Loading...
Note: File does not exist in v3.1.
1/*
2 * Copyright 1998-2003 VIA Technologies, Inc. All Rights Reserved.
3 * Copyright 2001-2003 S3 Graphics, Inc. All Rights Reserved.
4 * Copyright 2002 Tungsten Graphics, Inc.
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. All Rights Reserved.
6 * Copyright 2006 Tungsten Graphics Inc., Bismarck, ND., USA.
7 * Copyright 2004 Digeo, Inc., Palo Alto, CA, U.S.A. All Rights Reserved.
8 * Copyright 2004 The Unichrome project. All Rights Reserved.
9 * Copyright 2004 BEAM Ltd.
10 * Copyright 2005 Thomas Hellstrom. All Rights Reserved.
11 *
12 * Permission is hereby granted, free of charge, to any person obtaining a
13 * copy of this software and associated documentation files (the "Software"),
14 * to deal in the Software without restriction, including without limitation
15 * the rights to use, copy, modify, merge, publish, distribute, sub license,
16 * and/or sell copies of the Software, and to permit persons to whom the
17 * Software is furnished to do so, subject to the following conditions:
18 *
19 * The above copyright notice and this permission notice (including the
20 * next paragraph) shall be included in all copies or substantial portions
21 * of the Software.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
24 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
26 * VIA, S3 GRAPHICS, AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
27 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
28 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 * DEALINGS IN THE SOFTWARE.
30 */
31
32#include <linux/delay.h>
33#include <linux/module.h>
34#include <linux/pci.h>
35#include <linux/vmalloc.h>
36
37#include <drm/drm_drv.h>
38#include <drm/drm_file.h>
39#include <drm/drm_ioctl.h>
40#include <drm/drm_legacy.h>
41#include <drm/drm_mm.h>
42#include <drm/drm_pciids.h>
43#include <drm/drm_print.h>
44#include <drm/drm_vblank.h>
45#include <drm/via_drm.h>
46
47#include "via_3d_reg.h"
48
49#define DRIVER_AUTHOR "Various"
50
51#define DRIVER_NAME "via"
52#define DRIVER_DESC "VIA Unichrome / Pro"
53#define DRIVER_DATE "20070202"
54
55#define DRIVER_MAJOR 2
56#define DRIVER_MINOR 11
57#define DRIVER_PATCHLEVEL 1
58
59typedef enum {
60 no_sequence = 0,
61 z_address,
62 dest_address,
63 tex_address
64} drm_via_sequence_t;
65
66typedef struct {
67 unsigned texture;
68 uint32_t z_addr;
69 uint32_t d_addr;
70 uint32_t t_addr[2][10];
71 uint32_t pitch[2][10];
72 uint32_t height[2][10];
73 uint32_t tex_level_lo[2];
74 uint32_t tex_level_hi[2];
75 uint32_t tex_palette_size[2];
76 uint32_t tex_npot[2];
77 drm_via_sequence_t unfinished;
78 int agp_texture;
79 int multitex;
80 struct drm_device *dev;
81 drm_local_map_t *map_cache;
82 uint32_t vertex_count;
83 int agp;
84 const uint32_t *buf_start;
85} drm_via_state_t;
86
87#define VIA_PCI_BUF_SIZE 60000
88#define VIA_FIRE_BUF_SIZE 1024
89#define VIA_NUM_IRQS 4
90
91
92#define VIA_NUM_BLIT_ENGINES 2
93#define VIA_NUM_BLIT_SLOTS 8
94
95struct _drm_via_descriptor;
96
97typedef struct _drm_via_sg_info {
98 struct page **pages;
99 unsigned long num_pages;
100 struct _drm_via_descriptor **desc_pages;
101 int num_desc_pages;
102 int num_desc;
103 enum dma_data_direction direction;
104 unsigned char *bounce_buffer;
105 dma_addr_t chain_start;
106 uint32_t free_on_sequence;
107 unsigned int descriptors_per_page;
108 int aborted;
109 enum {
110 dr_via_device_mapped,
111 dr_via_desc_pages_alloc,
112 dr_via_pages_locked,
113 dr_via_pages_alloc,
114 dr_via_sg_init
115 } state;
116} drm_via_sg_info_t;
117
118typedef struct _drm_via_blitq {
119 struct drm_device *dev;
120 uint32_t cur_blit_handle;
121 uint32_t done_blit_handle;
122 unsigned serviced;
123 unsigned head;
124 unsigned cur;
125 unsigned num_free;
126 unsigned num_outstanding;
127 unsigned long end;
128 int aborting;
129 int is_active;
130 drm_via_sg_info_t *blits[VIA_NUM_BLIT_SLOTS];
131 spinlock_t blit_lock;
132 wait_queue_head_t blit_queue[VIA_NUM_BLIT_SLOTS];
133 wait_queue_head_t busy_queue;
134 struct work_struct wq;
135 struct timer_list poll_timer;
136} drm_via_blitq_t;
137
138typedef struct drm_via_ring_buffer {
139 drm_local_map_t map;
140 char *virtual_start;
141} drm_via_ring_buffer_t;
142
143typedef uint32_t maskarray_t[5];
144
145typedef struct drm_via_irq {
146 atomic_t irq_received;
147 uint32_t pending_mask;
148 uint32_t enable_mask;
149 wait_queue_head_t irq_queue;
150} drm_via_irq_t;
151
152typedef struct drm_via_private {
153 drm_via_sarea_t *sarea_priv;
154 drm_local_map_t *sarea;
155 drm_local_map_t *fb;
156 drm_local_map_t *mmio;
157 unsigned long agpAddr;
158 wait_queue_head_t decoder_queue[VIA_NR_XVMC_LOCKS];
159 char *dma_ptr;
160 unsigned int dma_low;
161 unsigned int dma_high;
162 unsigned int dma_offset;
163 uint32_t dma_wrap;
164 volatile uint32_t *last_pause_ptr;
165 volatile uint32_t *hw_addr_ptr;
166 drm_via_ring_buffer_t ring;
167 ktime_t last_vblank;
168 int last_vblank_valid;
169 ktime_t nsec_per_vblank;
170 atomic_t vbl_received;
171 drm_via_state_t hc_state;
172 char pci_buf[VIA_PCI_BUF_SIZE];
173 const uint32_t *fire_offsets[VIA_FIRE_BUF_SIZE];
174 uint32_t num_fire_offsets;
175 int chipset;
176 drm_via_irq_t via_irqs[VIA_NUM_IRQS];
177 unsigned num_irqs;
178 maskarray_t *irq_masks;
179 uint32_t irq_enable_mask;
180 uint32_t irq_pending_mask;
181 int *irq_map;
182 unsigned int idle_fault;
183 int vram_initialized;
184 struct drm_mm vram_mm;
185 int agp_initialized;
186 struct drm_mm agp_mm;
187 /** Mapping of userspace keys to mm objects */
188 struct idr object_idr;
189 unsigned long vram_offset;
190 unsigned long agp_offset;
191 drm_via_blitq_t blit_queues[VIA_NUM_BLIT_ENGINES];
192 uint32_t dma_diff;
193} drm_via_private_t;
194
195struct via_file_private {
196 struct list_head obj_list;
197};
198
199enum via_family {
200 VIA_OTHER = 0, /* Baseline */
201 VIA_PRO_GROUP_A, /* Another video engine and DMA commands */
202 VIA_DX9_0 /* Same video as pro_group_a, but 3D is unsupported */
203};
204
205/* VIA MMIO register access */
206static inline u32 via_read(struct drm_via_private *dev_priv, u32 reg)
207{
208 return readl((void __iomem *)(dev_priv->mmio->handle + reg));
209}
210
211static inline void via_write(struct drm_via_private *dev_priv, u32 reg,
212 u32 val)
213{
214 writel(val, (void __iomem *)(dev_priv->mmio->handle + reg));
215}
216
217static inline void via_write8(struct drm_via_private *dev_priv, u32 reg,
218 u32 val)
219{
220 writeb(val, (void __iomem *)(dev_priv->mmio->handle + reg));
221}
222
223static inline void via_write8_mask(struct drm_via_private *dev_priv,
224 u32 reg, u32 mask, u32 val)
225{
226 u32 tmp;
227
228 tmp = readb((void __iomem *)(dev_priv->mmio->handle + reg));
229 tmp = (tmp & ~mask) | (val & mask);
230 writeb(tmp, (void __iomem *)(dev_priv->mmio->handle + reg));
231}
232
233/*
234 * Poll in a loop waiting for 'contidition' to be true.
235 * Note: A direct replacement with wait_event_interruptible_timeout()
236 * will not work unless driver is updated to emit wake_up()
237 * in relevant places that can impact the 'condition'
238 *
239 * Returns:
240 * ret keeps current value if 'condition' becomes true
241 * ret = -BUSY if timeout happens
242 * ret = -EINTR if a signal interrupted the waiting period
243 */
244#define VIA_WAIT_ON( ret, queue, timeout, condition ) \
245do { \
246 DECLARE_WAITQUEUE(entry, current); \
247 unsigned long end = jiffies + (timeout); \
248 add_wait_queue(&(queue), &entry); \
249 \
250 for (;;) { \
251 __set_current_state(TASK_INTERRUPTIBLE); \
252 if (condition) \
253 break; \
254 if (time_after_eq(jiffies, end)) { \
255 ret = -EBUSY; \
256 break; \
257 } \
258 schedule_timeout((HZ/100 > 1) ? HZ/100 : 1); \
259 if (signal_pending(current)) { \
260 ret = -EINTR; \
261 break; \
262 } \
263 } \
264 __set_current_state(TASK_RUNNING); \
265 remove_wait_queue(&(queue), &entry); \
266} while (0)
267
268int via_do_cleanup_map(struct drm_device *dev);
269
270int via_dma_cleanup(struct drm_device *dev);
271int via_driver_dma_quiescent(struct drm_device *dev);
272
273#define CMDBUF_ALIGNMENT_SIZE (0x100)
274#define CMDBUF_ALIGNMENT_MASK (0x0ff)
275
276/* defines for VIA 3D registers */
277#define VIA_REG_STATUS 0x400
278#define VIA_REG_TRANSET 0x43C
279#define VIA_REG_TRANSPACE 0x440
280
281/* VIA_REG_STATUS(0x400): Engine Status */
282#define VIA_CMD_RGTR_BUSY 0x00000080 /* Command Regulator is busy */
283#define VIA_2D_ENG_BUSY 0x00000001 /* 2D Engine is busy */
284#define VIA_3D_ENG_BUSY 0x00000002 /* 3D Engine is busy */
285#define VIA_VR_QUEUE_BUSY 0x00020000 /* Virtual Queue is busy */
286
287#define SetReg2DAGP(nReg, nData) { \
288 *((uint32_t *)(vb)) = ((nReg) >> 2) | HALCYON_HEADER1; \
289 *((uint32_t *)(vb) + 1) = (nData); \
290 vb = ((uint32_t *)vb) + 2; \
291 dev_priv->dma_low += 8; \
292}
293
294#define via_flush_write_combine() mb()
295
296#define VIA_OUT_RING_QW(w1, w2) do { \
297 *vb++ = (w1); \
298 *vb++ = (w2); \
299 dev_priv->dma_low += 8; \
300} while (0)
301
302#define VIA_MM_ALIGN_SHIFT 4
303#define VIA_MM_ALIGN_MASK ((1 << VIA_MM_ALIGN_SHIFT) - 1)
304
305struct via_memblock {
306 struct drm_mm_node mm_node;
307 struct list_head owner_list;
308};
309
310#define VIA_REG_INTERRUPT 0x200
311
312/* VIA_REG_INTERRUPT */
313#define VIA_IRQ_GLOBAL (1 << 31)
314#define VIA_IRQ_VBLANK_ENABLE (1 << 19)
315#define VIA_IRQ_VBLANK_PENDING (1 << 3)
316#define VIA_IRQ_HQV0_ENABLE (1 << 11)
317#define VIA_IRQ_HQV1_ENABLE (1 << 25)
318#define VIA_IRQ_HQV0_PENDING (1 << 9)
319#define VIA_IRQ_HQV1_PENDING (1 << 10)
320#define VIA_IRQ_DMA0_DD_ENABLE (1 << 20)
321#define VIA_IRQ_DMA0_TD_ENABLE (1 << 21)
322#define VIA_IRQ_DMA1_DD_ENABLE (1 << 22)
323#define VIA_IRQ_DMA1_TD_ENABLE (1 << 23)
324#define VIA_IRQ_DMA0_DD_PENDING (1 << 4)
325#define VIA_IRQ_DMA0_TD_PENDING (1 << 5)
326#define VIA_IRQ_DMA1_DD_PENDING (1 << 6)
327#define VIA_IRQ_DMA1_TD_PENDING (1 << 7)
328
329/*
330 * PCI DMA Registers
331 * Channels 2 & 3 don't seem to be implemented in hardware.
332 */
333
334#define VIA_PCI_DMA_MAR0 0xE40 /* Memory Address Register of Channel 0 */
335#define VIA_PCI_DMA_DAR0 0xE44 /* Device Address Register of Channel 0 */
336#define VIA_PCI_DMA_BCR0 0xE48 /* Byte Count Register of Channel 0 */
337#define VIA_PCI_DMA_DPR0 0xE4C /* Descriptor Pointer Register of Channel 0 */
338
339#define VIA_PCI_DMA_MAR1 0xE50 /* Memory Address Register of Channel 1 */
340#define VIA_PCI_DMA_DAR1 0xE54 /* Device Address Register of Channel 1 */
341#define VIA_PCI_DMA_BCR1 0xE58 /* Byte Count Register of Channel 1 */
342#define VIA_PCI_DMA_DPR1 0xE5C /* Descriptor Pointer Register of Channel 1 */
343
344#define VIA_PCI_DMA_MAR2 0xE60 /* Memory Address Register of Channel 2 */
345#define VIA_PCI_DMA_DAR2 0xE64 /* Device Address Register of Channel 2 */
346#define VIA_PCI_DMA_BCR2 0xE68 /* Byte Count Register of Channel 2 */
347#define VIA_PCI_DMA_DPR2 0xE6C /* Descriptor Pointer Register of Channel 2 */
348
349#define VIA_PCI_DMA_MAR3 0xE70 /* Memory Address Register of Channel 3 */
350#define VIA_PCI_DMA_DAR3 0xE74 /* Device Address Register of Channel 3 */
351#define VIA_PCI_DMA_BCR3 0xE78 /* Byte Count Register of Channel 3 */
352#define VIA_PCI_DMA_DPR3 0xE7C /* Descriptor Pointer Register of Channel 3 */
353
354#define VIA_PCI_DMA_MR0 0xE80 /* Mode Register of Channel 0 */
355#define VIA_PCI_DMA_MR1 0xE84 /* Mode Register of Channel 1 */
356#define VIA_PCI_DMA_MR2 0xE88 /* Mode Register of Channel 2 */
357#define VIA_PCI_DMA_MR3 0xE8C /* Mode Register of Channel 3 */
358
359#define VIA_PCI_DMA_CSR0 0xE90 /* Command/Status Register of Channel 0 */
360#define VIA_PCI_DMA_CSR1 0xE94 /* Command/Status Register of Channel 1 */
361#define VIA_PCI_DMA_CSR2 0xE98 /* Command/Status Register of Channel 2 */
362#define VIA_PCI_DMA_CSR3 0xE9C /* Command/Status Register of Channel 3 */
363
364#define VIA_PCI_DMA_PTR 0xEA0 /* Priority Type Register */
365
366/* Define for DMA engine */
367/* DPR */
368#define VIA_DMA_DPR_EC (1<<1) /* end of chain */
369#define VIA_DMA_DPR_DDIE (1<<2) /* descriptor done interrupt enable */
370#define VIA_DMA_DPR_DT (1<<3) /* direction of transfer (RO) */
371
372/* MR */
373#define VIA_DMA_MR_CM (1<<0) /* chaining mode */
374#define VIA_DMA_MR_TDIE (1<<1) /* transfer done interrupt enable */
375#define VIA_DMA_MR_HENDMACMD (1<<7) /* ? */
376
377/* CSR */
378#define VIA_DMA_CSR_DE (1<<0) /* DMA enable */
379#define VIA_DMA_CSR_TS (1<<1) /* transfer start */
380#define VIA_DMA_CSR_TA (1<<2) /* transfer abort */
381#define VIA_DMA_CSR_TD (1<<3) /* transfer done */
382#define VIA_DMA_CSR_DD (1<<4) /* descriptor done */
383#define VIA_DMA_DPR_EC (1<<1) /* end of chain */
384
385/*
386 * Device-specific IRQs go here. This type might need to be extended with
387 * the register if there are multiple IRQ control registers.
388 * Currently we activate the HQV interrupts of Unichrome Pro group A.
389 */
390
391static maskarray_t via_pro_group_a_irqs[] = {
392 {VIA_IRQ_HQV0_ENABLE, VIA_IRQ_HQV0_PENDING, 0x000003D0, 0x00008010,
393 0x00000000 },
394 {VIA_IRQ_HQV1_ENABLE, VIA_IRQ_HQV1_PENDING, 0x000013D0, 0x00008010,
395 0x00000000 },
396 {VIA_IRQ_DMA0_TD_ENABLE, VIA_IRQ_DMA0_TD_PENDING, VIA_PCI_DMA_CSR0,
397 VIA_DMA_CSR_TA | VIA_DMA_CSR_TD, 0x00000008},
398 {VIA_IRQ_DMA1_TD_ENABLE, VIA_IRQ_DMA1_TD_PENDING, VIA_PCI_DMA_CSR1,
399 VIA_DMA_CSR_TA | VIA_DMA_CSR_TD, 0x00000008},
400};
401static int via_num_pro_group_a = ARRAY_SIZE(via_pro_group_a_irqs);
402static int via_irqmap_pro_group_a[] = {0, 1, -1, 2, -1, 3};
403
404static maskarray_t via_unichrome_irqs[] = {
405 {VIA_IRQ_DMA0_TD_ENABLE, VIA_IRQ_DMA0_TD_PENDING, VIA_PCI_DMA_CSR0,
406 VIA_DMA_CSR_TA | VIA_DMA_CSR_TD, 0x00000008},
407 {VIA_IRQ_DMA1_TD_ENABLE, VIA_IRQ_DMA1_TD_PENDING, VIA_PCI_DMA_CSR1,
408 VIA_DMA_CSR_TA | VIA_DMA_CSR_TD, 0x00000008}
409};
410static int via_num_unichrome = ARRAY_SIZE(via_unichrome_irqs);
411static int via_irqmap_unichrome[] = {-1, -1, -1, 0, -1, 1};
412
413
414/*
415 * Unmaps the DMA mappings.
416 * FIXME: Is this a NoOp on x86? Also
417 * FIXME: What happens if this one is called and a pending blit has previously done
418 * the same DMA mappings?
419 */
420#define VIA_PGDN(x) (((unsigned long)(x)) & PAGE_MASK)
421#define VIA_PGOFF(x) (((unsigned long)(x)) & ~PAGE_MASK)
422#define VIA_PFN(x) ((unsigned long)(x) >> PAGE_SHIFT)
423
424typedef struct _drm_via_descriptor {
425 uint32_t mem_addr;
426 uint32_t dev_addr;
427 uint32_t size;
428 uint32_t next;
429} drm_via_descriptor_t;
430
431typedef enum {
432 state_command,
433 state_header2,
434 state_header1,
435 state_vheader5,
436 state_vheader6,
437 state_error
438} verifier_state_t;
439
440typedef enum {
441 no_check = 0,
442 check_for_header2,
443 check_for_header1,
444 check_for_header2_err,
445 check_for_header1_err,
446 check_for_fire,
447 check_z_buffer_addr0,
448 check_z_buffer_addr1,
449 check_z_buffer_addr_mode,
450 check_destination_addr0,
451 check_destination_addr1,
452 check_destination_addr_mode,
453 check_for_dummy,
454 check_for_dd,
455 check_texture_addr0,
456 check_texture_addr1,
457 check_texture_addr2,
458 check_texture_addr3,
459 check_texture_addr4,
460 check_texture_addr5,
461 check_texture_addr6,
462 check_texture_addr7,
463 check_texture_addr8,
464 check_texture_addr_mode,
465 check_for_vertex_count,
466 check_number_texunits,
467 forbidden_command
468} hazard_t;
469
470/*
471 * Associates each hazard above with a possible multi-command
472 * sequence. For example an address that is split over multiple
473 * commands and that needs to be checked at the first command
474 * that does not include any part of the address.
475 */
476
477static drm_via_sequence_t seqs[] = {
478 no_sequence,
479 no_sequence,
480 no_sequence,
481 no_sequence,
482 no_sequence,
483 no_sequence,
484 z_address,
485 z_address,
486 z_address,
487 dest_address,
488 dest_address,
489 dest_address,
490 no_sequence,
491 no_sequence,
492 tex_address,
493 tex_address,
494 tex_address,
495 tex_address,
496 tex_address,
497 tex_address,
498 tex_address,
499 tex_address,
500 tex_address,
501 tex_address,
502 no_sequence
503};
504
505typedef struct {
506 unsigned int code;
507 hazard_t hz;
508} hz_init_t;
509
510static hz_init_t init_table1[] = {
511 {0xf2, check_for_header2_err},
512 {0xf0, check_for_header1_err},
513 {0xee, check_for_fire},
514 {0xcc, check_for_dummy},
515 {0xdd, check_for_dd},
516 {0x00, no_check},
517 {0x10, check_z_buffer_addr0},
518 {0x11, check_z_buffer_addr1},
519 {0x12, check_z_buffer_addr_mode},
520 {0x13, no_check},
521 {0x14, no_check},
522 {0x15, no_check},
523 {0x23, no_check},
524 {0x24, no_check},
525 {0x33, no_check},
526 {0x34, no_check},
527 {0x35, no_check},
528 {0x36, no_check},
529 {0x37, no_check},
530 {0x38, no_check},
531 {0x39, no_check},
532 {0x3A, no_check},
533 {0x3B, no_check},
534 {0x3C, no_check},
535 {0x3D, no_check},
536 {0x3E, no_check},
537 {0x40, check_destination_addr0},
538 {0x41, check_destination_addr1},
539 {0x42, check_destination_addr_mode},
540 {0x43, no_check},
541 {0x44, no_check},
542 {0x50, no_check},
543 {0x51, no_check},
544 {0x52, no_check},
545 {0x53, no_check},
546 {0x54, no_check},
547 {0x55, no_check},
548 {0x56, no_check},
549 {0x57, no_check},
550 {0x58, no_check},
551 {0x70, no_check},
552 {0x71, no_check},
553 {0x78, no_check},
554 {0x79, no_check},
555 {0x7A, no_check},
556 {0x7B, no_check},
557 {0x7C, no_check},
558 {0x7D, check_for_vertex_count}
559};
560
561static hz_init_t init_table2[] = {
562 {0xf2, check_for_header2_err},
563 {0xf0, check_for_header1_err},
564 {0xee, check_for_fire},
565 {0xcc, check_for_dummy},
566 {0x00, check_texture_addr0},
567 {0x01, check_texture_addr0},
568 {0x02, check_texture_addr0},
569 {0x03, check_texture_addr0},
570 {0x04, check_texture_addr0},
571 {0x05, check_texture_addr0},
572 {0x06, check_texture_addr0},
573 {0x07, check_texture_addr0},
574 {0x08, check_texture_addr0},
575 {0x09, check_texture_addr0},
576 {0x20, check_texture_addr1},
577 {0x21, check_texture_addr1},
578 {0x22, check_texture_addr1},
579 {0x23, check_texture_addr4},
580 {0x2B, check_texture_addr3},
581 {0x2C, check_texture_addr3},
582 {0x2D, check_texture_addr3},
583 {0x2E, check_texture_addr3},
584 {0x2F, check_texture_addr3},
585 {0x30, check_texture_addr3},
586 {0x31, check_texture_addr3},
587 {0x32, check_texture_addr3},
588 {0x33, check_texture_addr3},
589 {0x34, check_texture_addr3},
590 {0x4B, check_texture_addr5},
591 {0x4C, check_texture_addr6},
592 {0x51, check_texture_addr7},
593 {0x52, check_texture_addr8},
594 {0x77, check_texture_addr2},
595 {0x78, no_check},
596 {0x79, no_check},
597 {0x7A, no_check},
598 {0x7B, check_texture_addr_mode},
599 {0x7C, no_check},
600 {0x7D, no_check},
601 {0x7E, no_check},
602 {0x7F, no_check},
603 {0x80, no_check},
604 {0x81, no_check},
605 {0x82, no_check},
606 {0x83, no_check},
607 {0x85, no_check},
608 {0x86, no_check},
609 {0x87, no_check},
610 {0x88, no_check},
611 {0x89, no_check},
612 {0x8A, no_check},
613 {0x90, no_check},
614 {0x91, no_check},
615 {0x92, no_check},
616 {0x93, no_check}
617};
618
619static hz_init_t init_table3[] = {
620 {0xf2, check_for_header2_err},
621 {0xf0, check_for_header1_err},
622 {0xcc, check_for_dummy},
623 {0x00, check_number_texunits}
624};
625
626static hazard_t table1[256];
627static hazard_t table2[256];
628static hazard_t table3[256];
629
630static __inline__ int
631eat_words(const uint32_t **buf, const uint32_t *buf_end, unsigned num_words)
632{
633 if ((buf_end - *buf) >= num_words) {
634 *buf += num_words;
635 return 0;
636 }
637 DRM_ERROR("Illegal termination of DMA command buffer\n");
638 return 1;
639}
640
641/*
642 * Partially stolen from drm_memory.h
643 */
644
645static __inline__ drm_local_map_t *via_drm_lookup_agp_map(drm_via_state_t *seq,
646 unsigned long offset,
647 unsigned long size,
648 struct drm_device *dev)
649{
650 struct drm_map_list *r_list;
651 drm_local_map_t *map = seq->map_cache;
652
653 if (map && map->offset <= offset
654 && (offset + size) <= (map->offset + map->size)) {
655 return map;
656 }
657
658 list_for_each_entry(r_list, &dev->maplist, head) {
659 map = r_list->map;
660 if (!map)
661 continue;
662 if (map->offset <= offset
663 && (offset + size) <= (map->offset + map->size)
664 && !(map->flags & _DRM_RESTRICTED)
665 && (map->type == _DRM_AGP)) {
666 seq->map_cache = map;
667 return map;
668 }
669 }
670 return NULL;
671}
672
673/*
674 * Require that all AGP texture levels reside in the same AGP map which should
675 * be mappable by the client. This is not a big restriction.
676 * FIXME: To actually enforce this security policy strictly, drm_rmmap
677 * would have to wait for dma quiescent before removing an AGP map.
678 * The via_drm_lookup_agp_map call in reality seems to take
679 * very little CPU time.
680 */
681
682static __inline__ int finish_current_sequence(drm_via_state_t * cur_seq)
683{
684 switch (cur_seq->unfinished) {
685 case z_address:
686 DRM_DEBUG("Z Buffer start address is 0x%x\n", cur_seq->z_addr);
687 break;
688 case dest_address:
689 DRM_DEBUG("Destination start address is 0x%x\n",
690 cur_seq->d_addr);
691 break;
692 case tex_address:
693 if (cur_seq->agp_texture) {
694 unsigned start =
695 cur_seq->tex_level_lo[cur_seq->texture];
696 unsigned end = cur_seq->tex_level_hi[cur_seq->texture];
697 unsigned long lo = ~0, hi = 0, tmp;
698 uint32_t *addr, *pitch, *height, tex;
699 unsigned i;
700 int npot;
701
702 if (end > 9)
703 end = 9;
704 if (start > 9)
705 start = 9;
706
707 addr =
708 &(cur_seq->t_addr[tex = cur_seq->texture][start]);
709 pitch = &(cur_seq->pitch[tex][start]);
710 height = &(cur_seq->height[tex][start]);
711 npot = cur_seq->tex_npot[tex];
712 for (i = start; i <= end; ++i) {
713 tmp = *addr++;
714 if (tmp < lo)
715 lo = tmp;
716 if (i == 0 && npot)
717 tmp += (*height++ * *pitch++);
718 else
719 tmp += (*height++ << *pitch++);
720 if (tmp > hi)
721 hi = tmp;
722 }
723
724 if (!via_drm_lookup_agp_map
725 (cur_seq, lo, hi - lo, cur_seq->dev)) {
726 DRM_ERROR
727 ("AGP texture is not in allowed map\n");
728 return 2;
729 }
730 }
731 break;
732 default:
733 break;
734 }
735 cur_seq->unfinished = no_sequence;
736 return 0;
737}
738
739static __inline__ int
740investigate_hazard(uint32_t cmd, hazard_t hz, drm_via_state_t *cur_seq)
741{
742 register uint32_t tmp, *tmp_addr;
743
744 if (cur_seq->unfinished && (cur_seq->unfinished != seqs[hz])) {
745 int ret;
746 if ((ret = finish_current_sequence(cur_seq)))
747 return ret;
748 }
749
750 switch (hz) {
751 case check_for_header2:
752 if (cmd == HALCYON_HEADER2)
753 return 1;
754 return 0;
755 case check_for_header1:
756 if ((cmd & HALCYON_HEADER1MASK) == HALCYON_HEADER1)
757 return 1;
758 return 0;
759 case check_for_header2_err:
760 if (cmd == HALCYON_HEADER2)
761 return 1;
762 DRM_ERROR("Illegal DMA HALCYON_HEADER2 command\n");
763 break;
764 case check_for_header1_err:
765 if ((cmd & HALCYON_HEADER1MASK) == HALCYON_HEADER1)
766 return 1;
767 DRM_ERROR("Illegal DMA HALCYON_HEADER1 command\n");
768 break;
769 case check_for_fire:
770 if ((cmd & HALCYON_FIREMASK) == HALCYON_FIRECMD)
771 return 1;
772 DRM_ERROR("Illegal DMA HALCYON_FIRECMD command\n");
773 break;
774 case check_for_dummy:
775 if (HC_DUMMY == cmd)
776 return 0;
777 DRM_ERROR("Illegal DMA HC_DUMMY command\n");
778 break;
779 case check_for_dd:
780 if (0xdddddddd == cmd)
781 return 0;
782 DRM_ERROR("Illegal DMA 0xdddddddd command\n");
783 break;
784 case check_z_buffer_addr0:
785 cur_seq->unfinished = z_address;
786 cur_seq->z_addr = (cur_seq->z_addr & 0xFF000000) |
787 (cmd & 0x00FFFFFF);
788 return 0;
789 case check_z_buffer_addr1:
790 cur_seq->unfinished = z_address;
791 cur_seq->z_addr = (cur_seq->z_addr & 0x00FFFFFF) |
792 ((cmd & 0xFF) << 24);
793 return 0;
794 case check_z_buffer_addr_mode:
795 cur_seq->unfinished = z_address;
796 if ((cmd & 0x0000C000) == 0)
797 return 0;
798 DRM_ERROR("Attempt to place Z buffer in system memory\n");
799 return 2;
800 case check_destination_addr0:
801 cur_seq->unfinished = dest_address;
802 cur_seq->d_addr = (cur_seq->d_addr & 0xFF000000) |
803 (cmd & 0x00FFFFFF);
804 return 0;
805 case check_destination_addr1:
806 cur_seq->unfinished = dest_address;
807 cur_seq->d_addr = (cur_seq->d_addr & 0x00FFFFFF) |
808 ((cmd & 0xFF) << 24);
809 return 0;
810 case check_destination_addr_mode:
811 cur_seq->unfinished = dest_address;
812 if ((cmd & 0x0000C000) == 0)
813 return 0;
814 DRM_ERROR
815 ("Attempt to place 3D drawing buffer in system memory\n");
816 return 2;
817 case check_texture_addr0:
818 cur_seq->unfinished = tex_address;
819 tmp = (cmd >> 24);
820 tmp_addr = &cur_seq->t_addr[cur_seq->texture][tmp];
821 *tmp_addr = (*tmp_addr & 0xFF000000) | (cmd & 0x00FFFFFF);
822 return 0;
823 case check_texture_addr1:
824 cur_seq->unfinished = tex_address;
825 tmp = ((cmd >> 24) - 0x20);
826 tmp += tmp << 1;
827 tmp_addr = &cur_seq->t_addr[cur_seq->texture][tmp];
828 *tmp_addr = (*tmp_addr & 0x00FFFFFF) | ((cmd & 0xFF) << 24);
829 tmp_addr++;
830 *tmp_addr = (*tmp_addr & 0x00FFFFFF) | ((cmd & 0xFF00) << 16);
831 tmp_addr++;
832 *tmp_addr = (*tmp_addr & 0x00FFFFFF) | ((cmd & 0xFF0000) << 8);
833 return 0;
834 case check_texture_addr2:
835 cur_seq->unfinished = tex_address;
836 cur_seq->tex_level_lo[tmp = cur_seq->texture] = cmd & 0x3F;
837 cur_seq->tex_level_hi[tmp] = (cmd & 0xFC0) >> 6;
838 return 0;
839 case check_texture_addr3:
840 cur_seq->unfinished = tex_address;
841 tmp = ((cmd >> 24) - HC_SubA_HTXnL0Pit);
842 if (tmp == 0 &&
843 (cmd & HC_HTXnEnPit_MASK)) {
844 cur_seq->pitch[cur_seq->texture][tmp] =
845 (cmd & HC_HTXnLnPit_MASK);
846 cur_seq->tex_npot[cur_seq->texture] = 1;
847 } else {
848 cur_seq->pitch[cur_seq->texture][tmp] =
849 (cmd & HC_HTXnLnPitE_MASK) >> HC_HTXnLnPitE_SHIFT;
850 cur_seq->tex_npot[cur_seq->texture] = 0;
851 if (cmd & 0x000FFFFF) {
852 DRM_ERROR
853 ("Unimplemented texture level 0 pitch mode.\n");
854 return 2;
855 }
856 }
857 return 0;
858 case check_texture_addr4:
859 cur_seq->unfinished = tex_address;
860 tmp_addr = &cur_seq->t_addr[cur_seq->texture][9];
861 *tmp_addr = (*tmp_addr & 0x00FFFFFF) | ((cmd & 0xFF) << 24);
862 return 0;
863 case check_texture_addr5:
864 case check_texture_addr6:
865 cur_seq->unfinished = tex_address;
866 /*
867 * Texture width. We don't care since we have the pitch.
868 */
869 return 0;
870 case check_texture_addr7:
871 cur_seq->unfinished = tex_address;
872 tmp_addr = &(cur_seq->height[cur_seq->texture][0]);
873 tmp_addr[5] = 1 << ((cmd & 0x00F00000) >> 20);
874 tmp_addr[4] = 1 << ((cmd & 0x000F0000) >> 16);
875 tmp_addr[3] = 1 << ((cmd & 0x0000F000) >> 12);
876 tmp_addr[2] = 1 << ((cmd & 0x00000F00) >> 8);
877 tmp_addr[1] = 1 << ((cmd & 0x000000F0) >> 4);
878 tmp_addr[0] = 1 << (cmd & 0x0000000F);
879 return 0;
880 case check_texture_addr8:
881 cur_seq->unfinished = tex_address;
882 tmp_addr = &(cur_seq->height[cur_seq->texture][0]);
883 tmp_addr[9] = 1 << ((cmd & 0x0000F000) >> 12);
884 tmp_addr[8] = 1 << ((cmd & 0x00000F00) >> 8);
885 tmp_addr[7] = 1 << ((cmd & 0x000000F0) >> 4);
886 tmp_addr[6] = 1 << (cmd & 0x0000000F);
887 return 0;
888 case check_texture_addr_mode:
889 cur_seq->unfinished = tex_address;
890 if (2 == (tmp = cmd & 0x00000003)) {
891 DRM_ERROR
892 ("Attempt to fetch texture from system memory.\n");
893 return 2;
894 }
895 cur_seq->agp_texture = (tmp == 3);
896 cur_seq->tex_palette_size[cur_seq->texture] =
897 (cmd >> 16) & 0x000000007;
898 return 0;
899 case check_for_vertex_count:
900 cur_seq->vertex_count = cmd & 0x0000FFFF;
901 return 0;
902 case check_number_texunits:
903 cur_seq->multitex = (cmd >> 3) & 1;
904 return 0;
905 default:
906 DRM_ERROR("Illegal DMA data: 0x%x\n", cmd);
907 return 2;
908 }
909 return 2;
910}
911
912static __inline__ int
913via_check_prim_list(uint32_t const **buffer, const uint32_t * buf_end,
914 drm_via_state_t *cur_seq)
915{
916 drm_via_private_t *dev_priv =
917 (drm_via_private_t *) cur_seq->dev->dev_private;
918 uint32_t a_fire, bcmd, dw_count;
919 int ret = 0;
920 int have_fire;
921 const uint32_t *buf = *buffer;
922
923 while (buf < buf_end) {
924 have_fire = 0;
925 if ((buf_end - buf) < 2) {
926 DRM_ERROR
927 ("Unexpected termination of primitive list.\n");
928 ret = 1;
929 break;
930 }
931 if ((*buf & HC_ACMD_MASK) != HC_ACMD_HCmdB)
932 break;
933 bcmd = *buf++;
934 if ((*buf & HC_ACMD_MASK) != HC_ACMD_HCmdA) {
935 DRM_ERROR("Expected Vertex List A command, got 0x%x\n",
936 *buf);
937 ret = 1;
938 break;
939 }
940 a_fire =
941 *buf++ | HC_HPLEND_MASK | HC_HPMValidN_MASK |
942 HC_HE3Fire_MASK;
943
944 /*
945 * How many dwords per vertex ?
946 */
947
948 if (cur_seq->agp && ((bcmd & (0xF << 11)) == 0)) {
949 DRM_ERROR("Illegal B command vertex data for AGP.\n");
950 ret = 1;
951 break;
952 }
953
954 dw_count = 0;
955 if (bcmd & (1 << 7))
956 dw_count += (cur_seq->multitex) ? 2 : 1;
957 if (bcmd & (1 << 8))
958 dw_count += (cur_seq->multitex) ? 2 : 1;
959 if (bcmd & (1 << 9))
960 dw_count++;
961 if (bcmd & (1 << 10))
962 dw_count++;
963 if (bcmd & (1 << 11))
964 dw_count++;
965 if (bcmd & (1 << 12))
966 dw_count++;
967 if (bcmd & (1 << 13))
968 dw_count++;
969 if (bcmd & (1 << 14))
970 dw_count++;
971
972 while (buf < buf_end) {
973 if (*buf == a_fire) {
974 if (dev_priv->num_fire_offsets >=
975 VIA_FIRE_BUF_SIZE) {
976 DRM_ERROR("Fire offset buffer full.\n");
977 ret = 1;
978 break;
979 }
980 dev_priv->fire_offsets[dev_priv->
981 num_fire_offsets++] =
982 buf;
983 have_fire = 1;
984 buf++;
985 if (buf < buf_end && *buf == a_fire)
986 buf++;
987 break;
988 }
989 if ((*buf == HALCYON_HEADER2) ||
990 ((*buf & HALCYON_FIREMASK) == HALCYON_FIRECMD)) {
991 DRM_ERROR("Missing Vertex Fire command, "
992 "Stray Vertex Fire command or verifier "
993 "lost sync.\n");
994 ret = 1;
995 break;
996 }
997 if ((ret = eat_words(&buf, buf_end, dw_count)))
998 break;
999 }
1000 if (buf >= buf_end && !have_fire) {
1001 DRM_ERROR("Missing Vertex Fire command or verifier "
1002 "lost sync.\n");
1003 ret = 1;
1004 break;
1005 }
1006 if (cur_seq->agp && ((buf - cur_seq->buf_start) & 0x01)) {
1007 DRM_ERROR("AGP Primitive list end misaligned.\n");
1008 ret = 1;
1009 break;
1010 }
1011 }
1012 *buffer = buf;
1013 return ret;
1014}
1015
1016static __inline__ verifier_state_t
1017via_check_header2(uint32_t const **buffer, const uint32_t *buf_end,
1018 drm_via_state_t *hc_state)
1019{
1020 uint32_t cmd;
1021 int hz_mode;
1022 hazard_t hz;
1023 const uint32_t *buf = *buffer;
1024 const hazard_t *hz_table;
1025
1026 if ((buf_end - buf) < 2) {
1027 DRM_ERROR
1028 ("Illegal termination of DMA HALCYON_HEADER2 sequence.\n");
1029 return state_error;
1030 }
1031 buf++;
1032 cmd = (*buf++ & 0xFFFF0000) >> 16;
1033
1034 switch (cmd) {
1035 case HC_ParaType_CmdVdata:
1036 if (via_check_prim_list(&buf, buf_end, hc_state))
1037 return state_error;
1038 *buffer = buf;
1039 return state_command;
1040 case HC_ParaType_NotTex:
1041 hz_table = table1;
1042 break;
1043 case HC_ParaType_Tex:
1044 hc_state->texture = 0;
1045 hz_table = table2;
1046 break;
1047 case (HC_ParaType_Tex | (HC_SubType_Tex1 << 8)):
1048 hc_state->texture = 1;
1049 hz_table = table2;
1050 break;
1051 case (HC_ParaType_Tex | (HC_SubType_TexGeneral << 8)):
1052 hz_table = table3;
1053 break;
1054 case HC_ParaType_Auto:
1055 if (eat_words(&buf, buf_end, 2))
1056 return state_error;
1057 *buffer = buf;
1058 return state_command;
1059 case (HC_ParaType_Palette | (HC_SubType_Stipple << 8)):
1060 if (eat_words(&buf, buf_end, 32))
1061 return state_error;
1062 *buffer = buf;
1063 return state_command;
1064 case (HC_ParaType_Palette | (HC_SubType_TexPalette0 << 8)):
1065 case (HC_ParaType_Palette | (HC_SubType_TexPalette1 << 8)):
1066 DRM_ERROR("Texture palettes are rejected because of "
1067 "lack of info how to determine their size.\n");
1068 return state_error;
1069 case (HC_ParaType_Palette | (HC_SubType_FogTable << 8)):
1070 DRM_ERROR("Fog factor palettes are rejected because of "
1071 "lack of info how to determine their size.\n");
1072 return state_error;
1073 default:
1074
1075 /*
1076 * There are some unimplemented HC_ParaTypes here, that
1077 * need to be implemented if the Mesa driver is extended.
1078 */
1079
1080 DRM_ERROR("Invalid or unimplemented HALCYON_HEADER2 "
1081 "DMA subcommand: 0x%x. Previous dword: 0x%x\n",
1082 cmd, *(buf - 2));
1083 *buffer = buf;
1084 return state_error;
1085 }
1086
1087 while (buf < buf_end) {
1088 cmd = *buf++;
1089 if ((hz = hz_table[cmd >> 24])) {
1090 if ((hz_mode = investigate_hazard(cmd, hz, hc_state))) {
1091 if (hz_mode == 1) {
1092 buf--;
1093 break;
1094 }
1095 return state_error;
1096 }
1097 } else if (hc_state->unfinished &&
1098 finish_current_sequence(hc_state)) {
1099 return state_error;
1100 }
1101 }
1102 if (hc_state->unfinished && finish_current_sequence(hc_state))
1103 return state_error;
1104 *buffer = buf;
1105 return state_command;
1106}
1107
1108static __inline__ verifier_state_t
1109via_parse_header2(drm_via_private_t *dev_priv, uint32_t const **buffer,
1110 const uint32_t *buf_end, int *fire_count)
1111{
1112 uint32_t cmd;
1113 const uint32_t *buf = *buffer;
1114 const uint32_t *next_fire;
1115 int burst = 0;
1116
1117 next_fire = dev_priv->fire_offsets[*fire_count];
1118 buf++;
1119 cmd = (*buf & 0xFFFF0000) >> 16;
1120 via_write(dev_priv, HC_REG_TRANS_SET + HC_REG_BASE, *buf++);
1121 switch (cmd) {
1122 case HC_ParaType_CmdVdata:
1123 while ((buf < buf_end) &&
1124 (*fire_count < dev_priv->num_fire_offsets) &&
1125 (*buf & HC_ACMD_MASK) == HC_ACMD_HCmdB) {
1126 while (buf <= next_fire) {
1127 via_write(dev_priv, HC_REG_TRANS_SPACE + HC_REG_BASE +
1128 (burst & 63), *buf++);
1129 burst += 4;
1130 }
1131 if ((buf < buf_end)
1132 && ((*buf & HALCYON_FIREMASK) == HALCYON_FIRECMD))
1133 buf++;
1134
1135 if (++(*fire_count) < dev_priv->num_fire_offsets)
1136 next_fire = dev_priv->fire_offsets[*fire_count];
1137 }
1138 break;
1139 default:
1140 while (buf < buf_end) {
1141
1142 if (*buf == HC_HEADER2 ||
1143 (*buf & HALCYON_HEADER1MASK) == HALCYON_HEADER1 ||
1144 (*buf & VIA_VIDEOMASK) == VIA_VIDEO_HEADER5 ||
1145 (*buf & VIA_VIDEOMASK) == VIA_VIDEO_HEADER6)
1146 break;
1147
1148 via_write(dev_priv, HC_REG_TRANS_SPACE + HC_REG_BASE +
1149 (burst & 63), *buf++);
1150 burst += 4;
1151 }
1152 }
1153 *buffer = buf;
1154 return state_command;
1155}
1156
1157static __inline__ int verify_mmio_address(uint32_t address)
1158{
1159 if ((address > 0x3FF) && (address < 0xC00)) {
1160 DRM_ERROR("Invalid VIDEO DMA command. "
1161 "Attempt to access 3D- or command burst area.\n");
1162 return 1;
1163 } else if ((address > 0xCFF) && (address < 0x1300)) {
1164 DRM_ERROR("Invalid VIDEO DMA command. "
1165 "Attempt to access PCI DMA area.\n");
1166 return 1;
1167 } else if (address > 0x13FF) {
1168 DRM_ERROR("Invalid VIDEO DMA command. "
1169 "Attempt to access VGA registers.\n");
1170 return 1;
1171 }
1172 return 0;
1173}
1174
1175static __inline__ int
1176verify_video_tail(uint32_t const **buffer, const uint32_t * buf_end,
1177 uint32_t dwords)
1178{
1179 const uint32_t *buf = *buffer;
1180
1181 if (buf_end - buf < dwords) {
1182 DRM_ERROR("Illegal termination of video command.\n");
1183 return 1;
1184 }
1185 while (dwords--) {
1186 if (*buf++) {
1187 DRM_ERROR("Illegal video command tail.\n");
1188 return 1;
1189 }
1190 }
1191 *buffer = buf;
1192 return 0;
1193}
1194
1195static __inline__ verifier_state_t
1196via_check_header1(uint32_t const **buffer, const uint32_t * buf_end)
1197{
1198 uint32_t cmd;
1199 const uint32_t *buf = *buffer;
1200 verifier_state_t ret = state_command;
1201
1202 while (buf < buf_end) {
1203 cmd = *buf;
1204 if ((cmd > ((0x3FF >> 2) | HALCYON_HEADER1)) &&
1205 (cmd < ((0xC00 >> 2) | HALCYON_HEADER1))) {
1206 if ((cmd & HALCYON_HEADER1MASK) != HALCYON_HEADER1)
1207 break;
1208 DRM_ERROR("Invalid HALCYON_HEADER1 command. "
1209 "Attempt to access 3D- or command burst area.\n");
1210 ret = state_error;
1211 break;
1212 } else if (cmd > ((0xCFF >> 2) | HALCYON_HEADER1)) {
1213 if ((cmd & HALCYON_HEADER1MASK) != HALCYON_HEADER1)
1214 break;
1215 DRM_ERROR("Invalid HALCYON_HEADER1 command. "
1216 "Attempt to access VGA registers.\n");
1217 ret = state_error;
1218 break;
1219 } else {
1220 buf += 2;
1221 }
1222 }
1223 *buffer = buf;
1224 return ret;
1225}
1226
1227static __inline__ verifier_state_t
1228via_parse_header1(drm_via_private_t *dev_priv, uint32_t const **buffer,
1229 const uint32_t *buf_end)
1230{
1231 register uint32_t cmd;
1232 const uint32_t *buf = *buffer;
1233
1234 while (buf < buf_end) {
1235 cmd = *buf;
1236 if ((cmd & HALCYON_HEADER1MASK) != HALCYON_HEADER1)
1237 break;
1238 via_write(dev_priv, (cmd & ~HALCYON_HEADER1MASK) << 2, *++buf);
1239 buf++;
1240 }
1241 *buffer = buf;
1242 return state_command;
1243}
1244
1245static __inline__ verifier_state_t
1246via_check_vheader5(uint32_t const **buffer, const uint32_t *buf_end)
1247{
1248 uint32_t data;
1249 const uint32_t *buf = *buffer;
1250
1251 if (buf_end - buf < 4) {
1252 DRM_ERROR("Illegal termination of video header5 command\n");
1253 return state_error;
1254 }
1255
1256 data = *buf++ & ~VIA_VIDEOMASK;
1257 if (verify_mmio_address(data))
1258 return state_error;
1259
1260 data = *buf++;
1261 if (*buf++ != 0x00F50000) {
1262 DRM_ERROR("Illegal header5 header data\n");
1263 return state_error;
1264 }
1265 if (*buf++ != 0x00000000) {
1266 DRM_ERROR("Illegal header5 header data\n");
1267 return state_error;
1268 }
1269 if (eat_words(&buf, buf_end, data))
1270 return state_error;
1271 if ((data & 3) && verify_video_tail(&buf, buf_end, 4 - (data & 3)))
1272 return state_error;
1273 *buffer = buf;
1274 return state_command;
1275
1276}
1277
1278static __inline__ verifier_state_t
1279via_parse_vheader5(drm_via_private_t *dev_priv, uint32_t const **buffer,
1280 const uint32_t *buf_end)
1281{
1282 uint32_t addr, count, i;
1283 const uint32_t *buf = *buffer;
1284
1285 addr = *buf++ & ~VIA_VIDEOMASK;
1286 i = count = *buf;
1287 buf += 3;
1288 while (i--)
1289 via_write(dev_priv, addr, *buf++);
1290 if (count & 3)
1291 buf += 4 - (count & 3);
1292 *buffer = buf;
1293 return state_command;
1294}
1295
1296static __inline__ verifier_state_t
1297via_check_vheader6(uint32_t const **buffer, const uint32_t * buf_end)
1298{
1299 uint32_t data;
1300 const uint32_t *buf = *buffer;
1301 uint32_t i;
1302
1303 if (buf_end - buf < 4) {
1304 DRM_ERROR("Illegal termination of video header6 command\n");
1305 return state_error;
1306 }
1307 buf++;
1308 data = *buf++;
1309 if (*buf++ != 0x00F60000) {
1310 DRM_ERROR("Illegal header6 header data\n");
1311 return state_error;
1312 }
1313 if (*buf++ != 0x00000000) {
1314 DRM_ERROR("Illegal header6 header data\n");
1315 return state_error;
1316 }
1317 if ((buf_end - buf) < (data << 1)) {
1318 DRM_ERROR("Illegal termination of video header6 command\n");
1319 return state_error;
1320 }
1321 for (i = 0; i < data; ++i) {
1322 if (verify_mmio_address(*buf++))
1323 return state_error;
1324 buf++;
1325 }
1326 data <<= 1;
1327 if ((data & 3) && verify_video_tail(&buf, buf_end, 4 - (data & 3)))
1328 return state_error;
1329 *buffer = buf;
1330 return state_command;
1331}
1332
1333static __inline__ verifier_state_t
1334via_parse_vheader6(drm_via_private_t *dev_priv, uint32_t const **buffer,
1335 const uint32_t *buf_end)
1336{
1337
1338 uint32_t addr, count, i;
1339 const uint32_t *buf = *buffer;
1340
1341 i = count = *++buf;
1342 buf += 3;
1343 while (i--) {
1344 addr = *buf++;
1345 via_write(dev_priv, addr, *buf++);
1346 }
1347 count <<= 1;
1348 if (count & 3)
1349 buf += 4 - (count & 3);
1350 *buffer = buf;
1351 return state_command;
1352}
1353
1354static int
1355via_verify_command_stream(const uint32_t * buf, unsigned int size,
1356 struct drm_device * dev, int agp)
1357{
1358
1359 drm_via_private_t *dev_priv = (drm_via_private_t *) dev->dev_private;
1360 drm_via_state_t *hc_state = &dev_priv->hc_state;
1361 drm_via_state_t saved_state = *hc_state;
1362 uint32_t cmd;
1363 const uint32_t *buf_end = buf + (size >> 2);
1364 verifier_state_t state = state_command;
1365 int cme_video;
1366 int supported_3d;
1367
1368 cme_video = (dev_priv->chipset == VIA_PRO_GROUP_A ||
1369 dev_priv->chipset == VIA_DX9_0);
1370
1371 supported_3d = dev_priv->chipset != VIA_DX9_0;
1372
1373 hc_state->dev = dev;
1374 hc_state->unfinished = no_sequence;
1375 hc_state->map_cache = NULL;
1376 hc_state->agp = agp;
1377 hc_state->buf_start = buf;
1378 dev_priv->num_fire_offsets = 0;
1379
1380 while (buf < buf_end) {
1381
1382 switch (state) {
1383 case state_header2:
1384 state = via_check_header2(&buf, buf_end, hc_state);
1385 break;
1386 case state_header1:
1387 state = via_check_header1(&buf, buf_end);
1388 break;
1389 case state_vheader5:
1390 state = via_check_vheader5(&buf, buf_end);
1391 break;
1392 case state_vheader6:
1393 state = via_check_vheader6(&buf, buf_end);
1394 break;
1395 case state_command:
1396 cmd = *buf;
1397 if ((cmd == HALCYON_HEADER2) && supported_3d)
1398 state = state_header2;
1399 else if ((cmd & HALCYON_HEADER1MASK) == HALCYON_HEADER1)
1400 state = state_header1;
1401 else if (cme_video
1402 && (cmd & VIA_VIDEOMASK) == VIA_VIDEO_HEADER5)
1403 state = state_vheader5;
1404 else if (cme_video
1405 && (cmd & VIA_VIDEOMASK) == VIA_VIDEO_HEADER6)
1406 state = state_vheader6;
1407 else if ((cmd == HALCYON_HEADER2) && !supported_3d) {
1408 DRM_ERROR("Accelerated 3D is not supported on this chipset yet.\n");
1409 state = state_error;
1410 } else {
1411 DRM_ERROR
1412 ("Invalid / Unimplemented DMA HEADER command. 0x%x\n",
1413 cmd);
1414 state = state_error;
1415 }
1416 break;
1417 case state_error:
1418 default:
1419 *hc_state = saved_state;
1420 return -EINVAL;
1421 }
1422 }
1423 if (state == state_error) {
1424 *hc_state = saved_state;
1425 return -EINVAL;
1426 }
1427 return 0;
1428}
1429
1430static int
1431via_parse_command_stream(struct drm_device *dev, const uint32_t *buf,
1432 unsigned int size)
1433{
1434
1435 drm_via_private_t *dev_priv = (drm_via_private_t *) dev->dev_private;
1436 uint32_t cmd;
1437 const uint32_t *buf_end = buf + (size >> 2);
1438 verifier_state_t state = state_command;
1439 int fire_count = 0;
1440
1441 while (buf < buf_end) {
1442
1443 switch (state) {
1444 case state_header2:
1445 state =
1446 via_parse_header2(dev_priv, &buf, buf_end,
1447 &fire_count);
1448 break;
1449 case state_header1:
1450 state = via_parse_header1(dev_priv, &buf, buf_end);
1451 break;
1452 case state_vheader5:
1453 state = via_parse_vheader5(dev_priv, &buf, buf_end);
1454 break;
1455 case state_vheader6:
1456 state = via_parse_vheader6(dev_priv, &buf, buf_end);
1457 break;
1458 case state_command:
1459 cmd = *buf;
1460 if (cmd == HALCYON_HEADER2)
1461 state = state_header2;
1462 else if ((cmd & HALCYON_HEADER1MASK) == HALCYON_HEADER1)
1463 state = state_header1;
1464 else if ((cmd & VIA_VIDEOMASK) == VIA_VIDEO_HEADER5)
1465 state = state_vheader5;
1466 else if ((cmd & VIA_VIDEOMASK) == VIA_VIDEO_HEADER6)
1467 state = state_vheader6;
1468 else {
1469 DRM_ERROR
1470 ("Invalid / Unimplemented DMA HEADER command. 0x%x\n",
1471 cmd);
1472 state = state_error;
1473 }
1474 break;
1475 case state_error:
1476 default:
1477 return -EINVAL;
1478 }
1479 }
1480 if (state == state_error)
1481 return -EINVAL;
1482 return 0;
1483}
1484
1485static void
1486setup_hazard_table(hz_init_t init_table[], hazard_t table[], int size)
1487{
1488 int i;
1489
1490 for (i = 0; i < 256; ++i)
1491 table[i] = forbidden_command;
1492
1493 for (i = 0; i < size; ++i)
1494 table[init_table[i].code] = init_table[i].hz;
1495}
1496
1497static void via_init_command_verifier(void)
1498{
1499 setup_hazard_table(init_table1, table1, ARRAY_SIZE(init_table1));
1500 setup_hazard_table(init_table2, table2, ARRAY_SIZE(init_table2));
1501 setup_hazard_table(init_table3, table3, ARRAY_SIZE(init_table3));
1502}
1503/*
1504 * Unmap a DMA mapping.
1505 */
1506static void
1507via_unmap_blit_from_device(struct pci_dev *pdev, drm_via_sg_info_t *vsg)
1508{
1509 int num_desc = vsg->num_desc;
1510 unsigned cur_descriptor_page = num_desc / vsg->descriptors_per_page;
1511 unsigned descriptor_this_page = num_desc % vsg->descriptors_per_page;
1512 drm_via_descriptor_t *desc_ptr = vsg->desc_pages[cur_descriptor_page] +
1513 descriptor_this_page;
1514 dma_addr_t next = vsg->chain_start;
1515
1516 while (num_desc--) {
1517 if (descriptor_this_page-- == 0) {
1518 cur_descriptor_page--;
1519 descriptor_this_page = vsg->descriptors_per_page - 1;
1520 desc_ptr = vsg->desc_pages[cur_descriptor_page] +
1521 descriptor_this_page;
1522 }
1523 dma_unmap_single(&pdev->dev, next, sizeof(*desc_ptr), DMA_TO_DEVICE);
1524 dma_unmap_page(&pdev->dev, desc_ptr->mem_addr, desc_ptr->size, vsg->direction);
1525 next = (dma_addr_t) desc_ptr->next;
1526 desc_ptr--;
1527 }
1528}
1529
1530/*
1531 * If mode = 0, count how many descriptors are needed.
1532 * If mode = 1, Map the DMA pages for the device, put together and map also the descriptors.
1533 * Descriptors are run in reverse order by the hardware because we are not allowed to update the
1534 * 'next' field without syncing calls when the descriptor is already mapped.
1535 */
1536static void
1537via_map_blit_for_device(struct pci_dev *pdev,
1538 const drm_via_dmablit_t *xfer,
1539 drm_via_sg_info_t *vsg,
1540 int mode)
1541{
1542 unsigned cur_descriptor_page = 0;
1543 unsigned num_descriptors_this_page = 0;
1544 unsigned char *mem_addr = xfer->mem_addr;
1545 unsigned char *cur_mem;
1546 unsigned char *first_addr = (unsigned char *)VIA_PGDN(mem_addr);
1547 uint32_t fb_addr = xfer->fb_addr;
1548 uint32_t cur_fb;
1549 unsigned long line_len;
1550 unsigned remaining_len;
1551 int num_desc = 0;
1552 int cur_line;
1553 dma_addr_t next = 0 | VIA_DMA_DPR_EC;
1554 drm_via_descriptor_t *desc_ptr = NULL;
1555
1556 if (mode == 1)
1557 desc_ptr = vsg->desc_pages[cur_descriptor_page];
1558
1559 for (cur_line = 0; cur_line < xfer->num_lines; ++cur_line) {
1560
1561 line_len = xfer->line_length;
1562 cur_fb = fb_addr;
1563 cur_mem = mem_addr;
1564
1565 while (line_len > 0) {
1566
1567 remaining_len = min(PAGE_SIZE-VIA_PGOFF(cur_mem), line_len);
1568 line_len -= remaining_len;
1569
1570 if (mode == 1) {
1571 desc_ptr->mem_addr =
1572 dma_map_page(&pdev->dev,
1573 vsg->pages[VIA_PFN(cur_mem) -
1574 VIA_PFN(first_addr)],
1575 VIA_PGOFF(cur_mem), remaining_len,
1576 vsg->direction);
1577 desc_ptr->dev_addr = cur_fb;
1578
1579 desc_ptr->size = remaining_len;
1580 desc_ptr->next = (uint32_t) next;
1581 next = dma_map_single(&pdev->dev, desc_ptr, sizeof(*desc_ptr),
1582 DMA_TO_DEVICE);
1583 desc_ptr++;
1584 if (++num_descriptors_this_page >= vsg->descriptors_per_page) {
1585 num_descriptors_this_page = 0;
1586 desc_ptr = vsg->desc_pages[++cur_descriptor_page];
1587 }
1588 }
1589
1590 num_desc++;
1591 cur_mem += remaining_len;
1592 cur_fb += remaining_len;
1593 }
1594
1595 mem_addr += xfer->mem_stride;
1596 fb_addr += xfer->fb_stride;
1597 }
1598
1599 if (mode == 1) {
1600 vsg->chain_start = next;
1601 vsg->state = dr_via_device_mapped;
1602 }
1603 vsg->num_desc = num_desc;
1604}
1605
1606/*
1607 * Function that frees up all resources for a blit. It is usable even if the
1608 * blit info has only been partially built as long as the status enum is consistent
1609 * with the actual status of the used resources.
1610 */
1611static void
1612via_free_sg_info(struct pci_dev *pdev, drm_via_sg_info_t *vsg)
1613{
1614 int i;
1615
1616 switch (vsg->state) {
1617 case dr_via_device_mapped:
1618 via_unmap_blit_from_device(pdev, vsg);
1619 fallthrough;
1620 case dr_via_desc_pages_alloc:
1621 for (i = 0; i < vsg->num_desc_pages; ++i) {
1622 if (vsg->desc_pages[i] != NULL)
1623 free_page((unsigned long)vsg->desc_pages[i]);
1624 }
1625 kfree(vsg->desc_pages);
1626 fallthrough;
1627 case dr_via_pages_locked:
1628 unpin_user_pages_dirty_lock(vsg->pages, vsg->num_pages,
1629 (vsg->direction == DMA_FROM_DEVICE));
1630 fallthrough;
1631 case dr_via_pages_alloc:
1632 vfree(vsg->pages);
1633 fallthrough;
1634 default:
1635 vsg->state = dr_via_sg_init;
1636 }
1637 vfree(vsg->bounce_buffer);
1638 vsg->bounce_buffer = NULL;
1639 vsg->free_on_sequence = 0;
1640}
1641
1642/*
1643 * Fire a blit engine.
1644 */
1645static void
1646via_fire_dmablit(struct drm_device *dev, drm_via_sg_info_t *vsg, int engine)
1647{
1648 drm_via_private_t *dev_priv = (drm_via_private_t *)dev->dev_private;
1649
1650 via_write(dev_priv, VIA_PCI_DMA_MAR0 + engine*0x10, 0);
1651 via_write(dev_priv, VIA_PCI_DMA_DAR0 + engine*0x10, 0);
1652 via_write(dev_priv, VIA_PCI_DMA_CSR0 + engine*0x04, VIA_DMA_CSR_DD | VIA_DMA_CSR_TD |
1653 VIA_DMA_CSR_DE);
1654 via_write(dev_priv, VIA_PCI_DMA_MR0 + engine*0x04, VIA_DMA_MR_CM | VIA_DMA_MR_TDIE);
1655 via_write(dev_priv, VIA_PCI_DMA_BCR0 + engine*0x10, 0);
1656 via_write(dev_priv, VIA_PCI_DMA_DPR0 + engine*0x10, vsg->chain_start);
1657 wmb();
1658 via_write(dev_priv, VIA_PCI_DMA_CSR0 + engine*0x04, VIA_DMA_CSR_DE | VIA_DMA_CSR_TS);
1659 via_read(dev_priv, VIA_PCI_DMA_CSR0 + engine*0x04);
1660}
1661
1662/*
1663 * Obtain a page pointer array and lock all pages into system memory. A segmentation violation will
1664 * occur here if the calling user does not have access to the submitted address.
1665 */
1666static int
1667via_lock_all_dma_pages(drm_via_sg_info_t *vsg, drm_via_dmablit_t *xfer)
1668{
1669 int ret;
1670 unsigned long first_pfn = VIA_PFN(xfer->mem_addr);
1671 vsg->num_pages = VIA_PFN(xfer->mem_addr + (xfer->num_lines * xfer->mem_stride - 1)) -
1672 first_pfn + 1;
1673
1674 vsg->pages = vzalloc(array_size(sizeof(struct page *), vsg->num_pages));
1675 if (NULL == vsg->pages)
1676 return -ENOMEM;
1677 ret = pin_user_pages_fast((unsigned long)xfer->mem_addr,
1678 vsg->num_pages,
1679 vsg->direction == DMA_FROM_DEVICE ? FOLL_WRITE : 0,
1680 vsg->pages);
1681 if (ret != vsg->num_pages) {
1682 if (ret < 0)
1683 return ret;
1684 vsg->state = dr_via_pages_locked;
1685 return -EINVAL;
1686 }
1687 vsg->state = dr_via_pages_locked;
1688 DRM_DEBUG("DMA pages locked\n");
1689 return 0;
1690}
1691
1692/*
1693 * Allocate DMA capable memory for the blit descriptor chain, and an array that keeps track of the
1694 * pages we allocate. We don't want to use kmalloc for the descriptor chain because it may be
1695 * quite large for some blits, and pages don't need to be contiguous.
1696 */
1697static int
1698via_alloc_desc_pages(drm_via_sg_info_t *vsg)
1699{
1700 int i;
1701
1702 vsg->descriptors_per_page = PAGE_SIZE / sizeof(drm_via_descriptor_t);
1703 vsg->num_desc_pages = (vsg->num_desc + vsg->descriptors_per_page - 1) /
1704 vsg->descriptors_per_page;
1705
1706 if (NULL == (vsg->desc_pages = kcalloc(vsg->num_desc_pages, sizeof(void *), GFP_KERNEL)))
1707 return -ENOMEM;
1708
1709 vsg->state = dr_via_desc_pages_alloc;
1710 for (i = 0; i < vsg->num_desc_pages; ++i) {
1711 if (NULL == (vsg->desc_pages[i] =
1712 (drm_via_descriptor_t *) __get_free_page(GFP_KERNEL)))
1713 return -ENOMEM;
1714 }
1715 DRM_DEBUG("Allocated %d pages for %d descriptors.\n", vsg->num_desc_pages,
1716 vsg->num_desc);
1717 return 0;
1718}
1719
1720static void
1721via_abort_dmablit(struct drm_device *dev, int engine)
1722{
1723 drm_via_private_t *dev_priv = (drm_via_private_t *)dev->dev_private;
1724
1725 via_write(dev_priv, VIA_PCI_DMA_CSR0 + engine*0x04, VIA_DMA_CSR_TA);
1726}
1727
1728static void
1729via_dmablit_engine_off(struct drm_device *dev, int engine)
1730{
1731 drm_via_private_t *dev_priv = (drm_via_private_t *)dev->dev_private;
1732
1733 via_write(dev_priv, VIA_PCI_DMA_CSR0 + engine*0x04, VIA_DMA_CSR_TD | VIA_DMA_CSR_DD);
1734}
1735
1736/*
1737 * The dmablit part of the IRQ handler. Trying to do only reasonably fast things here.
1738 * The rest, like unmapping and freeing memory for done blits is done in a separate workqueue
1739 * task. Basically the task of the interrupt handler is to submit a new blit to the engine, while
1740 * the workqueue task takes care of processing associated with the old blit.
1741 */
1742static void
1743via_dmablit_handler(struct drm_device *dev, int engine, int from_irq)
1744{
1745 drm_via_private_t *dev_priv = (drm_via_private_t *)dev->dev_private;
1746 drm_via_blitq_t *blitq = dev_priv->blit_queues + engine;
1747 int cur;
1748 int done_transfer;
1749 unsigned long irqsave = 0;
1750 uint32_t status = 0;
1751
1752 DRM_DEBUG("DMA blit handler called. engine = %d, from_irq = %d, blitq = 0x%lx\n",
1753 engine, from_irq, (unsigned long) blitq);
1754
1755 if (from_irq)
1756 spin_lock(&blitq->blit_lock);
1757 else
1758 spin_lock_irqsave(&blitq->blit_lock, irqsave);
1759
1760 done_transfer = blitq->is_active &&
1761 ((status = via_read(dev_priv, VIA_PCI_DMA_CSR0 + engine*0x04)) & VIA_DMA_CSR_TD);
1762 done_transfer = done_transfer || (blitq->aborting && !(status & VIA_DMA_CSR_DE));
1763
1764 cur = blitq->cur;
1765 if (done_transfer) {
1766
1767 blitq->blits[cur]->aborted = blitq->aborting;
1768 blitq->done_blit_handle++;
1769 wake_up(blitq->blit_queue + cur);
1770
1771 cur++;
1772 if (cur >= VIA_NUM_BLIT_SLOTS)
1773 cur = 0;
1774 blitq->cur = cur;
1775
1776 /*
1777 * Clear transfer done flag.
1778 */
1779
1780 via_write(dev_priv, VIA_PCI_DMA_CSR0 + engine*0x04, VIA_DMA_CSR_TD);
1781
1782 blitq->is_active = 0;
1783 blitq->aborting = 0;
1784 schedule_work(&blitq->wq);
1785
1786 } else if (blitq->is_active && time_after_eq(jiffies, blitq->end)) {
1787
1788 /*
1789 * Abort transfer after one second.
1790 */
1791
1792 via_abort_dmablit(dev, engine);
1793 blitq->aborting = 1;
1794 blitq->end = jiffies + HZ;
1795 }
1796
1797 if (!blitq->is_active) {
1798 if (blitq->num_outstanding) {
1799 via_fire_dmablit(dev, blitq->blits[cur], engine);
1800 blitq->is_active = 1;
1801 blitq->cur = cur;
1802 blitq->num_outstanding--;
1803 blitq->end = jiffies + HZ;
1804 if (!timer_pending(&blitq->poll_timer))
1805 mod_timer(&blitq->poll_timer, jiffies + 1);
1806 } else {
1807 if (timer_pending(&blitq->poll_timer))
1808 del_timer(&blitq->poll_timer);
1809 via_dmablit_engine_off(dev, engine);
1810 }
1811 }
1812
1813 if (from_irq)
1814 spin_unlock(&blitq->blit_lock);
1815 else
1816 spin_unlock_irqrestore(&blitq->blit_lock, irqsave);
1817}
1818
1819/*
1820 * Check whether this blit is still active, performing necessary locking.
1821 */
1822static int
1823via_dmablit_active(drm_via_blitq_t *blitq, int engine, uint32_t handle, wait_queue_head_t **queue)
1824{
1825 unsigned long irqsave;
1826 uint32_t slot;
1827 int active;
1828
1829 spin_lock_irqsave(&blitq->blit_lock, irqsave);
1830
1831 /*
1832 * Allow for handle wraparounds.
1833 */
1834
1835 active = ((blitq->done_blit_handle - handle) > (1 << 23)) &&
1836 ((blitq->cur_blit_handle - handle) <= (1 << 23));
1837
1838 if (queue && active) {
1839 slot = handle - blitq->done_blit_handle + blitq->cur - 1;
1840 if (slot >= VIA_NUM_BLIT_SLOTS)
1841 slot -= VIA_NUM_BLIT_SLOTS;
1842 *queue = blitq->blit_queue + slot;
1843 }
1844
1845 spin_unlock_irqrestore(&blitq->blit_lock, irqsave);
1846
1847 return active;
1848}
1849
1850/*
1851 * Sync. Wait for at least three seconds for the blit to be performed.
1852 */
1853static int
1854via_dmablit_sync(struct drm_device *dev, uint32_t handle, int engine)
1855{
1856
1857 drm_via_private_t *dev_priv = (drm_via_private_t *)dev->dev_private;
1858 drm_via_blitq_t *blitq = dev_priv->blit_queues + engine;
1859 wait_queue_head_t *queue;
1860 int ret = 0;
1861
1862 if (via_dmablit_active(blitq, engine, handle, &queue)) {
1863 VIA_WAIT_ON(ret, *queue, 3 * HZ,
1864 !via_dmablit_active(blitq, engine, handle, NULL));
1865 }
1866 DRM_DEBUG("DMA blit sync handle 0x%x engine %d returned %d\n",
1867 handle, engine, ret);
1868
1869 return ret;
1870}
1871
1872/*
1873 * A timer that regularly polls the blit engine in cases where we don't have interrupts:
1874 * a) Broken hardware (typically those that don't have any video capture facility).
1875 * b) Blit abort. The hardware doesn't send an interrupt when a blit is aborted.
1876 * The timer and hardware IRQ's can and do work in parallel. If the hardware has
1877 * irqs, it will shorten the latency somewhat.
1878 */
1879static void
1880via_dmablit_timer(struct timer_list *t)
1881{
1882 drm_via_blitq_t *blitq = from_timer(blitq, t, poll_timer);
1883 struct drm_device *dev = blitq->dev;
1884 int engine = (int)
1885 (blitq - ((drm_via_private_t *)dev->dev_private)->blit_queues);
1886
1887 DRM_DEBUG("Polling timer called for engine %d, jiffies %lu\n", engine,
1888 (unsigned long) jiffies);
1889
1890 via_dmablit_handler(dev, engine, 0);
1891
1892 if (!timer_pending(&blitq->poll_timer)) {
1893 mod_timer(&blitq->poll_timer, jiffies + 1);
1894
1895 /*
1896 * Rerun handler to delete timer if engines are off, and
1897 * to shorten abort latency. This is a little nasty.
1898 */
1899
1900 via_dmablit_handler(dev, engine, 0);
1901
1902 }
1903}
1904
1905/*
1906 * Workqueue task that frees data and mappings associated with a blit.
1907 * Also wakes up waiting processes. Each of these tasks handles one
1908 * blit engine only and may not be called on each interrupt.
1909 */
1910static void
1911via_dmablit_workqueue(struct work_struct *work)
1912{
1913 drm_via_blitq_t *blitq = container_of(work, drm_via_blitq_t, wq);
1914 struct drm_device *dev = blitq->dev;
1915 struct pci_dev *pdev = to_pci_dev(dev->dev);
1916 unsigned long irqsave;
1917 drm_via_sg_info_t *cur_sg;
1918 int cur_released;
1919
1920
1921 DRM_DEBUG("Workqueue task called for blit engine %ld\n", (unsigned long)
1922 (blitq - ((drm_via_private_t *)dev->dev_private)->blit_queues));
1923
1924 spin_lock_irqsave(&blitq->blit_lock, irqsave);
1925
1926 while (blitq->serviced != blitq->cur) {
1927
1928 cur_released = blitq->serviced++;
1929
1930 DRM_DEBUG("Releasing blit slot %d\n", cur_released);
1931
1932 if (blitq->serviced >= VIA_NUM_BLIT_SLOTS)
1933 blitq->serviced = 0;
1934
1935 cur_sg = blitq->blits[cur_released];
1936 blitq->num_free++;
1937
1938 spin_unlock_irqrestore(&blitq->blit_lock, irqsave);
1939
1940 wake_up(&blitq->busy_queue);
1941
1942 via_free_sg_info(pdev, cur_sg);
1943 kfree(cur_sg);
1944
1945 spin_lock_irqsave(&blitq->blit_lock, irqsave);
1946 }
1947
1948 spin_unlock_irqrestore(&blitq->blit_lock, irqsave);
1949}
1950
1951/*
1952 * Init all blit engines. Currently we use two, but some hardware have 4.
1953 */
1954static void
1955via_init_dmablit(struct drm_device *dev)
1956{
1957 int i, j;
1958 drm_via_private_t *dev_priv = (drm_via_private_t *)dev->dev_private;
1959 struct pci_dev *pdev = to_pci_dev(dev->dev);
1960 drm_via_blitq_t *blitq;
1961
1962 pci_set_master(pdev);
1963
1964 for (i = 0; i < VIA_NUM_BLIT_ENGINES; ++i) {
1965 blitq = dev_priv->blit_queues + i;
1966 blitq->dev = dev;
1967 blitq->cur_blit_handle = 0;
1968 blitq->done_blit_handle = 0;
1969 blitq->head = 0;
1970 blitq->cur = 0;
1971 blitq->serviced = 0;
1972 blitq->num_free = VIA_NUM_BLIT_SLOTS - 1;
1973 blitq->num_outstanding = 0;
1974 blitq->is_active = 0;
1975 blitq->aborting = 0;
1976 spin_lock_init(&blitq->blit_lock);
1977 for (j = 0; j < VIA_NUM_BLIT_SLOTS; ++j)
1978 init_waitqueue_head(blitq->blit_queue + j);
1979 init_waitqueue_head(&blitq->busy_queue);
1980 INIT_WORK(&blitq->wq, via_dmablit_workqueue);
1981 timer_setup(&blitq->poll_timer, via_dmablit_timer, 0);
1982 }
1983}
1984
1985/*
1986 * Build all info and do all mappings required for a blit.
1987 */
1988static int
1989via_build_sg_info(struct drm_device *dev, drm_via_sg_info_t *vsg, drm_via_dmablit_t *xfer)
1990{
1991 struct pci_dev *pdev = to_pci_dev(dev->dev);
1992 int draw = xfer->to_fb;
1993 int ret = 0;
1994
1995 vsg->direction = (draw) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
1996 vsg->bounce_buffer = NULL;
1997
1998 vsg->state = dr_via_sg_init;
1999
2000 if (xfer->num_lines <= 0 || xfer->line_length <= 0) {
2001 DRM_ERROR("Zero size bitblt.\n");
2002 return -EINVAL;
2003 }
2004
2005 /*
2006 * Below check is a driver limitation, not a hardware one. We
2007 * don't want to lock unused pages, and don't want to incoporate the
2008 * extra logic of avoiding them. Make sure there are no.
2009 * (Not a big limitation anyway.)
2010 */
2011
2012 if ((xfer->mem_stride - xfer->line_length) > 2*PAGE_SIZE) {
2013 DRM_ERROR("Too large system memory stride. Stride: %d, "
2014 "Length: %d\n", xfer->mem_stride, xfer->line_length);
2015 return -EINVAL;
2016 }
2017
2018 if ((xfer->mem_stride == xfer->line_length) &&
2019 (xfer->fb_stride == xfer->line_length)) {
2020 xfer->mem_stride *= xfer->num_lines;
2021 xfer->line_length = xfer->mem_stride;
2022 xfer->fb_stride = xfer->mem_stride;
2023 xfer->num_lines = 1;
2024 }
2025
2026 /*
2027 * Don't lock an arbitrary large number of pages, since that causes a
2028 * DOS security hole.
2029 */
2030
2031 if (xfer->num_lines > 2048 || (xfer->num_lines*xfer->mem_stride > (2048*2048*4))) {
2032 DRM_ERROR("Too large PCI DMA bitblt.\n");
2033 return -EINVAL;
2034 }
2035
2036 /*
2037 * we allow a negative fb stride to allow flipping of images in
2038 * transfer.
2039 */
2040
2041 if (xfer->mem_stride < xfer->line_length ||
2042 abs(xfer->fb_stride) < xfer->line_length) {
2043 DRM_ERROR("Invalid frame-buffer / memory stride.\n");
2044 return -EINVAL;
2045 }
2046
2047 /*
2048 * A hardware bug seems to be worked around if system memory addresses start on
2049 * 16 byte boundaries. This seems a bit restrictive however. VIA is contacted
2050 * about this. Meanwhile, impose the following restrictions:
2051 */
2052
2053#ifdef VIA_BUGFREE
2054 if ((((unsigned long)xfer->mem_addr & 3) != ((unsigned long)xfer->fb_addr & 3)) ||
2055 ((xfer->num_lines > 1) && ((xfer->mem_stride & 3) != (xfer->fb_stride & 3)))) {
2056 DRM_ERROR("Invalid DRM bitblt alignment.\n");
2057 return -EINVAL;
2058 }
2059#else
2060 if ((((unsigned long)xfer->mem_addr & 15) ||
2061 ((unsigned long)xfer->fb_addr & 3)) ||
2062 ((xfer->num_lines > 1) &&
2063 ((xfer->mem_stride & 15) || (xfer->fb_stride & 3)))) {
2064 DRM_ERROR("Invalid DRM bitblt alignment.\n");
2065 return -EINVAL;
2066 }
2067#endif
2068
2069 if (0 != (ret = via_lock_all_dma_pages(vsg, xfer))) {
2070 DRM_ERROR("Could not lock DMA pages.\n");
2071 via_free_sg_info(pdev, vsg);
2072 return ret;
2073 }
2074
2075 via_map_blit_for_device(pdev, xfer, vsg, 0);
2076 if (0 != (ret = via_alloc_desc_pages(vsg))) {
2077 DRM_ERROR("Could not allocate DMA descriptor pages.\n");
2078 via_free_sg_info(pdev, vsg);
2079 return ret;
2080 }
2081 via_map_blit_for_device(pdev, xfer, vsg, 1);
2082
2083 return 0;
2084}
2085
2086/*
2087 * Reserve one free slot in the blit queue. Will wait for one second for one
2088 * to become available. Otherwise -EBUSY is returned.
2089 */
2090static int
2091via_dmablit_grab_slot(drm_via_blitq_t *blitq, int engine)
2092{
2093 int ret = 0;
2094 unsigned long irqsave;
2095
2096 DRM_DEBUG("Num free is %d\n", blitq->num_free);
2097 spin_lock_irqsave(&blitq->blit_lock, irqsave);
2098 while (blitq->num_free == 0) {
2099 spin_unlock_irqrestore(&blitq->blit_lock, irqsave);
2100
2101 VIA_WAIT_ON(ret, blitq->busy_queue, HZ, blitq->num_free > 0);
2102 if (ret)
2103 return (-EINTR == ret) ? -EAGAIN : ret;
2104
2105 spin_lock_irqsave(&blitq->blit_lock, irqsave);
2106 }
2107
2108 blitq->num_free--;
2109 spin_unlock_irqrestore(&blitq->blit_lock, irqsave);
2110
2111 return 0;
2112}
2113
2114/*
2115 * Hand back a free slot if we changed our mind.
2116 */
2117static void
2118via_dmablit_release_slot(drm_via_blitq_t *blitq)
2119{
2120 unsigned long irqsave;
2121
2122 spin_lock_irqsave(&blitq->blit_lock, irqsave);
2123 blitq->num_free++;
2124 spin_unlock_irqrestore(&blitq->blit_lock, irqsave);
2125 wake_up(&blitq->busy_queue);
2126}
2127
2128/*
2129 * Grab a free slot. Build blit info and queue a blit.
2130 */
2131static int
2132via_dmablit(struct drm_device *dev, drm_via_dmablit_t *xfer)
2133{
2134 drm_via_private_t *dev_priv = (drm_via_private_t *)dev->dev_private;
2135 drm_via_sg_info_t *vsg;
2136 drm_via_blitq_t *blitq;
2137 int ret;
2138 int engine;
2139 unsigned long irqsave;
2140
2141 if (dev_priv == NULL) {
2142 DRM_ERROR("Called without initialization.\n");
2143 return -EINVAL;
2144 }
2145
2146 engine = (xfer->to_fb) ? 0 : 1;
2147 blitq = dev_priv->blit_queues + engine;
2148 if (0 != (ret = via_dmablit_grab_slot(blitq, engine)))
2149 return ret;
2150 if (NULL == (vsg = kmalloc(sizeof(*vsg), GFP_KERNEL))) {
2151 via_dmablit_release_slot(blitq);
2152 return -ENOMEM;
2153 }
2154 if (0 != (ret = via_build_sg_info(dev, vsg, xfer))) {
2155 via_dmablit_release_slot(blitq);
2156 kfree(vsg);
2157 return ret;
2158 }
2159 spin_lock_irqsave(&blitq->blit_lock, irqsave);
2160
2161 blitq->blits[blitq->head++] = vsg;
2162 if (blitq->head >= VIA_NUM_BLIT_SLOTS)
2163 blitq->head = 0;
2164 blitq->num_outstanding++;
2165 xfer->sync.sync_handle = ++blitq->cur_blit_handle;
2166
2167 spin_unlock_irqrestore(&blitq->blit_lock, irqsave);
2168 xfer->sync.engine = engine;
2169
2170 via_dmablit_handler(dev, engine, 0);
2171
2172 return 0;
2173}
2174
2175/*
2176 * Sync on a previously submitted blit. Note that the X server use signals extensively, and
2177 * that there is a very big probability that this IOCTL will be interrupted by a signal. In that
2178 * case it returns with -EAGAIN for the signal to be delivered.
2179 * The caller should then reissue the IOCTL. This is similar to what is being done for drmGetLock().
2180 */
2181static int
2182via_dma_blit_sync(struct drm_device *dev, void *data, struct drm_file *file_priv)
2183{
2184 drm_via_blitsync_t *sync = data;
2185 int err;
2186
2187 if (sync->engine >= VIA_NUM_BLIT_ENGINES)
2188 return -EINVAL;
2189
2190 err = via_dmablit_sync(dev, sync->sync_handle, sync->engine);
2191
2192 if (-EINTR == err)
2193 err = -EAGAIN;
2194
2195 return err;
2196}
2197
2198/*
2199 * Queue a blit and hand back a handle to be used for sync. This IOCTL may be interrupted by a signal
2200 * while waiting for a free slot in the blit queue. In that case it returns with -EAGAIN and should
2201 * be reissued. See the above IOCTL code.
2202 */
2203static int
2204via_dma_blit(struct drm_device *dev, void *data, struct drm_file *file_priv)
2205{
2206 drm_via_dmablit_t *xfer = data;
2207 int err;
2208
2209 err = via_dmablit(dev, xfer);
2210
2211 return err;
2212}
2213
2214static u32 via_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
2215{
2216 drm_via_private_t *dev_priv = dev->dev_private;
2217
2218 if (pipe != 0)
2219 return 0;
2220
2221 return atomic_read(&dev_priv->vbl_received);
2222}
2223
2224static irqreturn_t via_driver_irq_handler(int irq, void *arg)
2225{
2226 struct drm_device *dev = (struct drm_device *) arg;
2227 drm_via_private_t *dev_priv = (drm_via_private_t *) dev->dev_private;
2228 u32 status;
2229 int handled = 0;
2230 ktime_t cur_vblank;
2231 drm_via_irq_t *cur_irq = dev_priv->via_irqs;
2232 int i;
2233
2234 status = via_read(dev_priv, VIA_REG_INTERRUPT);
2235 if (status & VIA_IRQ_VBLANK_PENDING) {
2236 atomic_inc(&dev_priv->vbl_received);
2237 if (!(atomic_read(&dev_priv->vbl_received) & 0x0F)) {
2238 cur_vblank = ktime_get();
2239 if (dev_priv->last_vblank_valid) {
2240 dev_priv->nsec_per_vblank =
2241 ktime_sub(cur_vblank,
2242 dev_priv->last_vblank) >> 4;
2243 }
2244 dev_priv->last_vblank = cur_vblank;
2245 dev_priv->last_vblank_valid = 1;
2246 }
2247 if (!(atomic_read(&dev_priv->vbl_received) & 0xFF)) {
2248 DRM_DEBUG("nsec per vblank is: %llu\n",
2249 ktime_to_ns(dev_priv->nsec_per_vblank));
2250 }
2251 drm_handle_vblank(dev, 0);
2252 handled = 1;
2253 }
2254
2255 for (i = 0; i < dev_priv->num_irqs; ++i) {
2256 if (status & cur_irq->pending_mask) {
2257 atomic_inc(&cur_irq->irq_received);
2258 wake_up(&cur_irq->irq_queue);
2259 handled = 1;
2260 if (dev_priv->irq_map[drm_via_irq_dma0_td] == i)
2261 via_dmablit_handler(dev, 0, 1);
2262 else if (dev_priv->irq_map[drm_via_irq_dma1_td] == i)
2263 via_dmablit_handler(dev, 1, 1);
2264 }
2265 cur_irq++;
2266 }
2267
2268 /* Acknowledge interrupts */
2269 via_write(dev_priv, VIA_REG_INTERRUPT, status);
2270
2271
2272 if (handled)
2273 return IRQ_HANDLED;
2274 else
2275 return IRQ_NONE;
2276}
2277
2278static __inline__ void viadrv_acknowledge_irqs(drm_via_private_t *dev_priv)
2279{
2280 u32 status;
2281
2282 if (dev_priv) {
2283 /* Acknowledge interrupts */
2284 status = via_read(dev_priv, VIA_REG_INTERRUPT);
2285 via_write(dev_priv, VIA_REG_INTERRUPT, status |
2286 dev_priv->irq_pending_mask);
2287 }
2288}
2289
2290static int via_enable_vblank(struct drm_device *dev, unsigned int pipe)
2291{
2292 drm_via_private_t *dev_priv = dev->dev_private;
2293 u32 status;
2294
2295 if (pipe != 0) {
2296 DRM_ERROR("%s: bad crtc %u\n", __func__, pipe);
2297 return -EINVAL;
2298 }
2299
2300 status = via_read(dev_priv, VIA_REG_INTERRUPT);
2301 via_write(dev_priv, VIA_REG_INTERRUPT, status | VIA_IRQ_VBLANK_ENABLE);
2302
2303 via_write8(dev_priv, 0x83d4, 0x11);
2304 via_write8_mask(dev_priv, 0x83d5, 0x30, 0x30);
2305
2306 return 0;
2307}
2308
2309static void via_disable_vblank(struct drm_device *dev, unsigned int pipe)
2310{
2311 drm_via_private_t *dev_priv = dev->dev_private;
2312 u32 status;
2313
2314 status = via_read(dev_priv, VIA_REG_INTERRUPT);
2315 via_write(dev_priv, VIA_REG_INTERRUPT, status & ~VIA_IRQ_VBLANK_ENABLE);
2316
2317 via_write8(dev_priv, 0x83d4, 0x11);
2318 via_write8_mask(dev_priv, 0x83d5, 0x30, 0);
2319
2320 if (pipe != 0)
2321 DRM_ERROR("%s: bad crtc %u\n", __func__, pipe);
2322}
2323
2324static int
2325via_driver_irq_wait(struct drm_device *dev, unsigned int irq, int force_sequence,
2326 unsigned int *sequence)
2327{
2328 drm_via_private_t *dev_priv = (drm_via_private_t *) dev->dev_private;
2329 unsigned int cur_irq_sequence;
2330 drm_via_irq_t *cur_irq;
2331 int ret = 0;
2332 maskarray_t *masks;
2333 int real_irq;
2334
2335 DRM_DEBUG("\n");
2336
2337 if (!dev_priv) {
2338 DRM_ERROR("called with no initialization\n");
2339 return -EINVAL;
2340 }
2341
2342 if (irq >= drm_via_irq_num) {
2343 DRM_ERROR("Trying to wait on unknown irq %d\n", irq);
2344 return -EINVAL;
2345 }
2346
2347 real_irq = dev_priv->irq_map[irq];
2348
2349 if (real_irq < 0) {
2350 DRM_ERROR("Video IRQ %d not available on this hardware.\n",
2351 irq);
2352 return -EINVAL;
2353 }
2354
2355 masks = dev_priv->irq_masks;
2356 cur_irq = dev_priv->via_irqs + real_irq;
2357
2358 if (masks[real_irq][2] && !force_sequence) {
2359 VIA_WAIT_ON(ret, cur_irq->irq_queue, 3 * HZ,
2360 ((via_read(dev_priv, masks[irq][2]) & masks[irq][3]) ==
2361 masks[irq][4]));
2362 cur_irq_sequence = atomic_read(&cur_irq->irq_received);
2363 } else {
2364 VIA_WAIT_ON(ret, cur_irq->irq_queue, 3 * HZ,
2365 (((cur_irq_sequence =
2366 atomic_read(&cur_irq->irq_received)) -
2367 *sequence) <= (1 << 23)));
2368 }
2369 *sequence = cur_irq_sequence;
2370 return ret;
2371}
2372
2373
2374/*
2375 * drm_dma.h hooks
2376 */
2377
2378static void via_driver_irq_preinstall(struct drm_device *dev)
2379{
2380 drm_via_private_t *dev_priv = (drm_via_private_t *) dev->dev_private;
2381 u32 status;
2382 drm_via_irq_t *cur_irq;
2383 int i;
2384
2385 DRM_DEBUG("dev_priv: %p\n", dev_priv);
2386 if (dev_priv) {
2387 cur_irq = dev_priv->via_irqs;
2388
2389 dev_priv->irq_enable_mask = VIA_IRQ_VBLANK_ENABLE;
2390 dev_priv->irq_pending_mask = VIA_IRQ_VBLANK_PENDING;
2391
2392 if (dev_priv->chipset == VIA_PRO_GROUP_A ||
2393 dev_priv->chipset == VIA_DX9_0) {
2394 dev_priv->irq_masks = via_pro_group_a_irqs;
2395 dev_priv->num_irqs = via_num_pro_group_a;
2396 dev_priv->irq_map = via_irqmap_pro_group_a;
2397 } else {
2398 dev_priv->irq_masks = via_unichrome_irqs;
2399 dev_priv->num_irqs = via_num_unichrome;
2400 dev_priv->irq_map = via_irqmap_unichrome;
2401 }
2402
2403 for (i = 0; i < dev_priv->num_irqs; ++i) {
2404 atomic_set(&cur_irq->irq_received, 0);
2405 cur_irq->enable_mask = dev_priv->irq_masks[i][0];
2406 cur_irq->pending_mask = dev_priv->irq_masks[i][1];
2407 init_waitqueue_head(&cur_irq->irq_queue);
2408 dev_priv->irq_enable_mask |= cur_irq->enable_mask;
2409 dev_priv->irq_pending_mask |= cur_irq->pending_mask;
2410 cur_irq++;
2411
2412 DRM_DEBUG("Initializing IRQ %d\n", i);
2413 }
2414
2415 dev_priv->last_vblank_valid = 0;
2416
2417 /* Clear VSync interrupt regs */
2418 status = via_read(dev_priv, VIA_REG_INTERRUPT);
2419 via_write(dev_priv, VIA_REG_INTERRUPT, status &
2420 ~(dev_priv->irq_enable_mask));
2421
2422 /* Clear bits if they're already high */
2423 viadrv_acknowledge_irqs(dev_priv);
2424 }
2425}
2426
2427static int via_driver_irq_postinstall(struct drm_device *dev)
2428{
2429 drm_via_private_t *dev_priv = (drm_via_private_t *) dev->dev_private;
2430 u32 status;
2431
2432 DRM_DEBUG("fun: %s\n", __func__);
2433 if (!dev_priv)
2434 return -EINVAL;
2435
2436 status = via_read(dev_priv, VIA_REG_INTERRUPT);
2437 via_write(dev_priv, VIA_REG_INTERRUPT, status | VIA_IRQ_GLOBAL
2438 | dev_priv->irq_enable_mask);
2439
2440 /* Some magic, oh for some data sheets ! */
2441 via_write8(dev_priv, 0x83d4, 0x11);
2442 via_write8_mask(dev_priv, 0x83d5, 0x30, 0x30);
2443
2444 return 0;
2445}
2446
2447static void via_driver_irq_uninstall(struct drm_device *dev)
2448{
2449 drm_via_private_t *dev_priv = (drm_via_private_t *) dev->dev_private;
2450 u32 status;
2451
2452 DRM_DEBUG("\n");
2453 if (dev_priv) {
2454
2455 /* Some more magic, oh for some data sheets ! */
2456
2457 via_write8(dev_priv, 0x83d4, 0x11);
2458 via_write8_mask(dev_priv, 0x83d5, 0x30, 0);
2459
2460 status = via_read(dev_priv, VIA_REG_INTERRUPT);
2461 via_write(dev_priv, VIA_REG_INTERRUPT, status &
2462 ~(VIA_IRQ_VBLANK_ENABLE | dev_priv->irq_enable_mask));
2463 }
2464}
2465
2466static int via_wait_irq(struct drm_device *dev, void *data, struct drm_file *file_priv)
2467{
2468 drm_via_irqwait_t *irqwait = data;
2469 struct timespec64 now;
2470 int ret = 0;
2471 drm_via_private_t *dev_priv = (drm_via_private_t *) dev->dev_private;
2472 drm_via_irq_t *cur_irq = dev_priv->via_irqs;
2473 int force_sequence;
2474
2475 if (irqwait->request.irq >= dev_priv->num_irqs) {
2476 DRM_ERROR("Trying to wait on unknown irq %d\n",
2477 irqwait->request.irq);
2478 return -EINVAL;
2479 }
2480
2481 cur_irq += irqwait->request.irq;
2482
2483 switch (irqwait->request.type & ~VIA_IRQ_FLAGS_MASK) {
2484 case VIA_IRQ_RELATIVE:
2485 irqwait->request.sequence +=
2486 atomic_read(&cur_irq->irq_received);
2487 irqwait->request.type &= ~_DRM_VBLANK_RELATIVE;
2488 break;
2489 case VIA_IRQ_ABSOLUTE:
2490 break;
2491 default:
2492 return -EINVAL;
2493 }
2494
2495 if (irqwait->request.type & VIA_IRQ_SIGNAL) {
2496 DRM_ERROR("Signals on Via IRQs not implemented yet.\n");
2497 return -EINVAL;
2498 }
2499
2500 force_sequence = (irqwait->request.type & VIA_IRQ_FORCE_SEQUENCE);
2501
2502 ret = via_driver_irq_wait(dev, irqwait->request.irq, force_sequence,
2503 &irqwait->request.sequence);
2504 ktime_get_ts64(&now);
2505 irqwait->reply.tval_sec = now.tv_sec;
2506 irqwait->reply.tval_usec = now.tv_nsec / NSEC_PER_USEC;
2507
2508 return ret;
2509}
2510
2511static void via_init_futex(drm_via_private_t *dev_priv)
2512{
2513 unsigned int i;
2514
2515 DRM_DEBUG("\n");
2516
2517 for (i = 0; i < VIA_NR_XVMC_LOCKS; ++i) {
2518 init_waitqueue_head(&(dev_priv->decoder_queue[i]));
2519 XVMCLOCKPTR(dev_priv->sarea_priv, i)->lock = 0;
2520 }
2521}
2522
2523static void via_cleanup_futex(drm_via_private_t *dev_priv)
2524{
2525}
2526
2527static void via_release_futex(drm_via_private_t *dev_priv, int context)
2528{
2529 unsigned int i;
2530 volatile int *lock;
2531
2532 if (!dev_priv->sarea_priv)
2533 return;
2534
2535 for (i = 0; i < VIA_NR_XVMC_LOCKS; ++i) {
2536 lock = (volatile int *)XVMCLOCKPTR(dev_priv->sarea_priv, i);
2537 if ((_DRM_LOCKING_CONTEXT(*lock) == context)) {
2538 if (_DRM_LOCK_IS_HELD(*lock)
2539 && (*lock & _DRM_LOCK_CONT)) {
2540 wake_up(&(dev_priv->decoder_queue[i]));
2541 }
2542 *lock = 0;
2543 }
2544 }
2545}
2546
2547static int via_decoder_futex(struct drm_device *dev, void *data, struct drm_file *file_priv)
2548{
2549 drm_via_futex_t *fx = data;
2550 volatile int *lock;
2551 drm_via_private_t *dev_priv = (drm_via_private_t *) dev->dev_private;
2552 drm_via_sarea_t *sAPriv = dev_priv->sarea_priv;
2553 int ret = 0;
2554
2555 DRM_DEBUG("\n");
2556
2557 if (fx->lock >= VIA_NR_XVMC_LOCKS)
2558 return -EFAULT;
2559
2560 lock = (volatile int *)XVMCLOCKPTR(sAPriv, fx->lock);
2561
2562 switch (fx->func) {
2563 case VIA_FUTEX_WAIT:
2564 VIA_WAIT_ON(ret, dev_priv->decoder_queue[fx->lock],
2565 (fx->ms / 10) * (HZ / 100), *lock != fx->val);
2566 return ret;
2567 case VIA_FUTEX_WAKE:
2568 wake_up(&(dev_priv->decoder_queue[fx->lock]));
2569 return 0;
2570 }
2571 return 0;
2572}
2573
2574static int via_agp_init(struct drm_device *dev, void *data, struct drm_file *file_priv)
2575{
2576 drm_via_agp_t *agp = data;
2577 drm_via_private_t *dev_priv = (drm_via_private_t *) dev->dev_private;
2578
2579 mutex_lock(&dev->struct_mutex);
2580 drm_mm_init(&dev_priv->agp_mm, 0, agp->size >> VIA_MM_ALIGN_SHIFT);
2581
2582 dev_priv->agp_initialized = 1;
2583 dev_priv->agp_offset = agp->offset;
2584 mutex_unlock(&dev->struct_mutex);
2585
2586 DRM_DEBUG("offset = %u, size = %u\n", agp->offset, agp->size);
2587 return 0;
2588}
2589
2590static int via_fb_init(struct drm_device *dev, void *data, struct drm_file *file_priv)
2591{
2592 drm_via_fb_t *fb = data;
2593 drm_via_private_t *dev_priv = (drm_via_private_t *) dev->dev_private;
2594
2595 mutex_lock(&dev->struct_mutex);
2596 drm_mm_init(&dev_priv->vram_mm, 0, fb->size >> VIA_MM_ALIGN_SHIFT);
2597
2598 dev_priv->vram_initialized = 1;
2599 dev_priv->vram_offset = fb->offset;
2600
2601 mutex_unlock(&dev->struct_mutex);
2602 DRM_DEBUG("offset = %u, size = %u\n", fb->offset, fb->size);
2603
2604 return 0;
2605
2606}
2607
2608static int via_final_context(struct drm_device *dev, int context)
2609{
2610 drm_via_private_t *dev_priv = (drm_via_private_t *) dev->dev_private;
2611
2612 via_release_futex(dev_priv, context);
2613
2614 /* Linux specific until context tracking code gets ported to BSD */
2615 /* Last context, perform cleanup */
2616 if (list_is_singular(&dev->ctxlist)) {
2617 DRM_DEBUG("Last Context\n");
2618 drm_legacy_irq_uninstall(dev);
2619 via_cleanup_futex(dev_priv);
2620 via_do_cleanup_map(dev);
2621 }
2622 return 1;
2623}
2624
2625static void via_lastclose(struct drm_device *dev)
2626{
2627 drm_via_private_t *dev_priv = (drm_via_private_t *) dev->dev_private;
2628
2629 if (!dev_priv)
2630 return;
2631
2632 mutex_lock(&dev->struct_mutex);
2633 if (dev_priv->vram_initialized) {
2634 drm_mm_takedown(&dev_priv->vram_mm);
2635 dev_priv->vram_initialized = 0;
2636 }
2637 if (dev_priv->agp_initialized) {
2638 drm_mm_takedown(&dev_priv->agp_mm);
2639 dev_priv->agp_initialized = 0;
2640 }
2641 mutex_unlock(&dev->struct_mutex);
2642}
2643
2644static int via_mem_alloc(struct drm_device *dev, void *data,
2645 struct drm_file *file)
2646{
2647 drm_via_mem_t *mem = data;
2648 int retval = 0, user_key;
2649 struct via_memblock *item;
2650 drm_via_private_t *dev_priv = (drm_via_private_t *) dev->dev_private;
2651 struct via_file_private *file_priv = file->driver_priv;
2652 unsigned long tmpSize;
2653
2654 if (mem->type > VIA_MEM_AGP) {
2655 DRM_ERROR("Unknown memory type allocation\n");
2656 return -EINVAL;
2657 }
2658 mutex_lock(&dev->struct_mutex);
2659 if (0 == ((mem->type == VIA_MEM_VIDEO) ? dev_priv->vram_initialized :
2660 dev_priv->agp_initialized)) {
2661 mutex_unlock(&dev->struct_mutex);
2662 DRM_ERROR
2663 ("Attempt to allocate from uninitialized memory manager.\n");
2664 return -EINVAL;
2665 }
2666
2667 item = kzalloc(sizeof(*item), GFP_KERNEL);
2668 if (!item) {
2669 retval = -ENOMEM;
2670 goto fail_alloc;
2671 }
2672
2673 tmpSize = (mem->size + VIA_MM_ALIGN_MASK) >> VIA_MM_ALIGN_SHIFT;
2674 if (mem->type == VIA_MEM_AGP)
2675 retval = drm_mm_insert_node(&dev_priv->agp_mm,
2676 &item->mm_node,
2677 tmpSize);
2678 else
2679 retval = drm_mm_insert_node(&dev_priv->vram_mm,
2680 &item->mm_node,
2681 tmpSize);
2682 if (retval)
2683 goto fail_alloc;
2684
2685 retval = idr_alloc(&dev_priv->object_idr, item, 1, 0, GFP_KERNEL);
2686 if (retval < 0)
2687 goto fail_idr;
2688 user_key = retval;
2689
2690 list_add(&item->owner_list, &file_priv->obj_list);
2691 mutex_unlock(&dev->struct_mutex);
2692
2693 mem->offset = ((mem->type == VIA_MEM_VIDEO) ?
2694 dev_priv->vram_offset : dev_priv->agp_offset) +
2695 ((item->mm_node.start) << VIA_MM_ALIGN_SHIFT);
2696 mem->index = user_key;
2697
2698 return 0;
2699
2700fail_idr:
2701 drm_mm_remove_node(&item->mm_node);
2702fail_alloc:
2703 kfree(item);
2704 mutex_unlock(&dev->struct_mutex);
2705
2706 mem->offset = 0;
2707 mem->size = 0;
2708 mem->index = 0;
2709 DRM_DEBUG("Video memory allocation failed\n");
2710
2711 return retval;
2712}
2713
2714static int via_mem_free(struct drm_device *dev, void *data, struct drm_file *file_priv)
2715{
2716 drm_via_private_t *dev_priv = dev->dev_private;
2717 drm_via_mem_t *mem = data;
2718 struct via_memblock *obj;
2719
2720 mutex_lock(&dev->struct_mutex);
2721 obj = idr_find(&dev_priv->object_idr, mem->index);
2722 if (obj == NULL) {
2723 mutex_unlock(&dev->struct_mutex);
2724 return -EINVAL;
2725 }
2726
2727 idr_remove(&dev_priv->object_idr, mem->index);
2728 list_del(&obj->owner_list);
2729 drm_mm_remove_node(&obj->mm_node);
2730 kfree(obj);
2731 mutex_unlock(&dev->struct_mutex);
2732
2733 DRM_DEBUG("free = 0x%lx\n", mem->index);
2734
2735 return 0;
2736}
2737
2738
2739static void via_reclaim_buffers_locked(struct drm_device *dev,
2740 struct drm_file *file)
2741{
2742 struct via_file_private *file_priv = file->driver_priv;
2743 struct via_memblock *entry, *next;
2744
2745 if (!(dev->master && file->master->lock.hw_lock))
2746 return;
2747
2748 drm_legacy_idlelock_take(&file->master->lock);
2749
2750 mutex_lock(&dev->struct_mutex);
2751 if (list_empty(&file_priv->obj_list)) {
2752 mutex_unlock(&dev->struct_mutex);
2753 drm_legacy_idlelock_release(&file->master->lock);
2754
2755 return;
2756 }
2757
2758 via_driver_dma_quiescent(dev);
2759
2760 list_for_each_entry_safe(entry, next, &file_priv->obj_list,
2761 owner_list) {
2762 list_del(&entry->owner_list);
2763 drm_mm_remove_node(&entry->mm_node);
2764 kfree(entry);
2765 }
2766 mutex_unlock(&dev->struct_mutex);
2767
2768 drm_legacy_idlelock_release(&file->master->lock);
2769
2770 return;
2771}
2772
2773static int via_do_init_map(struct drm_device *dev, drm_via_init_t *init)
2774{
2775 drm_via_private_t *dev_priv = dev->dev_private;
2776
2777 DRM_DEBUG("\n");
2778
2779 dev_priv->sarea = drm_legacy_getsarea(dev);
2780 if (!dev_priv->sarea) {
2781 DRM_ERROR("could not find sarea!\n");
2782 dev->dev_private = (void *)dev_priv;
2783 via_do_cleanup_map(dev);
2784 return -EINVAL;
2785 }
2786
2787 dev_priv->fb = drm_legacy_findmap(dev, init->fb_offset);
2788 if (!dev_priv->fb) {
2789 DRM_ERROR("could not find framebuffer!\n");
2790 dev->dev_private = (void *)dev_priv;
2791 via_do_cleanup_map(dev);
2792 return -EINVAL;
2793 }
2794 dev_priv->mmio = drm_legacy_findmap(dev, init->mmio_offset);
2795 if (!dev_priv->mmio) {
2796 DRM_ERROR("could not find mmio region!\n");
2797 dev->dev_private = (void *)dev_priv;
2798 via_do_cleanup_map(dev);
2799 return -EINVAL;
2800 }
2801
2802 dev_priv->sarea_priv =
2803 (drm_via_sarea_t *) ((u8 *) dev_priv->sarea->handle +
2804 init->sarea_priv_offset);
2805
2806 dev_priv->agpAddr = init->agpAddr;
2807
2808 via_init_futex(dev_priv);
2809
2810 via_init_dmablit(dev);
2811
2812 dev->dev_private = (void *)dev_priv;
2813 return 0;
2814}
2815
2816int via_do_cleanup_map(struct drm_device *dev)
2817{
2818 via_dma_cleanup(dev);
2819
2820 return 0;
2821}
2822
2823static int via_map_init(struct drm_device *dev, void *data, struct drm_file *file_priv)
2824{
2825 drm_via_init_t *init = data;
2826
2827 DRM_DEBUG("\n");
2828
2829 switch (init->func) {
2830 case VIA_INIT_MAP:
2831 return via_do_init_map(dev, init);
2832 case VIA_CLEANUP_MAP:
2833 return via_do_cleanup_map(dev);
2834 }
2835
2836 return -EINVAL;
2837}
2838
2839static int via_driver_load(struct drm_device *dev, unsigned long chipset)
2840{
2841 struct pci_dev *pdev = to_pci_dev(dev->dev);
2842 drm_via_private_t *dev_priv;
2843 int ret = 0;
2844
2845 dev_priv = kzalloc(sizeof(drm_via_private_t), GFP_KERNEL);
2846 if (dev_priv == NULL)
2847 return -ENOMEM;
2848
2849 idr_init_base(&dev_priv->object_idr, 1);
2850 dev->dev_private = (void *)dev_priv;
2851
2852 dev_priv->chipset = chipset;
2853
2854 pci_set_master(pdev);
2855
2856 ret = drm_vblank_init(dev, 1);
2857 if (ret) {
2858 kfree(dev_priv);
2859 return ret;
2860 }
2861
2862 return 0;
2863}
2864
2865static void via_driver_unload(struct drm_device *dev)
2866{
2867 drm_via_private_t *dev_priv = dev->dev_private;
2868
2869 idr_destroy(&dev_priv->object_idr);
2870
2871 kfree(dev_priv);
2872}
2873
2874static void via_cmdbuf_start(drm_via_private_t *dev_priv);
2875static void via_cmdbuf_pause(drm_via_private_t *dev_priv);
2876static void via_cmdbuf_reset(drm_via_private_t *dev_priv);
2877static void via_cmdbuf_rewind(drm_via_private_t *dev_priv);
2878static int via_wait_idle(drm_via_private_t *dev_priv);
2879static void via_pad_cache(drm_via_private_t *dev_priv, int qwords);
2880
2881/*
2882 * Free space in command buffer.
2883 */
2884
2885static uint32_t via_cmdbuf_space(drm_via_private_t *dev_priv)
2886{
2887 uint32_t agp_base = dev_priv->dma_offset + (uint32_t) dev_priv->agpAddr;
2888 uint32_t hw_addr = *(dev_priv->hw_addr_ptr) - agp_base;
2889
2890 return ((hw_addr <= dev_priv->dma_low) ?
2891 (dev_priv->dma_high + hw_addr - dev_priv->dma_low) :
2892 (hw_addr - dev_priv->dma_low));
2893}
2894
2895/*
2896 * How much does the command regulator lag behind?
2897 */
2898
2899static uint32_t via_cmdbuf_lag(drm_via_private_t *dev_priv)
2900{
2901 uint32_t agp_base = dev_priv->dma_offset + (uint32_t) dev_priv->agpAddr;
2902 uint32_t hw_addr = *(dev_priv->hw_addr_ptr) - agp_base;
2903
2904 return ((hw_addr <= dev_priv->dma_low) ?
2905 (dev_priv->dma_low - hw_addr) :
2906 (dev_priv->dma_wrap + dev_priv->dma_low - hw_addr));
2907}
2908
2909/*
2910 * Check that the given size fits in the buffer, otherwise wait.
2911 */
2912
2913static inline int
2914via_cmdbuf_wait(drm_via_private_t *dev_priv, unsigned int size)
2915{
2916 uint32_t agp_base = dev_priv->dma_offset + (uint32_t) dev_priv->agpAddr;
2917 uint32_t cur_addr, hw_addr, next_addr;
2918 volatile uint32_t *hw_addr_ptr;
2919 uint32_t count;
2920 hw_addr_ptr = dev_priv->hw_addr_ptr;
2921 cur_addr = dev_priv->dma_low;
2922 next_addr = cur_addr + size + 512 * 1024;
2923 count = 1000000;
2924 do {
2925 hw_addr = *hw_addr_ptr - agp_base;
2926 if (count-- == 0) {
2927 DRM_ERROR
2928 ("via_cmdbuf_wait timed out hw %x cur_addr %x next_addr %x\n",
2929 hw_addr, cur_addr, next_addr);
2930 return -1;
2931 }
2932 if ((cur_addr < hw_addr) && (next_addr >= hw_addr))
2933 msleep(1);
2934 } while ((cur_addr < hw_addr) && (next_addr >= hw_addr));
2935 return 0;
2936}
2937
2938/*
2939 * Checks whether buffer head has reach the end. Rewind the ring buffer
2940 * when necessary.
2941 *
2942 * Returns virtual pointer to ring buffer.
2943 */
2944
2945static inline uint32_t *via_check_dma(drm_via_private_t * dev_priv,
2946 unsigned int size)
2947{
2948 if ((dev_priv->dma_low + size + 4 * CMDBUF_ALIGNMENT_SIZE) >
2949 dev_priv->dma_high) {
2950 via_cmdbuf_rewind(dev_priv);
2951 }
2952 if (via_cmdbuf_wait(dev_priv, size) != 0)
2953 return NULL;
2954
2955 return (uint32_t *) (dev_priv->dma_ptr + dev_priv->dma_low);
2956}
2957
2958int via_dma_cleanup(struct drm_device *dev)
2959{
2960 if (dev->dev_private) {
2961 drm_via_private_t *dev_priv =
2962 (drm_via_private_t *) dev->dev_private;
2963
2964 if (dev_priv->ring.virtual_start && dev_priv->mmio) {
2965 via_cmdbuf_reset(dev_priv);
2966
2967 drm_legacy_ioremapfree(&dev_priv->ring.map, dev);
2968 dev_priv->ring.virtual_start = NULL;
2969 }
2970
2971 }
2972
2973 return 0;
2974}
2975
2976static int via_initialize(struct drm_device *dev,
2977 drm_via_private_t *dev_priv,
2978 drm_via_dma_init_t *init)
2979{
2980 if (!dev_priv || !dev_priv->mmio) {
2981 DRM_ERROR("via_dma_init called before via_map_init\n");
2982 return -EFAULT;
2983 }
2984
2985 if (dev_priv->ring.virtual_start != NULL) {
2986 DRM_ERROR("called again without calling cleanup\n");
2987 return -EFAULT;
2988 }
2989
2990 if (!dev->agp || !dev->agp->base) {
2991 DRM_ERROR("called with no agp memory available\n");
2992 return -EFAULT;
2993 }
2994
2995 if (dev_priv->chipset == VIA_DX9_0) {
2996 DRM_ERROR("AGP DMA is not supported on this chip\n");
2997 return -EINVAL;
2998 }
2999
3000 dev_priv->ring.map.offset = dev->agp->base + init->offset;
3001 dev_priv->ring.map.size = init->size;
3002 dev_priv->ring.map.type = 0;
3003 dev_priv->ring.map.flags = 0;
3004 dev_priv->ring.map.mtrr = 0;
3005
3006 drm_legacy_ioremap(&dev_priv->ring.map, dev);
3007
3008 if (dev_priv->ring.map.handle == NULL) {
3009 via_dma_cleanup(dev);
3010 DRM_ERROR("can not ioremap virtual address for"
3011 " ring buffer\n");
3012 return -ENOMEM;
3013 }
3014
3015 dev_priv->ring.virtual_start = dev_priv->ring.map.handle;
3016
3017 dev_priv->dma_ptr = dev_priv->ring.virtual_start;
3018 dev_priv->dma_low = 0;
3019 dev_priv->dma_high = init->size;
3020 dev_priv->dma_wrap = init->size;
3021 dev_priv->dma_offset = init->offset;
3022 dev_priv->last_pause_ptr = NULL;
3023 dev_priv->hw_addr_ptr =
3024 (volatile uint32_t *)((char *)dev_priv->mmio->handle +
3025 init->reg_pause_addr);
3026
3027 via_cmdbuf_start(dev_priv);
3028
3029 return 0;
3030}
3031
3032static int via_dma_init(struct drm_device *dev, void *data, struct drm_file *file_priv)
3033{
3034 drm_via_private_t *dev_priv = (drm_via_private_t *) dev->dev_private;
3035 drm_via_dma_init_t *init = data;
3036 int retcode = 0;
3037
3038 switch (init->func) {
3039 case VIA_INIT_DMA:
3040 if (!capable(CAP_SYS_ADMIN))
3041 retcode = -EPERM;
3042 else
3043 retcode = via_initialize(dev, dev_priv, init);
3044 break;
3045 case VIA_CLEANUP_DMA:
3046 if (!capable(CAP_SYS_ADMIN))
3047 retcode = -EPERM;
3048 else
3049 retcode = via_dma_cleanup(dev);
3050 break;
3051 case VIA_DMA_INITIALIZED:
3052 retcode = (dev_priv->ring.virtual_start != NULL) ?
3053 0 : -EFAULT;
3054 break;
3055 default:
3056 retcode = -EINVAL;
3057 break;
3058 }
3059
3060 return retcode;
3061}
3062
3063static int via_dispatch_cmdbuffer(struct drm_device *dev, drm_via_cmdbuffer_t *cmd)
3064{
3065 drm_via_private_t *dev_priv;
3066 uint32_t *vb;
3067 int ret;
3068
3069 dev_priv = (drm_via_private_t *) dev->dev_private;
3070
3071 if (dev_priv->ring.virtual_start == NULL) {
3072 DRM_ERROR("called without initializing AGP ring buffer.\n");
3073 return -EFAULT;
3074 }
3075
3076 if (cmd->size > VIA_PCI_BUF_SIZE)
3077 return -ENOMEM;
3078
3079 if (copy_from_user(dev_priv->pci_buf, cmd->buf, cmd->size))
3080 return -EFAULT;
3081
3082 /*
3083 * Running this function on AGP memory is dead slow. Therefore
3084 * we run it on a temporary cacheable system memory buffer and
3085 * copy it to AGP memory when ready.
3086 */
3087
3088 if ((ret =
3089 via_verify_command_stream((uint32_t *) dev_priv->pci_buf,
3090 cmd->size, dev, 1))) {
3091 return ret;
3092 }
3093
3094 vb = via_check_dma(dev_priv, (cmd->size < 0x100) ? 0x102 : cmd->size);
3095 if (vb == NULL)
3096 return -EAGAIN;
3097
3098 memcpy(vb, dev_priv->pci_buf, cmd->size);
3099
3100 dev_priv->dma_low += cmd->size;
3101
3102 /*
3103 * Small submissions somehow stalls the CPU. (AGP cache effects?)
3104 * pad to greater size.
3105 */
3106
3107 if (cmd->size < 0x100)
3108 via_pad_cache(dev_priv, (0x100 - cmd->size) >> 3);
3109 via_cmdbuf_pause(dev_priv);
3110
3111 return 0;
3112}
3113
3114int via_driver_dma_quiescent(struct drm_device *dev)
3115{
3116 drm_via_private_t *dev_priv = dev->dev_private;
3117
3118 if (!via_wait_idle(dev_priv))
3119 return -EBUSY;
3120 return 0;
3121}
3122
3123static int via_flush_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
3124{
3125
3126 LOCK_TEST_WITH_RETURN(dev, file_priv);
3127
3128 return via_driver_dma_quiescent(dev);
3129}
3130
3131static int via_cmdbuffer(struct drm_device *dev, void *data, struct drm_file *file_priv)
3132{
3133 drm_via_cmdbuffer_t *cmdbuf = data;
3134 int ret;
3135
3136 LOCK_TEST_WITH_RETURN(dev, file_priv);
3137
3138 DRM_DEBUG("buf %p size %lu\n", cmdbuf->buf, cmdbuf->size);
3139
3140 ret = via_dispatch_cmdbuffer(dev, cmdbuf);
3141 return ret;
3142}
3143
3144static int via_dispatch_pci_cmdbuffer(struct drm_device *dev,
3145 drm_via_cmdbuffer_t *cmd)
3146{
3147 drm_via_private_t *dev_priv = dev->dev_private;
3148 int ret;
3149
3150 if (cmd->size > VIA_PCI_BUF_SIZE)
3151 return -ENOMEM;
3152 if (copy_from_user(dev_priv->pci_buf, cmd->buf, cmd->size))
3153 return -EFAULT;
3154
3155 if ((ret =
3156 via_verify_command_stream((uint32_t *) dev_priv->pci_buf,
3157 cmd->size, dev, 0))) {
3158 return ret;
3159 }
3160
3161 ret =
3162 via_parse_command_stream(dev, (const uint32_t *)dev_priv->pci_buf,
3163 cmd->size);
3164 return ret;
3165}
3166
3167static int via_pci_cmdbuffer(struct drm_device *dev, void *data, struct drm_file *file_priv)
3168{
3169 drm_via_cmdbuffer_t *cmdbuf = data;
3170 int ret;
3171
3172 LOCK_TEST_WITH_RETURN(dev, file_priv);
3173
3174 DRM_DEBUG("buf %p size %lu\n", cmdbuf->buf, cmdbuf->size);
3175
3176 ret = via_dispatch_pci_cmdbuffer(dev, cmdbuf);
3177 return ret;
3178}
3179
3180static inline uint32_t *via_align_buffer(drm_via_private_t *dev_priv,
3181 uint32_t * vb, int qw_count)
3182{
3183 for (; qw_count > 0; --qw_count)
3184 VIA_OUT_RING_QW(HC_DUMMY, HC_DUMMY);
3185 return vb;
3186}
3187
3188/*
3189 * This function is used internally by ring buffer management code.
3190 *
3191 * Returns virtual pointer to ring buffer.
3192 */
3193static inline uint32_t *via_get_dma(drm_via_private_t *dev_priv)
3194{
3195 return (uint32_t *) (dev_priv->dma_ptr + dev_priv->dma_low);
3196}
3197
3198/*
3199 * Hooks a segment of data into the tail of the ring-buffer by
3200 * modifying the pause address stored in the buffer itself. If
3201 * the regulator has already paused, restart it.
3202 */
3203static int via_hook_segment(drm_via_private_t *dev_priv,
3204 uint32_t pause_addr_hi, uint32_t pause_addr_lo,
3205 int no_pci_fire)
3206{
3207 int paused, count;
3208 volatile uint32_t *paused_at = dev_priv->last_pause_ptr;
3209 uint32_t reader, ptr;
3210 uint32_t diff;
3211
3212 paused = 0;
3213 via_flush_write_combine();
3214 (void) *(volatile uint32_t *)(via_get_dma(dev_priv) - 1);
3215
3216 *paused_at = pause_addr_lo;
3217 via_flush_write_combine();
3218 (void) *paused_at;
3219
3220 reader = *(dev_priv->hw_addr_ptr);
3221 ptr = ((volatile char *)paused_at - dev_priv->dma_ptr) +
3222 dev_priv->dma_offset + (uint32_t) dev_priv->agpAddr + 4;
3223
3224 dev_priv->last_pause_ptr = via_get_dma(dev_priv) - 1;
3225
3226 /*
3227 * If there is a possibility that the command reader will
3228 * miss the new pause address and pause on the old one,
3229 * In that case we need to program the new start address
3230 * using PCI.
3231 */
3232
3233 diff = (uint32_t) (ptr - reader) - dev_priv->dma_diff;
3234 count = 10000000;
3235 while (diff == 0 && count--) {
3236 paused = (via_read(dev_priv, 0x41c) & 0x80000000);
3237 if (paused)
3238 break;
3239 reader = *(dev_priv->hw_addr_ptr);
3240 diff = (uint32_t) (ptr - reader) - dev_priv->dma_diff;
3241 }
3242
3243 paused = via_read(dev_priv, 0x41c) & 0x80000000;
3244
3245 if (paused && !no_pci_fire) {
3246 reader = *(dev_priv->hw_addr_ptr);
3247 diff = (uint32_t) (ptr - reader) - dev_priv->dma_diff;
3248 diff &= (dev_priv->dma_high - 1);
3249 if (diff != 0 && diff < (dev_priv->dma_high >> 1)) {
3250 DRM_ERROR("Paused at incorrect address. "
3251 "0x%08x, 0x%08x 0x%08x\n",
3252 ptr, reader, dev_priv->dma_diff);
3253 } else if (diff == 0) {
3254 /*
3255 * There is a concern that these writes may stall the PCI bus
3256 * if the GPU is not idle. However, idling the GPU first
3257 * doesn't make a difference.
3258 */
3259
3260 via_write(dev_priv, VIA_REG_TRANSET, (HC_ParaType_PreCR << 16));
3261 via_write(dev_priv, VIA_REG_TRANSPACE, pause_addr_hi);
3262 via_write(dev_priv, VIA_REG_TRANSPACE, pause_addr_lo);
3263 via_read(dev_priv, VIA_REG_TRANSPACE);
3264 }
3265 }
3266 return paused;
3267}
3268
3269static int via_wait_idle(drm_via_private_t *dev_priv)
3270{
3271 int count = 10000000;
3272
3273 while (!(via_read(dev_priv, VIA_REG_STATUS) & VIA_VR_QUEUE_BUSY) && --count)
3274 ;
3275
3276 while (count && (via_read(dev_priv, VIA_REG_STATUS) &
3277 (VIA_CMD_RGTR_BUSY | VIA_2D_ENG_BUSY |
3278 VIA_3D_ENG_BUSY)))
3279 --count;
3280 return count;
3281}
3282
3283static uint32_t *via_align_cmd(drm_via_private_t *dev_priv, uint32_t cmd_type,
3284 uint32_t addr, uint32_t *cmd_addr_hi,
3285 uint32_t *cmd_addr_lo, int skip_wait)
3286{
3287 uint32_t agp_base;
3288 uint32_t cmd_addr, addr_lo, addr_hi;
3289 uint32_t *vb;
3290 uint32_t qw_pad_count;
3291
3292 if (!skip_wait)
3293 via_cmdbuf_wait(dev_priv, 2 * CMDBUF_ALIGNMENT_SIZE);
3294
3295 vb = via_get_dma(dev_priv);
3296 VIA_OUT_RING_QW(HC_HEADER2 | ((VIA_REG_TRANSET >> 2) << 12) |
3297 (VIA_REG_TRANSPACE >> 2), HC_ParaType_PreCR << 16);
3298 agp_base = dev_priv->dma_offset + (uint32_t) dev_priv->agpAddr;
3299 qw_pad_count = (CMDBUF_ALIGNMENT_SIZE >> 3) -
3300 ((dev_priv->dma_low & CMDBUF_ALIGNMENT_MASK) >> 3);
3301
3302 cmd_addr = (addr) ? addr :
3303 agp_base + dev_priv->dma_low - 8 + (qw_pad_count << 3);
3304 addr_lo = ((HC_SubA_HAGPBpL << 24) | (cmd_type & HC_HAGPBpID_MASK) |
3305 (cmd_addr & HC_HAGPBpL_MASK));
3306 addr_hi = ((HC_SubA_HAGPBpH << 24) | (cmd_addr >> 24));
3307
3308 vb = via_align_buffer(dev_priv, vb, qw_pad_count - 1);
3309 VIA_OUT_RING_QW(*cmd_addr_hi = addr_hi, *cmd_addr_lo = addr_lo);
3310 return vb;
3311}
3312
3313static void via_cmdbuf_start(drm_via_private_t *dev_priv)
3314{
3315 uint32_t pause_addr_lo, pause_addr_hi;
3316 uint32_t start_addr, start_addr_lo;
3317 uint32_t end_addr, end_addr_lo;
3318 uint32_t command;
3319 uint32_t agp_base;
3320 uint32_t ptr;
3321 uint32_t reader;
3322 int count;
3323
3324 dev_priv->dma_low = 0;
3325
3326 agp_base = dev_priv->dma_offset + (uint32_t) dev_priv->agpAddr;
3327 start_addr = agp_base;
3328 end_addr = agp_base + dev_priv->dma_high;
3329
3330 start_addr_lo = ((HC_SubA_HAGPBstL << 24) | (start_addr & 0xFFFFFF));
3331 end_addr_lo = ((HC_SubA_HAGPBendL << 24) | (end_addr & 0xFFFFFF));
3332 command = ((HC_SubA_HAGPCMNT << 24) | (start_addr >> 24) |
3333 ((end_addr & 0xff000000) >> 16));
3334
3335 dev_priv->last_pause_ptr =
3336 via_align_cmd(dev_priv, HC_HAGPBpID_PAUSE, 0,
3337 &pause_addr_hi, &pause_addr_lo, 1) - 1;
3338
3339 via_flush_write_combine();
3340 (void) *(volatile uint32_t *)dev_priv->last_pause_ptr;
3341
3342 via_write(dev_priv, VIA_REG_TRANSET, (HC_ParaType_PreCR << 16));
3343 via_write(dev_priv, VIA_REG_TRANSPACE, command);
3344 via_write(dev_priv, VIA_REG_TRANSPACE, start_addr_lo);
3345 via_write(dev_priv, VIA_REG_TRANSPACE, end_addr_lo);
3346
3347 via_write(dev_priv, VIA_REG_TRANSPACE, pause_addr_hi);
3348 via_write(dev_priv, VIA_REG_TRANSPACE, pause_addr_lo);
3349 wmb();
3350 via_write(dev_priv, VIA_REG_TRANSPACE, command | HC_HAGPCMNT_MASK);
3351 via_read(dev_priv, VIA_REG_TRANSPACE);
3352
3353 dev_priv->dma_diff = 0;
3354
3355 count = 10000000;
3356 while (!(via_read(dev_priv, 0x41c) & 0x80000000) && count--);
3357
3358 reader = *(dev_priv->hw_addr_ptr);
3359 ptr = ((volatile char *)dev_priv->last_pause_ptr - dev_priv->dma_ptr) +
3360 dev_priv->dma_offset + (uint32_t) dev_priv->agpAddr + 4;
3361
3362 /*
3363 * This is the difference between where we tell the
3364 * command reader to pause and where it actually pauses.
3365 * This differs between hw implementation so we need to
3366 * detect it.
3367 */
3368
3369 dev_priv->dma_diff = ptr - reader;
3370}
3371
3372static void via_pad_cache(drm_via_private_t *dev_priv, int qwords)
3373{
3374 uint32_t *vb;
3375
3376 via_cmdbuf_wait(dev_priv, qwords + 2);
3377 vb = via_get_dma(dev_priv);
3378 VIA_OUT_RING_QW(HC_HEADER2, HC_ParaType_NotTex << 16);
3379 via_align_buffer(dev_priv, vb, qwords);
3380}
3381
3382static inline void via_dummy_bitblt(drm_via_private_t *dev_priv)
3383{
3384 uint32_t *vb = via_get_dma(dev_priv);
3385 SetReg2DAGP(0x0C, (0 | (0 << 16)));
3386 SetReg2DAGP(0x10, 0 | (0 << 16));
3387 SetReg2DAGP(0x0, 0x1 | 0x2000 | 0xAA000000);
3388}
3389
3390static void via_cmdbuf_jump(drm_via_private_t *dev_priv)
3391{
3392 uint32_t pause_addr_lo, pause_addr_hi;
3393 uint32_t jump_addr_lo, jump_addr_hi;
3394 volatile uint32_t *last_pause_ptr;
3395 uint32_t dma_low_save1, dma_low_save2;
3396
3397 via_align_cmd(dev_priv, HC_HAGPBpID_JUMP, 0, &jump_addr_hi,
3398 &jump_addr_lo, 0);
3399
3400 dev_priv->dma_wrap = dev_priv->dma_low;
3401
3402 /*
3403 * Wrap command buffer to the beginning.
3404 */
3405
3406 dev_priv->dma_low = 0;
3407 if (via_cmdbuf_wait(dev_priv, CMDBUF_ALIGNMENT_SIZE) != 0)
3408 DRM_ERROR("via_cmdbuf_jump failed\n");
3409
3410 via_dummy_bitblt(dev_priv);
3411 via_dummy_bitblt(dev_priv);
3412
3413 last_pause_ptr =
3414 via_align_cmd(dev_priv, HC_HAGPBpID_PAUSE, 0, &pause_addr_hi,
3415 &pause_addr_lo, 0) - 1;
3416 via_align_cmd(dev_priv, HC_HAGPBpID_PAUSE, 0, &pause_addr_hi,
3417 &pause_addr_lo, 0);
3418
3419 *last_pause_ptr = pause_addr_lo;
3420 dma_low_save1 = dev_priv->dma_low;
3421
3422 /*
3423 * Now, set a trap that will pause the regulator if it tries to rerun the old
3424 * command buffer. (Which may happen if via_hook_segment detecs a command regulator pause
3425 * and reissues the jump command over PCI, while the regulator has already taken the jump
3426 * and actually paused at the current buffer end).
3427 * There appears to be no other way to detect this condition, since the hw_addr_pointer
3428 * does not seem to get updated immediately when a jump occurs.
3429 */
3430
3431 last_pause_ptr =
3432 via_align_cmd(dev_priv, HC_HAGPBpID_PAUSE, 0, &pause_addr_hi,
3433 &pause_addr_lo, 0) - 1;
3434 via_align_cmd(dev_priv, HC_HAGPBpID_PAUSE, 0, &pause_addr_hi,
3435 &pause_addr_lo, 0);
3436 *last_pause_ptr = pause_addr_lo;
3437
3438 dma_low_save2 = dev_priv->dma_low;
3439 dev_priv->dma_low = dma_low_save1;
3440 via_hook_segment(dev_priv, jump_addr_hi, jump_addr_lo, 0);
3441 dev_priv->dma_low = dma_low_save2;
3442 via_hook_segment(dev_priv, pause_addr_hi, pause_addr_lo, 0);
3443}
3444
3445
3446static void via_cmdbuf_rewind(drm_via_private_t *dev_priv)
3447{
3448 via_cmdbuf_jump(dev_priv);
3449}
3450
3451static void via_cmdbuf_flush(drm_via_private_t *dev_priv, uint32_t cmd_type)
3452{
3453 uint32_t pause_addr_lo, pause_addr_hi;
3454
3455 via_align_cmd(dev_priv, cmd_type, 0, &pause_addr_hi, &pause_addr_lo, 0);
3456 via_hook_segment(dev_priv, pause_addr_hi, pause_addr_lo, 0);
3457}
3458
3459static void via_cmdbuf_pause(drm_via_private_t *dev_priv)
3460{
3461 via_cmdbuf_flush(dev_priv, HC_HAGPBpID_PAUSE);
3462}
3463
3464static void via_cmdbuf_reset(drm_via_private_t *dev_priv)
3465{
3466 via_cmdbuf_flush(dev_priv, HC_HAGPBpID_STOP);
3467 via_wait_idle(dev_priv);
3468}
3469
3470/*
3471 * User interface to the space and lag functions.
3472 */
3473
3474static int via_cmdbuf_size(struct drm_device *dev, void *data, struct drm_file *file_priv)
3475{
3476 drm_via_cmdbuf_size_t *d_siz = data;
3477 int ret = 0;
3478 uint32_t tmp_size, count;
3479 drm_via_private_t *dev_priv;
3480
3481 DRM_DEBUG("\n");
3482 LOCK_TEST_WITH_RETURN(dev, file_priv);
3483
3484 dev_priv = (drm_via_private_t *) dev->dev_private;
3485
3486 if (dev_priv->ring.virtual_start == NULL) {
3487 DRM_ERROR("called without initializing AGP ring buffer.\n");
3488 return -EFAULT;
3489 }
3490
3491 count = 1000000;
3492 tmp_size = d_siz->size;
3493 switch (d_siz->func) {
3494 case VIA_CMDBUF_SPACE:
3495 while (((tmp_size = via_cmdbuf_space(dev_priv)) < d_siz->size)
3496 && --count) {
3497 if (!d_siz->wait)
3498 break;
3499 }
3500 if (!count) {
3501 DRM_ERROR("VIA_CMDBUF_SPACE timed out.\n");
3502 ret = -EAGAIN;
3503 }
3504 break;
3505 case VIA_CMDBUF_LAG:
3506 while (((tmp_size = via_cmdbuf_lag(dev_priv)) > d_siz->size)
3507 && --count) {
3508 if (!d_siz->wait)
3509 break;
3510 }
3511 if (!count) {
3512 DRM_ERROR("VIA_CMDBUF_LAG timed out.\n");
3513 ret = -EAGAIN;
3514 }
3515 break;
3516 default:
3517 ret = -EFAULT;
3518 }
3519 d_siz->size = tmp_size;
3520
3521 return ret;
3522}
3523
3524static const struct drm_ioctl_desc via_ioctls[] = {
3525 DRM_IOCTL_DEF_DRV(VIA_ALLOCMEM, via_mem_alloc, DRM_AUTH),
3526 DRM_IOCTL_DEF_DRV(VIA_FREEMEM, via_mem_free, DRM_AUTH),
3527 DRM_IOCTL_DEF_DRV(VIA_AGP_INIT, via_agp_init, DRM_AUTH|DRM_MASTER),
3528 DRM_IOCTL_DEF_DRV(VIA_FB_INIT, via_fb_init, DRM_AUTH|DRM_MASTER),
3529 DRM_IOCTL_DEF_DRV(VIA_MAP_INIT, via_map_init, DRM_AUTH|DRM_MASTER),
3530 DRM_IOCTL_DEF_DRV(VIA_DEC_FUTEX, via_decoder_futex, DRM_AUTH),
3531 DRM_IOCTL_DEF_DRV(VIA_DMA_INIT, via_dma_init, DRM_AUTH),
3532 DRM_IOCTL_DEF_DRV(VIA_CMDBUFFER, via_cmdbuffer, DRM_AUTH),
3533 DRM_IOCTL_DEF_DRV(VIA_FLUSH, via_flush_ioctl, DRM_AUTH),
3534 DRM_IOCTL_DEF_DRV(VIA_PCICMD, via_pci_cmdbuffer, DRM_AUTH),
3535 DRM_IOCTL_DEF_DRV(VIA_CMDBUF_SIZE, via_cmdbuf_size, DRM_AUTH),
3536 DRM_IOCTL_DEF_DRV(VIA_WAIT_IRQ, via_wait_irq, DRM_AUTH),
3537 DRM_IOCTL_DEF_DRV(VIA_DMA_BLIT, via_dma_blit, DRM_AUTH),
3538 DRM_IOCTL_DEF_DRV(VIA_BLIT_SYNC, via_dma_blit_sync, DRM_AUTH)
3539};
3540
3541static int via_max_ioctl = ARRAY_SIZE(via_ioctls);
3542static int via_driver_open(struct drm_device *dev, struct drm_file *file)
3543{
3544 struct via_file_private *file_priv;
3545
3546 DRM_DEBUG_DRIVER("\n");
3547 file_priv = kmalloc(sizeof(*file_priv), GFP_KERNEL);
3548 if (!file_priv)
3549 return -ENOMEM;
3550
3551 file->driver_priv = file_priv;
3552
3553 INIT_LIST_HEAD(&file_priv->obj_list);
3554
3555 return 0;
3556}
3557
3558static void via_driver_postclose(struct drm_device *dev, struct drm_file *file)
3559{
3560 struct via_file_private *file_priv = file->driver_priv;
3561
3562 kfree(file_priv);
3563}
3564
3565static struct pci_device_id pciidlist[] = {
3566 viadrv_PCI_IDS
3567};
3568
3569static const struct file_operations via_driver_fops = {
3570 .owner = THIS_MODULE,
3571 .open = drm_open,
3572 .release = drm_release,
3573 .unlocked_ioctl = drm_ioctl,
3574 .mmap = drm_legacy_mmap,
3575 .poll = drm_poll,
3576 .compat_ioctl = drm_compat_ioctl,
3577 .llseek = noop_llseek,
3578};
3579
3580static struct drm_driver driver = {
3581 .driver_features =
3582 DRIVER_USE_AGP | DRIVER_HAVE_IRQ | DRIVER_LEGACY,
3583 .load = via_driver_load,
3584 .unload = via_driver_unload,
3585 .open = via_driver_open,
3586 .preclose = via_reclaim_buffers_locked,
3587 .postclose = via_driver_postclose,
3588 .context_dtor = via_final_context,
3589 .get_vblank_counter = via_get_vblank_counter,
3590 .enable_vblank = via_enable_vblank,
3591 .disable_vblank = via_disable_vblank,
3592 .irq_preinstall = via_driver_irq_preinstall,
3593 .irq_postinstall = via_driver_irq_postinstall,
3594 .irq_uninstall = via_driver_irq_uninstall,
3595 .irq_handler = via_driver_irq_handler,
3596 .dma_quiescent = via_driver_dma_quiescent,
3597 .lastclose = via_lastclose,
3598 .ioctls = via_ioctls,
3599 .fops = &via_driver_fops,
3600 .name = DRIVER_NAME,
3601 .desc = DRIVER_DESC,
3602 .date = DRIVER_DATE,
3603 .major = DRIVER_MAJOR,
3604 .minor = DRIVER_MINOR,
3605 .patchlevel = DRIVER_PATCHLEVEL,
3606};
3607
3608static struct pci_driver via_pci_driver = {
3609 .name = DRIVER_NAME,
3610 .id_table = pciidlist,
3611};
3612
3613static int __init via_init(void)
3614{
3615 driver.num_ioctls = via_max_ioctl;
3616 via_init_command_verifier();
3617 return drm_legacy_pci_init(&driver, &via_pci_driver);
3618}
3619
3620static void __exit via_exit(void)
3621{
3622 drm_legacy_pci_exit(&driver, &via_pci_driver);
3623}
3624
3625module_init(via_init);
3626module_exit(via_exit);
3627
3628MODULE_AUTHOR(DRIVER_AUTHOR);
3629MODULE_DESCRIPTION(DRIVER_DESC);
3630MODULE_LICENSE("GPL and additional rights");