if there is an uguru there. After a reboot uGuru will hold 0x00
1422 at DATA and 0xAC, when this driver has already been loaded once
1423 DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
1424 scenario but some will hold 0x00.
1425 Some uGuru's initially hold 0x09 at DATA and will only hold 0x08
1426 after reading CMD first, so CMD must be read first! */
1427 u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
1428 u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
1429 if (((data_val == 0x00) || (data_val == 0x08)) &&
1430 ((cmd_val == 0x00) || (cmd_val == 0xAC)))
1431 return ABIT_UGURU_BASE;
1432
1433 ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
1434 "0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);
1435
1436 if (force) {
1437 pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n");
1438 return ABIT_UGURU_BASE;
1439 }
1440
1441 /* No uGuru found */
1442 return -ENODEV;
1443}
1444
1445static struct platform_device *abituguru_pdev;
1446
1447static int __init abituguru_init(void)
1448{
1449 int address, err;
1450 struct resource res = { .flags = IORESOURCE_IO };
1451 const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR);
1452
1453 /* safety check, refuse to load on non Abit motherboards */
1454 if (!force && (!board_vendor ||
1455 strcmp(board_vendor, "http://www.abit.com.tw/")))
1456 return -ENODEV;
1457
1458 address = abituguru_detect();
1459 if (address < 0)
1460 return address;
1461
1462 err = platform_driver_register(&abituguru_driver);
1463 if (err)
1464 goto exit;
1465
1466 abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
1467 if (!abituguru_pdev) {
1468 pr_err("Device allocation failed\n");
1469 err = -ENOMEM;
1470 goto exit_driver_unregister;
1471 }
1472
1473 res.start = address;
1474 res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
1475 res.name = ABIT_UGURU_NAME;
1476
1477 err = platform_device_add_resources(abituguru_pdev, &res, 1);
1478 if (err) {
1479 pr_err("Device resource addition failed (%d)\n", err);
1480 goto exit_device_put;
1481 }
1482
1483 err = platform_device_add(abituguru_pdev);
1484 if (err) {
1485 pr_err("Device addition failed (%d)\n", err);
1486 goto exit_device_put;
1487 }
1488
1489 return 0;
1490
1491exit_device_put:
1492 platform_device_put(abituguru_pdev);
1493exit_driver_unregister:
1494 platform_driver_unregister(&abituguru_driver);
1495exit:
1496 return err;
1497}
1498
1499static void __exit abituguru_exit(void)
1500{
1501 platform_device_unregister(abituguru_pdev);
1502 platform_driver_unregister(&abituguru_driver);
1503}
1504
1505MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
1506MODULE_DESCRIPTION("Abit uGuru Sensor device");
1507MODULE_LICENSE("GPL");
1508
1509module_init(abituguru_init);
1510module_exit(abituguru_exit);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com>
4 */
5/*
6 * This driver supports the sensor part of the first and second revision of
7 * the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because
8 * of lack of specs the CPU/RAM voltage & frequency control is not supported!
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/module.h>
14#include <linux/sched.h>
15#include <linux/init.h>
16#include <linux/slab.h>
17#include <linux/jiffies.h>
18#include <linux/mutex.h>
19#include <linux/err.h>
20#include <linux/delay.h>
21#include <linux/platform_device.h>
22#include <linux/hwmon.h>
23#include <linux/hwmon-sysfs.h>
24#include <linux/dmi.h>
25#include <linux/io.h>
26
27/* Banks */
28#define ABIT_UGURU_ALARM_BANK 0x20 /* 1x 3 bytes */
29#define ABIT_UGURU_SENSOR_BANK1 0x21 /* 16x volt and temp */
30#define ABIT_UGURU_FAN_PWM 0x24 /* 3x 5 bytes */
31#define ABIT_UGURU_SENSOR_BANK2 0x26 /* fans */
32/* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
33#define ABIT_UGURU_MAX_BANK1_SENSORS 16
34/*
35 * Warning if you increase one of the 2 MAX defines below to 10 or higher you
36 * should adjust the belonging _NAMES_LENGTH macro for the 2 digit number!
37 */
38/* max nr of sensors in bank2, currently mb's with max 6 fans are known */
39#define ABIT_UGURU_MAX_BANK2_SENSORS 6
40/* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
41#define ABIT_UGURU_MAX_PWMS 5
42/* uGuru sensor bank 1 flags */ /* Alarm if: */
43#define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE 0x01 /* temp over warn */
44#define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE 0x02 /* volt over max */
45#define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE 0x04 /* volt under min */
46#define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG 0x10 /* temp is over warn */
47#define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG 0x20 /* volt is over max */
48#define ABIT_UGURU_VOLT_LOW_ALARM_FLAG 0x40 /* volt is under min */
49/* uGuru sensor bank 2 flags */ /* Alarm if: */
50#define ABIT_UGURU_FAN_LOW_ALARM_ENABLE 0x01 /* fan under min */
51/* uGuru sensor bank common flags */
52#define ABIT_UGURU_BEEP_ENABLE 0x08 /* beep if alarm */
53#define ABIT_UGURU_SHUTDOWN_ENABLE 0x80 /* shutdown if alarm */
54/* uGuru fan PWM (speed control) flags */
55#define ABIT_UGURU_FAN_PWM_ENABLE 0x80 /* enable speed control */
56/* Values used for conversion */
57#define ABIT_UGURU_FAN_MAX 15300 /* RPM */
58/* Bank1 sensor types */
59#define ABIT_UGURU_IN_SENSOR 0
60#define ABIT_UGURU_TEMP_SENSOR 1
61#define ABIT_UGURU_NC 2
62/*
63 * In many cases we need to wait for the uGuru to reach a certain status, most
64 * of the time it will reach this status within 30 - 90 ISA reads, and thus we
65 * can best busy wait. This define gives the total amount of reads to try.
66 */
67#define ABIT_UGURU_WAIT_TIMEOUT 125
68/*
69 * However sometimes older versions of the uGuru seem to be distracted and they
70 * do not respond for a long time. To handle this we sleep before each of the
71 * last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries.
72 */
73#define ABIT_UGURU_WAIT_TIMEOUT_SLEEP 5
74/*
75 * Normally all expected status in abituguru_ready, are reported after the
76 * first read, but sometimes not and we need to poll.
77 */
78#define ABIT_UGURU_READY_TIMEOUT 5
79/* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
80#define ABIT_UGURU_MAX_RETRIES 3
81#define ABIT_UGURU_RETRY_DELAY (HZ/5)
82/* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
83#define ABIT_UGURU_MAX_TIMEOUTS 2
84/* utility macros */
85#define ABIT_UGURU_NAME "abituguru"
86#define ABIT_UGURU_DEBUG(level, format, arg...) \
87 do { \
88 if (level <= verbose) \
89 pr_debug(format , ## arg); \
90 } while (0)
91
92/* Macros to help calculate the sysfs_names array length */
93/*
94 * sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
95 * in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0
96 */
97#define ABITUGURU_IN_NAMES_LENGTH (11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
98/*
99 * sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
100 * temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0
101 */
102#define ABITUGURU_TEMP_NAMES_LENGTH (13 + 11 + 12 + 13 + 20 + 12 + 16)
103/*
104 * sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
105 * fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0
106 */
107#define ABITUGURU_FAN_NAMES_LENGTH (11 + 9 + 11 + 18 + 10 + 14)
108/*
109 * sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
110 * pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0
111 */
112#define ABITUGURU_PWM_NAMES_LENGTH (12 + 24 + 2 * 21 + 2 * 22)
113/* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
114#define ABITUGURU_SYSFS_NAMES_LENGTH ( \
115 ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
116 ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
117 ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)
118
119/*
120 * All the macros below are named identical to the oguru and oguru2 programs
121 * reverse engineered by Olle Sandberg, hence the names might not be 100%
122 * logical. I could come up with better names, but I prefer keeping the names
123 * identical so that this driver can be compared with his work more easily.
124 */
125/* Two i/o-ports are used by uGuru */
126#define ABIT_UGURU_BASE 0x00E0
127/* Used to tell uGuru what to read and to read the actual data */
128#define ABIT_UGURU_CMD 0x00
129/* Mostly used to check if uGuru is busy */
130#define ABIT_UGURU_DATA 0x04
131#define ABIT_UGURU_REGION_LENGTH 5
132/* uGuru status' */
133#define ABIT_UGURU_STATUS_WRITE 0x00 /* Ready to be written */
134#define ABIT_UGURU_STATUS_READ 0x01 /* Ready to be read */
135#define ABIT_UGURU_STATUS_INPUT 0x08 /* More input */
136#define ABIT_UGURU_STATUS_READY 0x09 /* Ready to be written */
137
138/* Constants */
139/* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
140static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
141/*
142 * Min / Max allowed values for sensor2 (fan) alarm threshold, these values
143 * correspond to 300-3000 RPM
144 */
145static const u8 abituguru_bank2_min_threshold = 5;
146static const u8 abituguru_bank2_max_threshold = 50;
147/*
148 * Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
149 * are temperature trip points.
150 */
151static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
152/*
153 * Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
154 * special case the minimum allowed pwm% setting for this is 30% (77) on
155 * some MB's this special case is handled in the code!
156 */
157static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
158static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };
159
160
161/* Insmod parameters */
162static bool force;
163module_param(force, bool, 0);
164MODULE_PARM_DESC(force, "Set to one to force detection.");
165static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1,
166 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
167module_param_array(bank1_types, int, NULL, 0);
168MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n"
169 " -1 autodetect\n"
170 " 0 volt sensor\n"
171 " 1 temp sensor\n"
172 " 2 not connected");
173static int fan_sensors;
174module_param(fan_sensors, int, 0);
175MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
176 "(0 = autodetect)");
177static int pwms;
178module_param(pwms, int, 0);
179MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
180 "(0 = autodetect)");
181
182/* Default verbose is 2, since this driver is still in the testing phase */
183static int verbose = 2;
184module_param(verbose, int, 0644);
185MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
186 " 0 normal output\n"
187 " 1 + verbose error reporting\n"
188 " 2 + sensors type probing info\n"
189 " 3 + retryable error reporting");
190
191
192/*
193 * For the Abit uGuru, we need to keep some data in memory.
194 * The structure is dynamically allocated, at the same time when a new
195 * abituguru device is allocated.
196 */
197struct abituguru_data {
198 struct device *hwmon_dev; /* hwmon registered device */
199 struct mutex update_lock; /* protect access to data and uGuru */
200 unsigned long last_updated; /* In jiffies */
201 unsigned short addr; /* uguru base address */
202 char uguru_ready; /* is the uguru in ready state? */
203 unsigned char update_timeouts; /*
204 * number of update timeouts since last
205 * successful update
206 */
207
208 /*
209 * The sysfs attr and their names are generated automatically, for bank1
210 * we cannot use a predefined array because we don't know beforehand
211 * of a sensor is a volt or a temp sensor, for bank2 and the pwms its
212 * easier todo things the same way. For in sensors we have 9 (temp 7)
213 * sysfs entries per sensor, for bank2 and pwms 6.
214 */
215 struct sensor_device_attribute_2 sysfs_attr[
216 ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
217 ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
218 /* Buffer to store the dynamically generated sysfs names */
219 char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH];
220
221 /* Bank 1 data */
222 /* number of and addresses of [0] in, [1] temp sensors */
223 u8 bank1_sensors[2];
224 u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
225 u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
226 /*
227 * This array holds 3 entries per sensor for the bank 1 sensor settings
228 * (flags, min, max for voltage / flags, warn, shutdown for temp).
229 */
230 u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
231 /*
232 * Maximum value for each sensor used for scaling in mV/millidegrees
233 * Celsius.
234 */
235 int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
236
237 /* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
238 u8 bank2_sensors; /* actual number of bank2 sensors found */
239 u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
240 u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */
241
242 /* Alarms 2 bytes for bank1, 1 byte for bank2 */
243 u8 alarms[3];
244
245 /* Fan PWM (speed control) 5 bytes per PWM */
246 u8 pwms; /* actual number of pwms found */
247 u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
248};
249
250static const char *never_happen = "This should never happen.";
251static const char *report_this =
252 "Please report this to the abituguru maintainer (see MAINTAINERS)";
253
254/* wait till the uguru is in the specified state */
255static int abituguru_wait(struct abituguru_data *data, u8 state)
256{
257 int timeout = ABIT_UGURU_WAIT_TIMEOUT;
258
259 while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
260 timeout--;
261 if (timeout == 0)
262 return -EBUSY;
263 /*
264 * sleep a bit before our last few tries, see the comment on
265 * this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined.
266 */
267 if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP)
268 msleep(0);
269 }
270 return 0;
271}
272
273/* Put the uguru in ready for input state */
274static int abituguru_ready(struct abituguru_data *data)
275{
276 int timeout = ABIT_UGURU_READY_TIMEOUT;
277
278 if (data->uguru_ready)
279 return 0;
280
281 /* Reset? / Prepare for next read/write cycle */
282 outb(0x00, data->addr + ABIT_UGURU_DATA);
283
284 /* Wait till the uguru is ready */
285 if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
286 ABIT_UGURU_DEBUG(1,
287 "timeout exceeded waiting for ready state\n");
288 return -EIO;
289 }
290
291 /* Cmd port MUST be read now and should contain 0xAC */
292 while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
293 timeout--;
294 if (timeout == 0) {
295 ABIT_UGURU_DEBUG(1,
296 "CMD reg does not hold 0xAC after ready command\n");
297 return -EIO;
298 }
299 msleep(0);
300 }
301
302 /*
303 * After this the ABIT_UGURU_DATA port should contain
304 * ABIT_UGURU_STATUS_INPUT
305 */
306 timeout = ABIT_UGURU_READY_TIMEOUT;
307 while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
308 timeout--;
309 if (timeout == 0) {
310 ABIT_UGURU_DEBUG(1,
311 "state != more input after ready command\n");
312 return -EIO;
313 }
314 msleep(0);
315 }
316
317 data->uguru_ready = 1;
318 return 0;
319}
320
321/*
322 * Send the bank and then sensor address to the uGuru for the next read/write
323 * cycle. This function gets called as the first part of a read/write by
324 * abituguru_read and abituguru_write. This function should never be
325 * called by any other function.
326 */
327static int abituguru_send_address(struct abituguru_data *data,
328 u8 bank_addr, u8 sensor_addr, int retries)
329{
330 /*
331 * assume the caller does error handling itself if it has not requested
332 * any retries, and thus be quiet.
333 */
334 int report_errors = retries;
335
336 for (;;) {
337 /*
338 * Make sure the uguru is ready and then send the bank address,
339 * after this the uguru is no longer "ready".
340 */
341 if (abituguru_ready(data) != 0)
342 return -EIO;
343 outb(bank_addr, data->addr + ABIT_UGURU_DATA);
344 data->uguru_ready = 0;
345
346 /*
347 * Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
348 * and send the sensor addr
349 */
350 if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
351 if (retries) {
352 ABIT_UGURU_DEBUG(3, "timeout exceeded "
353 "waiting for more input state, %d "
354 "tries remaining\n", retries);
355 set_current_state(TASK_UNINTERRUPTIBLE);
356 schedule_timeout(ABIT_UGURU_RETRY_DELAY);
357 retries--;
358 continue;
359 }
360 if (report_errors)
361 ABIT_UGURU_DEBUG(1, "timeout exceeded "
362 "waiting for more input state "
363 "(bank: %d)\n", (int)bank_addr);
364 return -EBUSY;
365 }
366 outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
367 return 0;
368 }
369}
370
371/*
372 * Read count bytes from sensor sensor_addr in bank bank_addr and store the
373 * result in buf, retry the send address part of the read retries times.
374 */
375static int abituguru_read(struct abituguru_data *data,
376 u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
377{
378 int i;
379
380 /* Send the address */
381 i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
382 if (i)
383 return i;
384
385 /* And read the data */
386 for (i = 0; i < count; i++) {
387 if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
388 ABIT_UGURU_DEBUG(retries ? 1 : 3,
389 "timeout exceeded waiting for "
390 "read state (bank: %d, sensor: %d)\n",
391 (int)bank_addr, (int)sensor_addr);
392 break;
393 }
394 buf[i] = inb(data->addr + ABIT_UGURU_CMD);
395 }
396
397 /* Last put the chip back in ready state */
398 abituguru_ready(data);
399
400 return i;
401}
402
403/*
404 * Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
405 * address part of the write is always retried ABIT_UGURU_MAX_RETRIES times.
406 */
407static int abituguru_write(struct abituguru_data *data,
408 u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
409{
410 /*
411 * We use the ready timeout as we have to wait for 0xAC just like the
412 * ready function
413 */
414 int i, timeout = ABIT_UGURU_READY_TIMEOUT;
415
416 /* Send the address */
417 i = abituguru_send_address(data, bank_addr, sensor_addr,
418 ABIT_UGURU_MAX_RETRIES);
419 if (i)
420 return i;
421
422 /* And write the data */
423 for (i = 0; i < count; i++) {
424 if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
425 ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
426 "write state (bank: %d, sensor: %d)\n",
427 (int)bank_addr, (int)sensor_addr);
428 break;
429 }
430 outb(buf[i], data->addr + ABIT_UGURU_CMD);
431 }
432
433 /*
434 * Now we need to wait till the chip is ready to be read again,
435 * so that we can read 0xAC as confirmation that our write has
436 * succeeded.
437 */
438 if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
439 ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
440 "after write (bank: %d, sensor: %d)\n", (int)bank_addr,
441 (int)sensor_addr);
442 return -EIO;
443 }
444
445 /* Cmd port MUST be read now and should contain 0xAC */
446 while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
447 timeout--;
448 if (timeout == 0) {
449 ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after "
450 "write (bank: %d, sensor: %d)\n",
451 (int)bank_addr, (int)sensor_addr);
452 return -EIO;
453 }
454 msleep(0);
455 }
456
457 /* Last put the chip back in ready state */
458 abituguru_ready(data);
459
460 return i;
461}
462
463/*
464 * Detect sensor type. Temp and Volt sensors are enabled with
465 * different masks and will ignore enable masks not meant for them.
466 * This enables us to test what kind of sensor we're dealing with.
467 * By setting the alarm thresholds so that we will always get an
468 * alarm for sensor type X and then enabling the sensor as sensor type
469 * X, if we then get an alarm it is a sensor of type X.
470 */
471static int
472abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
473 u8 sensor_addr)
474{
475 u8 val, test_flag, buf[3];
476 int i, ret = -ENODEV; /* error is the most common used retval :| */
477
478 /* If overriden by the user return the user selected type */
479 if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR &&
480 bank1_types[sensor_addr] <= ABIT_UGURU_NC) {
481 ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor "
482 "%d because of \"bank1_types\" module param\n",
483 bank1_types[sensor_addr], (int)sensor_addr);
484 return bank1_types[sensor_addr];
485 }
486
487 /* First read the sensor and the current settings */
488 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
489 1, ABIT_UGURU_MAX_RETRIES) != 1)
490 return -ENODEV;
491
492 /* Test val is sane / usable for sensor type detection. */
493 if ((val < 10u) || (val > 250u)) {
494 pr_warn("bank1-sensor: %d reading (%d) too close to limits, "
495 "unable to determine sensor type, skipping sensor\n",
496 (int)sensor_addr, (int)val);
497 /*
498 * assume no sensor is there for sensors for which we can't
499 * determine the sensor type because their reading is too close
500 * to their limits, this usually means no sensor is there.
501 */
502 return ABIT_UGURU_NC;
503 }
504
505 ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
506 /*
507 * Volt sensor test, enable volt low alarm, set min value ridiculously
508 * high, or vica versa if the reading is very high. If its a volt
509 * sensor this should always give us an alarm.
510 */
511 if (val <= 240u) {
512 buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
513 buf[1] = 245;
514 buf[2] = 250;
515 test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG;
516 } else {
517 buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE;
518 buf[1] = 5;
519 buf[2] = 10;
520 test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG;
521 }
522
523 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
524 buf, 3) != 3)
525 goto abituguru_detect_bank1_sensor_type_exit;
526 /*
527 * Now we need 20 ms to give the uguru time to read the sensors
528 * and raise a voltage alarm
529 */
530 set_current_state(TASK_UNINTERRUPTIBLE);
531 schedule_timeout(HZ/50);
532 /* Check for alarm and check the alarm is a volt low alarm. */
533 if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
534 ABIT_UGURU_MAX_RETRIES) != 3)
535 goto abituguru_detect_bank1_sensor_type_exit;
536 if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
537 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
538 sensor_addr, buf, 3,
539 ABIT_UGURU_MAX_RETRIES) != 3)
540 goto abituguru_detect_bank1_sensor_type_exit;
541 if (buf[0] & test_flag) {
542 ABIT_UGURU_DEBUG(2, " found volt sensor\n");
543 ret = ABIT_UGURU_IN_SENSOR;
544 goto abituguru_detect_bank1_sensor_type_exit;
545 } else
546 ABIT_UGURU_DEBUG(2, " alarm raised during volt "
547 "sensor test, but volt range flag not set\n");
548 } else
549 ABIT_UGURU_DEBUG(2, " alarm not raised during volt sensor "
550 "test\n");
551
552 /*
553 * Temp sensor test, enable sensor as a temp sensor, set beep value
554 * ridiculously low (but not too low, otherwise uguru ignores it).
555 * If its a temp sensor this should always give us an alarm.
556 */
557 buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
558 buf[1] = 5;
559 buf[2] = 10;
560 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
561 buf, 3) != 3)
562 goto abituguru_detect_bank1_sensor_type_exit;
563 /*
564 * Now we need 50 ms to give the uguru time to read the sensors
565 * and raise a temp alarm
566 */
567 set_current_state(TASK_UNINTERRUPTIBLE);
568 schedule_timeout(HZ/20);
569 /* Check for alarm and check the alarm is a temp high alarm. */
570 if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
571 ABIT_UGURU_MAX_RETRIES) != 3)
572 goto abituguru_detect_bank1_sensor_type_exit;
573 if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
574 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
575 sensor_addr, buf, 3,
576 ABIT_UGURU_MAX_RETRIES) != 3)
577 goto abituguru_detect_bank1_sensor_type_exit;
578 if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
579 ABIT_UGURU_DEBUG(2, " found temp sensor\n");
580 ret = ABIT_UGURU_TEMP_SENSOR;
581 goto abituguru_detect_bank1_sensor_type_exit;
582 } else
583 ABIT_UGURU_DEBUG(2, " alarm raised during temp "
584 "sensor test, but temp high flag not set\n");
585 } else
586 ABIT_UGURU_DEBUG(2, " alarm not raised during temp sensor "
587 "test\n");
588
589 ret = ABIT_UGURU_NC;
590abituguru_detect_bank1_sensor_type_exit:
591 /*
592 * Restore original settings, failing here is really BAD, it has been
593 * reported that some BIOS-es hang when entering the uGuru menu with
594 * invalid settings present in the uGuru, so we try this 3 times.
595 */
596 for (i = 0; i < 3; i++)
597 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
598 sensor_addr, data->bank1_settings[sensor_addr],
599 3) == 3)
600 break;
601 if (i == 3) {
602 pr_err("Fatal error could not restore original settings. %s %s\n",
603 never_happen, report_this);
604 return -ENODEV;
605 }
606 return ret;
607}
608
609/*
610 * These functions try to find out how many sensors there are in bank2 and how
611 * many pwms there are. The purpose of this is to make sure that we don't give
612 * the user the possibility to change settings for non-existent sensors / pwm.
613 * The uGuru will happily read / write whatever memory happens to be after the
614 * memory storing the PWM settings when reading/writing to a PWM which is not
615 * there. Notice even if we detect a PWM which doesn't exist we normally won't
616 * write to it, unless the user tries to change the settings.
617 *
618 * Although the uGuru allows reading (settings) from non existing bank2
619 * sensors, my version of the uGuru does seem to stop writing to them, the
620 * write function above aborts in this case with:
621 * "CMD reg does not hold 0xAC after write"
622 *
623 * Notice these 2 tests are non destructive iow read-only tests, otherwise
624 * they would defeat their purpose. Although for the bank2_sensors detection a
625 * read/write test would be feasible because of the reaction above, I've
626 * however opted to stay on the safe side.
627 */
628static void
629abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
630{
631 int i;
632
633 if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) {
634 data->bank2_sensors = fan_sensors;
635 ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
636 "\"fan_sensors\" module param\n",
637 (int)data->bank2_sensors);
638 return;
639 }
640
641 ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
642 for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
643 /*
644 * 0x89 are the known used bits:
645 * -0x80 enable shutdown
646 * -0x08 enable beep
647 * -0x01 enable alarm
648 * All other bits should be 0, but on some motherboards
649 * 0x40 (bit 6) is also high for some of the fans??
650 */
651 if (data->bank2_settings[i][0] & ~0xC9) {
652 ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
653 "to be a fan sensor: settings[0] = %02X\n",
654 i, (unsigned int)data->bank2_settings[i][0]);
655 break;
656 }
657
658 /* check if the threshold is within the allowed range */
659 if (data->bank2_settings[i][1] <
660 abituguru_bank2_min_threshold) {
661 ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
662 "to be a fan sensor: the threshold (%d) is "
663 "below the minimum (%d)\n", i,
664 (int)data->bank2_settings[i][1],
665 (int)abituguru_bank2_min_threshold);
666 break;
667 }
668 if (data->bank2_settings[i][1] >
669 abituguru_bank2_max_threshold) {
670 ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
671 "to be a fan sensor: the threshold (%d) is "
672 "above the maximum (%d)\n", i,
673 (int)data->bank2_settings[i][1],
674 (int)abituguru_bank2_max_threshold);
675 break;
676 }
677 }
678
679 data->bank2_sensors = i;
680 ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
681 (int)data->bank2_sensors);
682}
683
684static void
685abituguru_detect_no_pwms(struct abituguru_data *data)
686{
687 int i, j;
688
689 if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) {
690 data->pwms = pwms;
691 ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
692 "\"pwms\" module param\n", (int)data->pwms);
693 return;
694 }
695
696 ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
697 for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
698 /*
699 * 0x80 is the enable bit and the low
700 * nibble is which temp sensor to use,
701 * the other bits should be 0
702 */
703 if (data->pwm_settings[i][0] & ~0x8F) {
704 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
705 "to be a pwm channel: settings[0] = %02X\n",
706 i, (unsigned int)data->pwm_settings[i][0]);
707 break;
708 }
709
710 /*
711 * the low nibble must correspond to one of the temp sensors
712 * we've found
713 */
714 for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
715 j++) {
716 if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
717 (data->pwm_settings[i][0] & 0x0F))
718 break;
719 }
720 if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
721 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
722 "to be a pwm channel: %d is not a valid temp "
723 "sensor address\n", i,
724 data->pwm_settings[i][0] & 0x0F);
725 break;
726 }
727
728 /* check if all other settings are within the allowed range */
729 for (j = 1; j < 5; j++) {
730 u8 min;
731 /* special case pwm1 min pwm% */
732 if ((i == 0) && ((j == 1) || (j == 2)))
733 min = 77;
734 else
735 min = abituguru_pwm_min[j];
736 if (data->pwm_settings[i][j] < min) {
737 ABIT_UGURU_DEBUG(2, " pwm channel %d does "
738 "not seem to be a pwm channel: "
739 "setting %d (%d) is below the minimum "
740 "value (%d)\n", i, j,
741 (int)data->pwm_settings[i][j],
742 (int)min);
743 goto abituguru_detect_no_pwms_exit;
744 }
745 if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
746 ABIT_UGURU_DEBUG(2, " pwm channel %d does "
747 "not seem to be a pwm channel: "
748 "setting %d (%d) is above the maximum "
749 "value (%d)\n", i, j,
750 (int)data->pwm_settings[i][j],
751 (int)abituguru_pwm_max[j]);
752 goto abituguru_detect_no_pwms_exit;
753 }
754 }
755
756 /* check that min temp < max temp and min pwm < max pwm */
757 if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
758 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
759 "to be a pwm channel: min pwm (%d) >= "
760 "max pwm (%d)\n", i,
761 (int)data->pwm_settings[i][1],
762 (int)data->pwm_settings[i][2]);
763 break;
764 }
765 if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
766 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
767 "to be a pwm channel: min temp (%d) >= "
768 "max temp (%d)\n", i,
769 (int)data->pwm_settings[i][3],
770 (int)data->pwm_settings[i][4]);
771 break;
772 }
773 }
774
775abituguru_detect_no_pwms_exit:
776 data->pwms = i;
777 ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
778}
779
780/*
781 * Following are the sysfs callback functions. These functions expect:
782 * sensor_device_attribute_2->index: sensor address/offset in the bank
783 * sensor_device_attribute_2->nr: register offset, bitmask or NA.
784 */
785static struct abituguru_data *abituguru_update_device(struct device *dev);
786
787static ssize_t show_bank1_value(struct device *dev,
788 struct device_attribute *devattr, char *buf)
789{
790 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
791 struct abituguru_data *data = abituguru_update_device(dev);
792 if (!data)
793 return -EIO;
794 return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
795 data->bank1_max_value[attr->index] + 128) / 255);
796}
797
798static ssize_t show_bank1_setting(struct device *dev,
799 struct device_attribute *devattr, char *buf)
800{
801 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
802 struct abituguru_data *data = dev_get_drvdata(dev);
803 return sprintf(buf, "%d\n",
804 (data->bank1_settings[attr->index][attr->nr] *
805 data->bank1_max_value[attr->index] + 128) / 255);
806}
807
808static ssize_t show_bank2_value(struct device *dev,
809 struct device_attribute *devattr, char *buf)
810{
811 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
812 struct abituguru_data *data = abituguru_update_device(dev);
813 if (!data)
814 return -EIO;
815 return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
816 ABIT_UGURU_FAN_MAX + 128) / 255);
817}
818
819static ssize_t show_bank2_setting(struct device *dev,
820 struct device_attribute *devattr, char *buf)
821{
822 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
823 struct abituguru_data *data = dev_get_drvdata(dev);
824 return sprintf(buf, "%d\n",
825 (data->bank2_settings[attr->index][attr->nr] *
826 ABIT_UGURU_FAN_MAX + 128) / 255);
827}
828
829static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
830 *devattr, const char *buf, size_t count)
831{
832 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
833 struct abituguru_data *data = dev_get_drvdata(dev);
834 unsigned long val;
835 ssize_t ret;
836
837 ret = kstrtoul(buf, 10, &val);
838 if (ret)
839 return ret;
840
841 ret = count;
842 val = (val * 255 + data->bank1_max_value[attr->index] / 2) /
843 data->bank1_max_value[attr->index];
844 if (val > 255)
845 return -EINVAL;
846
847 mutex_lock(&data->update_lock);
848 if (data->bank1_settings[attr->index][attr->nr] != val) {
849 u8 orig_val = data->bank1_settings[attr->index][attr->nr];
850 data->bank1_settings[attr->index][attr->nr] = val;
851 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
852 attr->index, data->bank1_settings[attr->index],
853 3) <= attr->nr) {
854 data->bank1_settings[attr->index][attr->nr] = orig_val;
855 ret = -EIO;
856 }
857 }
858 mutex_unlock(&data->update_lock);
859 return ret;
860}
861
862static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
863 *devattr, const char *buf, size_t count)
864{
865 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
866 struct abituguru_data *data = dev_get_drvdata(dev);
867 unsigned long val;
868 ssize_t ret;
869
870 ret = kstrtoul(buf, 10, &val);
871 if (ret)
872 return ret;
873
874 ret = count;
875 val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX;
876
877 /* this check can be done before taking the lock */
878 if (val < abituguru_bank2_min_threshold ||
879 val > abituguru_bank2_max_threshold)
880 return -EINVAL;
881
882 mutex_lock(&data->update_lock);
883 if (data->bank2_settings[attr->index][attr->nr] != val) {
884 u8 orig_val = data->bank2_settings[attr->index][attr->nr];
885 data->bank2_settings[attr->index][attr->nr] = val;
886 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
887 attr->index, data->bank2_settings[attr->index],
888 2) <= attr->nr) {
889 data->bank2_settings[attr->index][attr->nr] = orig_val;
890 ret = -EIO;
891 }
892 }
893 mutex_unlock(&data->update_lock);
894 return ret;
895}
896
897static ssize_t show_bank1_alarm(struct device *dev,
898 struct device_attribute *devattr, char *buf)
899{
900 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
901 struct abituguru_data *data = abituguru_update_device(dev);
902 if (!data)
903 return -EIO;
904 /*
905 * See if the alarm bit for this sensor is set, and if the
906 * alarm matches the type of alarm we're looking for (for volt
907 * it can be either low or high). The type is stored in a few
908 * readonly bits in the settings part of the relevant sensor.
909 * The bitmask of the type is passed to us in attr->nr.
910 */
911 if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
912 (data->bank1_settings[attr->index][0] & attr->nr))
913 return sprintf(buf, "1\n");
914 else
915 return sprintf(buf, "0\n");
916}
917
918static ssize_t show_bank2_alarm(struct device *dev,
919 struct device_attribute *devattr, char *buf)
920{
921 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
922 struct abituguru_data *data = abituguru_update_device(dev);
923 if (!data)
924 return -EIO;
925 if (data->alarms[2] & (0x01 << attr->index))
926 return sprintf(buf, "1\n");
927 else
928 return sprintf(buf, "0\n");
929}
930
931static ssize_t show_bank1_mask(struct device *dev,
932 struct device_attribute *devattr, char *buf)
933{
934 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
935 struct abituguru_data *data = dev_get_drvdata(dev);
936 if (data->bank1_settings[attr->index][0] & attr->nr)
937 return sprintf(buf, "1\n");
938 else
939 return sprintf(buf, "0\n");
940}
941
942static ssize_t show_bank2_mask(struct device *dev,
943 struct device_attribute *devattr, char *buf)
944{
945 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
946 struct abituguru_data *data = dev_get_drvdata(dev);
947 if (data->bank2_settings[attr->index][0] & attr->nr)
948 return sprintf(buf, "1\n");
949 else
950 return sprintf(buf, "0\n");
951}
952
953static ssize_t store_bank1_mask(struct device *dev,
954 struct device_attribute *devattr, const char *buf, size_t count)
955{
956 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
957 struct abituguru_data *data = dev_get_drvdata(dev);
958 ssize_t ret;
959 u8 orig_val;
960 unsigned long mask;
961
962 ret = kstrtoul(buf, 10, &mask);
963 if (ret)
964 return ret;
965
966 ret = count;
967 mutex_lock(&data->update_lock);
968 orig_val = data->bank1_settings[attr->index][0];
969
970 if (mask)
971 data->bank1_settings[attr->index][0] |= attr->nr;
972 else
973 data->bank1_settings[attr->index][0] &= ~attr->nr;
974
975 if ((data->bank1_settings[attr->index][0] != orig_val) &&
976 (abituguru_write(data,
977 ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
978 data->bank1_settings[attr->index], 3) < 1)) {
979 data->bank1_settings[attr->index][0] = orig_val;
980 ret = -EIO;
981 }
982 mutex_unlock(&data->update_lock);
983 return ret;
984}
985
986static ssize_t store_bank2_mask(struct device *dev,
987 struct device_attribute *devattr, const char *buf, size_t count)
988{
989 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
990 struct abituguru_data *data = dev_get_drvdata(dev);
991 ssize_t ret;
992 u8 orig_val;
993 unsigned long mask;
994
995 ret = kstrtoul(buf, 10, &mask);
996 if (ret)
997 return ret;
998
999 ret = count;
1000 mutex_lock(&data->update_lock);
1001 orig_val = data->bank2_settings[attr->index][0];
1002
1003 if (mask)
1004 data->bank2_settings[attr->index][0] |= attr->nr;
1005 else
1006 data->bank2_settings[attr->index][0] &= ~attr->nr;
1007
1008 if ((data->bank2_settings[attr->index][0] != orig_val) &&
1009 (abituguru_write(data,
1010 ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
1011 data->bank2_settings[attr->index], 2) < 1)) {
1012 data->bank2_settings[attr->index][0] = orig_val;
1013 ret = -EIO;
1014 }
1015 mutex_unlock(&data->update_lock);
1016 return ret;
1017}
1018
1019/* Fan PWM (speed control) */
1020static ssize_t show_pwm_setting(struct device *dev,
1021 struct device_attribute *devattr, char *buf)
1022{
1023 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1024 struct abituguru_data *data = dev_get_drvdata(dev);
1025 return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
1026 abituguru_pwm_settings_multiplier[attr->nr]);
1027}
1028
1029static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
1030 *devattr, const char *buf, size_t count)
1031{
1032 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1033 struct abituguru_data *data = dev_get_drvdata(dev);
1034 u8 min;
1035 unsigned long val;
1036 ssize_t ret;
1037
1038 ret = kstrtoul(buf, 10, &val);
1039 if (ret)
1040 return ret;
1041
1042 ret = count;
1043 val = (val + abituguru_pwm_settings_multiplier[attr->nr] / 2) /
1044 abituguru_pwm_settings_multiplier[attr->nr];
1045
1046 /* special case pwm1 min pwm% */
1047 if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
1048 min = 77;
1049 else
1050 min = abituguru_pwm_min[attr->nr];
1051
1052 /* this check can be done before taking the lock */
1053 if (val < min || val > abituguru_pwm_max[attr->nr])
1054 return -EINVAL;
1055
1056 mutex_lock(&data->update_lock);
1057 /* this check needs to be done after taking the lock */
1058 if ((attr->nr & 1) &&
1059 (val >= data->pwm_settings[attr->index][attr->nr + 1]))
1060 ret = -EINVAL;
1061 else if (!(attr->nr & 1) &&
1062 (val <= data->pwm_settings[attr->index][attr->nr - 1]))
1063 ret = -EINVAL;
1064 else if (data->pwm_settings[attr->index][attr->nr] != val) {
1065 u8 orig_val = data->pwm_settings[attr->index][attr->nr];
1066 data->pwm_settings[attr->index][attr->nr] = val;
1067 if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1068 attr->index, data->pwm_settings[attr->index],
1069 5) <= attr->nr) {
1070 data->pwm_settings[attr->index][attr->nr] =
1071 orig_val;
1072 ret = -EIO;
1073 }
1074 }
1075 mutex_unlock(&data->update_lock);
1076 return ret;
1077}
1078
1079static ssize_t show_pwm_sensor(struct device *dev,
1080 struct device_attribute *devattr, char *buf)
1081{
1082 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1083 struct abituguru_data *data = dev_get_drvdata(dev);
1084 int i;
1085 /*
1086 * We need to walk to the temp sensor addresses to find what
1087 * the userspace id of the configured temp sensor is.
1088 */
1089 for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
1090 if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
1091 (data->pwm_settings[attr->index][0] & 0x0F))
1092 return sprintf(buf, "%d\n", i+1);
1093
1094 return -ENXIO;
1095}
1096
1097static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
1098 *devattr, const char *buf, size_t count)
1099{
1100 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1101 struct abituguru_data *data = dev_get_drvdata(dev);
1102 ssize_t ret;
1103 unsigned long val;
1104 u8 orig_val;
1105 u8 address;
1106
1107 ret = kstrtoul(buf, 10, &val);
1108 if (ret)
1109 return ret;
1110
1111 if (val == 0 || val > data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR])
1112 return -EINVAL;
1113
1114 val -= 1;
1115 ret = count;
1116 mutex_lock(&data->update_lock);
1117 orig_val = data->pwm_settings[attr->index][0];
1118 address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
1119 data->pwm_settings[attr->index][0] &= 0xF0;
1120 data->pwm_settings[attr->index][0] |= address;
1121 if (data->pwm_settings[attr->index][0] != orig_val) {
1122 if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index,
1123 data->pwm_settings[attr->index], 5) < 1) {
1124 data->pwm_settings[attr->index][0] = orig_val;
1125 ret = -EIO;
1126 }
1127 }
1128 mutex_unlock(&data->update_lock);
1129 return ret;
1130}
1131
1132static ssize_t show_pwm_enable(struct device *dev,
1133 struct device_attribute *devattr, char *buf)
1134{
1135 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1136 struct abituguru_data *data = dev_get_drvdata(dev);
1137 int res = 0;
1138 if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
1139 res = 2;
1140 return sprintf(buf, "%d\n", res);
1141}
1142
1143static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
1144 *devattr, const char *buf, size_t count)
1145{
1146 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1147 struct abituguru_data *data = dev_get_drvdata(dev);
1148 u8 orig_val;
1149 ssize_t ret;
1150 unsigned long user_val;
1151
1152 ret = kstrtoul(buf, 10, &user_val);
1153 if (ret)
1154 return ret;
1155
1156 ret = count;
1157 mutex_lock(&data->update_lock);
1158 orig_val = data->pwm_settings[attr->index][0];
1159 switch (user_val) {
1160 case 0:
1161 data->pwm_settings[attr->index][0] &=
1162 ~ABIT_UGURU_FAN_PWM_ENABLE;
1163 break;
1164 case 2:
1165 data->pwm_settings[attr->index][0] |= ABIT_UGURU_FAN_PWM_ENABLE;
1166 break;
1167 default:
1168 ret = -EINVAL;
1169 }
1170 if ((data->pwm_settings[attr->index][0] != orig_val) &&
1171 (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1172 attr->index, data->pwm_settings[attr->index],
1173 5) < 1)) {
1174 data->pwm_settings[attr->index][0] = orig_val;
1175 ret = -EIO;
1176 }
1177 mutex_unlock(&data->update_lock);
1178 return ret;
1179}
1180
1181static ssize_t show_name(struct device *dev,
1182 struct device_attribute *devattr, char *buf)
1183{
1184 return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
1185}
1186
1187/* Sysfs attr templates, the real entries are generated automatically. */
1188static const
1189struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
1190 {
1191 SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
1192 SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
1193 store_bank1_setting, 1, 0),
1194 SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
1195 ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0),
1196 SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
1197 store_bank1_setting, 2, 0),
1198 SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
1199 ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0),
1200 SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
1201 store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1202 SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
1203 store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1204 SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
1205 store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
1206 SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
1207 store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
1208 }, {
1209 SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
1210 SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
1211 ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0),
1212 SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
1213 store_bank1_setting, 1, 0),
1214 SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
1215 store_bank1_setting, 2, 0),
1216 SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
1217 store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1218 SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
1219 store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1220 SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
1221 store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
1222 }
1223};
1224
1225static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
1226 SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
1227 SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
1228 SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
1229 store_bank2_setting, 1, 0),
1230 SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
1231 store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1232 SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
1233 store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1234 SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
1235 store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
1236};
1237
1238static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
1239 SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
1240 store_pwm_enable, 0, 0),
1241 SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
1242 store_pwm_sensor, 0, 0),
1243 SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
1244 store_pwm_setting, 1, 0),
1245 SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
1246 store_pwm_setting, 2, 0),
1247 SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
1248 store_pwm_setting, 3, 0),
1249 SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
1250 store_pwm_setting, 4, 0),
1251};
1252
1253static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
1254 SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
1255};
1256
1257static int abituguru_probe(struct platform_device *pdev)
1258{
1259 struct abituguru_data *data;
1260 int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
1261 char *sysfs_filename;
1262
1263 /*
1264 * El weirdo probe order, to keep the sysfs order identical to the
1265 * BIOS and window-appliction listing order.
1266 */
1267 static const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
1268 0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
1269 0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
1270
1271 data = devm_kzalloc(&pdev->dev, sizeof(struct abituguru_data),
1272 GFP_KERNEL);
1273 if (!data)
1274 return -ENOMEM;
1275
1276 data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
1277 mutex_init(&data->update_lock);
1278 platform_set_drvdata(pdev, data);
1279
1280 /* See if the uGuru is ready */
1281 if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
1282 data->uguru_ready = 1;
1283
1284 /*
1285 * Completely read the uGuru this has 2 purposes:
1286 * - testread / see if one really is there.
1287 * - make an in memory copy of all the uguru settings for future use.
1288 */
1289 if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1290 data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
1291 goto abituguru_probe_error;
1292
1293 for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1294 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
1295 &data->bank1_value[i], 1,
1296 ABIT_UGURU_MAX_RETRIES) != 1)
1297 goto abituguru_probe_error;
1298 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
1299 data->bank1_settings[i], 3,
1300 ABIT_UGURU_MAX_RETRIES) != 3)
1301 goto abituguru_probe_error;
1302 }
1303 /*
1304 * Note: We don't know how many bank2 sensors / pwms there really are,
1305 * but in order to "detect" this we need to read the maximum amount
1306 * anyways. If we read sensors/pwms not there we'll just read crap
1307 * this can't hurt. We need the detection because we don't want
1308 * unwanted writes, which will hurt!
1309 */
1310 for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
1311 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1312 &data->bank2_value[i], 1,
1313 ABIT_UGURU_MAX_RETRIES) != 1)
1314 goto abituguru_probe_error;
1315 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
1316 data->bank2_settings[i], 2,
1317 ABIT_UGURU_MAX_RETRIES) != 2)
1318 goto abituguru_probe_error;
1319 }
1320 for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
1321 if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
1322 data->pwm_settings[i], 5,
1323 ABIT_UGURU_MAX_RETRIES) != 5)
1324 goto abituguru_probe_error;
1325 }
1326 data->last_updated = jiffies;
1327
1328 /* Detect sensor types and fill the sysfs attr for bank1 */
1329 sysfs_attr_i = 0;
1330 sysfs_filename = data->sysfs_names;
1331 sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH;
1332 for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1333 res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
1334 if (res < 0)
1335 goto abituguru_probe_error;
1336 if (res == ABIT_UGURU_NC)
1337 continue;
1338
1339 /* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */
1340 for (j = 0; j < (res ? 7 : 9); j++) {
1341 used = snprintf(sysfs_filename, sysfs_names_free,
1342 abituguru_sysfs_bank1_templ[res][j].dev_attr.
1343 attr.name, data->bank1_sensors[res] + res)
1344 + 1;
1345 data->sysfs_attr[sysfs_attr_i] =
1346 abituguru_sysfs_bank1_templ[res][j];
1347 data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1348 sysfs_filename;
1349 data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
1350 sysfs_filename += used;
1351 sysfs_names_free -= used;
1352 sysfs_attr_i++;
1353 }
1354 data->bank1_max_value[probe_order[i]] =
1355 abituguru_bank1_max_value[res];
1356 data->bank1_address[res][data->bank1_sensors[res]] =
1357 probe_order[i];
1358 data->bank1_sensors[res]++;
1359 }
1360 /* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
1361 abituguru_detect_no_bank2_sensors(data);
1362 for (i = 0; i < data->bank2_sensors; i++) {
1363 for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) {
1364 used = snprintf(sysfs_filename, sysfs_names_free,
1365 abituguru_sysfs_fan_templ[j].dev_attr.attr.name,
1366 i + 1) + 1;
1367 data->sysfs_attr[sysfs_attr_i] =
1368 abituguru_sysfs_fan_templ[j];
1369 data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1370 sysfs_filename;
1371 data->sysfs_attr[sysfs_attr_i].index = i;
1372 sysfs_filename += used;
1373 sysfs_names_free -= used;
1374 sysfs_attr_i++;
1375 }
1376 }
1377 /* Detect number of sensors and fill the sysfs attr for pwms */
1378 abituguru_detect_no_pwms(data);
1379 for (i = 0; i < data->pwms; i++) {
1380 for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) {
1381 used = snprintf(sysfs_filename, sysfs_names_free,
1382 abituguru_sysfs_pwm_templ[j].dev_attr.attr.name,
1383 i + 1) + 1;
1384 data->sysfs_attr[sysfs_attr_i] =
1385 abituguru_sysfs_pwm_templ[j];
1386 data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1387 sysfs_filename;
1388 data->sysfs_attr[sysfs_attr_i].index = i;
1389 sysfs_filename += used;
1390 sysfs_names_free -= used;
1391 sysfs_attr_i++;
1392 }
1393 }
1394 /* Fail safe check, this should never happen! */
1395 if (sysfs_names_free < 0) {
1396 pr_err("Fatal error ran out of space for sysfs attr names. %s %s",
1397 never_happen, report_this);
1398 res = -ENAMETOOLONG;
1399 goto abituguru_probe_error;
1400 }
1401 pr_info("found Abit uGuru\n");
1402
1403 /* Register sysfs hooks */
1404 for (i = 0; i < sysfs_attr_i; i++) {
1405 res = device_create_file(&pdev->dev,
1406 &data->sysfs_attr[i].dev_attr);
1407 if (res)
1408 goto abituguru_probe_error;
1409 }
1410 for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) {
1411 res = device_create_file(&pdev->dev,
1412 &abituguru_sysfs_attr[i].dev_attr);
1413 if (res)
1414 goto abituguru_probe_error;
1415 }
1416
1417 data->hwmon_dev = hwmon_device_register(&pdev->dev);
1418 if (!IS_ERR(data->hwmon_dev))
1419 return 0; /* success */
1420
1421 res = PTR_ERR(data->hwmon_dev);
1422abituguru_probe_error:
1423 for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1424 device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1425 for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1426 device_remove_file(&pdev->dev,
1427 &abituguru_sysfs_attr[i].dev_attr);
1428 return res;
1429}
1430
1431static int abituguru_remove(struct platform_device *pdev)
1432{
1433 int i;
1434 struct abituguru_data *data = platform_get_drvdata(pdev);
1435
1436 hwmon_device_unregister(data->hwmon_dev);
1437 for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1438 device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1439 for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1440 device_remove_file(&pdev->dev,
1441 &abituguru_sysfs_attr[i].dev_attr);
1442
1443 return 0;
1444}
1445
1446static struct abituguru_data *abituguru_update_device(struct device *dev)
1447{
1448 int i, err;
1449 struct abituguru_data *data = dev_get_drvdata(dev);
1450 /* fake a complete successful read if no update necessary. */
1451 char success = 1;
1452
1453 mutex_lock(&data->update_lock);
1454 if (time_after(jiffies, data->last_updated + HZ)) {
1455 success = 0;
1456 err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1457 data->alarms, 3, 0);
1458 if (err != 3)
1459 goto LEAVE_UPDATE;
1460 for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1461 err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1,
1462 i, &data->bank1_value[i], 1, 0);
1463 if (err != 1)
1464 goto LEAVE_UPDATE;
1465 err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
1466 i, data->bank1_settings[i], 3, 0);
1467 if (err != 3)
1468 goto LEAVE_UPDATE;
1469 }
1470 for (i = 0; i < data->bank2_sensors; i++) {
1471 err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1472 &data->bank2_value[i], 1, 0);
1473 if (err != 1)
1474 goto LEAVE_UPDATE;
1475 }
1476 /* success! */
1477 success = 1;
1478 data->update_timeouts = 0;
1479LEAVE_UPDATE:
1480 /* handle timeout condition */
1481 if (!success && (err == -EBUSY || err >= 0)) {
1482 /* No overflow please */
1483 if (data->update_timeouts < 255u)
1484 data->update_timeouts++;
1485 if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) {
1486 ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
1487 "try again next update\n");
1488 /* Just a timeout, fake a successful read */
1489 success = 1;
1490 } else
1491 ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
1492 "times waiting for more input state\n",
1493 (int)data->update_timeouts);
1494 }
1495 /* On success set last_updated */
1496 if (success)
1497 data->last_updated = jiffies;
1498 }
1499 mutex_unlock(&data->update_lock);
1500
1501 if (success)
1502 return data;
1503 else
1504 return NULL;
1505}
1506
1507static int abituguru_suspend(struct device *dev)
1508{
1509 struct abituguru_data *data = dev_get_drvdata(dev);
1510 /*
1511 * make sure all communications with the uguru are done and no new
1512 * ones are started
1513 */
1514 mutex_lock(&data->update_lock);
1515 return 0;
1516}
1517
1518static int abituguru_resume(struct device *dev)
1519{
1520 struct abituguru_data *data = dev_get_drvdata(dev);
1521 /* See if the uGuru is still ready */
1522 if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT)
1523 data->uguru_ready = 0;
1524 mutex_unlock(&data->update_lock);
1525 return 0;
1526}
1527
1528static DEFINE_SIMPLE_DEV_PM_OPS(abituguru_pm, abituguru_suspend, abituguru_resume);
1529
1530static struct platform_driver abituguru_driver = {
1531 .driver = {
1532 .name = ABIT_UGURU_NAME,
1533 .pm = pm_sleep_ptr(&abituguru_pm),
1534 },
1535 .probe = abituguru_probe,
1536 .remove = abituguru_remove,
1537};
1538
1539static int __init abituguru_detect(void)
1540{
1541 /*
1542 * See if there is an uguru there. After a reboot uGuru will hold 0x00
1543 * at DATA and 0xAC, when this driver has already been loaded once
1544 * DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
1545 * scenario but some will hold 0x00.
1546 * Some uGuru's initially hold 0x09 at DATA and will only hold 0x08
1547 * after reading CMD first, so CMD must be read first!
1548 */
1549 u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
1550 u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
1551 if (((data_val == 0x00) || (data_val == 0x08)) &&
1552 ((cmd_val == 0x00) || (cmd_val == 0xAC)))
1553 return ABIT_UGURU_BASE;
1554
1555 ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
1556 "0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);
1557
1558 if (force) {
1559 pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n");
1560 return ABIT_UGURU_BASE;
1561 }
1562
1563 /* No uGuru found */
1564 return -ENODEV;
1565}
1566
1567static struct platform_device *abituguru_pdev;
1568
1569static int __init abituguru_init(void)
1570{
1571 int address, err;
1572 struct resource res = { .flags = IORESOURCE_IO };
1573 const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR);
1574
1575 /* safety check, refuse to load on non Abit motherboards */
1576 if (!force && (!board_vendor ||
1577 strcmp(board_vendor, "http://www.abit.com.tw/")))
1578 return -ENODEV;
1579
1580 address = abituguru_detect();
1581 if (address < 0)
1582 return address;
1583
1584 err = platform_driver_register(&abituguru_driver);
1585 if (err)
1586 goto exit;
1587
1588 abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
1589 if (!abituguru_pdev) {
1590 pr_err("Device allocation failed\n");
1591 err = -ENOMEM;
1592 goto exit_driver_unregister;
1593 }
1594
1595 res.start = address;
1596 res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
1597 res.name = ABIT_UGURU_NAME;
1598
1599 err = platform_device_add_resources(abituguru_pdev, &res, 1);
1600 if (err) {
1601 pr_err("Device resource addition failed (%d)\n", err);
1602 goto exit_device_put;
1603 }
1604
1605 err = platform_device_add(abituguru_pdev);
1606 if (err) {
1607 pr_err("Device addition failed (%d)\n", err);
1608 goto exit_device_put;
1609 }
1610
1611 return 0;
1612
1613exit_device_put:
1614 platform_device_put(abituguru_pdev);
1615exit_driver_unregister:
1616 platform_driver_unregister(&abituguru_driver);
1617exit:
1618 return err;
1619}
1620
1621static void __exit abituguru_exit(void)
1622{
1623 platform_device_unregister(abituguru_pdev);
1624 platform_driver_unregister(&abituguru_driver);
1625}
1626
1627MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
1628MODULE_DESCRIPTION("Abit uGuru Sensor device");
1629MODULE_LICENSE("GPL");
1630
1631module_init(abituguru_init);
1632module_exit(abituguru_exit);