Loading...
Note: File does not exist in v3.1.
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd
4 * Author:Mark Yao <mark.yao@rock-chips.com>
5 */
6
7#include <linux/clk.h>
8#include <linux/component.h>
9#include <linux/delay.h>
10#include <linux/iopoll.h>
11#include <linux/kernel.h>
12#include <linux/log2.h>
13#include <linux/module.h>
14#include <linux/of.h>
15#include <linux/of_device.h>
16#include <linux/overflow.h>
17#include <linux/platform_device.h>
18#include <linux/pm_runtime.h>
19#include <linux/reset.h>
20
21#include <drm/drm.h>
22#include <drm/drm_atomic.h>
23#include <drm/drm_atomic_uapi.h>
24#include <drm/drm_blend.h>
25#include <drm/drm_crtc.h>
26#include <drm/drm_flip_work.h>
27#include <drm/drm_fourcc.h>
28#include <drm/drm_framebuffer.h>
29#include <drm/drm_gem_atomic_helper.h>
30#include <drm/drm_gem_framebuffer_helper.h>
31#include <drm/drm_probe_helper.h>
32#include <drm/drm_self_refresh_helper.h>
33#include <drm/drm_vblank.h>
34
35#ifdef CONFIG_DRM_ANALOGIX_DP
36#include <drm/bridge/analogix_dp.h>
37#endif
38
39#include "rockchip_drm_drv.h"
40#include "rockchip_drm_gem.h"
41#include "rockchip_drm_fb.h"
42#include "rockchip_drm_vop.h"
43#include "rockchip_rgb.h"
44
45#define VOP_WIN_SET(vop, win, name, v) \
46 vop_reg_set(vop, &win->phy->name, win->base, ~0, v, #name)
47#define VOP_SCL_SET(vop, win, name, v) \
48 vop_reg_set(vop, &win->phy->scl->name, win->base, ~0, v, #name)
49#define VOP_SCL_SET_EXT(vop, win, name, v) \
50 vop_reg_set(vop, &win->phy->scl->ext->name, \
51 win->base, ~0, v, #name)
52
53#define VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, name, v) \
54 do { \
55 if (win_yuv2yuv && win_yuv2yuv->name.mask) \
56 vop_reg_set(vop, &win_yuv2yuv->name, 0, ~0, v, #name); \
57 } while (0)
58
59#define VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, win_yuv2yuv, name, v) \
60 do { \
61 if (win_yuv2yuv && win_yuv2yuv->phy->name.mask) \
62 vop_reg_set(vop, &win_yuv2yuv->phy->name, win_yuv2yuv->base, ~0, v, #name); \
63 } while (0)
64
65#define VOP_INTR_SET_MASK(vop, name, mask, v) \
66 vop_reg_set(vop, &vop->data->intr->name, 0, mask, v, #name)
67
68#define VOP_REG_SET(vop, group, name, v) \
69 vop_reg_set(vop, &vop->data->group->name, 0, ~0, v, #name)
70
71#define VOP_HAS_REG(vop, group, name) \
72 (!!(vop->data->group->name.mask))
73
74#define VOP_INTR_SET_TYPE(vop, name, type, v) \
75 do { \
76 int i, reg = 0, mask = 0; \
77 for (i = 0; i < vop->data->intr->nintrs; i++) { \
78 if (vop->data->intr->intrs[i] & type) { \
79 reg |= (v) << i; \
80 mask |= 1 << i; \
81 } \
82 } \
83 VOP_INTR_SET_MASK(vop, name, mask, reg); \
84 } while (0)
85#define VOP_INTR_GET_TYPE(vop, name, type) \
86 vop_get_intr_type(vop, &vop->data->intr->name, type)
87
88#define VOP_WIN_GET(vop, win, name) \
89 vop_read_reg(vop, win->base, &win->phy->name)
90
91#define VOP_WIN_HAS_REG(win, name) \
92 (!!(win->phy->name.mask))
93
94#define VOP_WIN_GET_YRGBADDR(vop, win) \
95 vop_readl(vop, win->base + win->phy->yrgb_mst.offset)
96
97#define VOP_WIN_TO_INDEX(vop_win) \
98 ((vop_win) - (vop_win)->vop->win)
99
100#define VOP_AFBC_SET(vop, name, v) \
101 do { \
102 if ((vop)->data->afbc) \
103 vop_reg_set((vop), &(vop)->data->afbc->name, \
104 0, ~0, v, #name); \
105 } while (0)
106
107#define to_vop(x) container_of(x, struct vop, crtc)
108#define to_vop_win(x) container_of(x, struct vop_win, base)
109
110#define AFBC_FMT_RGB565 0x0
111#define AFBC_FMT_U8U8U8U8 0x5
112#define AFBC_FMT_U8U8U8 0x4
113
114#define AFBC_TILE_16x16 BIT(4)
115
116/*
117 * The coefficients of the following matrix are all fixed points.
118 * The format is S2.10 for the 3x3 part of the matrix, and S9.12 for the offsets.
119 * They are all represented in two's complement.
120 */
121static const uint32_t bt601_yuv2rgb[] = {
122 0x4A8, 0x0, 0x662,
123 0x4A8, 0x1E6F, 0x1CBF,
124 0x4A8, 0x812, 0x0,
125 0x321168, 0x0877CF, 0x2EB127
126};
127
128enum vop_pending {
129 VOP_PENDING_FB_UNREF,
130};
131
132struct vop_win {
133 struct drm_plane base;
134 const struct vop_win_data *data;
135 const struct vop_win_yuv2yuv_data *yuv2yuv_data;
136 struct vop *vop;
137};
138
139struct rockchip_rgb;
140struct vop {
141 struct drm_crtc crtc;
142 struct device *dev;
143 struct drm_device *drm_dev;
144 bool is_enabled;
145
146 struct completion dsp_hold_completion;
147 unsigned int win_enabled;
148
149 /* protected by dev->event_lock */
150 struct drm_pending_vblank_event *event;
151
152 struct drm_flip_work fb_unref_work;
153 unsigned long pending;
154
155 struct completion line_flag_completion;
156
157 const struct vop_data *data;
158
159 uint32_t *regsbak;
160 void __iomem *regs;
161 void __iomem *lut_regs;
162
163 /* physical map length of vop register */
164 uint32_t len;
165
166 /* one time only one process allowed to config the register */
167 spinlock_t reg_lock;
168 /* lock vop irq reg */
169 spinlock_t irq_lock;
170 /* protects crtc enable/disable */
171 struct mutex vop_lock;
172
173 unsigned int irq;
174
175 /* vop AHP clk */
176 struct clk *hclk;
177 /* vop dclk */
178 struct clk *dclk;
179 /* vop share memory frequency */
180 struct clk *aclk;
181
182 /* vop dclk reset */
183 struct reset_control *dclk_rst;
184
185 /* optional internal rgb encoder */
186 struct rockchip_rgb *rgb;
187
188 struct vop_win win[];
189};
190
191static inline uint32_t vop_readl(struct vop *vop, uint32_t offset)
192{
193 return readl(vop->regs + offset);
194}
195
196static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base,
197 const struct vop_reg *reg)
198{
199 return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask;
200}
201
202static void vop_reg_set(struct vop *vop, const struct vop_reg *reg,
203 uint32_t _offset, uint32_t _mask, uint32_t v,
204 const char *reg_name)
205{
206 int offset, mask, shift;
207
208 if (!reg || !reg->mask) {
209 DRM_DEV_DEBUG(vop->dev, "Warning: not support %s\n", reg_name);
210 return;
211 }
212
213 offset = reg->offset + _offset;
214 mask = reg->mask & _mask;
215 shift = reg->shift;
216
217 if (reg->write_mask) {
218 v = ((v << shift) & 0xffff) | (mask << (shift + 16));
219 } else {
220 uint32_t cached_val = vop->regsbak[offset >> 2];
221
222 v = (cached_val & ~(mask << shift)) | ((v & mask) << shift);
223 vop->regsbak[offset >> 2] = v;
224 }
225
226 if (reg->relaxed)
227 writel_relaxed(v, vop->regs + offset);
228 else
229 writel(v, vop->regs + offset);
230}
231
232static inline uint32_t vop_get_intr_type(struct vop *vop,
233 const struct vop_reg *reg, int type)
234{
235 uint32_t i, ret = 0;
236 uint32_t regs = vop_read_reg(vop, 0, reg);
237
238 for (i = 0; i < vop->data->intr->nintrs; i++) {
239 if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i))
240 ret |= vop->data->intr->intrs[i];
241 }
242
243 return ret;
244}
245
246static inline void vop_cfg_done(struct vop *vop)
247{
248 VOP_REG_SET(vop, common, cfg_done, 1);
249}
250
251static bool has_rb_swapped(uint32_t format)
252{
253 switch (format) {
254 case DRM_FORMAT_XBGR8888:
255 case DRM_FORMAT_ABGR8888:
256 case DRM_FORMAT_BGR888:
257 case DRM_FORMAT_BGR565:
258 return true;
259 default:
260 return false;
261 }
262}
263
264static bool has_uv_swapped(uint32_t format)
265{
266 switch (format) {
267 case DRM_FORMAT_NV21:
268 case DRM_FORMAT_NV61:
269 case DRM_FORMAT_NV42:
270 return true;
271 default:
272 return false;
273 }
274}
275
276static enum vop_data_format vop_convert_format(uint32_t format)
277{
278 switch (format) {
279 case DRM_FORMAT_XRGB8888:
280 case DRM_FORMAT_ARGB8888:
281 case DRM_FORMAT_XBGR8888:
282 case DRM_FORMAT_ABGR8888:
283 return VOP_FMT_ARGB8888;
284 case DRM_FORMAT_RGB888:
285 case DRM_FORMAT_BGR888:
286 return VOP_FMT_RGB888;
287 case DRM_FORMAT_RGB565:
288 case DRM_FORMAT_BGR565:
289 return VOP_FMT_RGB565;
290 case DRM_FORMAT_NV12:
291 case DRM_FORMAT_NV21:
292 return VOP_FMT_YUV420SP;
293 case DRM_FORMAT_NV16:
294 case DRM_FORMAT_NV61:
295 return VOP_FMT_YUV422SP;
296 case DRM_FORMAT_NV24:
297 case DRM_FORMAT_NV42:
298 return VOP_FMT_YUV444SP;
299 default:
300 DRM_ERROR("unsupported format[%08x]\n", format);
301 return -EINVAL;
302 }
303}
304
305static int vop_convert_afbc_format(uint32_t format)
306{
307 switch (format) {
308 case DRM_FORMAT_XRGB8888:
309 case DRM_FORMAT_ARGB8888:
310 case DRM_FORMAT_XBGR8888:
311 case DRM_FORMAT_ABGR8888:
312 return AFBC_FMT_U8U8U8U8;
313 case DRM_FORMAT_RGB888:
314 case DRM_FORMAT_BGR888:
315 return AFBC_FMT_U8U8U8;
316 case DRM_FORMAT_RGB565:
317 case DRM_FORMAT_BGR565:
318 return AFBC_FMT_RGB565;
319 /* either of the below should not be reachable */
320 default:
321 DRM_WARN_ONCE("unsupported AFBC format[%08x]\n", format);
322 return -EINVAL;
323 }
324
325 return -EINVAL;
326}
327
328static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src,
329 uint32_t dst, bool is_horizontal,
330 int vsu_mode, int *vskiplines)
331{
332 uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT;
333
334 if (vskiplines)
335 *vskiplines = 0;
336
337 if (is_horizontal) {
338 if (mode == SCALE_UP)
339 val = GET_SCL_FT_BIC(src, dst);
340 else if (mode == SCALE_DOWN)
341 val = GET_SCL_FT_BILI_DN(src, dst);
342 } else {
343 if (mode == SCALE_UP) {
344 if (vsu_mode == SCALE_UP_BIL)
345 val = GET_SCL_FT_BILI_UP(src, dst);
346 else
347 val = GET_SCL_FT_BIC(src, dst);
348 } else if (mode == SCALE_DOWN) {
349 if (vskiplines) {
350 *vskiplines = scl_get_vskiplines(src, dst);
351 val = scl_get_bili_dn_vskip(src, dst,
352 *vskiplines);
353 } else {
354 val = GET_SCL_FT_BILI_DN(src, dst);
355 }
356 }
357 }
358
359 return val;
360}
361
362static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win,
363 uint32_t src_w, uint32_t src_h, uint32_t dst_w,
364 uint32_t dst_h, const struct drm_format_info *info)
365{
366 uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode;
367 uint16_t cbcr_hor_scl_mode = SCALE_NONE;
368 uint16_t cbcr_ver_scl_mode = SCALE_NONE;
369 bool is_yuv = false;
370 uint16_t cbcr_src_w = src_w / info->hsub;
371 uint16_t cbcr_src_h = src_h / info->vsub;
372 uint16_t vsu_mode;
373 uint16_t lb_mode;
374 uint32_t val;
375 int vskiplines;
376
377 if (info->is_yuv)
378 is_yuv = true;
379
380 if (dst_w > 3840) {
381 DRM_DEV_ERROR(vop->dev, "Maximum dst width (3840) exceeded\n");
382 return;
383 }
384
385 if (!win->phy->scl->ext) {
386 VOP_SCL_SET(vop, win, scale_yrgb_x,
387 scl_cal_scale2(src_w, dst_w));
388 VOP_SCL_SET(vop, win, scale_yrgb_y,
389 scl_cal_scale2(src_h, dst_h));
390 if (is_yuv) {
391 VOP_SCL_SET(vop, win, scale_cbcr_x,
392 scl_cal_scale2(cbcr_src_w, dst_w));
393 VOP_SCL_SET(vop, win, scale_cbcr_y,
394 scl_cal_scale2(cbcr_src_h, dst_h));
395 }
396 return;
397 }
398
399 yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w);
400 yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h);
401
402 if (is_yuv) {
403 cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w);
404 cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h);
405 if (cbcr_hor_scl_mode == SCALE_DOWN)
406 lb_mode = scl_vop_cal_lb_mode(dst_w, true);
407 else
408 lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true);
409 } else {
410 if (yrgb_hor_scl_mode == SCALE_DOWN)
411 lb_mode = scl_vop_cal_lb_mode(dst_w, false);
412 else
413 lb_mode = scl_vop_cal_lb_mode(src_w, false);
414 }
415
416 VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode);
417 if (lb_mode == LB_RGB_3840X2) {
418 if (yrgb_ver_scl_mode != SCALE_NONE) {
419 DRM_DEV_ERROR(vop->dev, "not allow yrgb ver scale\n");
420 return;
421 }
422 if (cbcr_ver_scl_mode != SCALE_NONE) {
423 DRM_DEV_ERROR(vop->dev, "not allow cbcr ver scale\n");
424 return;
425 }
426 vsu_mode = SCALE_UP_BIL;
427 } else if (lb_mode == LB_RGB_2560X4) {
428 vsu_mode = SCALE_UP_BIL;
429 } else {
430 vsu_mode = SCALE_UP_BIC;
431 }
432
433 val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w,
434 true, 0, NULL);
435 VOP_SCL_SET(vop, win, scale_yrgb_x, val);
436 val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h,
437 false, vsu_mode, &vskiplines);
438 VOP_SCL_SET(vop, win, scale_yrgb_y, val);
439
440 VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4);
441 VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2);
442
443 VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode);
444 VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode);
445 VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL);
446 VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL);
447 VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode);
448 if (is_yuv) {
449 val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w,
450 dst_w, true, 0, NULL);
451 VOP_SCL_SET(vop, win, scale_cbcr_x, val);
452 val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h,
453 dst_h, false, vsu_mode, &vskiplines);
454 VOP_SCL_SET(vop, win, scale_cbcr_y, val);
455
456 VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4);
457 VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2);
458 VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode);
459 VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode);
460 VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL);
461 VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL);
462 VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode);
463 }
464}
465
466static void vop_dsp_hold_valid_irq_enable(struct vop *vop)
467{
468 unsigned long flags;
469
470 if (WARN_ON(!vop->is_enabled))
471 return;
472
473 spin_lock_irqsave(&vop->irq_lock, flags);
474
475 VOP_INTR_SET_TYPE(vop, clear, DSP_HOLD_VALID_INTR, 1);
476 VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1);
477
478 spin_unlock_irqrestore(&vop->irq_lock, flags);
479}
480
481static void vop_dsp_hold_valid_irq_disable(struct vop *vop)
482{
483 unsigned long flags;
484
485 if (WARN_ON(!vop->is_enabled))
486 return;
487
488 spin_lock_irqsave(&vop->irq_lock, flags);
489
490 VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0);
491
492 spin_unlock_irqrestore(&vop->irq_lock, flags);
493}
494
495/*
496 * (1) each frame starts at the start of the Vsync pulse which is signaled by
497 * the "FRAME_SYNC" interrupt.
498 * (2) the active data region of each frame ends at dsp_vact_end
499 * (3) we should program this same number (dsp_vact_end) into dsp_line_frag_num,
500 * to get "LINE_FLAG" interrupt at the end of the active on screen data.
501 *
502 * VOP_INTR_CTRL0.dsp_line_frag_num = VOP_DSP_VACT_ST_END.dsp_vact_end
503 * Interrupts
504 * LINE_FLAG -------------------------------+
505 * FRAME_SYNC ----+ |
506 * | |
507 * v v
508 * | Vsync | Vbp | Vactive | Vfp |
509 * ^ ^ ^ ^
510 * | | | |
511 * | | | |
512 * dsp_vs_end ------------+ | | | VOP_DSP_VTOTAL_VS_END
513 * dsp_vact_start --------------+ | | VOP_DSP_VACT_ST_END
514 * dsp_vact_end ----------------------------+ | VOP_DSP_VACT_ST_END
515 * dsp_total -------------------------------------+ VOP_DSP_VTOTAL_VS_END
516 */
517static bool vop_line_flag_irq_is_enabled(struct vop *vop)
518{
519 uint32_t line_flag_irq;
520 unsigned long flags;
521
522 spin_lock_irqsave(&vop->irq_lock, flags);
523
524 line_flag_irq = VOP_INTR_GET_TYPE(vop, enable, LINE_FLAG_INTR);
525
526 spin_unlock_irqrestore(&vop->irq_lock, flags);
527
528 return !!line_flag_irq;
529}
530
531static void vop_line_flag_irq_enable(struct vop *vop)
532{
533 unsigned long flags;
534
535 if (WARN_ON(!vop->is_enabled))
536 return;
537
538 spin_lock_irqsave(&vop->irq_lock, flags);
539
540 VOP_INTR_SET_TYPE(vop, clear, LINE_FLAG_INTR, 1);
541 VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 1);
542
543 spin_unlock_irqrestore(&vop->irq_lock, flags);
544}
545
546static void vop_line_flag_irq_disable(struct vop *vop)
547{
548 unsigned long flags;
549
550 if (WARN_ON(!vop->is_enabled))
551 return;
552
553 spin_lock_irqsave(&vop->irq_lock, flags);
554
555 VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 0);
556
557 spin_unlock_irqrestore(&vop->irq_lock, flags);
558}
559
560static int vop_core_clks_enable(struct vop *vop)
561{
562 int ret;
563
564 ret = clk_enable(vop->hclk);
565 if (ret < 0)
566 return ret;
567
568 ret = clk_enable(vop->aclk);
569 if (ret < 0)
570 goto err_disable_hclk;
571
572 return 0;
573
574err_disable_hclk:
575 clk_disable(vop->hclk);
576 return ret;
577}
578
579static void vop_core_clks_disable(struct vop *vop)
580{
581 clk_disable(vop->aclk);
582 clk_disable(vop->hclk);
583}
584
585static void vop_win_disable(struct vop *vop, const struct vop_win *vop_win)
586{
587 const struct vop_win_data *win = vop_win->data;
588
589 if (win->phy->scl && win->phy->scl->ext) {
590 VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, SCALE_NONE);
591 VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, SCALE_NONE);
592 VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, SCALE_NONE);
593 VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, SCALE_NONE);
594 }
595
596 VOP_WIN_SET(vop, win, enable, 0);
597 vop->win_enabled &= ~BIT(VOP_WIN_TO_INDEX(vop_win));
598}
599
600static int vop_enable(struct drm_crtc *crtc, struct drm_crtc_state *old_state)
601{
602 struct vop *vop = to_vop(crtc);
603 int ret, i;
604
605 ret = pm_runtime_resume_and_get(vop->dev);
606 if (ret < 0) {
607 DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
608 return ret;
609 }
610
611 ret = vop_core_clks_enable(vop);
612 if (WARN_ON(ret < 0))
613 goto err_put_pm_runtime;
614
615 ret = clk_enable(vop->dclk);
616 if (WARN_ON(ret < 0))
617 goto err_disable_core;
618
619 /*
620 * Slave iommu shares power, irq and clock with vop. It was associated
621 * automatically with this master device via common driver code.
622 * Now that we have enabled the clock we attach it to the shared drm
623 * mapping.
624 */
625 ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev);
626 if (ret) {
627 DRM_DEV_ERROR(vop->dev,
628 "failed to attach dma mapping, %d\n", ret);
629 goto err_disable_dclk;
630 }
631
632 spin_lock(&vop->reg_lock);
633 for (i = 0; i < vop->len; i += 4)
634 writel_relaxed(vop->regsbak[i / 4], vop->regs + i);
635
636 /*
637 * We need to make sure that all windows are disabled before we
638 * enable the crtc. Otherwise we might try to scan from a destroyed
639 * buffer later.
640 *
641 * In the case of enable-after-PSR, we don't need to worry about this
642 * case since the buffer is guaranteed to be valid and disabling the
643 * window will result in screen glitches on PSR exit.
644 */
645 if (!old_state || !old_state->self_refresh_active) {
646 for (i = 0; i < vop->data->win_size; i++) {
647 struct vop_win *vop_win = &vop->win[i];
648
649 vop_win_disable(vop, vop_win);
650 }
651 }
652
653 if (vop->data->afbc) {
654 struct rockchip_crtc_state *s;
655 /*
656 * Disable AFBC and forget there was a vop window with AFBC
657 */
658 VOP_AFBC_SET(vop, enable, 0);
659 s = to_rockchip_crtc_state(crtc->state);
660 s->enable_afbc = false;
661 }
662
663 vop_cfg_done(vop);
664
665 spin_unlock(&vop->reg_lock);
666
667 /*
668 * At here, vop clock & iommu is enable, R/W vop regs would be safe.
669 */
670 vop->is_enabled = true;
671
672 spin_lock(&vop->reg_lock);
673
674 VOP_REG_SET(vop, common, standby, 1);
675
676 spin_unlock(&vop->reg_lock);
677
678 drm_crtc_vblank_on(crtc);
679
680 return 0;
681
682err_disable_dclk:
683 clk_disable(vop->dclk);
684err_disable_core:
685 vop_core_clks_disable(vop);
686err_put_pm_runtime:
687 pm_runtime_put_sync(vop->dev);
688 return ret;
689}
690
691static void rockchip_drm_set_win_enabled(struct drm_crtc *crtc, bool enabled)
692{
693 struct vop *vop = to_vop(crtc);
694 int i;
695
696 spin_lock(&vop->reg_lock);
697
698 for (i = 0; i < vop->data->win_size; i++) {
699 struct vop_win *vop_win = &vop->win[i];
700 const struct vop_win_data *win = vop_win->data;
701
702 VOP_WIN_SET(vop, win, enable,
703 enabled && (vop->win_enabled & BIT(i)));
704 }
705 vop_cfg_done(vop);
706
707 spin_unlock(&vop->reg_lock);
708}
709
710static void vop_crtc_atomic_disable(struct drm_crtc *crtc,
711 struct drm_atomic_state *state)
712{
713 struct vop *vop = to_vop(crtc);
714
715 WARN_ON(vop->event);
716
717 if (crtc->state->self_refresh_active)
718 rockchip_drm_set_win_enabled(crtc, false);
719
720 mutex_lock(&vop->vop_lock);
721
722 drm_crtc_vblank_off(crtc);
723
724 if (crtc->state->self_refresh_active)
725 goto out;
726
727 /*
728 * Vop standby will take effect at end of current frame,
729 * if dsp hold valid irq happen, it means standby complete.
730 *
731 * we must wait standby complete when we want to disable aclk,
732 * if not, memory bus maybe dead.
733 */
734 reinit_completion(&vop->dsp_hold_completion);
735 vop_dsp_hold_valid_irq_enable(vop);
736
737 spin_lock(&vop->reg_lock);
738
739 VOP_REG_SET(vop, common, standby, 1);
740
741 spin_unlock(&vop->reg_lock);
742
743 if (!wait_for_completion_timeout(&vop->dsp_hold_completion,
744 msecs_to_jiffies(200)))
745 WARN(1, "%s: timed out waiting for DSP hold", crtc->name);
746
747 vop_dsp_hold_valid_irq_disable(vop);
748
749 vop->is_enabled = false;
750
751 /*
752 * vop standby complete, so iommu detach is safe.
753 */
754 rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev);
755
756 clk_disable(vop->dclk);
757 vop_core_clks_disable(vop);
758 pm_runtime_put(vop->dev);
759
760out:
761 mutex_unlock(&vop->vop_lock);
762
763 if (crtc->state->event && !crtc->state->active) {
764 spin_lock_irq(&crtc->dev->event_lock);
765 drm_crtc_send_vblank_event(crtc, crtc->state->event);
766 spin_unlock_irq(&crtc->dev->event_lock);
767
768 crtc->state->event = NULL;
769 }
770}
771
772static void vop_plane_destroy(struct drm_plane *plane)
773{
774 drm_plane_cleanup(plane);
775}
776
777static inline bool rockchip_afbc(u64 modifier)
778{
779 return modifier == ROCKCHIP_AFBC_MOD;
780}
781
782static bool rockchip_mod_supported(struct drm_plane *plane,
783 u32 format, u64 modifier)
784{
785 if (modifier == DRM_FORMAT_MOD_LINEAR)
786 return true;
787
788 if (!rockchip_afbc(modifier)) {
789 DRM_DEBUG_KMS("Unsupported format modifier 0x%llx\n", modifier);
790
791 return false;
792 }
793
794 return vop_convert_afbc_format(format) >= 0;
795}
796
797static int vop_plane_atomic_check(struct drm_plane *plane,
798 struct drm_atomic_state *state)
799{
800 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
801 plane);
802 struct drm_crtc *crtc = new_plane_state->crtc;
803 struct drm_crtc_state *crtc_state;
804 struct drm_framebuffer *fb = new_plane_state->fb;
805 struct vop_win *vop_win = to_vop_win(plane);
806 const struct vop_win_data *win = vop_win->data;
807 int ret;
808 int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
809 DRM_PLANE_NO_SCALING;
810 int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
811 DRM_PLANE_NO_SCALING;
812
813 if (!crtc || WARN_ON(!fb))
814 return 0;
815
816 crtc_state = drm_atomic_get_existing_crtc_state(state,
817 crtc);
818 if (WARN_ON(!crtc_state))
819 return -EINVAL;
820
821 ret = drm_atomic_helper_check_plane_state(new_plane_state, crtc_state,
822 min_scale, max_scale,
823 true, true);
824 if (ret)
825 return ret;
826
827 if (!new_plane_state->visible)
828 return 0;
829
830 ret = vop_convert_format(fb->format->format);
831 if (ret < 0)
832 return ret;
833
834 /*
835 * Src.x1 can be odd when do clip, but yuv plane start point
836 * need align with 2 pixel.
837 */
838 if (fb->format->is_yuv && ((new_plane_state->src.x1 >> 16) % 2)) {
839 DRM_ERROR("Invalid Source: Yuv format not support odd xpos\n");
840 return -EINVAL;
841 }
842
843 if (fb->format->is_yuv && new_plane_state->rotation & DRM_MODE_REFLECT_Y) {
844 DRM_ERROR("Invalid Source: Yuv format does not support this rotation\n");
845 return -EINVAL;
846 }
847
848 if (rockchip_afbc(fb->modifier)) {
849 struct vop *vop = to_vop(crtc);
850
851 if (!vop->data->afbc) {
852 DRM_ERROR("vop does not support AFBC\n");
853 return -EINVAL;
854 }
855
856 ret = vop_convert_afbc_format(fb->format->format);
857 if (ret < 0)
858 return ret;
859
860 if (new_plane_state->src.x1 || new_plane_state->src.y1) {
861 DRM_ERROR("AFBC does not support offset display, xpos=%d, ypos=%d, offset=%d\n",
862 new_plane_state->src.x1,
863 new_plane_state->src.y1, fb->offsets[0]);
864 return -EINVAL;
865 }
866
867 if (new_plane_state->rotation && new_plane_state->rotation != DRM_MODE_ROTATE_0) {
868 DRM_ERROR("No rotation support in AFBC, rotation=%d\n",
869 new_plane_state->rotation);
870 return -EINVAL;
871 }
872 }
873
874 return 0;
875}
876
877static void vop_plane_atomic_disable(struct drm_plane *plane,
878 struct drm_atomic_state *state)
879{
880 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
881 plane);
882 struct vop_win *vop_win = to_vop_win(plane);
883 struct vop *vop = to_vop(old_state->crtc);
884
885 if (!old_state->crtc)
886 return;
887
888 spin_lock(&vop->reg_lock);
889
890 vop_win_disable(vop, vop_win);
891
892 spin_unlock(&vop->reg_lock);
893}
894
895static void vop_plane_atomic_update(struct drm_plane *plane,
896 struct drm_atomic_state *state)
897{
898 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
899 plane);
900 struct drm_crtc *crtc = new_state->crtc;
901 struct vop_win *vop_win = to_vop_win(plane);
902 const struct vop_win_data *win = vop_win->data;
903 const struct vop_win_yuv2yuv_data *win_yuv2yuv = vop_win->yuv2yuv_data;
904 struct vop *vop = to_vop(new_state->crtc);
905 struct drm_framebuffer *fb = new_state->fb;
906 unsigned int actual_w, actual_h;
907 unsigned int dsp_stx, dsp_sty;
908 uint32_t act_info, dsp_info, dsp_st;
909 struct drm_rect *src = &new_state->src;
910 struct drm_rect *dest = &new_state->dst;
911 struct drm_gem_object *obj, *uv_obj;
912 struct rockchip_gem_object *rk_obj, *rk_uv_obj;
913 unsigned long offset;
914 dma_addr_t dma_addr;
915 uint32_t val;
916 bool rb_swap, uv_swap;
917 int win_index = VOP_WIN_TO_INDEX(vop_win);
918 int format;
919 int is_yuv = fb->format->is_yuv;
920 int i;
921
922 /*
923 * can't update plane when vop is disabled.
924 */
925 if (WARN_ON(!crtc))
926 return;
927
928 if (WARN_ON(!vop->is_enabled))
929 return;
930
931 if (!new_state->visible) {
932 vop_plane_atomic_disable(plane, state);
933 return;
934 }
935
936 obj = fb->obj[0];
937 rk_obj = to_rockchip_obj(obj);
938
939 actual_w = drm_rect_width(src) >> 16;
940 actual_h = drm_rect_height(src) >> 16;
941 act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff);
942
943 dsp_info = (drm_rect_height(dest) - 1) << 16;
944 dsp_info |= (drm_rect_width(dest) - 1) & 0xffff;
945
946 dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start;
947 dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start;
948 dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff);
949
950 offset = (src->x1 >> 16) * fb->format->cpp[0];
951 offset += (src->y1 >> 16) * fb->pitches[0];
952 dma_addr = rk_obj->dma_addr + offset + fb->offsets[0];
953
954 /*
955 * For y-mirroring we need to move address
956 * to the beginning of the last line.
957 */
958 if (new_state->rotation & DRM_MODE_REFLECT_Y)
959 dma_addr += (actual_h - 1) * fb->pitches[0];
960
961 format = vop_convert_format(fb->format->format);
962
963 spin_lock(&vop->reg_lock);
964
965 if (rockchip_afbc(fb->modifier)) {
966 int afbc_format = vop_convert_afbc_format(fb->format->format);
967
968 VOP_AFBC_SET(vop, format, afbc_format | AFBC_TILE_16x16);
969 VOP_AFBC_SET(vop, hreg_block_split, 0);
970 VOP_AFBC_SET(vop, win_sel, VOP_WIN_TO_INDEX(vop_win));
971 VOP_AFBC_SET(vop, hdr_ptr, dma_addr);
972 VOP_AFBC_SET(vop, pic_size, act_info);
973 }
974
975 VOP_WIN_SET(vop, win, format, format);
976 VOP_WIN_SET(vop, win, yrgb_vir, DIV_ROUND_UP(fb->pitches[0], 4));
977 VOP_WIN_SET(vop, win, yrgb_mst, dma_addr);
978 VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, y2r_en, is_yuv);
979 VOP_WIN_SET(vop, win, y_mir_en,
980 (new_state->rotation & DRM_MODE_REFLECT_Y) ? 1 : 0);
981 VOP_WIN_SET(vop, win, x_mir_en,
982 (new_state->rotation & DRM_MODE_REFLECT_X) ? 1 : 0);
983
984 if (is_yuv) {
985 int hsub = fb->format->hsub;
986 int vsub = fb->format->vsub;
987 int bpp = fb->format->cpp[1];
988
989 uv_obj = fb->obj[1];
990 rk_uv_obj = to_rockchip_obj(uv_obj);
991
992 offset = (src->x1 >> 16) * bpp / hsub;
993 offset += (src->y1 >> 16) * fb->pitches[1] / vsub;
994
995 dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1];
996 VOP_WIN_SET(vop, win, uv_vir, DIV_ROUND_UP(fb->pitches[1], 4));
997 VOP_WIN_SET(vop, win, uv_mst, dma_addr);
998
999 for (i = 0; i < NUM_YUV2YUV_COEFFICIENTS; i++) {
1000 VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop,
1001 win_yuv2yuv,
1002 y2r_coefficients[i],
1003 bt601_yuv2rgb[i]);
1004 }
1005
1006 uv_swap = has_uv_swapped(fb->format->format);
1007 VOP_WIN_SET(vop, win, uv_swap, uv_swap);
1008 }
1009
1010 if (win->phy->scl)
1011 scl_vop_cal_scl_fac(vop, win, actual_w, actual_h,
1012 drm_rect_width(dest), drm_rect_height(dest),
1013 fb->format);
1014
1015 VOP_WIN_SET(vop, win, act_info, act_info);
1016 VOP_WIN_SET(vop, win, dsp_info, dsp_info);
1017 VOP_WIN_SET(vop, win, dsp_st, dsp_st);
1018
1019 rb_swap = has_rb_swapped(fb->format->format);
1020 VOP_WIN_SET(vop, win, rb_swap, rb_swap);
1021
1022 /*
1023 * Blending win0 with the background color doesn't seem to work
1024 * correctly. We only get the background color, no matter the contents
1025 * of the win0 framebuffer. However, blending pre-multiplied color
1026 * with the default opaque black default background color is a no-op,
1027 * so we can just disable blending to get the correct result.
1028 */
1029 if (fb->format->has_alpha && win_index > 0) {
1030 VOP_WIN_SET(vop, win, dst_alpha_ctl,
1031 DST_FACTOR_M0(ALPHA_SRC_INVERSE));
1032 val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) |
1033 SRC_ALPHA_M0(ALPHA_STRAIGHT) |
1034 SRC_BLEND_M0(ALPHA_PER_PIX) |
1035 SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) |
1036 SRC_FACTOR_M0(ALPHA_ONE);
1037 VOP_WIN_SET(vop, win, src_alpha_ctl, val);
1038
1039 VOP_WIN_SET(vop, win, alpha_pre_mul, ALPHA_SRC_PRE_MUL);
1040 VOP_WIN_SET(vop, win, alpha_mode, ALPHA_PER_PIX);
1041 VOP_WIN_SET(vop, win, alpha_en, 1);
1042 } else {
1043 VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0));
1044 VOP_WIN_SET(vop, win, alpha_en, 0);
1045 }
1046
1047 VOP_WIN_SET(vop, win, enable, 1);
1048 vop->win_enabled |= BIT(win_index);
1049 spin_unlock(&vop->reg_lock);
1050}
1051
1052static int vop_plane_atomic_async_check(struct drm_plane *plane,
1053 struct drm_atomic_state *state)
1054{
1055 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1056 plane);
1057 struct vop_win *vop_win = to_vop_win(plane);
1058 const struct vop_win_data *win = vop_win->data;
1059 int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
1060 DRM_PLANE_NO_SCALING;
1061 int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
1062 DRM_PLANE_NO_SCALING;
1063 struct drm_crtc_state *crtc_state;
1064
1065 if (plane != new_plane_state->crtc->cursor)
1066 return -EINVAL;
1067
1068 if (!plane->state)
1069 return -EINVAL;
1070
1071 if (!plane->state->fb)
1072 return -EINVAL;
1073
1074 if (state)
1075 crtc_state = drm_atomic_get_existing_crtc_state(state,
1076 new_plane_state->crtc);
1077 else /* Special case for asynchronous cursor updates. */
1078 crtc_state = plane->crtc->state;
1079
1080 return drm_atomic_helper_check_plane_state(plane->state, crtc_state,
1081 min_scale, max_scale,
1082 true, true);
1083}
1084
1085static void vop_plane_atomic_async_update(struct drm_plane *plane,
1086 struct drm_atomic_state *state)
1087{
1088 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
1089 plane);
1090 struct vop *vop = to_vop(plane->state->crtc);
1091 struct drm_framebuffer *old_fb = plane->state->fb;
1092
1093 plane->state->crtc_x = new_state->crtc_x;
1094 plane->state->crtc_y = new_state->crtc_y;
1095 plane->state->crtc_h = new_state->crtc_h;
1096 plane->state->crtc_w = new_state->crtc_w;
1097 plane->state->src_x = new_state->src_x;
1098 plane->state->src_y = new_state->src_y;
1099 plane->state->src_h = new_state->src_h;
1100 plane->state->src_w = new_state->src_w;
1101 swap(plane->state->fb, new_state->fb);
1102
1103 if (vop->is_enabled) {
1104 vop_plane_atomic_update(plane, state);
1105 spin_lock(&vop->reg_lock);
1106 vop_cfg_done(vop);
1107 spin_unlock(&vop->reg_lock);
1108
1109 /*
1110 * A scanout can still be occurring, so we can't drop the
1111 * reference to the old framebuffer. To solve this we get a
1112 * reference to old_fb and set a worker to release it later.
1113 * FIXME: if we perform 500 async_update calls before the
1114 * vblank, then we can have 500 different framebuffers waiting
1115 * to be released.
1116 */
1117 if (old_fb && plane->state->fb != old_fb) {
1118 drm_framebuffer_get(old_fb);
1119 WARN_ON(drm_crtc_vblank_get(plane->state->crtc) != 0);
1120 drm_flip_work_queue(&vop->fb_unref_work, old_fb);
1121 set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1122 }
1123 }
1124}
1125
1126static const struct drm_plane_helper_funcs plane_helper_funcs = {
1127 .atomic_check = vop_plane_atomic_check,
1128 .atomic_update = vop_plane_atomic_update,
1129 .atomic_disable = vop_plane_atomic_disable,
1130 .atomic_async_check = vop_plane_atomic_async_check,
1131 .atomic_async_update = vop_plane_atomic_async_update,
1132};
1133
1134static const struct drm_plane_funcs vop_plane_funcs = {
1135 .update_plane = drm_atomic_helper_update_plane,
1136 .disable_plane = drm_atomic_helper_disable_plane,
1137 .destroy = vop_plane_destroy,
1138 .reset = drm_atomic_helper_plane_reset,
1139 .atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
1140 .atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
1141 .format_mod_supported = rockchip_mod_supported,
1142};
1143
1144static int vop_crtc_enable_vblank(struct drm_crtc *crtc)
1145{
1146 struct vop *vop = to_vop(crtc);
1147 unsigned long flags;
1148
1149 if (WARN_ON(!vop->is_enabled))
1150 return -EPERM;
1151
1152 spin_lock_irqsave(&vop->irq_lock, flags);
1153
1154 VOP_INTR_SET_TYPE(vop, clear, FS_INTR, 1);
1155 VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1);
1156
1157 spin_unlock_irqrestore(&vop->irq_lock, flags);
1158
1159 return 0;
1160}
1161
1162static void vop_crtc_disable_vblank(struct drm_crtc *crtc)
1163{
1164 struct vop *vop = to_vop(crtc);
1165 unsigned long flags;
1166
1167 if (WARN_ON(!vop->is_enabled))
1168 return;
1169
1170 spin_lock_irqsave(&vop->irq_lock, flags);
1171
1172 VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0);
1173
1174 spin_unlock_irqrestore(&vop->irq_lock, flags);
1175}
1176
1177static bool vop_crtc_mode_fixup(struct drm_crtc *crtc,
1178 const struct drm_display_mode *mode,
1179 struct drm_display_mode *adjusted_mode)
1180{
1181 struct vop *vop = to_vop(crtc);
1182 unsigned long rate;
1183
1184 /*
1185 * Clock craziness.
1186 *
1187 * Key points:
1188 *
1189 * - DRM works in kHz.
1190 * - Clock framework works in Hz.
1191 * - Rockchip's clock driver picks the clock rate that is the
1192 * same _OR LOWER_ than the one requested.
1193 *
1194 * Action plan:
1195 *
1196 * 1. Try to set the exact rate first, and confirm the clock framework
1197 * can provide it.
1198 *
1199 * 2. If the clock framework cannot provide the exact rate, we should
1200 * add 999 Hz to the requested rate. That way if the clock we need
1201 * is 60000001 Hz (~60 MHz) and DRM tells us to make 60000 kHz then
1202 * the clock framework will actually give us the right clock.
1203 *
1204 * 3. Get the clock framework to round the rate for us to tell us
1205 * what it will actually make.
1206 *
1207 * 4. Store the rounded up rate so that we don't need to worry about
1208 * this in the actual clk_set_rate().
1209 */
1210 rate = clk_round_rate(vop->dclk, adjusted_mode->clock * 1000);
1211 if (rate / 1000 != adjusted_mode->clock)
1212 rate = clk_round_rate(vop->dclk,
1213 adjusted_mode->clock * 1000 + 999);
1214 adjusted_mode->clock = DIV_ROUND_UP(rate, 1000);
1215
1216 return true;
1217}
1218
1219static bool vop_dsp_lut_is_enabled(struct vop *vop)
1220{
1221 return vop_read_reg(vop, 0, &vop->data->common->dsp_lut_en);
1222}
1223
1224static u32 vop_lut_buffer_index(struct vop *vop)
1225{
1226 return vop_read_reg(vop, 0, &vop->data->common->lut_buffer_index);
1227}
1228
1229static void vop_crtc_write_gamma_lut(struct vop *vop, struct drm_crtc *crtc)
1230{
1231 struct drm_color_lut *lut = crtc->state->gamma_lut->data;
1232 unsigned int i, bpc = ilog2(vop->data->lut_size);
1233
1234 for (i = 0; i < crtc->gamma_size; i++) {
1235 u32 word;
1236
1237 word = (drm_color_lut_extract(lut[i].red, bpc) << (2 * bpc)) |
1238 (drm_color_lut_extract(lut[i].green, bpc) << bpc) |
1239 drm_color_lut_extract(lut[i].blue, bpc);
1240 writel(word, vop->lut_regs + i * 4);
1241 }
1242}
1243
1244static void vop_crtc_gamma_set(struct vop *vop, struct drm_crtc *crtc,
1245 struct drm_crtc_state *old_state)
1246{
1247 struct drm_crtc_state *state = crtc->state;
1248 unsigned int idle;
1249 u32 lut_idx, old_idx;
1250 int ret;
1251
1252 if (!vop->lut_regs)
1253 return;
1254
1255 if (!state->gamma_lut || !VOP_HAS_REG(vop, common, update_gamma_lut)) {
1256 /*
1257 * To disable gamma (gamma_lut is null) or to write
1258 * an update to the LUT, clear dsp_lut_en.
1259 */
1260 spin_lock(&vop->reg_lock);
1261 VOP_REG_SET(vop, common, dsp_lut_en, 0);
1262 vop_cfg_done(vop);
1263 spin_unlock(&vop->reg_lock);
1264
1265 /*
1266 * In order to write the LUT to the internal memory,
1267 * we need to first make sure the dsp_lut_en bit is cleared.
1268 */
1269 ret = readx_poll_timeout(vop_dsp_lut_is_enabled, vop,
1270 idle, !idle, 5, 30 * 1000);
1271 if (ret) {
1272 DRM_DEV_ERROR(vop->dev, "display LUT RAM enable timeout!\n");
1273 return;
1274 }
1275
1276 if (!state->gamma_lut)
1277 return;
1278 } else {
1279 /*
1280 * On RK3399 the gamma LUT can updated without clearing dsp_lut_en,
1281 * by setting update_gamma_lut then waiting for lut_buffer_index change
1282 */
1283 old_idx = vop_lut_buffer_index(vop);
1284 }
1285
1286 spin_lock(&vop->reg_lock);
1287 vop_crtc_write_gamma_lut(vop, crtc);
1288 VOP_REG_SET(vop, common, dsp_lut_en, 1);
1289 VOP_REG_SET(vop, common, update_gamma_lut, 1);
1290 vop_cfg_done(vop);
1291 spin_unlock(&vop->reg_lock);
1292
1293 if (VOP_HAS_REG(vop, common, update_gamma_lut)) {
1294 ret = readx_poll_timeout(vop_lut_buffer_index, vop,
1295 lut_idx, lut_idx != old_idx, 5, 30 * 1000);
1296 if (ret) {
1297 DRM_DEV_ERROR(vop->dev, "gamma LUT update timeout!\n");
1298 return;
1299 }
1300
1301 /*
1302 * update_gamma_lut is auto cleared by HW, but write 0 to clear the bit
1303 * in our backup of the regs.
1304 */
1305 spin_lock(&vop->reg_lock);
1306 VOP_REG_SET(vop, common, update_gamma_lut, 0);
1307 spin_unlock(&vop->reg_lock);
1308 }
1309}
1310
1311static void vop_crtc_atomic_begin(struct drm_crtc *crtc,
1312 struct drm_atomic_state *state)
1313{
1314 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1315 crtc);
1316 struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1317 crtc);
1318 struct vop *vop = to_vop(crtc);
1319
1320 /*
1321 * Only update GAMMA if the 'active' flag is not changed,
1322 * otherwise it's updated by .atomic_enable.
1323 */
1324 if (crtc_state->color_mgmt_changed &&
1325 !crtc_state->active_changed)
1326 vop_crtc_gamma_set(vop, crtc, old_crtc_state);
1327}
1328
1329static void vop_crtc_atomic_enable(struct drm_crtc *crtc,
1330 struct drm_atomic_state *state)
1331{
1332 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
1333 crtc);
1334 struct vop *vop = to_vop(crtc);
1335 const struct vop_data *vop_data = vop->data;
1336 struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state);
1337 struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode;
1338 u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start;
1339 u16 hdisplay = adjusted_mode->hdisplay;
1340 u16 htotal = adjusted_mode->htotal;
1341 u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start;
1342 u16 hact_end = hact_st + hdisplay;
1343 u16 vdisplay = adjusted_mode->vdisplay;
1344 u16 vtotal = adjusted_mode->vtotal;
1345 u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start;
1346 u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start;
1347 u16 vact_end = vact_st + vdisplay;
1348 uint32_t pin_pol, val;
1349 int dither_bpc = s->output_bpc ? s->output_bpc : 10;
1350 int ret;
1351
1352 if (old_state && old_state->self_refresh_active) {
1353 drm_crtc_vblank_on(crtc);
1354 rockchip_drm_set_win_enabled(crtc, true);
1355 return;
1356 }
1357
1358 mutex_lock(&vop->vop_lock);
1359
1360 WARN_ON(vop->event);
1361
1362 ret = vop_enable(crtc, old_state);
1363 if (ret) {
1364 mutex_unlock(&vop->vop_lock);
1365 DRM_DEV_ERROR(vop->dev, "Failed to enable vop (%d)\n", ret);
1366 return;
1367 }
1368 pin_pol = (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) ?
1369 BIT(HSYNC_POSITIVE) : 0;
1370 pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) ?
1371 BIT(VSYNC_POSITIVE) : 0;
1372 VOP_REG_SET(vop, output, pin_pol, pin_pol);
1373 VOP_REG_SET(vop, output, mipi_dual_channel_en, 0);
1374
1375 switch (s->output_type) {
1376 case DRM_MODE_CONNECTOR_LVDS:
1377 VOP_REG_SET(vop, output, rgb_dclk_pol, 1);
1378 VOP_REG_SET(vop, output, rgb_pin_pol, pin_pol);
1379 VOP_REG_SET(vop, output, rgb_en, 1);
1380 break;
1381 case DRM_MODE_CONNECTOR_eDP:
1382 VOP_REG_SET(vop, output, edp_dclk_pol, 1);
1383 VOP_REG_SET(vop, output, edp_pin_pol, pin_pol);
1384 VOP_REG_SET(vop, output, edp_en, 1);
1385 break;
1386 case DRM_MODE_CONNECTOR_HDMIA:
1387 VOP_REG_SET(vop, output, hdmi_dclk_pol, 1);
1388 VOP_REG_SET(vop, output, hdmi_pin_pol, pin_pol);
1389 VOP_REG_SET(vop, output, hdmi_en, 1);
1390 break;
1391 case DRM_MODE_CONNECTOR_DSI:
1392 VOP_REG_SET(vop, output, mipi_dclk_pol, 1);
1393 VOP_REG_SET(vop, output, mipi_pin_pol, pin_pol);
1394 VOP_REG_SET(vop, output, mipi_en, 1);
1395 VOP_REG_SET(vop, output, mipi_dual_channel_en,
1396 !!(s->output_flags & ROCKCHIP_OUTPUT_DSI_DUAL));
1397 break;
1398 case DRM_MODE_CONNECTOR_DisplayPort:
1399 VOP_REG_SET(vop, output, dp_dclk_pol, 0);
1400 VOP_REG_SET(vop, output, dp_pin_pol, pin_pol);
1401 VOP_REG_SET(vop, output, dp_en, 1);
1402 break;
1403 default:
1404 DRM_DEV_ERROR(vop->dev, "unsupported connector_type [%d]\n",
1405 s->output_type);
1406 }
1407
1408 /*
1409 * if vop is not support RGB10 output, need force RGB10 to RGB888.
1410 */
1411 if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA &&
1412 !(vop_data->feature & VOP_FEATURE_OUTPUT_RGB10))
1413 s->output_mode = ROCKCHIP_OUT_MODE_P888;
1414
1415 if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && dither_bpc <= 8)
1416 VOP_REG_SET(vop, common, pre_dither_down, 1);
1417 else
1418 VOP_REG_SET(vop, common, pre_dither_down, 0);
1419
1420 if (dither_bpc == 6) {
1421 VOP_REG_SET(vop, common, dither_down_sel, DITHER_DOWN_ALLEGRO);
1422 VOP_REG_SET(vop, common, dither_down_mode, RGB888_TO_RGB666);
1423 VOP_REG_SET(vop, common, dither_down_en, 1);
1424 } else {
1425 VOP_REG_SET(vop, common, dither_down_en, 0);
1426 }
1427
1428 VOP_REG_SET(vop, common, out_mode, s->output_mode);
1429
1430 VOP_REG_SET(vop, modeset, htotal_pw, (htotal << 16) | hsync_len);
1431 val = hact_st << 16;
1432 val |= hact_end;
1433 VOP_REG_SET(vop, modeset, hact_st_end, val);
1434 VOP_REG_SET(vop, modeset, hpost_st_end, val);
1435
1436 VOP_REG_SET(vop, modeset, vtotal_pw, (vtotal << 16) | vsync_len);
1437 val = vact_st << 16;
1438 val |= vact_end;
1439 VOP_REG_SET(vop, modeset, vact_st_end, val);
1440 VOP_REG_SET(vop, modeset, vpost_st_end, val);
1441
1442 VOP_REG_SET(vop, intr, line_flag_num[0], vact_end);
1443
1444 clk_set_rate(vop->dclk, adjusted_mode->clock * 1000);
1445
1446 VOP_REG_SET(vop, common, standby, 0);
1447 mutex_unlock(&vop->vop_lock);
1448
1449 /*
1450 * If we have a GAMMA LUT in the state, then let's make sure
1451 * it's updated. We might be coming out of suspend,
1452 * which means the LUT internal memory needs to be re-written.
1453 */
1454 if (crtc->state->gamma_lut)
1455 vop_crtc_gamma_set(vop, crtc, old_state);
1456}
1457
1458static bool vop_fs_irq_is_pending(struct vop *vop)
1459{
1460 return VOP_INTR_GET_TYPE(vop, status, FS_INTR);
1461}
1462
1463static void vop_wait_for_irq_handler(struct vop *vop)
1464{
1465 bool pending;
1466 int ret;
1467
1468 /*
1469 * Spin until frame start interrupt status bit goes low, which means
1470 * that interrupt handler was invoked and cleared it. The timeout of
1471 * 10 msecs is really too long, but it is just a safety measure if
1472 * something goes really wrong. The wait will only happen in the very
1473 * unlikely case of a vblank happening exactly at the same time and
1474 * shouldn't exceed microseconds range.
1475 */
1476 ret = readx_poll_timeout_atomic(vop_fs_irq_is_pending, vop, pending,
1477 !pending, 0, 10 * 1000);
1478 if (ret)
1479 DRM_DEV_ERROR(vop->dev, "VOP vblank IRQ stuck for 10 ms\n");
1480
1481 synchronize_irq(vop->irq);
1482}
1483
1484static int vop_crtc_atomic_check(struct drm_crtc *crtc,
1485 struct drm_atomic_state *state)
1486{
1487 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1488 crtc);
1489 struct vop *vop = to_vop(crtc);
1490 struct drm_plane *plane;
1491 struct drm_plane_state *plane_state;
1492 struct rockchip_crtc_state *s;
1493 int afbc_planes = 0;
1494
1495 if (vop->lut_regs && crtc_state->color_mgmt_changed &&
1496 crtc_state->gamma_lut) {
1497 unsigned int len;
1498
1499 len = drm_color_lut_size(crtc_state->gamma_lut);
1500 if (len != crtc->gamma_size) {
1501 DRM_DEBUG_KMS("Invalid LUT size; got %d, expected %d\n",
1502 len, crtc->gamma_size);
1503 return -EINVAL;
1504 }
1505 }
1506
1507 drm_atomic_crtc_state_for_each_plane(plane, crtc_state) {
1508 plane_state =
1509 drm_atomic_get_plane_state(crtc_state->state, plane);
1510 if (IS_ERR(plane_state)) {
1511 DRM_DEBUG_KMS("Cannot get plane state for plane %s\n",
1512 plane->name);
1513 return PTR_ERR(plane_state);
1514 }
1515
1516 if (drm_is_afbc(plane_state->fb->modifier))
1517 ++afbc_planes;
1518 }
1519
1520 if (afbc_planes > 1) {
1521 DRM_DEBUG_KMS("Invalid number of AFBC planes; got %d, expected at most 1\n", afbc_planes);
1522 return -EINVAL;
1523 }
1524
1525 s = to_rockchip_crtc_state(crtc_state);
1526 s->enable_afbc = afbc_planes > 0;
1527
1528 return 0;
1529}
1530
1531static void vop_crtc_atomic_flush(struct drm_crtc *crtc,
1532 struct drm_atomic_state *state)
1533{
1534 struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1535 crtc);
1536 struct drm_atomic_state *old_state = old_crtc_state->state;
1537 struct drm_plane_state *old_plane_state, *new_plane_state;
1538 struct vop *vop = to_vop(crtc);
1539 struct drm_plane *plane;
1540 struct rockchip_crtc_state *s;
1541 int i;
1542
1543 if (WARN_ON(!vop->is_enabled))
1544 return;
1545
1546 spin_lock(&vop->reg_lock);
1547
1548 /* Enable AFBC if there is some AFBC window, disable otherwise. */
1549 s = to_rockchip_crtc_state(crtc->state);
1550 VOP_AFBC_SET(vop, enable, s->enable_afbc);
1551 vop_cfg_done(vop);
1552
1553 spin_unlock(&vop->reg_lock);
1554
1555 /*
1556 * There is a (rather unlikely) possiblity that a vblank interrupt
1557 * fired before we set the cfg_done bit. To avoid spuriously
1558 * signalling flip completion we need to wait for it to finish.
1559 */
1560 vop_wait_for_irq_handler(vop);
1561
1562 spin_lock_irq(&crtc->dev->event_lock);
1563 if (crtc->state->event) {
1564 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1565 WARN_ON(vop->event);
1566
1567 vop->event = crtc->state->event;
1568 crtc->state->event = NULL;
1569 }
1570 spin_unlock_irq(&crtc->dev->event_lock);
1571
1572 for_each_oldnew_plane_in_state(old_state, plane, old_plane_state,
1573 new_plane_state, i) {
1574 if (!old_plane_state->fb)
1575 continue;
1576
1577 if (old_plane_state->fb == new_plane_state->fb)
1578 continue;
1579
1580 drm_framebuffer_get(old_plane_state->fb);
1581 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1582 drm_flip_work_queue(&vop->fb_unref_work, old_plane_state->fb);
1583 set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1584 }
1585}
1586
1587static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = {
1588 .mode_fixup = vop_crtc_mode_fixup,
1589 .atomic_check = vop_crtc_atomic_check,
1590 .atomic_begin = vop_crtc_atomic_begin,
1591 .atomic_flush = vop_crtc_atomic_flush,
1592 .atomic_enable = vop_crtc_atomic_enable,
1593 .atomic_disable = vop_crtc_atomic_disable,
1594};
1595
1596static void vop_crtc_destroy(struct drm_crtc *crtc)
1597{
1598 drm_crtc_cleanup(crtc);
1599}
1600
1601static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc)
1602{
1603 struct rockchip_crtc_state *rockchip_state;
1604
1605 if (WARN_ON(!crtc->state))
1606 return NULL;
1607
1608 rockchip_state = kzalloc(sizeof(*rockchip_state), GFP_KERNEL);
1609 if (!rockchip_state)
1610 return NULL;
1611
1612 __drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base);
1613 return &rockchip_state->base;
1614}
1615
1616static void vop_crtc_destroy_state(struct drm_crtc *crtc,
1617 struct drm_crtc_state *state)
1618{
1619 struct rockchip_crtc_state *s = to_rockchip_crtc_state(state);
1620
1621 __drm_atomic_helper_crtc_destroy_state(&s->base);
1622 kfree(s);
1623}
1624
1625static void vop_crtc_reset(struct drm_crtc *crtc)
1626{
1627 struct rockchip_crtc_state *crtc_state =
1628 kzalloc(sizeof(*crtc_state), GFP_KERNEL);
1629
1630 if (crtc->state)
1631 vop_crtc_destroy_state(crtc, crtc->state);
1632
1633 __drm_atomic_helper_crtc_reset(crtc, &crtc_state->base);
1634}
1635
1636#ifdef CONFIG_DRM_ANALOGIX_DP
1637static struct drm_connector *vop_get_edp_connector(struct vop *vop)
1638{
1639 struct drm_connector *connector;
1640 struct drm_connector_list_iter conn_iter;
1641
1642 drm_connector_list_iter_begin(vop->drm_dev, &conn_iter);
1643 drm_for_each_connector_iter(connector, &conn_iter) {
1644 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) {
1645 drm_connector_list_iter_end(&conn_iter);
1646 return connector;
1647 }
1648 }
1649 drm_connector_list_iter_end(&conn_iter);
1650
1651 return NULL;
1652}
1653
1654static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1655 const char *source_name)
1656{
1657 struct vop *vop = to_vop(crtc);
1658 struct drm_connector *connector;
1659 int ret;
1660
1661 connector = vop_get_edp_connector(vop);
1662 if (!connector)
1663 return -EINVAL;
1664
1665 if (source_name && strcmp(source_name, "auto") == 0)
1666 ret = analogix_dp_start_crc(connector);
1667 else if (!source_name)
1668 ret = analogix_dp_stop_crc(connector);
1669 else
1670 ret = -EINVAL;
1671
1672 return ret;
1673}
1674
1675static int
1676vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1677 size_t *values_cnt)
1678{
1679 if (source_name && strcmp(source_name, "auto") != 0)
1680 return -EINVAL;
1681
1682 *values_cnt = 3;
1683 return 0;
1684}
1685
1686#else
1687static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1688 const char *source_name)
1689{
1690 return -ENODEV;
1691}
1692
1693static int
1694vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1695 size_t *values_cnt)
1696{
1697 return -ENODEV;
1698}
1699#endif
1700
1701static const struct drm_crtc_funcs vop_crtc_funcs = {
1702 .set_config = drm_atomic_helper_set_config,
1703 .page_flip = drm_atomic_helper_page_flip,
1704 .destroy = vop_crtc_destroy,
1705 .reset = vop_crtc_reset,
1706 .atomic_duplicate_state = vop_crtc_duplicate_state,
1707 .atomic_destroy_state = vop_crtc_destroy_state,
1708 .enable_vblank = vop_crtc_enable_vblank,
1709 .disable_vblank = vop_crtc_disable_vblank,
1710 .set_crc_source = vop_crtc_set_crc_source,
1711 .verify_crc_source = vop_crtc_verify_crc_source,
1712};
1713
1714static void vop_fb_unref_worker(struct drm_flip_work *work, void *val)
1715{
1716 struct vop *vop = container_of(work, struct vop, fb_unref_work);
1717 struct drm_framebuffer *fb = val;
1718
1719 drm_crtc_vblank_put(&vop->crtc);
1720 drm_framebuffer_put(fb);
1721}
1722
1723static void vop_handle_vblank(struct vop *vop)
1724{
1725 struct drm_device *drm = vop->drm_dev;
1726 struct drm_crtc *crtc = &vop->crtc;
1727
1728 spin_lock(&drm->event_lock);
1729 if (vop->event) {
1730 drm_crtc_send_vblank_event(crtc, vop->event);
1731 drm_crtc_vblank_put(crtc);
1732 vop->event = NULL;
1733 }
1734 spin_unlock(&drm->event_lock);
1735
1736 if (test_and_clear_bit(VOP_PENDING_FB_UNREF, &vop->pending))
1737 drm_flip_work_commit(&vop->fb_unref_work, system_unbound_wq);
1738}
1739
1740static irqreturn_t vop_isr(int irq, void *data)
1741{
1742 struct vop *vop = data;
1743 struct drm_crtc *crtc = &vop->crtc;
1744 uint32_t active_irqs;
1745 int ret = IRQ_NONE;
1746
1747 /*
1748 * The irq is shared with the iommu. If the runtime-pm state of the
1749 * vop-device is disabled the irq has to be targeted at the iommu.
1750 */
1751 if (!pm_runtime_get_if_in_use(vop->dev))
1752 return IRQ_NONE;
1753
1754 if (vop_core_clks_enable(vop)) {
1755 DRM_DEV_ERROR_RATELIMITED(vop->dev, "couldn't enable clocks\n");
1756 goto out;
1757 }
1758
1759 /*
1760 * interrupt register has interrupt status, enable and clear bits, we
1761 * must hold irq_lock to avoid a race with enable/disable_vblank().
1762 */
1763 spin_lock(&vop->irq_lock);
1764
1765 active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK);
1766 /* Clear all active interrupt sources */
1767 if (active_irqs)
1768 VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1);
1769
1770 spin_unlock(&vop->irq_lock);
1771
1772 /* This is expected for vop iommu irqs, since the irq is shared */
1773 if (!active_irqs)
1774 goto out_disable;
1775
1776 if (active_irqs & DSP_HOLD_VALID_INTR) {
1777 complete(&vop->dsp_hold_completion);
1778 active_irqs &= ~DSP_HOLD_VALID_INTR;
1779 ret = IRQ_HANDLED;
1780 }
1781
1782 if (active_irqs & LINE_FLAG_INTR) {
1783 complete(&vop->line_flag_completion);
1784 active_irqs &= ~LINE_FLAG_INTR;
1785 ret = IRQ_HANDLED;
1786 }
1787
1788 if (active_irqs & FS_INTR) {
1789 drm_crtc_handle_vblank(crtc);
1790 vop_handle_vblank(vop);
1791 active_irqs &= ~FS_INTR;
1792 ret = IRQ_HANDLED;
1793 }
1794
1795 /* Unhandled irqs are spurious. */
1796 if (active_irqs)
1797 DRM_DEV_ERROR(vop->dev, "Unknown VOP IRQs: %#02x\n",
1798 active_irqs);
1799
1800out_disable:
1801 vop_core_clks_disable(vop);
1802out:
1803 pm_runtime_put(vop->dev);
1804 return ret;
1805}
1806
1807static void vop_plane_add_properties(struct drm_plane *plane,
1808 const struct vop_win_data *win_data)
1809{
1810 unsigned int flags = 0;
1811
1812 flags |= VOP_WIN_HAS_REG(win_data, x_mir_en) ? DRM_MODE_REFLECT_X : 0;
1813 flags |= VOP_WIN_HAS_REG(win_data, y_mir_en) ? DRM_MODE_REFLECT_Y : 0;
1814 if (flags)
1815 drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1816 DRM_MODE_ROTATE_0 | flags);
1817}
1818
1819static int vop_create_crtc(struct vop *vop)
1820{
1821 const struct vop_data *vop_data = vop->data;
1822 struct device *dev = vop->dev;
1823 struct drm_device *drm_dev = vop->drm_dev;
1824 struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp;
1825 struct drm_crtc *crtc = &vop->crtc;
1826 struct device_node *port;
1827 int ret;
1828 int i;
1829
1830 /*
1831 * Create drm_plane for primary and cursor planes first, since we need
1832 * to pass them to drm_crtc_init_with_planes, which sets the
1833 * "possible_crtcs" to the newly initialized crtc.
1834 */
1835 for (i = 0; i < vop_data->win_size; i++) {
1836 struct vop_win *vop_win = &vop->win[i];
1837 const struct vop_win_data *win_data = vop_win->data;
1838
1839 if (win_data->type != DRM_PLANE_TYPE_PRIMARY &&
1840 win_data->type != DRM_PLANE_TYPE_CURSOR)
1841 continue;
1842
1843 ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1844 0, &vop_plane_funcs,
1845 win_data->phy->data_formats,
1846 win_data->phy->nformats,
1847 win_data->phy->format_modifiers,
1848 win_data->type, NULL);
1849 if (ret) {
1850 DRM_DEV_ERROR(vop->dev, "failed to init plane %d\n",
1851 ret);
1852 goto err_cleanup_planes;
1853 }
1854
1855 plane = &vop_win->base;
1856 drm_plane_helper_add(plane, &plane_helper_funcs);
1857 vop_plane_add_properties(plane, win_data);
1858 if (plane->type == DRM_PLANE_TYPE_PRIMARY)
1859 primary = plane;
1860 else if (plane->type == DRM_PLANE_TYPE_CURSOR)
1861 cursor = plane;
1862 }
1863
1864 ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor,
1865 &vop_crtc_funcs, NULL);
1866 if (ret)
1867 goto err_cleanup_planes;
1868
1869 drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs);
1870 if (vop->lut_regs) {
1871 drm_mode_crtc_set_gamma_size(crtc, vop_data->lut_size);
1872 drm_crtc_enable_color_mgmt(crtc, 0, false, vop_data->lut_size);
1873 }
1874
1875 /*
1876 * Create drm_planes for overlay windows with possible_crtcs restricted
1877 * to the newly created crtc.
1878 */
1879 for (i = 0; i < vop_data->win_size; i++) {
1880 struct vop_win *vop_win = &vop->win[i];
1881 const struct vop_win_data *win_data = vop_win->data;
1882 unsigned long possible_crtcs = drm_crtc_mask(crtc);
1883
1884 if (win_data->type != DRM_PLANE_TYPE_OVERLAY)
1885 continue;
1886
1887 ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1888 possible_crtcs,
1889 &vop_plane_funcs,
1890 win_data->phy->data_formats,
1891 win_data->phy->nformats,
1892 win_data->phy->format_modifiers,
1893 win_data->type, NULL);
1894 if (ret) {
1895 DRM_DEV_ERROR(vop->dev, "failed to init overlay %d\n",
1896 ret);
1897 goto err_cleanup_crtc;
1898 }
1899 drm_plane_helper_add(&vop_win->base, &plane_helper_funcs);
1900 vop_plane_add_properties(&vop_win->base, win_data);
1901 }
1902
1903 port = of_get_child_by_name(dev->of_node, "port");
1904 if (!port) {
1905 DRM_DEV_ERROR(vop->dev, "no port node found in %pOF\n",
1906 dev->of_node);
1907 ret = -ENOENT;
1908 goto err_cleanup_crtc;
1909 }
1910
1911 drm_flip_work_init(&vop->fb_unref_work, "fb_unref",
1912 vop_fb_unref_worker);
1913
1914 init_completion(&vop->dsp_hold_completion);
1915 init_completion(&vop->line_flag_completion);
1916 crtc->port = port;
1917
1918 ret = drm_self_refresh_helper_init(crtc);
1919 if (ret)
1920 DRM_DEV_DEBUG_KMS(vop->dev,
1921 "Failed to init %s with SR helpers %d, ignoring\n",
1922 crtc->name, ret);
1923
1924 return 0;
1925
1926err_cleanup_crtc:
1927 drm_crtc_cleanup(crtc);
1928err_cleanup_planes:
1929 list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1930 head)
1931 drm_plane_cleanup(plane);
1932 return ret;
1933}
1934
1935static void vop_destroy_crtc(struct vop *vop)
1936{
1937 struct drm_crtc *crtc = &vop->crtc;
1938 struct drm_device *drm_dev = vop->drm_dev;
1939 struct drm_plane *plane, *tmp;
1940
1941 drm_self_refresh_helper_cleanup(crtc);
1942
1943 of_node_put(crtc->port);
1944
1945 /*
1946 * We need to cleanup the planes now. Why?
1947 *
1948 * The planes are "&vop->win[i].base". That means the memory is
1949 * all part of the big "struct vop" chunk of memory. That memory
1950 * was devm allocated and associated with this component. We need to
1951 * free it ourselves before vop_unbind() finishes.
1952 */
1953 list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1954 head)
1955 vop_plane_destroy(plane);
1956
1957 /*
1958 * Destroy CRTC after vop_plane_destroy() since vop_disable_plane()
1959 * references the CRTC.
1960 */
1961 drm_crtc_cleanup(crtc);
1962 drm_flip_work_cleanup(&vop->fb_unref_work);
1963}
1964
1965static int vop_initial(struct vop *vop)
1966{
1967 struct reset_control *ahb_rst;
1968 int i, ret;
1969
1970 vop->hclk = devm_clk_get(vop->dev, "hclk_vop");
1971 if (IS_ERR(vop->hclk)) {
1972 DRM_DEV_ERROR(vop->dev, "failed to get hclk source\n");
1973 return PTR_ERR(vop->hclk);
1974 }
1975 vop->aclk = devm_clk_get(vop->dev, "aclk_vop");
1976 if (IS_ERR(vop->aclk)) {
1977 DRM_DEV_ERROR(vop->dev, "failed to get aclk source\n");
1978 return PTR_ERR(vop->aclk);
1979 }
1980 vop->dclk = devm_clk_get(vop->dev, "dclk_vop");
1981 if (IS_ERR(vop->dclk)) {
1982 DRM_DEV_ERROR(vop->dev, "failed to get dclk source\n");
1983 return PTR_ERR(vop->dclk);
1984 }
1985
1986 ret = pm_runtime_resume_and_get(vop->dev);
1987 if (ret < 0) {
1988 DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
1989 return ret;
1990 }
1991
1992 ret = clk_prepare(vop->dclk);
1993 if (ret < 0) {
1994 DRM_DEV_ERROR(vop->dev, "failed to prepare dclk\n");
1995 goto err_put_pm_runtime;
1996 }
1997
1998 /* Enable both the hclk and aclk to setup the vop */
1999 ret = clk_prepare_enable(vop->hclk);
2000 if (ret < 0) {
2001 DRM_DEV_ERROR(vop->dev, "failed to prepare/enable hclk\n");
2002 goto err_unprepare_dclk;
2003 }
2004
2005 ret = clk_prepare_enable(vop->aclk);
2006 if (ret < 0) {
2007 DRM_DEV_ERROR(vop->dev, "failed to prepare/enable aclk\n");
2008 goto err_disable_hclk;
2009 }
2010
2011 /*
2012 * do hclk_reset, reset all vop registers.
2013 */
2014 ahb_rst = devm_reset_control_get(vop->dev, "ahb");
2015 if (IS_ERR(ahb_rst)) {
2016 DRM_DEV_ERROR(vop->dev, "failed to get ahb reset\n");
2017 ret = PTR_ERR(ahb_rst);
2018 goto err_disable_aclk;
2019 }
2020 reset_control_assert(ahb_rst);
2021 usleep_range(10, 20);
2022 reset_control_deassert(ahb_rst);
2023
2024 VOP_INTR_SET_TYPE(vop, clear, INTR_MASK, 1);
2025 VOP_INTR_SET_TYPE(vop, enable, INTR_MASK, 0);
2026
2027 for (i = 0; i < vop->len; i += sizeof(u32))
2028 vop->regsbak[i / 4] = readl_relaxed(vop->regs + i);
2029
2030 VOP_REG_SET(vop, misc, global_regdone_en, 1);
2031 VOP_REG_SET(vop, common, dsp_blank, 0);
2032
2033 for (i = 0; i < vop->data->win_size; i++) {
2034 struct vop_win *vop_win = &vop->win[i];
2035 const struct vop_win_data *win = vop_win->data;
2036 int channel = i * 2 + 1;
2037
2038 VOP_WIN_SET(vop, win, channel, (channel + 1) << 4 | channel);
2039 vop_win_disable(vop, vop_win);
2040 VOP_WIN_SET(vop, win, gate, 1);
2041 }
2042
2043 vop_cfg_done(vop);
2044
2045 /*
2046 * do dclk_reset, let all config take affect.
2047 */
2048 vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk");
2049 if (IS_ERR(vop->dclk_rst)) {
2050 DRM_DEV_ERROR(vop->dev, "failed to get dclk reset\n");
2051 ret = PTR_ERR(vop->dclk_rst);
2052 goto err_disable_aclk;
2053 }
2054 reset_control_assert(vop->dclk_rst);
2055 usleep_range(10, 20);
2056 reset_control_deassert(vop->dclk_rst);
2057
2058 clk_disable(vop->hclk);
2059 clk_disable(vop->aclk);
2060
2061 vop->is_enabled = false;
2062
2063 pm_runtime_put_sync(vop->dev);
2064
2065 return 0;
2066
2067err_disable_aclk:
2068 clk_disable_unprepare(vop->aclk);
2069err_disable_hclk:
2070 clk_disable_unprepare(vop->hclk);
2071err_unprepare_dclk:
2072 clk_unprepare(vop->dclk);
2073err_put_pm_runtime:
2074 pm_runtime_put_sync(vop->dev);
2075 return ret;
2076}
2077
2078/*
2079 * Initialize the vop->win array elements.
2080 */
2081static void vop_win_init(struct vop *vop)
2082{
2083 const struct vop_data *vop_data = vop->data;
2084 unsigned int i;
2085
2086 for (i = 0; i < vop_data->win_size; i++) {
2087 struct vop_win *vop_win = &vop->win[i];
2088 const struct vop_win_data *win_data = &vop_data->win[i];
2089
2090 vop_win->data = win_data;
2091 vop_win->vop = vop;
2092
2093 if (vop_data->win_yuv2yuv)
2094 vop_win->yuv2yuv_data = &vop_data->win_yuv2yuv[i];
2095 }
2096}
2097
2098/**
2099 * rockchip_drm_wait_vact_end
2100 * @crtc: CRTC to enable line flag
2101 * @mstimeout: millisecond for timeout
2102 *
2103 * Wait for vact_end line flag irq or timeout.
2104 *
2105 * Returns:
2106 * Zero on success, negative errno on failure.
2107 */
2108int rockchip_drm_wait_vact_end(struct drm_crtc *crtc, unsigned int mstimeout)
2109{
2110 struct vop *vop = to_vop(crtc);
2111 unsigned long jiffies_left;
2112 int ret = 0;
2113
2114 if (!crtc || !vop->is_enabled)
2115 return -ENODEV;
2116
2117 mutex_lock(&vop->vop_lock);
2118 if (mstimeout <= 0) {
2119 ret = -EINVAL;
2120 goto out;
2121 }
2122
2123 if (vop_line_flag_irq_is_enabled(vop)) {
2124 ret = -EBUSY;
2125 goto out;
2126 }
2127
2128 reinit_completion(&vop->line_flag_completion);
2129 vop_line_flag_irq_enable(vop);
2130
2131 jiffies_left = wait_for_completion_timeout(&vop->line_flag_completion,
2132 msecs_to_jiffies(mstimeout));
2133 vop_line_flag_irq_disable(vop);
2134
2135 if (jiffies_left == 0) {
2136 DRM_DEV_ERROR(vop->dev, "Timeout waiting for IRQ\n");
2137 ret = -ETIMEDOUT;
2138 goto out;
2139 }
2140
2141out:
2142 mutex_unlock(&vop->vop_lock);
2143 return ret;
2144}
2145EXPORT_SYMBOL(rockchip_drm_wait_vact_end);
2146
2147static int vop_bind(struct device *dev, struct device *master, void *data)
2148{
2149 struct platform_device *pdev = to_platform_device(dev);
2150 const struct vop_data *vop_data;
2151 struct drm_device *drm_dev = data;
2152 struct vop *vop;
2153 struct resource *res;
2154 int ret, irq;
2155
2156 vop_data = of_device_get_match_data(dev);
2157 if (!vop_data)
2158 return -ENODEV;
2159
2160 /* Allocate vop struct and its vop_win array */
2161 vop = devm_kzalloc(dev, struct_size(vop, win, vop_data->win_size),
2162 GFP_KERNEL);
2163 if (!vop)
2164 return -ENOMEM;
2165
2166 vop->dev = dev;
2167 vop->data = vop_data;
2168 vop->drm_dev = drm_dev;
2169 dev_set_drvdata(dev, vop);
2170
2171 vop_win_init(vop);
2172
2173 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2174 vop->regs = devm_ioremap_resource(dev, res);
2175 if (IS_ERR(vop->regs))
2176 return PTR_ERR(vop->regs);
2177 vop->len = resource_size(res);
2178
2179 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2180 if (res) {
2181 if (vop_data->lut_size != 1024 && vop_data->lut_size != 256) {
2182 DRM_DEV_ERROR(dev, "unsupported gamma LUT size %d\n", vop_data->lut_size);
2183 return -EINVAL;
2184 }
2185 vop->lut_regs = devm_ioremap_resource(dev, res);
2186 if (IS_ERR(vop->lut_regs))
2187 return PTR_ERR(vop->lut_regs);
2188 }
2189
2190 vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL);
2191 if (!vop->regsbak)
2192 return -ENOMEM;
2193
2194 irq = platform_get_irq(pdev, 0);
2195 if (irq < 0) {
2196 DRM_DEV_ERROR(dev, "cannot find irq for vop\n");
2197 return irq;
2198 }
2199 vop->irq = (unsigned int)irq;
2200
2201 spin_lock_init(&vop->reg_lock);
2202 spin_lock_init(&vop->irq_lock);
2203 mutex_init(&vop->vop_lock);
2204
2205 ret = vop_create_crtc(vop);
2206 if (ret)
2207 return ret;
2208
2209 pm_runtime_enable(&pdev->dev);
2210
2211 ret = vop_initial(vop);
2212 if (ret < 0) {
2213 DRM_DEV_ERROR(&pdev->dev,
2214 "cannot initial vop dev - err %d\n", ret);
2215 goto err_disable_pm_runtime;
2216 }
2217
2218 ret = devm_request_irq(dev, vop->irq, vop_isr,
2219 IRQF_SHARED, dev_name(dev), vop);
2220 if (ret)
2221 goto err_disable_pm_runtime;
2222
2223 if (vop->data->feature & VOP_FEATURE_INTERNAL_RGB) {
2224 vop->rgb = rockchip_rgb_init(dev, &vop->crtc, vop->drm_dev);
2225 if (IS_ERR(vop->rgb)) {
2226 ret = PTR_ERR(vop->rgb);
2227 goto err_disable_pm_runtime;
2228 }
2229 }
2230
2231 rockchip_drm_dma_init_device(drm_dev, dev);
2232
2233 return 0;
2234
2235err_disable_pm_runtime:
2236 pm_runtime_disable(&pdev->dev);
2237 vop_destroy_crtc(vop);
2238 return ret;
2239}
2240
2241static void vop_unbind(struct device *dev, struct device *master, void *data)
2242{
2243 struct vop *vop = dev_get_drvdata(dev);
2244
2245 if (vop->rgb)
2246 rockchip_rgb_fini(vop->rgb);
2247
2248 pm_runtime_disable(dev);
2249 vop_destroy_crtc(vop);
2250
2251 clk_unprepare(vop->aclk);
2252 clk_unprepare(vop->hclk);
2253 clk_unprepare(vop->dclk);
2254}
2255
2256const struct component_ops vop_component_ops = {
2257 .bind = vop_bind,
2258 .unbind = vop_unbind,
2259};
2260EXPORT_SYMBOL_GPL(vop_component_ops);