Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * R-Car Display Unit CRTCs
   4 *
   5 * Copyright (C) 2013-2015 Renesas Electronics Corporation
   6 *
   7 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
   8 */
   9
  10#include <linux/clk.h>
  11#include <linux/mutex.h>
  12#include <linux/platform_device.h>
  13#include <linux/sys_soc.h>
  14
  15#include <drm/drm_atomic.h>
  16#include <drm/drm_atomic_helper.h>
  17#include <drm/drm_bridge.h>
  18#include <drm/drm_crtc.h>
  19#include <drm/drm_device.h>
  20#include <drm/drm_gem_dma_helper.h>
  21#include <drm/drm_vblank.h>
  22
  23#include "rcar_cmm.h"
  24#include "rcar_du_crtc.h"
  25#include "rcar_du_drv.h"
  26#include "rcar_du_encoder.h"
  27#include "rcar_du_kms.h"
  28#include "rcar_du_plane.h"
  29#include "rcar_du_regs.h"
  30#include "rcar_du_vsp.h"
  31#include "rcar_lvds.h"
  32#include "rcar_mipi_dsi.h"
  33
  34static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
  35{
  36	struct rcar_du_device *rcdu = rcrtc->dev;
  37
  38	return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
  39}
  40
  41static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
  42{
  43	struct rcar_du_device *rcdu = rcrtc->dev;
  44
  45	rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
  46}
  47
  48static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
  49{
  50	struct rcar_du_device *rcdu = rcrtc->dev;
  51
  52	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
  53		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
  54}
  55
  56static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
  57{
  58	struct rcar_du_device *rcdu = rcrtc->dev;
  59
  60	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
  61		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
  62}
  63
  64void rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc *rcrtc, u32 clr, u32 set)
  65{
  66	struct rcar_du_device *rcdu = rcrtc->dev;
  67
  68	rcrtc->dsysr = (rcrtc->dsysr & ~clr) | set;
  69	rcar_du_write(rcdu, rcrtc->mmio_offset + DSYSR, rcrtc->dsysr);
  70}
  71
  72/* -----------------------------------------------------------------------------
  73 * Hardware Setup
  74 */
  75
  76struct dpll_info {
  77	unsigned int output;
  78	unsigned int fdpll;
  79	unsigned int n;
  80	unsigned int m;
  81};
  82
  83static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc,
  84				 struct dpll_info *dpll,
  85				 unsigned long input,
  86				 unsigned long target)
  87{
  88	unsigned long best_diff = (unsigned long)-1;
  89	unsigned long diff;
  90	unsigned int fdpll;
  91	unsigned int m;
  92	unsigned int n;
  93
  94	/*
  95	 *   fin                                 fvco        fout       fclkout
  96	 * in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out
  97	 *              +-> |  |                             |
  98	 *              |                                    |
  99	 *              +---------------- [1/N] <------------+
 100	 *
 101	 *	fclkout = fvco / P / FDPLL -- (1)
 102	 *
 103	 * fin/M = fvco/P/N
 104	 *
 105	 *	fvco = fin * P *  N / M -- (2)
 106	 *
 107	 * (1) + (2) indicates
 108	 *
 109	 *	fclkout = fin * N / M / FDPLL
 110	 *
 111	 * NOTES
 112	 *	N	: (n + 1)
 113	 *	M	: (m + 1)
 114	 *	FDPLL	: (fdpll + 1)
 115	 *	P	: 2
 116	 *	2kHz < fvco < 4096MHz
 117	 *
 118	 * To minimize the jitter,
 119	 * N : as large as possible
 120	 * M : as small as possible
 121	 */
 122	for (m = 0; m < 4; m++) {
 123		for (n = 119; n > 38; n--) {
 124			/*
 125			 * This code only runs on 64-bit architectures, the
 126			 * unsigned long type can thus be used for 64-bit
 127			 * computation. It will still compile without any
 128			 * warning on 32-bit architectures.
 129			 *
 130			 * To optimize calculations, use fout instead of fvco
 131			 * to verify the VCO frequency constraint.
 132			 */
 133			unsigned long fout = input * (n + 1) / (m + 1);
 134
 135			if (fout < 1000 || fout > 2048 * 1000 * 1000U)
 136				continue;
 137
 138			for (fdpll = 1; fdpll < 32; fdpll++) {
 139				unsigned long output;
 140
 141				output = fout / (fdpll + 1);
 142				if (output >= 400 * 1000 * 1000)
 143					continue;
 144
 145				diff = abs((long)output - (long)target);
 146				if (best_diff > diff) {
 147					best_diff = diff;
 148					dpll->n = n;
 149					dpll->m = m;
 150					dpll->fdpll = fdpll;
 151					dpll->output = output;
 152				}
 153
 154				if (diff == 0)
 155					goto done;
 156			}
 157		}
 158	}
 159
 160done:
 161	dev_dbg(rcrtc->dev->dev,
 162		"output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
 163		 dpll->output, dpll->fdpll, dpll->n, dpll->m, best_diff);
 164}
 165
 166struct du_clk_params {
 167	struct clk *clk;
 168	unsigned long rate;
 169	unsigned long diff;
 170	u32 escr;
 171};
 172
 173static void rcar_du_escr_divider(struct clk *clk, unsigned long target,
 174				 u32 escr, struct du_clk_params *params)
 175{
 176	unsigned long rate;
 177	unsigned long diff;
 178	u32 div;
 179
 180	/*
 181	 * If the target rate has already been achieved perfectly we can't do
 182	 * better.
 183	 */
 184	if (params->diff == 0)
 185		return;
 186
 187	/*
 188	 * Compute the input clock rate and internal divisor values to obtain
 189	 * the clock rate closest to the target frequency.
 190	 */
 191	rate = clk_round_rate(clk, target);
 192	div = clamp(DIV_ROUND_CLOSEST(rate, target), 1UL, 64UL) - 1;
 193	diff = abs(rate / (div + 1) - target);
 194
 195	/*
 196	 * Store the parameters if the resulting frequency is better than any
 197	 * previously calculated value.
 198	 */
 199	if (diff < params->diff) {
 200		params->clk = clk;
 201		params->rate = rate;
 202		params->diff = diff;
 203		params->escr = escr | div;
 204	}
 205}
 206
 207static const struct soc_device_attribute rcar_du_r8a7795_es1[] = {
 208	{ .soc_id = "r8a7795", .revision = "ES1.*" },
 209	{ /* sentinel */ }
 210};
 211
 212static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
 213{
 214	const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
 215	struct rcar_du_device *rcdu = rcrtc->dev;
 216	unsigned long mode_clock = mode->clock * 1000;
 217	unsigned int hdse_offset;
 218	u32 dsmr;
 219	u32 escr;
 220
 221	if (rcdu->info->dpll_mask & (1 << rcrtc->index)) {
 222		unsigned long target = mode_clock;
 223		struct dpll_info dpll = { 0 };
 224		unsigned long extclk;
 225		u32 dpllcr;
 226		u32 div = 0;
 227
 228		/*
 229		 * DU channels that have a display PLL can't use the internal
 230		 * system clock, and have no internal clock divider.
 231		 */
 232
 233		/*
 234		 * The H3 ES1.x exhibits dot clock duty cycle stability issues.
 235		 * We can work around them by configuring the DPLL to twice the
 236		 * desired frequency, coupled with a /2 post-divider. Restrict
 237		 * the workaround to H3 ES1.x as ES2.0 and all other SoCs have
 238		 * no post-divider when a display PLL is present (as shown by
 239		 * the workaround breaking HDMI output on M3-W during testing).
 240		 */
 241		if (soc_device_match(rcar_du_r8a7795_es1)) {
 242			target *= 2;
 243			div = 1;
 244		}
 245
 246		extclk = clk_get_rate(rcrtc->extclock);
 247		rcar_du_dpll_divider(rcrtc, &dpll, extclk, target);
 248
 249		dpllcr = DPLLCR_CODE | DPLLCR_CLKE
 250		       | DPLLCR_FDPLL(dpll.fdpll)
 251		       | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m)
 252		       | DPLLCR_STBY;
 253
 254		if (rcrtc->index == 1)
 255			dpllcr |= DPLLCR_PLCS1
 256			       |  DPLLCR_INCS_DOTCLKIN1;
 257		else
 258			dpllcr |= DPLLCR_PLCS0
 259			       |  DPLLCR_INCS_DOTCLKIN0;
 260
 261		rcar_du_group_write(rcrtc->group, DPLLCR, dpllcr);
 262
 263		escr = ESCR_DCLKSEL_DCLKIN | div;
 264	} else if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) ||
 265		   rcdu->info->dsi_clk_mask & BIT(rcrtc->index)) {
 266		/*
 267		 * Use the external LVDS or DSI PLL output as the dot clock when
 268		 * outputting to the LVDS or DSI encoder on an SoC that supports
 269		 * this clock routing option. We use the clock directly in that
 270		 * case, without any additional divider.
 271		 */
 272		escr = ESCR_DCLKSEL_DCLKIN;
 273	} else {
 274		struct du_clk_params params = { .diff = (unsigned long)-1 };
 275
 276		rcar_du_escr_divider(rcrtc->clock, mode_clock,
 277				     ESCR_DCLKSEL_CLKS, &params);
 278		if (rcrtc->extclock)
 279			rcar_du_escr_divider(rcrtc->extclock, mode_clock,
 280					     ESCR_DCLKSEL_DCLKIN, &params);
 281
 282		dev_dbg(rcrtc->dev->dev, "mode clock %lu %s rate %lu\n",
 283			mode_clock, params.clk == rcrtc->clock ? "cpg" : "ext",
 284			params.rate);
 285
 286		clk_set_rate(params.clk, params.rate);
 287		escr = params.escr;
 288	}
 289
 290	dev_dbg(rcrtc->dev->dev, "%s: ESCR 0x%08x\n", __func__, escr);
 291
 292	rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? ESCR13 : ESCR02, escr);
 293	rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? OTAR13 : OTAR02, 0);
 294
 295	/* Signal polarities */
 296	dsmr = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
 297	     | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
 298	     | ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? DSMR_ODEV : 0)
 299	     | DSMR_DIPM_DISP | DSMR_CSPM;
 300	rcar_du_crtc_write(rcrtc, DSMR, dsmr);
 301
 302	/*
 303	 * When the CMM is enabled, an additional offset of 25 pixels must be
 304	 * subtracted from the HDS (horizontal display start) and HDE
 305	 * (horizontal display end) registers.
 306	 */
 307	hdse_offset = 19;
 308	if (rcrtc->group->cmms_mask & BIT(rcrtc->index % 2))
 309		hdse_offset += 25;
 310
 311	/* Display timings */
 312	rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start -
 313					hdse_offset);
 314	rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
 315					mode->hdisplay - hdse_offset);
 316	rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
 317					mode->hsync_start - 1);
 318	rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);
 319
 320	rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
 321					mode->crtc_vsync_end - 2);
 322	rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
 323					mode->crtc_vsync_end +
 324					mode->crtc_vdisplay - 2);
 325	rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
 326					mode->crtc_vsync_end +
 327					mode->crtc_vsync_start - 1);
 328	rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
 329
 330	rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start - 1);
 331	rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
 332}
 333
 334static unsigned int plane_zpos(struct rcar_du_plane *plane)
 335{
 336	return plane->plane.state->normalized_zpos;
 337}
 338
 339static const struct rcar_du_format_info *
 340plane_format(struct rcar_du_plane *plane)
 341{
 342	return to_rcar_plane_state(plane->plane.state)->format;
 343}
 344
 345static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
 346{
 347	struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
 348	struct rcar_du_device *rcdu = rcrtc->dev;
 349	unsigned int num_planes = 0;
 350	unsigned int dptsr_planes;
 351	unsigned int hwplanes = 0;
 352	unsigned int prio = 0;
 353	unsigned int i;
 354	u32 dspr = 0;
 355
 356	for (i = 0; i < rcrtc->group->num_planes; ++i) {
 357		struct rcar_du_plane *plane = &rcrtc->group->planes[i];
 358		unsigned int j;
 359
 360		if (plane->plane.state->crtc != &rcrtc->crtc ||
 361		    !plane->plane.state->visible)
 362			continue;
 363
 364		/* Insert the plane in the sorted planes array. */
 365		for (j = num_planes++; j > 0; --j) {
 366			if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
 367				break;
 368			planes[j] = planes[j-1];
 369		}
 370
 371		planes[j] = plane;
 372		prio += plane_format(plane)->planes * 4;
 373	}
 374
 375	for (i = 0; i < num_planes; ++i) {
 376		struct rcar_du_plane *plane = planes[i];
 377		struct drm_plane_state *state = plane->plane.state;
 378		unsigned int index = to_rcar_plane_state(state)->hwindex;
 379
 380		prio -= 4;
 381		dspr |= (index + 1) << prio;
 382		hwplanes |= 1 << index;
 383
 384		if (plane_format(plane)->planes == 2) {
 385			index = (index + 1) % 8;
 386
 387			prio -= 4;
 388			dspr |= (index + 1) << prio;
 389			hwplanes |= 1 << index;
 390		}
 391	}
 392
 393	/* If VSP+DU integration is enabled the plane assignment is fixed. */
 394	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
 395		if (rcdu->info->gen < 3) {
 396			dspr = (rcrtc->index % 2) + 1;
 397			hwplanes = 1 << (rcrtc->index % 2);
 398		} else {
 399			dspr = (rcrtc->index % 2) ? 3 : 1;
 400			hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
 401		}
 402	}
 403
 404	/*
 405	 * Update the planes to display timing and dot clock generator
 406	 * associations.
 407	 *
 408	 * Updating the DPTSR register requires restarting the CRTC group,
 409	 * resulting in visible flicker. To mitigate the issue only update the
 410	 * association if needed by enabled planes. Planes being disabled will
 411	 * keep their current association.
 412	 */
 413	mutex_lock(&rcrtc->group->lock);
 414
 415	dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
 416		     : rcrtc->group->dptsr_planes & ~hwplanes;
 417
 418	if (dptsr_planes != rcrtc->group->dptsr_planes) {
 419		rcar_du_group_write(rcrtc->group, DPTSR,
 420				    (dptsr_planes << 16) | dptsr_planes);
 421		rcrtc->group->dptsr_planes = dptsr_planes;
 422
 423		if (rcrtc->group->used_crtcs)
 424			rcar_du_group_restart(rcrtc->group);
 425	}
 426
 427	/* Restart the group if plane sources have changed. */
 428	if (rcrtc->group->need_restart)
 429		rcar_du_group_restart(rcrtc->group);
 430
 431	mutex_unlock(&rcrtc->group->lock);
 432
 433	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
 434			    dspr);
 435}
 436
 437/* -----------------------------------------------------------------------------
 438 * Page Flip
 439 */
 440
 441void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
 442{
 443	struct drm_pending_vblank_event *event;
 444	struct drm_device *dev = rcrtc->crtc.dev;
 445	unsigned long flags;
 446
 447	spin_lock_irqsave(&dev->event_lock, flags);
 448	event = rcrtc->event;
 449	rcrtc->event = NULL;
 450	spin_unlock_irqrestore(&dev->event_lock, flags);
 451
 452	if (event == NULL)
 453		return;
 454
 455	spin_lock_irqsave(&dev->event_lock, flags);
 456	drm_crtc_send_vblank_event(&rcrtc->crtc, event);
 457	wake_up(&rcrtc->flip_wait);
 458	spin_unlock_irqrestore(&dev->event_lock, flags);
 459
 460	drm_crtc_vblank_put(&rcrtc->crtc);
 461}
 462
 463static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
 464{
 465	struct drm_device *dev = rcrtc->crtc.dev;
 466	unsigned long flags;
 467	bool pending;
 468
 469	spin_lock_irqsave(&dev->event_lock, flags);
 470	pending = rcrtc->event != NULL;
 471	spin_unlock_irqrestore(&dev->event_lock, flags);
 472
 473	return pending;
 474}
 475
 476static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
 477{
 478	struct rcar_du_device *rcdu = rcrtc->dev;
 479
 480	if (wait_event_timeout(rcrtc->flip_wait,
 481			       !rcar_du_crtc_page_flip_pending(rcrtc),
 482			       msecs_to_jiffies(50)))
 483		return;
 484
 485	dev_warn(rcdu->dev, "page flip timeout\n");
 486
 487	rcar_du_crtc_finish_page_flip(rcrtc);
 488}
 489
 490/* -----------------------------------------------------------------------------
 491 * Color Management Module (CMM)
 492 */
 493
 494static int rcar_du_cmm_check(struct drm_crtc *crtc,
 495			     struct drm_crtc_state *state)
 496{
 497	struct drm_property_blob *drm_lut = state->gamma_lut;
 498	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 499	struct device *dev = rcrtc->dev->dev;
 500
 501	if (!drm_lut)
 502		return 0;
 503
 504	/* We only accept fully populated LUT tables. */
 505	if (drm_color_lut_size(drm_lut) != CM2_LUT_SIZE) {
 506		dev_err(dev, "invalid gamma lut size: %zu bytes\n",
 507			drm_lut->length);
 508		return -EINVAL;
 509	}
 510
 511	return 0;
 512}
 513
 514static void rcar_du_cmm_setup(struct drm_crtc *crtc)
 515{
 516	struct drm_property_blob *drm_lut = crtc->state->gamma_lut;
 517	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 518	struct rcar_cmm_config cmm_config = {};
 519
 520	if (!rcrtc->cmm)
 521		return;
 522
 523	if (drm_lut)
 524		cmm_config.lut.table = (struct drm_color_lut *)drm_lut->data;
 525
 526	rcar_cmm_setup(rcrtc->cmm, &cmm_config);
 527}
 528
 529/* -----------------------------------------------------------------------------
 530 * Start/Stop and Suspend/Resume
 531 */
 532
 533static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc)
 534{
 535	/* Set display off and background to black */
 536	rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
 537	rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
 538
 539	/* Configure display timings and output routing */
 540	rcar_du_crtc_set_display_timing(rcrtc);
 541	rcar_du_group_set_routing(rcrtc->group);
 542
 543	/* Start with all planes disabled. */
 544	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
 545
 546	/* Enable the VSP compositor. */
 547	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
 548		rcar_du_vsp_enable(rcrtc);
 549
 550	/* Turn vertical blanking interrupt reporting on. */
 551	drm_crtc_vblank_on(&rcrtc->crtc);
 552}
 553
 554static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
 555{
 556	int ret;
 557
 558	/*
 559	 * Guard against double-get, as the function is called from both the
 560	 * .atomic_enable() and .atomic_begin() handlers.
 561	 */
 562	if (rcrtc->initialized)
 563		return 0;
 564
 565	ret = clk_prepare_enable(rcrtc->clock);
 566	if (ret < 0)
 567		return ret;
 568
 569	ret = clk_prepare_enable(rcrtc->extclock);
 570	if (ret < 0)
 571		goto error_clock;
 572
 573	ret = rcar_du_group_get(rcrtc->group);
 574	if (ret < 0)
 575		goto error_group;
 576
 577	rcar_du_crtc_setup(rcrtc);
 578	rcrtc->initialized = true;
 579
 580	return 0;
 581
 582error_group:
 583	clk_disable_unprepare(rcrtc->extclock);
 584error_clock:
 585	clk_disable_unprepare(rcrtc->clock);
 586	return ret;
 587}
 588
 589static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
 590{
 591	rcar_du_group_put(rcrtc->group);
 592
 593	clk_disable_unprepare(rcrtc->extclock);
 594	clk_disable_unprepare(rcrtc->clock);
 595
 596	rcrtc->initialized = false;
 597}
 598
 599static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
 600{
 601	bool interlaced;
 602
 603	/*
 604	 * Select master sync mode. This enables display operation in master
 605	 * sync mode (with the HSYNC and VSYNC signals configured as outputs and
 606	 * actively driven).
 607	 */
 608	interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
 609	rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
 610				   (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
 611				   DSYSR_TVM_MASTER);
 612
 613	rcar_du_group_start_stop(rcrtc->group, true);
 614}
 615
 616static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc)
 617{
 618	struct rcar_du_device *rcdu = rcrtc->dev;
 619	struct drm_crtc *crtc = &rcrtc->crtc;
 620	u32 status;
 621
 622	/* Make sure vblank interrupts are enabled. */
 623	drm_crtc_vblank_get(crtc);
 624
 625	/*
 626	 * Disable planes and calculate how many vertical blanking interrupts we
 627	 * have to wait for. If a vertical blanking interrupt has been triggered
 628	 * but not processed yet, we don't know whether it occurred before or
 629	 * after the planes got disabled. We thus have to wait for two vblank
 630	 * interrupts in that case.
 631	 */
 632	spin_lock_irq(&rcrtc->vblank_lock);
 633	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
 634	status = rcar_du_crtc_read(rcrtc, DSSR);
 635	rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1;
 636	spin_unlock_irq(&rcrtc->vblank_lock);
 637
 638	if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0,
 639				msecs_to_jiffies(100)))
 640		dev_warn(rcdu->dev, "vertical blanking timeout\n");
 641
 642	drm_crtc_vblank_put(crtc);
 643}
 644
 645static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
 646{
 647	struct drm_crtc *crtc = &rcrtc->crtc;
 648
 649	/*
 650	 * Disable all planes and wait for the change to take effect. This is
 651	 * required as the plane enable registers are updated on vblank, and no
 652	 * vblank will occur once the CRTC is stopped. Disabling planes when
 653	 * starting the CRTC thus wouldn't be enough as it would start scanning
 654	 * out immediately from old frame buffers until the next vblank.
 655	 *
 656	 * This increases the CRTC stop delay, especially when multiple CRTCs
 657	 * are stopped in one operation as we now wait for one vblank per CRTC.
 658	 * Whether this can be improved needs to be researched.
 659	 */
 660	rcar_du_crtc_disable_planes(rcrtc);
 661
 662	/*
 663	 * Disable vertical blanking interrupt reporting. We first need to wait
 664	 * for page flip completion before stopping the CRTC as userspace
 665	 * expects page flips to eventually complete.
 666	 */
 667	rcar_du_crtc_wait_page_flip(rcrtc);
 668	drm_crtc_vblank_off(crtc);
 669
 670	/* Disable the VSP compositor. */
 671	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
 672		rcar_du_vsp_disable(rcrtc);
 673
 674	if (rcrtc->cmm)
 675		rcar_cmm_disable(rcrtc->cmm);
 676
 677	/*
 678	 * Select switch sync mode. This stops display operation and configures
 679	 * the HSYNC and VSYNC signals as inputs.
 680	 *
 681	 * TODO: Find another way to stop the display for DUs that don't support
 682	 * TVM sync.
 683	 */
 684	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_TVM_SYNC))
 685		rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK,
 686					   DSYSR_TVM_SWITCH);
 687
 688	rcar_du_group_start_stop(rcrtc->group, false);
 689}
 690
 691/* -----------------------------------------------------------------------------
 692 * CRTC Functions
 693 */
 694
 695static int rcar_du_crtc_atomic_check(struct drm_crtc *crtc,
 696				     struct drm_atomic_state *state)
 697{
 698	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
 699									  crtc);
 700	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc_state);
 701	struct drm_encoder *encoder;
 702	int ret;
 703
 704	ret = rcar_du_cmm_check(crtc, crtc_state);
 705	if (ret)
 706		return ret;
 707
 708	/* Store the routes from the CRTC output to the DU outputs. */
 709	rstate->outputs = 0;
 710
 711	drm_for_each_encoder_mask(encoder, crtc->dev,
 712				  crtc_state->encoder_mask) {
 713		struct rcar_du_encoder *renc;
 714
 715		/* Skip the writeback encoder. */
 716		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
 717			continue;
 718
 719		renc = to_rcar_encoder(encoder);
 720		rstate->outputs |= BIT(renc->output);
 721	}
 722
 723	return 0;
 724}
 725
 726static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc,
 727				       struct drm_atomic_state *state)
 728{
 729	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 730	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc->state);
 731	struct rcar_du_device *rcdu = rcrtc->dev;
 732
 733	if (rcrtc->cmm)
 734		rcar_cmm_enable(rcrtc->cmm);
 735	rcar_du_crtc_get(rcrtc);
 736
 737	/*
 738	 * On D3/E3 the dot clock is provided by the LVDS encoder attached to
 739	 * the DU channel. We need to enable its clock output explicitly if
 740	 * the LVDS output is disabled.
 741	 */
 742	if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
 743	    rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
 744		struct drm_bridge *bridge = rcdu->lvds[rcrtc->index];
 745		const struct drm_display_mode *mode =
 746			&crtc->state->adjusted_mode;
 747
 748		rcar_lvds_pclk_enable(bridge, mode->clock * 1000);
 749	}
 750
 751	/*
 752	 * Similarly to LVDS, on V3U the dot clock is provided by the DSI
 753	 * encoder, and we need to enable the DSI clocks before enabling the CRTC.
 754	 */
 755	if ((rcdu->info->dsi_clk_mask & BIT(rcrtc->index)) &&
 756	    (rstate->outputs &
 757	     (BIT(RCAR_DU_OUTPUT_DSI0) | BIT(RCAR_DU_OUTPUT_DSI1)))) {
 758		struct drm_bridge *bridge = rcdu->dsi[rcrtc->index];
 759
 760		rcar_mipi_dsi_pclk_enable(bridge, state);
 761	}
 762
 763	rcar_du_crtc_start(rcrtc);
 764
 765	/*
 766	 * TODO: The chip manual indicates that CMM tables should be written
 767	 * after the DU channel has been activated. Investigate the impact
 768	 * of this restriction on the first displayed frame.
 769	 */
 770	rcar_du_cmm_setup(crtc);
 771}
 772
 773static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc,
 774					struct drm_atomic_state *state)
 775{
 776	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
 777									 crtc);
 778	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 779	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(old_state);
 780	struct rcar_du_device *rcdu = rcrtc->dev;
 781
 782	rcar_du_crtc_stop(rcrtc);
 783	rcar_du_crtc_put(rcrtc);
 784
 785	if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
 786	    rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
 787		struct drm_bridge *bridge = rcdu->lvds[rcrtc->index];
 788
 789		/*
 790		 * Disable the LVDS clock output, see
 791		 * rcar_du_crtc_atomic_enable().
 792		 */
 793		rcar_lvds_pclk_disable(bridge);
 794	}
 795
 796	if ((rcdu->info->dsi_clk_mask & BIT(rcrtc->index)) &&
 797	    (rstate->outputs &
 798	     (BIT(RCAR_DU_OUTPUT_DSI0) | BIT(RCAR_DU_OUTPUT_DSI1)))) {
 799		struct drm_bridge *bridge = rcdu->dsi[rcrtc->index];
 800
 801		/*
 802		 * Disable the DSI clock output, see
 803		 * rcar_du_crtc_atomic_enable().
 804		 */
 805
 806		rcar_mipi_dsi_pclk_disable(bridge);
 807	}
 808
 809	spin_lock_irq(&crtc->dev->event_lock);
 810	if (crtc->state->event) {
 811		drm_crtc_send_vblank_event(crtc, crtc->state->event);
 812		crtc->state->event = NULL;
 813	}
 814	spin_unlock_irq(&crtc->dev->event_lock);
 815}
 816
 817static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
 818				      struct drm_atomic_state *state)
 819{
 820	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 821
 822	WARN_ON(!crtc->state->enable);
 823
 824	/*
 825	 * If a mode set is in progress we can be called with the CRTC disabled.
 826	 * We thus need to first get and setup the CRTC in order to configure
 827	 * planes. We must *not* put the CRTC in .atomic_flush(), as it must be
 828	 * kept awake until the .atomic_enable() call that will follow. The get
 829	 * operation in .atomic_enable() will in that case be a no-op, and the
 830	 * CRTC will be put later in .atomic_disable().
 831	 *
 832	 * If a mode set is not in progress the CRTC is enabled, and the
 833	 * following get call will be a no-op. There is thus no need to balance
 834	 * it in .atomic_flush() either.
 835	 */
 836	rcar_du_crtc_get(rcrtc);
 837
 838	/* If the active state changed, we let .atomic_enable handle CMM. */
 839	if (crtc->state->color_mgmt_changed && !crtc->state->active_changed)
 840		rcar_du_cmm_setup(crtc);
 841
 842	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
 843		rcar_du_vsp_atomic_begin(rcrtc);
 844}
 845
 846static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
 847				      struct drm_atomic_state *state)
 848{
 849	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 850	struct drm_device *dev = rcrtc->crtc.dev;
 851	unsigned long flags;
 852
 853	rcar_du_crtc_update_planes(rcrtc);
 854
 855	if (crtc->state->event) {
 856		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 857
 858		spin_lock_irqsave(&dev->event_lock, flags);
 859		rcrtc->event = crtc->state->event;
 860		crtc->state->event = NULL;
 861		spin_unlock_irqrestore(&dev->event_lock, flags);
 862	}
 863
 864	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
 865		rcar_du_vsp_atomic_flush(rcrtc);
 866}
 867
 868static enum drm_mode_status
 869rcar_du_crtc_mode_valid(struct drm_crtc *crtc,
 870			const struct drm_display_mode *mode)
 871{
 872	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 873	struct rcar_du_device *rcdu = rcrtc->dev;
 874	bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
 875	unsigned int min_sync_porch;
 876	unsigned int vbp;
 877
 878	if (interlaced && !rcar_du_has(rcdu, RCAR_DU_FEATURE_INTERLACED))
 879		return MODE_NO_INTERLACE;
 880
 881	/*
 882	 * The hardware requires a minimum combined horizontal sync and back
 883	 * porch of 20 pixels (when CMM isn't used) or 45 pixels (when CMM is
 884	 * used), and a minimum vertical back porch of 3 lines.
 885	 */
 886	min_sync_porch = 20;
 887	if (rcrtc->group->cmms_mask & BIT(rcrtc->index % 2))
 888		min_sync_porch += 25;
 889
 890	if (mode->htotal - mode->hsync_start < min_sync_porch)
 891		return MODE_HBLANK_NARROW;
 892
 893	vbp = (mode->vtotal - mode->vsync_end) / (interlaced ? 2 : 1);
 894	if (vbp < 3)
 895		return MODE_VBLANK_NARROW;
 896
 897	return MODE_OK;
 898}
 899
 900static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
 901	.atomic_check = rcar_du_crtc_atomic_check,
 902	.atomic_begin = rcar_du_crtc_atomic_begin,
 903	.atomic_flush = rcar_du_crtc_atomic_flush,
 904	.atomic_enable = rcar_du_crtc_atomic_enable,
 905	.atomic_disable = rcar_du_crtc_atomic_disable,
 906	.mode_valid = rcar_du_crtc_mode_valid,
 907};
 908
 909static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc)
 910{
 911	struct rcar_du_device *rcdu = rcrtc->dev;
 912	const char **sources;
 913	unsigned int count;
 914	int i = -1;
 915
 916	/* CRC available only on Gen3 HW. */
 917	if (rcdu->info->gen < 3)
 918		return;
 919
 920	/* Reserve 1 for "auto" source. */
 921	count = rcrtc->vsp->num_planes + 1;
 922
 923	sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL);
 924	if (!sources)
 925		return;
 926
 927	sources[0] = kstrdup("auto", GFP_KERNEL);
 928	if (!sources[0])
 929		goto error;
 930
 931	for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
 932		struct drm_plane *plane = &rcrtc->vsp->planes[i].plane;
 933		char name[16];
 934
 935		sprintf(name, "plane%u", plane->base.id);
 936		sources[i + 1] = kstrdup(name, GFP_KERNEL);
 937		if (!sources[i + 1])
 938			goto error;
 939	}
 940
 941	rcrtc->sources = sources;
 942	rcrtc->sources_count = count;
 943	return;
 944
 945error:
 946	while (i >= 0) {
 947		kfree(sources[i]);
 948		i--;
 949	}
 950	kfree(sources);
 951}
 952
 953static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc)
 954{
 955	unsigned int i;
 956
 957	if (!rcrtc->sources)
 958		return;
 959
 960	for (i = 0; i < rcrtc->sources_count; i++)
 961		kfree(rcrtc->sources[i]);
 962	kfree(rcrtc->sources);
 963
 964	rcrtc->sources = NULL;
 965	rcrtc->sources_count = 0;
 966}
 967
 968static struct drm_crtc_state *
 969rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
 970{
 971	struct rcar_du_crtc_state *state;
 972	struct rcar_du_crtc_state *copy;
 973
 974	if (WARN_ON(!crtc->state))
 975		return NULL;
 976
 977	state = to_rcar_crtc_state(crtc->state);
 978	copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
 979	if (copy == NULL)
 980		return NULL;
 981
 982	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->state);
 983
 984	return &copy->state;
 985}
 986
 987static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc,
 988					      struct drm_crtc_state *state)
 989{
 990	__drm_atomic_helper_crtc_destroy_state(state);
 991	kfree(to_rcar_crtc_state(state));
 992}
 993
 994static void rcar_du_crtc_cleanup(struct drm_crtc *crtc)
 995{
 996	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 997
 998	rcar_du_crtc_crc_cleanup(rcrtc);
 999
1000	return drm_crtc_cleanup(crtc);
1001}
1002
1003static void rcar_du_crtc_reset(struct drm_crtc *crtc)
1004{
1005	struct rcar_du_crtc_state *state;
1006
1007	if (crtc->state) {
1008		rcar_du_crtc_atomic_destroy_state(crtc, crtc->state);
1009		crtc->state = NULL;
1010	}
1011
1012	state = kzalloc(sizeof(*state), GFP_KERNEL);
1013	if (state == NULL)
1014		return;
1015
1016	state->crc.source = VSP1_DU_CRC_NONE;
1017	state->crc.index = 0;
1018
1019	__drm_atomic_helper_crtc_reset(crtc, &state->state);
1020}
1021
1022static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
1023{
1024	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1025
1026	rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
1027	rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
1028	rcrtc->vblank_enable = true;
1029
1030	return 0;
1031}
1032
1033static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
1034{
1035	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1036
1037	rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
1038	rcrtc->vblank_enable = false;
1039}
1040
1041static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc,
1042					 const char *source_name,
1043					 enum vsp1_du_crc_source *source)
1044{
1045	unsigned int index;
1046	int ret;
1047
1048	/*
1049	 * Parse the source name. Supported values are "plane%u" to compute the
1050	 * CRC on an input plane (%u is the plane ID), and "auto" to compute the
1051	 * CRC on the composer (VSP) output.
1052	 */
1053
1054	if (!source_name) {
1055		*source = VSP1_DU_CRC_NONE;
1056		return 0;
1057	} else if (!strcmp(source_name, "auto")) {
1058		*source = VSP1_DU_CRC_OUTPUT;
1059		return 0;
1060	} else if (strstarts(source_name, "plane")) {
1061		unsigned int i;
1062
1063		*source = VSP1_DU_CRC_PLANE;
1064
1065		ret = kstrtouint(source_name + strlen("plane"), 10, &index);
1066		if (ret < 0)
1067			return ret;
1068
1069		for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
1070			if (index == rcrtc->vsp->planes[i].plane.base.id)
1071				return i;
1072		}
1073	}
1074
1075	return -EINVAL;
1076}
1077
1078static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc,
1079					  const char *source_name,
1080					  size_t *values_cnt)
1081{
1082	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1083	enum vsp1_du_crc_source source;
1084
1085	if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) {
1086		DRM_DEBUG_DRIVER("unknown source %s\n", source_name);
1087		return -EINVAL;
1088	}
1089
1090	*values_cnt = 1;
1091	return 0;
1092}
1093
1094static const char *const *
1095rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc, size_t *count)
1096{
1097	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1098
1099	*count = rcrtc->sources_count;
1100	return rcrtc->sources;
1101}
1102
1103static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc,
1104				       const char *source_name)
1105{
1106	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1107	struct drm_modeset_acquire_ctx ctx;
1108	struct drm_crtc_state *crtc_state;
1109	struct drm_atomic_state *state;
1110	enum vsp1_du_crc_source source;
1111	unsigned int index;
1112	int ret;
1113
1114	ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source);
1115	if (ret < 0)
1116		return ret;
1117
1118	index = ret;
1119
1120	/* Perform an atomic commit to set the CRC source. */
1121	drm_modeset_acquire_init(&ctx, 0);
1122
1123	state = drm_atomic_state_alloc(crtc->dev);
1124	if (!state) {
1125		ret = -ENOMEM;
1126		goto unlock;
1127	}
1128
1129	state->acquire_ctx = &ctx;
1130
1131retry:
1132	crtc_state = drm_atomic_get_crtc_state(state, crtc);
1133	if (!IS_ERR(crtc_state)) {
1134		struct rcar_du_crtc_state *rcrtc_state;
1135
1136		rcrtc_state = to_rcar_crtc_state(crtc_state);
1137		rcrtc_state->crc.source = source;
1138		rcrtc_state->crc.index = index;
1139
1140		ret = drm_atomic_commit(state);
1141	} else {
1142		ret = PTR_ERR(crtc_state);
1143	}
1144
1145	if (ret == -EDEADLK) {
1146		drm_atomic_state_clear(state);
1147		drm_modeset_backoff(&ctx);
1148		goto retry;
1149	}
1150
1151	drm_atomic_state_put(state);
1152
1153unlock:
1154	drm_modeset_drop_locks(&ctx);
1155	drm_modeset_acquire_fini(&ctx);
1156
1157	return ret;
1158}
1159
1160static const struct drm_crtc_funcs crtc_funcs_gen2 = {
1161	.reset = rcar_du_crtc_reset,
1162	.destroy = drm_crtc_cleanup,
1163	.set_config = drm_atomic_helper_set_config,
1164	.page_flip = drm_atomic_helper_page_flip,
1165	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1166	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1167	.enable_vblank = rcar_du_crtc_enable_vblank,
1168	.disable_vblank = rcar_du_crtc_disable_vblank,
1169};
1170
1171static const struct drm_crtc_funcs crtc_funcs_gen3 = {
1172	.reset = rcar_du_crtc_reset,
1173	.destroy = rcar_du_crtc_cleanup,
1174	.set_config = drm_atomic_helper_set_config,
1175	.page_flip = drm_atomic_helper_page_flip,
1176	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1177	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1178	.enable_vblank = rcar_du_crtc_enable_vblank,
1179	.disable_vblank = rcar_du_crtc_disable_vblank,
1180	.set_crc_source = rcar_du_crtc_set_crc_source,
1181	.verify_crc_source = rcar_du_crtc_verify_crc_source,
1182	.get_crc_sources = rcar_du_crtc_get_crc_sources,
1183};
1184
1185/* -----------------------------------------------------------------------------
1186 * Interrupt Handling
1187 */
1188
1189static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
1190{
1191	struct rcar_du_crtc *rcrtc = arg;
1192	struct rcar_du_device *rcdu = rcrtc->dev;
1193	irqreturn_t ret = IRQ_NONE;
1194	u32 status;
1195
1196	spin_lock(&rcrtc->vblank_lock);
1197
1198	status = rcar_du_crtc_read(rcrtc, DSSR);
1199	rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
1200
1201	if (status & DSSR_VBK) {
1202		/*
1203		 * Wake up the vblank wait if the counter reaches 0. This must
1204		 * be protected by the vblank_lock to avoid races in
1205		 * rcar_du_crtc_disable_planes().
1206		 */
1207		if (rcrtc->vblank_count) {
1208			if (--rcrtc->vblank_count == 0)
1209				wake_up(&rcrtc->vblank_wait);
1210		}
1211	}
1212
1213	spin_unlock(&rcrtc->vblank_lock);
1214
1215	if (status & DSSR_VBK) {
1216		if (rcdu->info->gen < 3) {
1217			drm_crtc_handle_vblank(&rcrtc->crtc);
1218			rcar_du_crtc_finish_page_flip(rcrtc);
1219		}
1220
1221		ret = IRQ_HANDLED;
1222	}
1223
1224	return ret;
1225}
1226
1227/* -----------------------------------------------------------------------------
1228 * Initialization
1229 */
1230
1231int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex,
1232			unsigned int hwindex)
1233{
1234	static const unsigned int mmio_offsets[] = {
1235		DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
1236	};
1237
1238	struct rcar_du_device *rcdu = rgrp->dev;
1239	struct platform_device *pdev = to_platform_device(rcdu->dev);
1240	struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex];
1241	struct drm_crtc *crtc = &rcrtc->crtc;
1242	struct drm_plane *primary;
1243	unsigned int irqflags;
1244	struct clk *clk;
1245	char clk_name[9];
1246	char *name;
1247	int irq;
1248	int ret;
1249
1250	/* Get the CRTC clock and the optional external clock. */
1251	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_CLOCK)) {
1252		sprintf(clk_name, "du.%u", hwindex);
1253		name = clk_name;
1254	} else {
1255		name = NULL;
1256	}
1257
1258	rcrtc->clock = devm_clk_get(rcdu->dev, name);
1259	if (IS_ERR(rcrtc->clock)) {
1260		dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex);
1261		return PTR_ERR(rcrtc->clock);
1262	}
1263
1264	sprintf(clk_name, "dclkin.%u", hwindex);
1265	clk = devm_clk_get(rcdu->dev, clk_name);
1266	if (!IS_ERR(clk)) {
1267		rcrtc->extclock = clk;
1268	} else if (PTR_ERR(clk) == -EPROBE_DEFER) {
1269		return -EPROBE_DEFER;
1270	} else if (rcdu->info->dpll_mask & BIT(hwindex)) {
1271		/*
1272		 * DU channels that have a display PLL can't use the internal
1273		 * system clock and thus require an external clock.
1274		 */
1275		ret = PTR_ERR(clk);
1276		dev_err(rcdu->dev, "can't get dclkin.%u: %d\n", hwindex, ret);
1277		return ret;
1278	}
1279
1280	init_waitqueue_head(&rcrtc->flip_wait);
1281	init_waitqueue_head(&rcrtc->vblank_wait);
1282	spin_lock_init(&rcrtc->vblank_lock);
1283
1284	rcrtc->dev = rcdu;
1285	rcrtc->group = rgrp;
1286	rcrtc->mmio_offset = mmio_offsets[hwindex];
1287	rcrtc->index = hwindex;
1288	rcrtc->dsysr = rcrtc->index % 2 ? 0 : DSYSR_DRES;
1289
1290	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_TVM_SYNC))
1291		rcrtc->dsysr |= DSYSR_TVM_TVSYNC;
1292
1293	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
1294		primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane;
1295	else
1296		primary = &rgrp->planes[swindex % 2].plane;
1297
1298	ret = drm_crtc_init_with_planes(&rcdu->ddev, crtc, primary, NULL,
1299					rcdu->info->gen <= 2 ?
1300					&crtc_funcs_gen2 : &crtc_funcs_gen3,
1301					NULL);
1302	if (ret < 0)
1303		return ret;
1304
1305	/* CMM might be disabled for this CRTC. */
1306	if (rcdu->cmms[swindex]) {
1307		rcrtc->cmm = rcdu->cmms[swindex];
1308		rgrp->cmms_mask |= BIT(hwindex % 2);
1309
1310		drm_mode_crtc_set_gamma_size(crtc, CM2_LUT_SIZE);
1311		drm_crtc_enable_color_mgmt(crtc, 0, false, CM2_LUT_SIZE);
1312	}
1313
1314	drm_crtc_helper_add(crtc, &crtc_helper_funcs);
1315
1316	/* Register the interrupt handler. */
1317	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ)) {
1318		/* The IRQ's are associated with the CRTC (sw)index. */
1319		irq = platform_get_irq(pdev, swindex);
1320		irqflags = 0;
1321	} else {
1322		irq = platform_get_irq(pdev, 0);
1323		irqflags = IRQF_SHARED;
1324	}
1325
1326	if (irq < 0) {
1327		dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex);
1328		return irq;
1329	}
1330
1331	ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
1332			       dev_name(rcdu->dev), rcrtc);
1333	if (ret < 0) {
1334		dev_err(rcdu->dev,
1335			"failed to register IRQ for CRTC %u\n", swindex);
1336		return ret;
1337	}
1338
1339	rcar_du_crtc_crc_init(rcrtc);
1340
1341	return 0;
1342}