Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2013 Red Hat
   4 * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved.
   5 * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
   6 *
   7 * Author: Rob Clark <robdclark@gmail.com>
   8 */
   9
  10#define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
  11#include <linux/debugfs.h>
  12#include <linux/kthread.h>
  13#include <linux/seq_file.h>
  14
  15#include <drm/drm_crtc.h>
  16#include <drm/drm_file.h>
  17#include <drm/drm_probe_helper.h>
  18
  19#include "msm_drv.h"
  20#include "dpu_kms.h"
  21#include "dpu_hwio.h"
  22#include "dpu_hw_catalog.h"
  23#include "dpu_hw_intf.h"
  24#include "dpu_hw_ctl.h"
  25#include "dpu_hw_dspp.h"
  26#include "dpu_hw_dsc.h"
  27#include "dpu_hw_merge3d.h"
  28#include "dpu_formats.h"
  29#include "dpu_encoder_phys.h"
  30#include "dpu_crtc.h"
  31#include "dpu_trace.h"
  32#include "dpu_core_irq.h"
  33#include "disp/msm_disp_snapshot.h"
  34
  35#define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\
  36		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
  37
  38#define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
  39		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
  40
  41/*
  42 * Two to anticipate panels that can do cmd/vid dynamic switching
  43 * plan is to create all possible physical encoder types, and switch between
  44 * them at runtime
  45 */
  46#define NUM_PHYS_ENCODER_TYPES 2
  47
  48#define MAX_PHYS_ENCODERS_PER_VIRTUAL \
  49	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
  50
  51#define MAX_CHANNELS_PER_ENC 2
  52
  53#define IDLE_SHORT_TIMEOUT	1
  54
  55#define MAX_HDISPLAY_SPLIT 1080
  56
  57/* timeout in frames waiting for frame done */
  58#define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
  59
  60/**
  61 * enum dpu_enc_rc_events - events for resource control state machine
  62 * @DPU_ENC_RC_EVENT_KICKOFF:
  63 *	This event happens at NORMAL priority.
  64 *	Event that signals the start of the transfer. When this event is
  65 *	received, enable MDP/DSI core clocks. Regardless of the previous
  66 *	state, the resource should be in ON state at the end of this event.
  67 * @DPU_ENC_RC_EVENT_FRAME_DONE:
  68 *	This event happens at INTERRUPT level.
  69 *	Event signals the end of the data transfer after the PP FRAME_DONE
  70 *	event. At the end of this event, a delayed work is scheduled to go to
  71 *	IDLE_PC state after IDLE_TIMEOUT time.
  72 * @DPU_ENC_RC_EVENT_PRE_STOP:
  73 *	This event happens at NORMAL priority.
  74 *	This event, when received during the ON state, leave the RC STATE
  75 *	in the PRE_OFF state. It should be followed by the STOP event as
  76 *	part of encoder disable.
  77 *	If received during IDLE or OFF states, it will do nothing.
  78 * @DPU_ENC_RC_EVENT_STOP:
  79 *	This event happens at NORMAL priority.
  80 *	When this event is received, disable all the MDP/DSI core clocks, and
  81 *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
  82 *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
  83 *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
  84 *	Resource state should be in OFF at the end of the event.
  85 * @DPU_ENC_RC_EVENT_ENTER_IDLE:
  86 *	This event happens at NORMAL priority from a work item.
  87 *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
  88 *	This would disable MDP/DSI core clocks and change the resource state
  89 *	to IDLE.
  90 */
  91enum dpu_enc_rc_events {
  92	DPU_ENC_RC_EVENT_KICKOFF = 1,
  93	DPU_ENC_RC_EVENT_FRAME_DONE,
  94	DPU_ENC_RC_EVENT_PRE_STOP,
  95	DPU_ENC_RC_EVENT_STOP,
  96	DPU_ENC_RC_EVENT_ENTER_IDLE
  97};
  98
  99/*
 100 * enum dpu_enc_rc_states - states that the resource control maintains
 101 * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
 102 * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
 103 * @DPU_ENC_RC_STATE_ON: Resource is in ON state
 104 * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
 105 * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
 106 */
 107enum dpu_enc_rc_states {
 108	DPU_ENC_RC_STATE_OFF,
 109	DPU_ENC_RC_STATE_PRE_OFF,
 110	DPU_ENC_RC_STATE_ON,
 111	DPU_ENC_RC_STATE_IDLE
 112};
 113
 114/**
 115 * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
 116 *	encoders. Virtual encoder manages one "logical" display. Physical
 117 *	encoders manage one intf block, tied to a specific panel/sub-panel.
 118 *	Virtual encoder defers as much as possible to the physical encoders.
 119 *	Virtual encoder registers itself with the DRM Framework as the encoder.
 120 * @base:		drm_encoder base class for registration with DRM
 121 * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
 122 * @enabled:		True if the encoder is active, protected by enc_lock
 123 * @num_phys_encs:	Actual number of physical encoders contained.
 124 * @phys_encs:		Container of physical encoders managed.
 125 * @cur_master:		Pointer to the current master in this mode. Optimization
 126 *			Only valid after enable. Cleared as disable.
 127 * @cur_slave:		As above but for the slave encoder.
 128 * @hw_pp:		Handle to the pingpong blocks used for the display. No.
 129 *			pingpong blocks can be different than num_phys_encs.
 130 * @hw_dsc:		Handle to the DSC blocks used for the display.
 131 * @dsc_mask:		Bitmask of used DSC blocks.
 132 * @intfs_swapped:	Whether or not the phys_enc interfaces have been swapped
 133 *			for partial update right-only cases, such as pingpong
 134 *			split where virtual pingpong does not generate IRQs
 135 * @crtc:		Pointer to the currently assigned crtc. Normally you
 136 *			would use crtc->state->encoder_mask to determine the
 137 *			link between encoder/crtc. However in this case we need
 138 *			to track crtc in the disable() hook which is called
 139 *			_after_ encoder_mask is cleared.
 140 * @connector:		If a mode is set, cached pointer to the active connector
 141 * @crtc_kickoff_cb:		Callback into CRTC that will flush & start
 142 *				all CTL paths
 143 * @crtc_kickoff_cb_data:	Opaque user data given to crtc_kickoff_cb
 144 * @debugfs_root:		Debug file system root file node
 145 * @enc_lock:			Lock around physical encoder
 146 *				create/destroy/enable/disable
 147 * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
 148 *				busy processing current command.
 149 *				Bit0 = phys_encs[0] etc.
 150 * @crtc_frame_event_cb:	callback handler for frame event
 151 * @crtc_frame_event_cb_data:	callback handler private data
 152 * @frame_done_timeout_ms:	frame done timeout in ms
 153 * @frame_done_timer:		watchdog timer for frame done event
 154 * @vsync_event_timer:		vsync timer
 155 * @disp_info:			local copy of msm_display_info struct
 156 * @idle_pc_supported:		indicate if idle power collaps is supported
 157 * @rc_lock:			resource control mutex lock to protect
 158 *				virt encoder over various state changes
 159 * @rc_state:			resource controller state
 160 * @delayed_off_work:		delayed worker to schedule disabling of
 161 *				clks and resources after IDLE_TIMEOUT time.
 162 * @vsync_event_work:		worker to handle vsync event for autorefresh
 163 * @topology:                   topology of the display
 164 * @idle_timeout:		idle timeout duration in milliseconds
 165 * @dsc:			drm_dsc_config pointer, for DSC-enabled encoders
 166 */
 167struct dpu_encoder_virt {
 168	struct drm_encoder base;
 169	spinlock_t enc_spinlock;
 170
 171	bool enabled;
 172
 173	unsigned int num_phys_encs;
 174	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
 175	struct dpu_encoder_phys *cur_master;
 176	struct dpu_encoder_phys *cur_slave;
 177	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
 178	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
 179
 180	unsigned int dsc_mask;
 181
 182	bool intfs_swapped;
 183
 184	struct drm_crtc *crtc;
 185	struct drm_connector *connector;
 186
 187	struct dentry *debugfs_root;
 188	struct mutex enc_lock;
 189	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
 190	void (*crtc_frame_event_cb)(void *, u32 event);
 191	void *crtc_frame_event_cb_data;
 192
 193	atomic_t frame_done_timeout_ms;
 194	struct timer_list frame_done_timer;
 195	struct timer_list vsync_event_timer;
 196
 197	struct msm_display_info disp_info;
 198
 199	bool idle_pc_supported;
 200	struct mutex rc_lock;
 201	enum dpu_enc_rc_states rc_state;
 202	struct delayed_work delayed_off_work;
 203	struct kthread_work vsync_event_work;
 204	struct msm_display_topology topology;
 205
 206	u32 idle_timeout;
 207
 208	bool wide_bus_en;
 209
 210	/* DSC configuration */
 211	struct drm_dsc_config *dsc;
 212};
 213
 214#define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
 215
 216static u32 dither_matrix[DITHER_MATRIX_SZ] = {
 217	15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
 218};
 219
 220
 221bool dpu_encoder_is_widebus_enabled(const struct drm_encoder *drm_enc)
 222{
 223	const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
 224
 225	return dpu_enc->wide_bus_en;
 226}
 227
 228int dpu_encoder_get_crc_values_cnt(const struct drm_encoder *drm_enc)
 229{
 230	struct dpu_encoder_virt *dpu_enc;
 231	int i, num_intf = 0;
 232
 233	dpu_enc = to_dpu_encoder_virt(drm_enc);
 234
 235	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
 236		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
 237
 238		if (phys->hw_intf && phys->hw_intf->ops.setup_misr
 239				&& phys->hw_intf->ops.collect_misr)
 240			num_intf++;
 241	}
 242
 243	return num_intf;
 244}
 245
 246void dpu_encoder_setup_misr(const struct drm_encoder *drm_enc)
 247{
 248	struct dpu_encoder_virt *dpu_enc;
 249
 250	int i;
 251
 252	dpu_enc = to_dpu_encoder_virt(drm_enc);
 253
 254	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
 255		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
 256
 257		if (!phys->hw_intf || !phys->hw_intf->ops.setup_misr)
 258			continue;
 259
 260		phys->hw_intf->ops.setup_misr(phys->hw_intf, true, 1);
 261	}
 262}
 263
 264int dpu_encoder_get_crc(const struct drm_encoder *drm_enc, u32 *crcs, int pos)
 265{
 266	struct dpu_encoder_virt *dpu_enc;
 267
 268	int i, rc = 0, entries_added = 0;
 269
 270	if (!drm_enc->crtc) {
 271		DRM_ERROR("no crtc found for encoder %d\n", drm_enc->index);
 272		return -EINVAL;
 273	}
 274
 275	dpu_enc = to_dpu_encoder_virt(drm_enc);
 276
 277	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
 278		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
 279
 280		if (!phys->hw_intf || !phys->hw_intf->ops.collect_misr)
 281			continue;
 282
 283		rc = phys->hw_intf->ops.collect_misr(phys->hw_intf, &crcs[pos + entries_added]);
 284		if (rc)
 285			return rc;
 286		entries_added++;
 287	}
 288
 289	return entries_added;
 290}
 291
 292static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
 293{
 294	struct dpu_hw_dither_cfg dither_cfg = { 0 };
 295
 296	if (!hw_pp->ops.setup_dither)
 297		return;
 298
 299	switch (bpc) {
 300	case 6:
 301		dither_cfg.c0_bitdepth = 6;
 302		dither_cfg.c1_bitdepth = 6;
 303		dither_cfg.c2_bitdepth = 6;
 304		dither_cfg.c3_bitdepth = 6;
 305		dither_cfg.temporal_en = 0;
 306		break;
 307	default:
 308		hw_pp->ops.setup_dither(hw_pp, NULL);
 309		return;
 310	}
 311
 312	memcpy(&dither_cfg.matrix, dither_matrix,
 313			sizeof(u32) * DITHER_MATRIX_SZ);
 314
 315	hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
 316}
 317
 318static char *dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)
 319{
 320	switch (intf_mode) {
 321	case INTF_MODE_VIDEO:
 322		return "INTF_MODE_VIDEO";
 323	case INTF_MODE_CMD:
 324		return "INTF_MODE_CMD";
 325	case INTF_MODE_WB_BLOCK:
 326		return "INTF_MODE_WB_BLOCK";
 327	case INTF_MODE_WB_LINE:
 328		return "INTF_MODE_WB_LINE";
 329	default:
 330		return "INTF_MODE_UNKNOWN";
 331	}
 332}
 333
 334void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
 335		enum dpu_intr_idx intr_idx)
 336{
 337	DRM_ERROR("irq timeout id=%u, intf_mode=%s intf=%d wb=%d, pp=%d, intr=%d\n",
 338			DRMID(phys_enc->parent),
 339			dpu_encoder_helper_get_intf_type(phys_enc->intf_mode),
 340			phys_enc->intf_idx - INTF_0, phys_enc->wb_idx - WB_0,
 341			phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
 342
 343	if (phys_enc->parent_ops->handle_frame_done)
 344		phys_enc->parent_ops->handle_frame_done(
 345				phys_enc->parent, phys_enc,
 346				DPU_ENCODER_FRAME_EVENT_ERROR);
 347}
 348
 349static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
 350		u32 irq_idx, struct dpu_encoder_wait_info *info);
 351
 352int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
 353		int irq,
 354		void (*func)(void *arg, int irq_idx),
 355		struct dpu_encoder_wait_info *wait_info)
 356{
 357	u32 irq_status;
 358	int ret;
 359
 360	if (!wait_info) {
 361		DPU_ERROR("invalid params\n");
 362		return -EINVAL;
 363	}
 364	/* note: do master / slave checking outside */
 365
 366	/* return EWOULDBLOCK since we know the wait isn't necessary */
 367	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
 368		DRM_ERROR("encoder is disabled id=%u, callback=%ps, irq=%d\n",
 369			  DRMID(phys_enc->parent), func,
 370			  irq);
 371		return -EWOULDBLOCK;
 372	}
 373
 374	if (irq < 0) {
 375		DRM_DEBUG_KMS("skip irq wait id=%u, callback=%ps\n",
 376			      DRMID(phys_enc->parent), func);
 377		return 0;
 378	}
 379
 380	DRM_DEBUG_KMS("id=%u, callback=%ps, irq=%d, pp=%d, pending_cnt=%d\n",
 381		      DRMID(phys_enc->parent), func,
 382		      irq, phys_enc->hw_pp->idx - PINGPONG_0,
 383		      atomic_read(wait_info->atomic_cnt));
 384
 385	ret = dpu_encoder_helper_wait_event_timeout(
 386			DRMID(phys_enc->parent),
 387			irq,
 388			wait_info);
 389
 390	if (ret <= 0) {
 391		irq_status = dpu_core_irq_read(phys_enc->dpu_kms, irq);
 392		if (irq_status) {
 393			unsigned long flags;
 394
 395			DRM_DEBUG_KMS("irq not triggered id=%u, callback=%ps, irq=%d, pp=%d, atomic_cnt=%d\n",
 396				      DRMID(phys_enc->parent), func,
 397				      irq,
 398				      phys_enc->hw_pp->idx - PINGPONG_0,
 399				      atomic_read(wait_info->atomic_cnt));
 400			local_irq_save(flags);
 401			func(phys_enc, irq);
 402			local_irq_restore(flags);
 403			ret = 0;
 404		} else {
 405			ret = -ETIMEDOUT;
 406			DRM_DEBUG_KMS("irq timeout id=%u, callback=%ps, irq=%d, pp=%d, atomic_cnt=%d\n",
 407				      DRMID(phys_enc->parent), func,
 408				      irq,
 409				      phys_enc->hw_pp->idx - PINGPONG_0,
 410				      atomic_read(wait_info->atomic_cnt));
 411		}
 412	} else {
 413		ret = 0;
 414		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
 415			func, irq,
 416			phys_enc->hw_pp->idx - PINGPONG_0,
 417			atomic_read(wait_info->atomic_cnt));
 418	}
 419
 420	return ret;
 421}
 422
 423int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc)
 424{
 425	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
 426	struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL;
 427	return phys ? atomic_read(&phys->vsync_cnt) : 0;
 428}
 429
 430int dpu_encoder_get_linecount(struct drm_encoder *drm_enc)
 431{
 432	struct dpu_encoder_virt *dpu_enc;
 433	struct dpu_encoder_phys *phys;
 434	int linecount = 0;
 435
 436	dpu_enc = to_dpu_encoder_virt(drm_enc);
 437	phys = dpu_enc ? dpu_enc->cur_master : NULL;
 438
 439	if (phys && phys->ops.get_line_count)
 440		linecount = phys->ops.get_line_count(phys);
 441
 442	return linecount;
 443}
 444
 445static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
 446{
 447	struct dpu_encoder_virt *dpu_enc = NULL;
 448	int i = 0;
 449
 450	if (!drm_enc) {
 451		DPU_ERROR("invalid encoder\n");
 452		return;
 453	}
 454
 455	dpu_enc = to_dpu_encoder_virt(drm_enc);
 456	DPU_DEBUG_ENC(dpu_enc, "\n");
 457
 458	mutex_lock(&dpu_enc->enc_lock);
 459
 460	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
 461		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
 462
 463		if (phys->ops.destroy) {
 464			phys->ops.destroy(phys);
 465			--dpu_enc->num_phys_encs;
 466			dpu_enc->phys_encs[i] = NULL;
 467		}
 468	}
 469
 470	if (dpu_enc->num_phys_encs)
 471		DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
 472				dpu_enc->num_phys_encs);
 473	dpu_enc->num_phys_encs = 0;
 474	mutex_unlock(&dpu_enc->enc_lock);
 475
 476	drm_encoder_cleanup(drm_enc);
 477	mutex_destroy(&dpu_enc->enc_lock);
 478}
 479
 480void dpu_encoder_helper_split_config(
 481		struct dpu_encoder_phys *phys_enc,
 482		enum dpu_intf interface)
 483{
 484	struct dpu_encoder_virt *dpu_enc;
 485	struct split_pipe_cfg cfg = { 0 };
 486	struct dpu_hw_mdp *hw_mdptop;
 487	struct msm_display_info *disp_info;
 488
 489	if (!phys_enc->hw_mdptop || !phys_enc->parent) {
 490		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
 491		return;
 492	}
 493
 494	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
 495	hw_mdptop = phys_enc->hw_mdptop;
 496	disp_info = &dpu_enc->disp_info;
 497
 498	if (disp_info->intf_type != DRM_MODE_ENCODER_DSI)
 499		return;
 500
 501	/**
 502	 * disable split modes since encoder will be operating in as the only
 503	 * encoder, either for the entire use case in the case of, for example,
 504	 * single DSI, or for this frame in the case of left/right only partial
 505	 * update.
 506	 */
 507	if (phys_enc->split_role == ENC_ROLE_SOLO) {
 508		if (hw_mdptop->ops.setup_split_pipe)
 509			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
 510		return;
 511	}
 512
 513	cfg.en = true;
 514	cfg.mode = phys_enc->intf_mode;
 515	cfg.intf = interface;
 516
 517	if (cfg.en && phys_enc->ops.needs_single_flush &&
 518			phys_enc->ops.needs_single_flush(phys_enc))
 519		cfg.split_flush_en = true;
 520
 521	if (phys_enc->split_role == ENC_ROLE_MASTER) {
 522		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
 523
 524		if (hw_mdptop->ops.setup_split_pipe)
 525			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
 526	}
 527}
 528
 529bool dpu_encoder_use_dsc_merge(struct drm_encoder *drm_enc)
 530{
 531	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
 532	int i, intf_count = 0, num_dsc = 0;
 533
 534	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
 535		if (dpu_enc->phys_encs[i])
 536			intf_count++;
 537
 538	/* See dpu_encoder_get_topology, we only support 2:2:1 topology */
 539	if (dpu_enc->dsc)
 540		num_dsc = 2;
 541
 542	return (num_dsc > 0) && (num_dsc > intf_count);
 543}
 544
 545static struct msm_display_topology dpu_encoder_get_topology(
 546			struct dpu_encoder_virt *dpu_enc,
 547			struct dpu_kms *dpu_kms,
 548			struct drm_display_mode *mode)
 549{
 550	struct msm_display_topology topology = {0};
 551	int i, intf_count = 0;
 552
 553	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
 554		if (dpu_enc->phys_encs[i])
 555			intf_count++;
 556
 557	/* Datapath topology selection
 558	 *
 559	 * Dual display
 560	 * 2 LM, 2 INTF ( Split display using 2 interfaces)
 561	 *
 562	 * Single display
 563	 * 1 LM, 1 INTF
 564	 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
 565	 *
 566	 * Adding color blocks only to primary interface if available in
 567	 * sufficient number
 568	 */
 569	if (intf_count == 2)
 570		topology.num_lm = 2;
 571	else if (!dpu_kms->catalog->caps->has_3d_merge)
 572		topology.num_lm = 1;
 573	else
 574		topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
 575
 576	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI) {
 577		if (dpu_kms->catalog->dspp &&
 578			(dpu_kms->catalog->dspp_count >= topology.num_lm))
 579			topology.num_dspp = topology.num_lm;
 580	}
 581
 582	topology.num_enc = 0;
 583	topology.num_intf = intf_count;
 584
 585	if (dpu_enc->dsc) {
 586		/* In case of Display Stream Compression (DSC), we would use
 587		 * 2 encoders, 2 layer mixers and 1 interface
 588		 * this is power optimal and can drive up to (including) 4k
 589		 * screens
 590		 */
 591		topology.num_enc = 2;
 592		topology.num_dsc = 2;
 593		topology.num_intf = 1;
 594		topology.num_lm = 2;
 595	}
 596
 597	return topology;
 598}
 599
 600static int dpu_encoder_virt_atomic_check(
 601		struct drm_encoder *drm_enc,
 602		struct drm_crtc_state *crtc_state,
 603		struct drm_connector_state *conn_state)
 604{
 605	struct dpu_encoder_virt *dpu_enc;
 606	struct msm_drm_private *priv;
 607	struct dpu_kms *dpu_kms;
 608	struct drm_display_mode *adj_mode;
 609	struct msm_display_topology topology;
 610	struct dpu_global_state *global_state;
 611	int i = 0;
 612	int ret = 0;
 613
 614	if (!drm_enc || !crtc_state || !conn_state) {
 615		DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
 616				drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
 617		return -EINVAL;
 618	}
 619
 620	dpu_enc = to_dpu_encoder_virt(drm_enc);
 621	DPU_DEBUG_ENC(dpu_enc, "\n");
 622
 623	priv = drm_enc->dev->dev_private;
 624	dpu_kms = to_dpu_kms(priv->kms);
 625	adj_mode = &crtc_state->adjusted_mode;
 626	global_state = dpu_kms_get_global_state(crtc_state->state);
 627	if (IS_ERR(global_state))
 628		return PTR_ERR(global_state);
 629
 630	trace_dpu_enc_atomic_check(DRMID(drm_enc));
 631
 632	/* perform atomic check on the first physical encoder (master) */
 633	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
 634		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
 635
 636		if (phys->ops.atomic_check)
 637			ret = phys->ops.atomic_check(phys, crtc_state,
 638					conn_state);
 639		if (ret) {
 640			DPU_ERROR_ENC(dpu_enc,
 641					"mode unsupported, phys idx %d\n", i);
 642			break;
 643		}
 644	}
 645
 646	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
 647
 648	/* Reserve dynamic resources now. */
 649	if (!ret) {
 650		/*
 651		 * Release and Allocate resources on every modeset
 652		 * Dont allocate when active is false.
 653		 */
 654		if (drm_atomic_crtc_needs_modeset(crtc_state)) {
 655			dpu_rm_release(global_state, drm_enc);
 656
 657			if (!crtc_state->active_changed || crtc_state->active)
 658				ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
 659						drm_enc, crtc_state, topology);
 660		}
 661	}
 662
 663	trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags);
 664
 665	return ret;
 666}
 667
 668static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
 669			struct msm_display_info *disp_info)
 670{
 671	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
 672	struct msm_drm_private *priv;
 673	struct dpu_kms *dpu_kms;
 674	struct dpu_hw_mdp *hw_mdptop;
 675	struct drm_encoder *drm_enc;
 676	int i;
 677
 678	if (!dpu_enc || !disp_info) {
 679		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
 680					dpu_enc != NULL, disp_info != NULL);
 681		return;
 682	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
 683		DPU_ERROR("invalid num phys enc %d/%d\n",
 684				dpu_enc->num_phys_encs,
 685				(int) ARRAY_SIZE(dpu_enc->hw_pp));
 686		return;
 687	}
 688
 689	drm_enc = &dpu_enc->base;
 690	/* this pointers are checked in virt_enable_helper */
 691	priv = drm_enc->dev->dev_private;
 692
 693	dpu_kms = to_dpu_kms(priv->kms);
 694	hw_mdptop = dpu_kms->hw_mdp;
 695	if (!hw_mdptop) {
 696		DPU_ERROR("invalid mdptop\n");
 697		return;
 698	}
 699
 700	if (hw_mdptop->ops.setup_vsync_source &&
 701			disp_info->is_cmd_mode) {
 702		for (i = 0; i < dpu_enc->num_phys_encs; i++)
 703			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
 704
 705		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
 706		if (disp_info->is_te_using_watchdog_timer)
 707			vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
 708		else
 709			vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
 710
 711		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
 712	}
 713}
 714
 715static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
 716{
 717	struct dpu_encoder_virt *dpu_enc;
 718	int i;
 719
 720	if (!drm_enc) {
 721		DPU_ERROR("invalid encoder\n");
 722		return;
 723	}
 724
 725	dpu_enc = to_dpu_encoder_virt(drm_enc);
 726
 727	DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
 728	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
 729		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
 730
 731		if (phys->ops.irq_control)
 732			phys->ops.irq_control(phys, enable);
 733	}
 734
 735}
 736
 737static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
 738		bool enable)
 739{
 740	struct msm_drm_private *priv;
 741	struct dpu_kms *dpu_kms;
 742	struct dpu_encoder_virt *dpu_enc;
 743
 744	dpu_enc = to_dpu_encoder_virt(drm_enc);
 745	priv = drm_enc->dev->dev_private;
 746	dpu_kms = to_dpu_kms(priv->kms);
 747
 748	trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
 749
 750	if (!dpu_enc->cur_master) {
 751		DPU_ERROR("encoder master not set\n");
 752		return;
 753	}
 754
 755	if (enable) {
 756		/* enable DPU core clks */
 757		pm_runtime_get_sync(&dpu_kms->pdev->dev);
 758
 759		/* enable all the irq */
 760		_dpu_encoder_irq_control(drm_enc, true);
 761
 762	} else {
 763		/* disable all the irq */
 764		_dpu_encoder_irq_control(drm_enc, false);
 765
 766		/* disable DPU core clks */
 767		pm_runtime_put_sync(&dpu_kms->pdev->dev);
 768	}
 769
 770}
 771
 772static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
 773		u32 sw_event)
 774{
 775	struct dpu_encoder_virt *dpu_enc;
 776	struct msm_drm_private *priv;
 777	bool is_vid_mode = false;
 778
 779	if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
 780		DPU_ERROR("invalid parameters\n");
 781		return -EINVAL;
 782	}
 783	dpu_enc = to_dpu_encoder_virt(drm_enc);
 784	priv = drm_enc->dev->dev_private;
 785	is_vid_mode = !dpu_enc->disp_info.is_cmd_mode;
 786
 787	/*
 788	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
 789	 * events and return early for other events (ie wb display).
 790	 */
 791	if (!dpu_enc->idle_pc_supported &&
 792			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
 793			sw_event != DPU_ENC_RC_EVENT_STOP &&
 794			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
 795		return 0;
 796
 797	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
 798			 dpu_enc->rc_state, "begin");
 799
 800	switch (sw_event) {
 801	case DPU_ENC_RC_EVENT_KICKOFF:
 802		/* cancel delayed off work, if any */
 803		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
 804			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
 805					sw_event);
 806
 807		mutex_lock(&dpu_enc->rc_lock);
 808
 809		/* return if the resource control is already in ON state */
 810		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
 811			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n",
 812				      DRMID(drm_enc), sw_event);
 813			mutex_unlock(&dpu_enc->rc_lock);
 814			return 0;
 815		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
 816				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
 817			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n",
 818				      DRMID(drm_enc), sw_event,
 819				      dpu_enc->rc_state);
 820			mutex_unlock(&dpu_enc->rc_lock);
 821			return -EINVAL;
 822		}
 823
 824		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
 825			_dpu_encoder_irq_control(drm_enc, true);
 826		else
 827			_dpu_encoder_resource_control_helper(drm_enc, true);
 828
 829		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
 830
 831		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
 832				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
 833				 "kickoff");
 834
 835		mutex_unlock(&dpu_enc->rc_lock);
 836		break;
 837
 838	case DPU_ENC_RC_EVENT_FRAME_DONE:
 839		/*
 840		 * mutex lock is not used as this event happens at interrupt
 841		 * context. And locking is not required as, the other events
 842		 * like KICKOFF and STOP does a wait-for-idle before executing
 843		 * the resource_control
 844		 */
 845		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
 846			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
 847				      DRMID(drm_enc), sw_event,
 848				      dpu_enc->rc_state);
 849			return -EINVAL;
 850		}
 851
 852		/*
 853		 * schedule off work item only when there are no
 854		 * frames pending
 855		 */
 856		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
 857			DRM_DEBUG_KMS("id:%d skip schedule work\n",
 858				      DRMID(drm_enc));
 859			return 0;
 860		}
 861
 862		queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
 863				   msecs_to_jiffies(dpu_enc->idle_timeout));
 864
 865		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
 866				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
 867				 "frame done");
 868		break;
 869
 870	case DPU_ENC_RC_EVENT_PRE_STOP:
 871		/* cancel delayed off work, if any */
 872		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
 873			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
 874					sw_event);
 875
 876		mutex_lock(&dpu_enc->rc_lock);
 877
 878		if (is_vid_mode &&
 879			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
 880			_dpu_encoder_irq_control(drm_enc, true);
 881		}
 882		/* skip if is already OFF or IDLE, resources are off already */
 883		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
 884				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
 885			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
 886				      DRMID(drm_enc), sw_event,
 887				      dpu_enc->rc_state);
 888			mutex_unlock(&dpu_enc->rc_lock);
 889			return 0;
 890		}
 891
 892		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
 893
 894		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
 895				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
 896				 "pre stop");
 897
 898		mutex_unlock(&dpu_enc->rc_lock);
 899		break;
 900
 901	case DPU_ENC_RC_EVENT_STOP:
 902		mutex_lock(&dpu_enc->rc_lock);
 903
 904		/* return if the resource control is already in OFF state */
 905		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
 906			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
 907				      DRMID(drm_enc), sw_event);
 908			mutex_unlock(&dpu_enc->rc_lock);
 909			return 0;
 910		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
 911			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
 912				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
 913			mutex_unlock(&dpu_enc->rc_lock);
 914			return -EINVAL;
 915		}
 916
 917		/**
 918		 * expect to arrive here only if in either idle state or pre-off
 919		 * and in IDLE state the resources are already disabled
 920		 */
 921		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
 922			_dpu_encoder_resource_control_helper(drm_enc, false);
 923
 924		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
 925
 926		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
 927				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
 928				 "stop");
 929
 930		mutex_unlock(&dpu_enc->rc_lock);
 931		break;
 932
 933	case DPU_ENC_RC_EVENT_ENTER_IDLE:
 934		mutex_lock(&dpu_enc->rc_lock);
 935
 936		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
 937			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
 938				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
 939			mutex_unlock(&dpu_enc->rc_lock);
 940			return 0;
 941		}
 942
 943		/*
 944		 * if we are in ON but a frame was just kicked off,
 945		 * ignore the IDLE event, it's probably a stale timer event
 946		 */
 947		if (dpu_enc->frame_busy_mask[0]) {
 948			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
 949				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
 950			mutex_unlock(&dpu_enc->rc_lock);
 951			return 0;
 952		}
 953
 954		if (is_vid_mode)
 955			_dpu_encoder_irq_control(drm_enc, false);
 956		else
 957			_dpu_encoder_resource_control_helper(drm_enc, false);
 958
 959		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
 960
 961		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
 962				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
 963				 "idle");
 964
 965		mutex_unlock(&dpu_enc->rc_lock);
 966		break;
 967
 968	default:
 969		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
 970			  sw_event);
 971		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
 972				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
 973				 "error");
 974		break;
 975	}
 976
 977	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
 978			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
 979			 "end");
 980	return 0;
 981}
 982
 983void dpu_encoder_prepare_wb_job(struct drm_encoder *drm_enc,
 984		struct drm_writeback_job *job)
 985{
 986	struct dpu_encoder_virt *dpu_enc;
 987	int i;
 988
 989	dpu_enc = to_dpu_encoder_virt(drm_enc);
 990
 991	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
 992		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
 993
 994		if (phys->ops.prepare_wb_job)
 995			phys->ops.prepare_wb_job(phys, job);
 996
 997	}
 998}
 999
1000void dpu_encoder_cleanup_wb_job(struct drm_encoder *drm_enc,
1001		struct drm_writeback_job *job)
1002{
1003	struct dpu_encoder_virt *dpu_enc;
1004	int i;
1005
1006	dpu_enc = to_dpu_encoder_virt(drm_enc);
1007
1008	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1009		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1010
1011		if (phys->ops.cleanup_wb_job)
1012			phys->ops.cleanup_wb_job(phys, job);
1013
1014	}
1015}
1016
1017static void dpu_encoder_virt_atomic_mode_set(struct drm_encoder *drm_enc,
1018					     struct drm_crtc_state *crtc_state,
1019					     struct drm_connector_state *conn_state)
1020{
1021	struct dpu_encoder_virt *dpu_enc;
1022	struct msm_drm_private *priv;
1023	struct dpu_kms *dpu_kms;
1024	struct dpu_crtc_state *cstate;
1025	struct dpu_global_state *global_state;
1026	struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
1027	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
1028	struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
1029	struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL };
1030	struct dpu_hw_blk *hw_dsc[MAX_CHANNELS_PER_ENC];
1031	int num_lm, num_ctl, num_pp, num_dsc;
1032	unsigned int dsc_mask = 0;
1033	int i;
1034
1035	if (!drm_enc) {
1036		DPU_ERROR("invalid encoder\n");
1037		return;
1038	}
1039
1040	dpu_enc = to_dpu_encoder_virt(drm_enc);
1041	DPU_DEBUG_ENC(dpu_enc, "\n");
1042
1043	priv = drm_enc->dev->dev_private;
1044	dpu_kms = to_dpu_kms(priv->kms);
1045
1046	global_state = dpu_kms_get_existing_global_state(dpu_kms);
1047	if (IS_ERR_OR_NULL(global_state)) {
1048		DPU_ERROR("Failed to get global state");
1049		return;
1050	}
1051
1052	trace_dpu_enc_mode_set(DRMID(drm_enc));
1053
1054	/* Query resource that have been reserved in atomic check step. */
1055	num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1056		drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
1057		ARRAY_SIZE(hw_pp));
1058	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1059		drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1060	num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1061		drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1062	dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1063		drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp,
1064		ARRAY_SIZE(hw_dspp));
1065
1066	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1067		dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1068						: NULL;
1069
1070	if (dpu_enc->dsc) {
1071		num_dsc = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1072							drm_enc->base.id, DPU_HW_BLK_DSC,
1073							hw_dsc, ARRAY_SIZE(hw_dsc));
1074		for (i = 0; i < num_dsc; i++) {
1075			dpu_enc->hw_dsc[i] = to_dpu_hw_dsc(hw_dsc[i]);
1076			dsc_mask |= BIT(dpu_enc->hw_dsc[i]->idx - DSC_0);
1077		}
1078	}
1079
1080	dpu_enc->dsc_mask = dsc_mask;
1081
1082	cstate = to_dpu_crtc_state(crtc_state);
1083
1084	for (i = 0; i < num_lm; i++) {
1085		int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1086
1087		cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
1088		cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
1089		cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]);
1090	}
1091
1092	cstate->num_mixers = num_lm;
1093
1094	dpu_enc->connector = conn_state->connector;
1095
1096	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1097		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1098
1099		if (!dpu_enc->hw_pp[i]) {
1100			DPU_ERROR_ENC(dpu_enc,
1101				"no pp block assigned at idx: %d\n", i);
1102			return;
1103		}
1104
1105		if (!hw_ctl[i]) {
1106			DPU_ERROR_ENC(dpu_enc,
1107				"no ctl block assigned at idx: %d\n", i);
1108			return;
1109		}
1110
1111		phys->hw_pp = dpu_enc->hw_pp[i];
1112		phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]);
1113
1114		phys->cached_mode = crtc_state->adjusted_mode;
1115		if (phys->ops.atomic_mode_set)
1116			phys->ops.atomic_mode_set(phys, crtc_state, conn_state);
1117	}
1118}
1119
1120static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1121{
1122	struct dpu_encoder_virt *dpu_enc = NULL;
1123	int i;
1124
1125	if (!drm_enc || !drm_enc->dev) {
1126		DPU_ERROR("invalid parameters\n");
1127		return;
1128	}
1129
1130	dpu_enc = to_dpu_encoder_virt(drm_enc);
1131	if (!dpu_enc || !dpu_enc->cur_master) {
1132		DPU_ERROR("invalid dpu encoder/master\n");
1133		return;
1134	}
1135
1136
1137	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_TMDS &&
1138		dpu_enc->cur_master->hw_mdptop &&
1139		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1140		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1141			dpu_enc->cur_master->hw_mdptop);
1142
1143	_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1144
1145	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1146			!WARN_ON(dpu_enc->num_phys_encs == 0)) {
1147		unsigned bpc = dpu_enc->connector->display_info.bpc;
1148		for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1149			if (!dpu_enc->hw_pp[i])
1150				continue;
1151			_dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1152		}
1153	}
1154}
1155
1156void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1157{
1158	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1159
1160	mutex_lock(&dpu_enc->enc_lock);
1161
1162	if (!dpu_enc->enabled)
1163		goto out;
1164
1165	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1166		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1167	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1168		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1169
1170	_dpu_encoder_virt_enable_helper(drm_enc);
1171
1172out:
1173	mutex_unlock(&dpu_enc->enc_lock);
1174}
1175
1176static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc)
1177{
1178	struct dpu_encoder_virt *dpu_enc = NULL;
1179	int ret = 0;
1180	struct drm_display_mode *cur_mode = NULL;
1181
1182	dpu_enc = to_dpu_encoder_virt(drm_enc);
1183
1184	mutex_lock(&dpu_enc->enc_lock);
1185	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1186
1187	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1188			     cur_mode->vdisplay);
1189
1190	/* always enable slave encoder before master */
1191	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1192		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1193
1194	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1195		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1196
1197	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1198	if (ret) {
1199		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1200				ret);
1201		goto out;
1202	}
1203
1204	_dpu_encoder_virt_enable_helper(drm_enc);
1205
1206	dpu_enc->enabled = true;
1207
1208out:
1209	mutex_unlock(&dpu_enc->enc_lock);
1210}
1211
1212static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc)
1213{
1214	struct dpu_encoder_virt *dpu_enc = NULL;
1215	int i = 0;
1216
1217	dpu_enc = to_dpu_encoder_virt(drm_enc);
1218	DPU_DEBUG_ENC(dpu_enc, "\n");
1219
1220	mutex_lock(&dpu_enc->enc_lock);
1221	dpu_enc->enabled = false;
1222
1223	trace_dpu_enc_disable(DRMID(drm_enc));
1224
1225	/* wait for idle */
1226	dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1227
1228	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1229
1230	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1231		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1232
1233		if (phys->ops.disable)
1234			phys->ops.disable(phys);
1235	}
1236
1237
1238	/* after phys waits for frame-done, should be no more frames pending */
1239	if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1240		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1241		del_timer_sync(&dpu_enc->frame_done_timer);
1242	}
1243
1244	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1245
1246	dpu_enc->connector = NULL;
1247
1248	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1249
1250	mutex_unlock(&dpu_enc->enc_lock);
1251}
1252
1253static enum dpu_intf dpu_encoder_get_intf(const struct dpu_mdss_cfg *catalog,
1254		enum dpu_intf_type type, u32 controller_id)
1255{
1256	int i = 0;
1257
1258	if (type == INTF_WB)
1259		return INTF_MAX;
1260
1261	for (i = 0; i < catalog->intf_count; i++) {
1262		if (catalog->intf[i].type == type
1263		    && catalog->intf[i].controller_id == controller_id) {
1264			return catalog->intf[i].id;
1265		}
1266	}
1267
1268	return INTF_MAX;
1269}
1270
1271static enum dpu_wb dpu_encoder_get_wb(const struct dpu_mdss_cfg *catalog,
1272		enum dpu_intf_type type, u32 controller_id)
1273{
1274	int i = 0;
1275
1276	if (type != INTF_WB)
1277		return WB_MAX;
1278
1279	for (i = 0; i < catalog->wb_count; i++) {
1280		if (catalog->wb[i].id == controller_id)
1281			return catalog->wb[i].id;
1282	}
1283
1284	return WB_MAX;
1285}
1286
1287static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1288		struct dpu_encoder_phys *phy_enc)
1289{
1290	struct dpu_encoder_virt *dpu_enc = NULL;
1291	unsigned long lock_flags;
1292
1293	if (!drm_enc || !phy_enc)
1294		return;
1295
1296	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1297	dpu_enc = to_dpu_encoder_virt(drm_enc);
1298
1299	atomic_inc(&phy_enc->vsync_cnt);
1300
1301	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1302	if (dpu_enc->crtc)
1303		dpu_crtc_vblank_callback(dpu_enc->crtc);
1304	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1305
1306	DPU_ATRACE_END("encoder_vblank_callback");
1307}
1308
1309static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1310		struct dpu_encoder_phys *phy_enc)
1311{
1312	if (!phy_enc)
1313		return;
1314
1315	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1316	atomic_inc(&phy_enc->underrun_cnt);
1317
1318	/* trigger dump only on the first underrun */
1319	if (atomic_read(&phy_enc->underrun_cnt) == 1)
1320		msm_disp_snapshot_state(drm_enc->dev);
1321
1322	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1323				  atomic_read(&phy_enc->underrun_cnt));
1324	DPU_ATRACE_END("encoder_underrun_callback");
1325}
1326
1327void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1328{
1329	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1330	unsigned long lock_flags;
1331
1332	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1333	/* crtc should always be cleared before re-assigning */
1334	WARN_ON(crtc && dpu_enc->crtc);
1335	dpu_enc->crtc = crtc;
1336	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1337}
1338
1339void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1340					struct drm_crtc *crtc, bool enable)
1341{
1342	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1343	unsigned long lock_flags;
1344	int i;
1345
1346	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1347
1348	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1349	if (dpu_enc->crtc != crtc) {
1350		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1351		return;
1352	}
1353	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1354
1355	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1356		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1357
1358		if (phys->ops.control_vblank_irq)
1359			phys->ops.control_vblank_irq(phys, enable);
1360	}
1361}
1362
1363void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1364		void (*frame_event_cb)(void *, u32 event),
1365		void *frame_event_cb_data)
1366{
1367	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1368	unsigned long lock_flags;
1369	bool enable;
1370
1371	enable = frame_event_cb ? true : false;
1372
1373	if (!drm_enc) {
1374		DPU_ERROR("invalid encoder\n");
1375		return;
1376	}
1377	trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1378
1379	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1380	dpu_enc->crtc_frame_event_cb = frame_event_cb;
1381	dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1382	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1383}
1384
1385static void dpu_encoder_frame_done_callback(
1386		struct drm_encoder *drm_enc,
1387		struct dpu_encoder_phys *ready_phys, u32 event)
1388{
1389	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1390	unsigned int i;
1391
1392	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1393			| DPU_ENCODER_FRAME_EVENT_ERROR
1394			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1395
1396		if (!dpu_enc->frame_busy_mask[0]) {
1397			/**
1398			 * suppress frame_done without waiter,
1399			 * likely autorefresh
1400			 */
1401			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), event,
1402					dpu_encoder_helper_get_intf_type(ready_phys->intf_mode),
1403					ready_phys->intf_idx, ready_phys->wb_idx);
1404			return;
1405		}
1406
1407		/* One of the physical encoders has become idle */
1408		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1409			if (dpu_enc->phys_encs[i] == ready_phys) {
1410				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1411						dpu_enc->frame_busy_mask[0]);
1412				clear_bit(i, dpu_enc->frame_busy_mask);
1413			}
1414		}
1415
1416		if (!dpu_enc->frame_busy_mask[0]) {
1417			atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1418			del_timer(&dpu_enc->frame_done_timer);
1419
1420			dpu_encoder_resource_control(drm_enc,
1421					DPU_ENC_RC_EVENT_FRAME_DONE);
1422
1423			if (dpu_enc->crtc_frame_event_cb)
1424				dpu_enc->crtc_frame_event_cb(
1425					dpu_enc->crtc_frame_event_cb_data,
1426					event);
1427		}
1428	} else {
1429		if (dpu_enc->crtc_frame_event_cb)
1430			dpu_enc->crtc_frame_event_cb(
1431				dpu_enc->crtc_frame_event_cb_data, event);
1432	}
1433}
1434
1435static void dpu_encoder_off_work(struct work_struct *work)
1436{
1437	struct dpu_encoder_virt *dpu_enc = container_of(work,
1438			struct dpu_encoder_virt, delayed_off_work.work);
1439
1440	dpu_encoder_resource_control(&dpu_enc->base,
1441						DPU_ENC_RC_EVENT_ENTER_IDLE);
1442
1443	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1444				DPU_ENCODER_FRAME_EVENT_IDLE);
1445}
1446
1447/**
1448 * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1449 * @drm_enc: Pointer to drm encoder structure
1450 * @phys: Pointer to physical encoder structure
1451 * @extra_flush_bits: Additional bit mask to include in flush trigger
1452 */
1453static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1454		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1455{
1456	struct dpu_hw_ctl *ctl;
1457	int pending_kickoff_cnt;
1458	u32 ret = UINT_MAX;
1459
1460	if (!phys->hw_pp) {
1461		DPU_ERROR("invalid pingpong hw\n");
1462		return;
1463	}
1464
1465	ctl = phys->hw_ctl;
1466	if (!ctl->ops.trigger_flush) {
1467		DPU_ERROR("missing trigger cb\n");
1468		return;
1469	}
1470
1471	pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1472
1473	if (extra_flush_bits && ctl->ops.update_pending_flush)
1474		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1475
1476	ctl->ops.trigger_flush(ctl);
1477
1478	if (ctl->ops.get_pending_flush)
1479		ret = ctl->ops.get_pending_flush(ctl);
1480
1481	trace_dpu_enc_trigger_flush(DRMID(drm_enc),
1482			dpu_encoder_helper_get_intf_type(phys->intf_mode),
1483			phys->intf_idx, phys->wb_idx,
1484			pending_kickoff_cnt, ctl->idx,
1485			extra_flush_bits, ret);
1486}
1487
1488/**
1489 * _dpu_encoder_trigger_start - trigger start for a physical encoder
1490 * @phys: Pointer to physical encoder structure
1491 */
1492static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1493{
1494	if (!phys) {
1495		DPU_ERROR("invalid argument(s)\n");
1496		return;
1497	}
1498
1499	if (!phys->hw_pp) {
1500		DPU_ERROR("invalid pingpong hw\n");
1501		return;
1502	}
1503
1504	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1505		phys->ops.trigger_start(phys);
1506}
1507
1508void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1509{
1510	struct dpu_hw_ctl *ctl;
1511
1512	ctl = phys_enc->hw_ctl;
1513	if (ctl->ops.trigger_start) {
1514		ctl->ops.trigger_start(ctl);
1515		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1516	}
1517}
1518
1519static int dpu_encoder_helper_wait_event_timeout(
1520		int32_t drm_id,
1521		u32 irq_idx,
1522		struct dpu_encoder_wait_info *info)
1523{
1524	int rc = 0;
1525	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1526	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1527	s64 time;
1528
1529	do {
1530		rc = wait_event_timeout(*(info->wq),
1531				atomic_read(info->atomic_cnt) == 0, jiffies);
1532		time = ktime_to_ms(ktime_get());
1533
1534		trace_dpu_enc_wait_event_timeout(drm_id, irq_idx, rc, time,
1535						 expected_time,
1536						 atomic_read(info->atomic_cnt));
1537	/* If we timed out, counter is valid and time is less, wait again */
1538	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1539			(time < expected_time));
1540
1541	return rc;
1542}
1543
1544static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1545{
1546	struct dpu_encoder_virt *dpu_enc;
1547	struct dpu_hw_ctl *ctl;
1548	int rc;
1549	struct drm_encoder *drm_enc;
1550
1551	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1552	ctl = phys_enc->hw_ctl;
1553	drm_enc = phys_enc->parent;
1554
1555	if (!ctl->ops.reset)
1556		return;
1557
1558	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc),
1559		      ctl->idx);
1560
1561	rc = ctl->ops.reset(ctl);
1562	if (rc) {
1563		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1564		msm_disp_snapshot_state(drm_enc->dev);
1565	}
1566
1567	phys_enc->enable_state = DPU_ENC_ENABLED;
1568}
1569
1570/**
1571 * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1572 *	Iterate through the physical encoders and perform consolidated flush
1573 *	and/or control start triggering as needed. This is done in the virtual
1574 *	encoder rather than the individual physical ones in order to handle
1575 *	use cases that require visibility into multiple physical encoders at
1576 *	a time.
1577 * @dpu_enc: Pointer to virtual encoder structure
1578 */
1579static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1580{
1581	struct dpu_hw_ctl *ctl;
1582	uint32_t i, pending_flush;
1583	unsigned long lock_flags;
1584
1585	pending_flush = 0x0;
1586
1587	/* update pending counts and trigger kickoff ctl flush atomically */
1588	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1589
1590	/* don't perform flush/start operations for slave encoders */
1591	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1592		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1593
1594		if (phys->enable_state == DPU_ENC_DISABLED)
1595			continue;
1596
1597		ctl = phys->hw_ctl;
1598
1599		/*
1600		 * This is cleared in frame_done worker, which isn't invoked
1601		 * for async commits. So don't set this for async, since it'll
1602		 * roll over to the next commit.
1603		 */
1604		if (phys->split_role != ENC_ROLE_SLAVE)
1605			set_bit(i, dpu_enc->frame_busy_mask);
1606
1607		if (!phys->ops.needs_single_flush ||
1608				!phys->ops.needs_single_flush(phys))
1609			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1610		else if (ctl->ops.get_pending_flush)
1611			pending_flush |= ctl->ops.get_pending_flush(ctl);
1612	}
1613
1614	/* for split flush, combine pending flush masks and send to master */
1615	if (pending_flush && dpu_enc->cur_master) {
1616		_dpu_encoder_trigger_flush(
1617				&dpu_enc->base,
1618				dpu_enc->cur_master,
1619				pending_flush);
1620	}
1621
1622	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1623
1624	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1625}
1626
1627void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1628{
1629	struct dpu_encoder_virt *dpu_enc;
1630	struct dpu_encoder_phys *phys;
1631	unsigned int i;
1632	struct dpu_hw_ctl *ctl;
1633	struct msm_display_info *disp_info;
1634
1635	if (!drm_enc) {
1636		DPU_ERROR("invalid encoder\n");
1637		return;
1638	}
1639	dpu_enc = to_dpu_encoder_virt(drm_enc);
1640	disp_info = &dpu_enc->disp_info;
1641
1642	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1643		phys = dpu_enc->phys_encs[i];
1644
1645		ctl = phys->hw_ctl;
1646		if (ctl->ops.clear_pending_flush)
1647			ctl->ops.clear_pending_flush(ctl);
1648
1649		/* update only for command mode primary ctl */
1650		if ((phys == dpu_enc->cur_master) &&
1651		    disp_info->is_cmd_mode
1652		    && ctl->ops.trigger_pending)
1653			ctl->ops.trigger_pending(ctl);
1654	}
1655}
1656
1657static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1658		struct drm_display_mode *mode)
1659{
1660	u64 pclk_rate;
1661	u32 pclk_period;
1662	u32 line_time;
1663
1664	/*
1665	 * For linetime calculation, only operate on master encoder.
1666	 */
1667	if (!dpu_enc->cur_master)
1668		return 0;
1669
1670	if (!dpu_enc->cur_master->ops.get_line_count) {
1671		DPU_ERROR("get_line_count function not defined\n");
1672		return 0;
1673	}
1674
1675	pclk_rate = mode->clock; /* pixel clock in kHz */
1676	if (pclk_rate == 0) {
1677		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1678		return 0;
1679	}
1680
1681	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1682	if (pclk_period == 0) {
1683		DPU_ERROR("pclk period is 0\n");
1684		return 0;
1685	}
1686
1687	/*
1688	 * Line time calculation based on Pixel clock and HTOTAL.
1689	 * Final unit is in ns.
1690	 */
1691	line_time = (pclk_period * mode->htotal) / 1000;
1692	if (line_time == 0) {
1693		DPU_ERROR("line time calculation is 0\n");
1694		return 0;
1695	}
1696
1697	DPU_DEBUG_ENC(dpu_enc,
1698			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1699			pclk_rate, pclk_period, line_time);
1700
1701	return line_time;
1702}
1703
1704int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1705{
1706	struct drm_display_mode *mode;
1707	struct dpu_encoder_virt *dpu_enc;
1708	u32 cur_line;
1709	u32 line_time;
1710	u32 vtotal, time_to_vsync;
1711	ktime_t cur_time;
1712
1713	dpu_enc = to_dpu_encoder_virt(drm_enc);
1714
1715	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1716		DPU_ERROR("crtc/crtc state object is NULL\n");
1717		return -EINVAL;
1718	}
1719	mode = &drm_enc->crtc->state->adjusted_mode;
1720
1721	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1722	if (!line_time)
1723		return -EINVAL;
1724
1725	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1726
1727	vtotal = mode->vtotal;
1728	if (cur_line >= vtotal)
1729		time_to_vsync = line_time * vtotal;
1730	else
1731		time_to_vsync = line_time * (vtotal - cur_line);
1732
1733	if (time_to_vsync == 0) {
1734		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1735				vtotal);
1736		return -EINVAL;
1737	}
1738
1739	cur_time = ktime_get();
1740	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1741
1742	DPU_DEBUG_ENC(dpu_enc,
1743			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1744			cur_line, vtotal, time_to_vsync,
1745			ktime_to_ms(cur_time),
1746			ktime_to_ms(*wakeup_time));
1747	return 0;
1748}
1749
1750static void dpu_encoder_vsync_event_handler(struct timer_list *t)
1751{
1752	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
1753			vsync_event_timer);
1754	struct drm_encoder *drm_enc = &dpu_enc->base;
1755	struct msm_drm_private *priv;
1756	struct msm_drm_thread *event_thread;
1757
1758	if (!drm_enc->dev || !drm_enc->crtc) {
1759		DPU_ERROR("invalid parameters\n");
1760		return;
1761	}
1762
1763	priv = drm_enc->dev->dev_private;
1764
1765	if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) {
1766		DPU_ERROR("invalid crtc index\n");
1767		return;
1768	}
1769	event_thread = &priv->event_thread[drm_enc->crtc->index];
1770	if (!event_thread) {
1771		DPU_ERROR("event_thread not found for crtc:%d\n",
1772				drm_enc->crtc->index);
1773		return;
1774	}
1775
1776	del_timer(&dpu_enc->vsync_event_timer);
1777}
1778
1779static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work)
1780{
1781	struct dpu_encoder_virt *dpu_enc = container_of(work,
1782			struct dpu_encoder_virt, vsync_event_work);
1783	ktime_t wakeup_time;
1784
1785	if (dpu_encoder_vsync_time(&dpu_enc->base, &wakeup_time))
1786		return;
1787
1788	trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time);
1789	mod_timer(&dpu_enc->vsync_event_timer,
1790			nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1791}
1792
1793static u32
1794dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config *dsc,
1795				  u32 enc_ip_width)
1796{
1797	int ssm_delay, total_pixels, soft_slice_per_enc;
1798
1799	soft_slice_per_enc = enc_ip_width / dsc->slice_width;
1800
1801	/*
1802	 * minimum number of initial line pixels is a sum of:
1803	 * 1. sub-stream multiplexer delay (83 groups for 8bpc,
1804	 *    91 for 10 bpc) * 3
1805	 * 2. for two soft slice cases, add extra sub-stream multiplexer * 3
1806	 * 3. the initial xmit delay
1807	 * 4. total pipeline delay through the "lock step" of encoder (47)
1808	 * 5. 6 additional pixels as the output of the rate buffer is
1809	 *    48 bits wide
1810	 */
1811	ssm_delay = ((dsc->bits_per_component < 10) ? 84 : 92);
1812	total_pixels = ssm_delay * 3 + dsc->initial_xmit_delay + 47;
1813	if (soft_slice_per_enc > 1)
1814		total_pixels += (ssm_delay * 3);
1815	return DIV_ROUND_UP(total_pixels, dsc->slice_width);
1816}
1817
1818static void dpu_encoder_dsc_pipe_cfg(struct dpu_hw_dsc *hw_dsc,
1819				     struct dpu_hw_pingpong *hw_pp,
1820				     struct drm_dsc_config *dsc,
1821				     u32 common_mode,
1822				     u32 initial_lines)
1823{
1824	if (hw_dsc->ops.dsc_config)
1825		hw_dsc->ops.dsc_config(hw_dsc, dsc, common_mode, initial_lines);
1826
1827	if (hw_dsc->ops.dsc_config_thresh)
1828		hw_dsc->ops.dsc_config_thresh(hw_dsc, dsc);
1829
1830	if (hw_pp->ops.setup_dsc)
1831		hw_pp->ops.setup_dsc(hw_pp);
1832
1833	if (hw_pp->ops.enable_dsc)
1834		hw_pp->ops.enable_dsc(hw_pp);
1835}
1836
1837static void dpu_encoder_prep_dsc(struct dpu_encoder_virt *dpu_enc,
1838				 struct drm_dsc_config *dsc)
1839{
1840	/* coding only for 2LM, 2enc, 1 dsc config */
1841	struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
1842	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
1843	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
1844	int this_frame_slices;
1845	int intf_ip_w, enc_ip_w;
1846	int dsc_common_mode;
1847	int pic_width;
1848	u32 initial_lines;
1849	int i;
1850
1851	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1852		hw_pp[i] = dpu_enc->hw_pp[i];
1853		hw_dsc[i] = dpu_enc->hw_dsc[i];
1854
1855		if (!hw_pp[i] || !hw_dsc[i]) {
1856			DPU_ERROR_ENC(dpu_enc, "invalid params for DSC\n");
1857			return;
1858		}
1859	}
1860
1861	dsc_common_mode = 0;
1862	pic_width = dsc->pic_width;
1863
1864	dsc_common_mode = DSC_MODE_MULTIPLEX | DSC_MODE_SPLIT_PANEL;
1865	if (enc_master->intf_mode == INTF_MODE_VIDEO)
1866		dsc_common_mode |= DSC_MODE_VIDEO;
1867
1868	this_frame_slices = pic_width / dsc->slice_width;
1869	intf_ip_w = this_frame_slices * dsc->slice_width;
1870
1871	/*
1872	 * dsc merge case: when using 2 encoders for the same stream,
1873	 * no. of slices need to be same on both the encoders.
1874	 */
1875	enc_ip_w = intf_ip_w / 2;
1876	initial_lines = dpu_encoder_dsc_initial_line_calc(dsc, enc_ip_w);
1877
1878	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1879		dpu_encoder_dsc_pipe_cfg(hw_dsc[i], hw_pp[i], dsc, dsc_common_mode, initial_lines);
1880}
1881
1882void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1883{
1884	struct dpu_encoder_virt *dpu_enc;
1885	struct dpu_encoder_phys *phys;
1886	bool needs_hw_reset = false;
1887	unsigned int i;
1888
1889	dpu_enc = to_dpu_encoder_virt(drm_enc);
1890
1891	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1892
1893	/* prepare for next kickoff, may include waiting on previous kickoff */
1894	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1895	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1896		phys = dpu_enc->phys_encs[i];
1897		if (phys->ops.prepare_for_kickoff)
1898			phys->ops.prepare_for_kickoff(phys);
1899		if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1900			needs_hw_reset = true;
1901	}
1902	DPU_ATRACE_END("enc_prepare_for_kickoff");
1903
1904	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1905
1906	/* if any phys needs reset, reset all phys, in-order */
1907	if (needs_hw_reset) {
1908		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1909		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1910			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1911		}
1912	}
1913
1914	if (dpu_enc->dsc)
1915		dpu_encoder_prep_dsc(dpu_enc, dpu_enc->dsc);
1916}
1917
1918bool dpu_encoder_is_valid_for_commit(struct drm_encoder *drm_enc)
1919{
1920	struct dpu_encoder_virt *dpu_enc;
1921	unsigned int i;
1922	struct dpu_encoder_phys *phys;
1923
1924	dpu_enc = to_dpu_encoder_virt(drm_enc);
1925
1926	if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1927		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1928			phys = dpu_enc->phys_encs[i];
1929			if (phys->ops.is_valid_for_commit && !phys->ops.is_valid_for_commit(phys)) {
1930				DPU_DEBUG("invalid FB not kicking off\n");
1931				return false;
1932			}
1933		}
1934	}
1935
1936	return true;
1937}
1938
1939void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1940{
1941	struct dpu_encoder_virt *dpu_enc;
1942	struct dpu_encoder_phys *phys;
1943	ktime_t wakeup_time;
1944	unsigned long timeout_ms;
1945	unsigned int i;
1946
1947	DPU_ATRACE_BEGIN("encoder_kickoff");
1948	dpu_enc = to_dpu_encoder_virt(drm_enc);
1949
1950	trace_dpu_enc_kickoff(DRMID(drm_enc));
1951
1952	timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1953			drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1954
1955	atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1956	mod_timer(&dpu_enc->frame_done_timer,
1957			jiffies + msecs_to_jiffies(timeout_ms));
1958
1959	/* All phys encs are ready to go, trigger the kickoff */
1960	_dpu_encoder_kickoff_phys(dpu_enc);
1961
1962	/* allow phys encs to handle any post-kickoff business */
1963	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1964		phys = dpu_enc->phys_encs[i];
1965		if (phys->ops.handle_post_kickoff)
1966			phys->ops.handle_post_kickoff(phys);
1967	}
1968
1969	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1970			!dpu_encoder_vsync_time(drm_enc, &wakeup_time)) {
1971		trace_dpu_enc_early_kickoff(DRMID(drm_enc),
1972					    ktime_to_ms(wakeup_time));
1973		mod_timer(&dpu_enc->vsync_event_timer,
1974				nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1975	}
1976
1977	DPU_ATRACE_END("encoder_kickoff");
1978}
1979
1980static void dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys *phys_enc)
1981{
1982	struct dpu_hw_mixer_cfg mixer;
1983	int i, num_lm;
1984	struct dpu_global_state *global_state;
1985	struct dpu_hw_blk *hw_lm[2];
1986	struct dpu_hw_mixer *hw_mixer[2];
1987	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
1988
1989	memset(&mixer, 0, sizeof(mixer));
1990
1991	/* reset all mixers for this encoder */
1992	if (phys_enc->hw_ctl->ops.clear_all_blendstages)
1993		phys_enc->hw_ctl->ops.clear_all_blendstages(phys_enc->hw_ctl);
1994
1995	global_state = dpu_kms_get_existing_global_state(phys_enc->dpu_kms);
1996
1997	num_lm = dpu_rm_get_assigned_resources(&phys_enc->dpu_kms->rm, global_state,
1998		phys_enc->parent->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1999
2000	for (i = 0; i < num_lm; i++) {
2001		hw_mixer[i] = to_dpu_hw_mixer(hw_lm[i]);
2002		if (phys_enc->hw_ctl->ops.update_pending_flush_mixer)
2003			phys_enc->hw_ctl->ops.update_pending_flush_mixer(ctl, hw_mixer[i]->idx);
2004
2005		/* clear all blendstages */
2006		if (phys_enc->hw_ctl->ops.setup_blendstage)
2007			phys_enc->hw_ctl->ops.setup_blendstage(ctl, hw_mixer[i]->idx, NULL);
2008	}
2009}
2010
2011void dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys *phys_enc)
2012{
2013	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2014	struct dpu_hw_intf_cfg intf_cfg = { 0 };
2015	int i;
2016	struct dpu_encoder_virt *dpu_enc;
2017
2018	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
2019
2020	phys_enc->hw_ctl->ops.reset(ctl);
2021
2022	dpu_encoder_helper_reset_mixers(phys_enc);
2023
2024	/*
2025	 * TODO: move the once-only operation like CTL flush/trigger
2026	 * into dpu_encoder_virt_disable() and all operations which need
2027	 * to be done per phys encoder into the phys_disable() op.
2028	 */
2029	if (phys_enc->hw_wb) {
2030		/* disable the PP block */
2031		if (phys_enc->hw_wb->ops.bind_pingpong_blk)
2032			phys_enc->hw_wb->ops.bind_pingpong_blk(phys_enc->hw_wb, false,
2033					phys_enc->hw_pp->idx);
2034
2035		/* mark WB flush as pending */
2036		if (phys_enc->hw_ctl->ops.update_pending_flush_wb)
2037			phys_enc->hw_ctl->ops.update_pending_flush_wb(ctl, phys_enc->hw_wb->idx);
2038	} else {
2039		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2040			if (dpu_enc->phys_encs[i] && phys_enc->hw_intf->ops.bind_pingpong_blk)
2041				phys_enc->hw_intf->ops.bind_pingpong_blk(
2042						dpu_enc->phys_encs[i]->hw_intf, false,
2043						dpu_enc->phys_encs[i]->hw_pp->idx);
2044
2045			/* mark INTF flush as pending */
2046			if (phys_enc->hw_ctl->ops.update_pending_flush_intf)
2047				phys_enc->hw_ctl->ops.update_pending_flush_intf(phys_enc->hw_ctl,
2048						dpu_enc->phys_encs[i]->hw_intf->idx);
2049		}
2050	}
2051
2052	/* reset the merge 3D HW block */
2053	if (phys_enc->hw_pp->merge_3d) {
2054		phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d,
2055				BLEND_3D_NONE);
2056		if (phys_enc->hw_ctl->ops.update_pending_flush_merge_3d)
2057			phys_enc->hw_ctl->ops.update_pending_flush_merge_3d(ctl,
2058					phys_enc->hw_pp->merge_3d->idx);
2059	}
2060
2061	intf_cfg.stream_sel = 0; /* Don't care value for video mode */
2062	intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc);
2063
2064	if (phys_enc->hw_intf)
2065		intf_cfg.intf = phys_enc->hw_intf->idx;
2066	if (phys_enc->hw_wb)
2067		intf_cfg.wb = phys_enc->hw_wb->idx;
2068
2069	if (phys_enc->hw_pp->merge_3d)
2070		intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx;
2071
2072	if (ctl->ops.reset_intf_cfg)
2073		ctl->ops.reset_intf_cfg(ctl, &intf_cfg);
2074
2075	ctl->ops.trigger_flush(ctl);
2076	ctl->ops.trigger_start(ctl);
2077	ctl->ops.clear_pending_flush(ctl);
2078}
2079
2080void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc)
2081{
2082	struct dpu_encoder_virt *dpu_enc;
2083	struct dpu_encoder_phys *phys;
2084	int i;
2085
2086	if (!drm_enc) {
2087		DPU_ERROR("invalid encoder\n");
2088		return;
2089	}
2090	dpu_enc = to_dpu_encoder_virt(drm_enc);
2091
2092	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2093		phys = dpu_enc->phys_encs[i];
2094		if (phys->ops.prepare_commit)
2095			phys->ops.prepare_commit(phys);
2096	}
2097}
2098
2099#ifdef CONFIG_DEBUG_FS
2100static int _dpu_encoder_status_show(struct seq_file *s, void *data)
2101{
2102	struct dpu_encoder_virt *dpu_enc = s->private;
2103	int i;
2104
2105	mutex_lock(&dpu_enc->enc_lock);
2106	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2107		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2108
2109		seq_printf(s, "intf:%d  wb:%d  vsync:%8d     underrun:%8d    ",
2110				phys->intf_idx - INTF_0, phys->wb_idx - WB_0,
2111				atomic_read(&phys->vsync_cnt),
2112				atomic_read(&phys->underrun_cnt));
2113
2114		seq_printf(s, "mode: %s\n", dpu_encoder_helper_get_intf_type(phys->intf_mode));
2115	}
2116	mutex_unlock(&dpu_enc->enc_lock);
2117
2118	return 0;
2119}
2120
2121DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
2122
2123static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
2124{
2125	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
2126	int i;
2127
2128	char name[DPU_NAME_SIZE];
2129
2130	if (!drm_enc->dev) {
2131		DPU_ERROR("invalid encoder or kms\n");
2132		return -EINVAL;
2133	}
2134
2135	snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id);
2136
2137	/* create overall sub-directory for the encoder */
2138	dpu_enc->debugfs_root = debugfs_create_dir(name,
2139			drm_enc->dev->primary->debugfs_root);
2140
2141	/* don't error check these */
2142	debugfs_create_file("status", 0600,
2143		dpu_enc->debugfs_root, dpu_enc, &_dpu_encoder_status_fops);
2144
2145	for (i = 0; i < dpu_enc->num_phys_encs; i++)
2146		if (dpu_enc->phys_encs[i]->ops.late_register)
2147			dpu_enc->phys_encs[i]->ops.late_register(
2148					dpu_enc->phys_encs[i],
2149					dpu_enc->debugfs_root);
2150
2151	return 0;
2152}
2153#else
2154static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
2155{
2156	return 0;
2157}
2158#endif
2159
2160static int dpu_encoder_late_register(struct drm_encoder *encoder)
2161{
2162	return _dpu_encoder_init_debugfs(encoder);
2163}
2164
2165static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
2166{
2167	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2168
2169	debugfs_remove_recursive(dpu_enc->debugfs_root);
2170}
2171
2172static int dpu_encoder_virt_add_phys_encs(
2173		struct msm_display_info *disp_info,
2174		struct dpu_encoder_virt *dpu_enc,
2175		struct dpu_enc_phys_init_params *params)
2176{
2177	struct dpu_encoder_phys *enc = NULL;
2178
2179	DPU_DEBUG_ENC(dpu_enc, "\n");
2180
2181	/*
2182	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
2183	 * in this function, check up-front.
2184	 */
2185	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
2186			ARRAY_SIZE(dpu_enc->phys_encs)) {
2187		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
2188			  dpu_enc->num_phys_encs);
2189		return -EINVAL;
2190	}
2191
2192
2193	if (disp_info->intf_type == DRM_MODE_ENCODER_VIRTUAL) {
2194		enc = dpu_encoder_phys_wb_init(params);
2195
2196		if (IS_ERR(enc)) {
2197			DPU_ERROR_ENC(dpu_enc, "failed to init wb enc: %ld\n",
2198				PTR_ERR(enc));
2199			return PTR_ERR(enc);
2200		}
2201
2202		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2203		++dpu_enc->num_phys_encs;
2204	} else if (disp_info->is_cmd_mode) {
2205		enc = dpu_encoder_phys_cmd_init(params);
2206
2207		if (IS_ERR(enc)) {
2208			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2209				PTR_ERR(enc));
2210			return PTR_ERR(enc);
2211		}
2212
2213		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2214		++dpu_enc->num_phys_encs;
2215	} else {
2216		enc = dpu_encoder_phys_vid_init(params);
2217
2218		if (IS_ERR(enc)) {
2219			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2220				PTR_ERR(enc));
2221			return PTR_ERR(enc);
2222		}
2223
2224		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2225		++dpu_enc->num_phys_encs;
2226	}
2227
2228	if (params->split_role == ENC_ROLE_SLAVE)
2229		dpu_enc->cur_slave = enc;
2230	else
2231		dpu_enc->cur_master = enc;
2232
2233	return 0;
2234}
2235
2236static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = {
2237	.handle_vblank_virt = dpu_encoder_vblank_callback,
2238	.handle_underrun_virt = dpu_encoder_underrun_callback,
2239	.handle_frame_done = dpu_encoder_frame_done_callback,
2240};
2241
2242static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2243				 struct dpu_kms *dpu_kms,
2244				 struct msm_display_info *disp_info)
2245{
2246	int ret = 0;
2247	int i = 0;
2248	enum dpu_intf_type intf_type = INTF_NONE;
2249	struct dpu_enc_phys_init_params phys_params;
2250
2251	if (!dpu_enc) {
2252		DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2253		return -EINVAL;
2254	}
2255
2256	dpu_enc->cur_master = NULL;
2257
2258	memset(&phys_params, 0, sizeof(phys_params));
2259	phys_params.dpu_kms = dpu_kms;
2260	phys_params.parent = &dpu_enc->base;
2261	phys_params.parent_ops = &dpu_encoder_parent_ops;
2262	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2263
2264	switch (disp_info->intf_type) {
2265	case DRM_MODE_ENCODER_DSI:
2266		intf_type = INTF_DSI;
2267		break;
2268	case DRM_MODE_ENCODER_TMDS:
2269		intf_type = INTF_DP;
2270		break;
2271	case DRM_MODE_ENCODER_VIRTUAL:
2272		intf_type = INTF_WB;
2273		break;
2274	}
2275
2276	WARN_ON(disp_info->num_of_h_tiles < 1);
2277
2278	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2279
2280	if (disp_info->intf_type != DRM_MODE_ENCODER_VIRTUAL)
2281		dpu_enc->idle_pc_supported =
2282				dpu_kms->catalog->caps->has_idle_pc;
2283
2284	dpu_enc->dsc = disp_info->dsc;
2285
2286	mutex_lock(&dpu_enc->enc_lock);
2287	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2288		/*
2289		 * Left-most tile is at index 0, content is controller id
2290		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2291		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2292		 */
2293		u32 controller_id = disp_info->h_tile_instance[i];
2294
2295		if (disp_info->num_of_h_tiles > 1) {
2296			if (i == 0)
2297				phys_params.split_role = ENC_ROLE_MASTER;
2298			else
2299				phys_params.split_role = ENC_ROLE_SLAVE;
2300		} else {
2301			phys_params.split_role = ENC_ROLE_SOLO;
2302		}
2303
2304		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2305				i, controller_id, phys_params.split_role);
2306
2307		phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog,
2308													intf_type,
2309													controller_id);
2310
2311		phys_params.wb_idx = dpu_encoder_get_wb(dpu_kms->catalog,
2312				intf_type, controller_id);
2313		/*
2314		 * The phys_params might represent either an INTF or a WB unit, but not
2315		 * both of them at the same time.
2316		 */
2317		if ((phys_params.intf_idx == INTF_MAX) &&
2318				(phys_params.wb_idx == WB_MAX)) {
2319			DPU_ERROR_ENC(dpu_enc, "could not get intf or wb: type %d, id %d\n",
2320						  intf_type, controller_id);
2321			ret = -EINVAL;
2322		}
2323
2324		if ((phys_params.intf_idx != INTF_MAX) &&
2325				(phys_params.wb_idx != WB_MAX)) {
2326			DPU_ERROR_ENC(dpu_enc, "both intf and wb present: type %d, id %d\n",
2327						  intf_type, controller_id);
2328			ret = -EINVAL;
2329		}
2330
2331		if (!ret) {
2332			ret = dpu_encoder_virt_add_phys_encs(disp_info,
2333					dpu_enc, &phys_params);
2334			if (ret)
2335				DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2336		}
2337	}
2338
2339	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2340		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2341		atomic_set(&phys->vsync_cnt, 0);
2342		atomic_set(&phys->underrun_cnt, 0);
2343
2344		if (phys->intf_idx >= INTF_0 && phys->intf_idx < INTF_MAX)
2345			phys->hw_intf = dpu_rm_get_intf(&dpu_kms->rm, phys->intf_idx);
2346
2347		if (phys->wb_idx >= WB_0 && phys->wb_idx < WB_MAX)
2348			phys->hw_wb = dpu_rm_get_wb(&dpu_kms->rm, phys->wb_idx);
2349
2350		if (!phys->hw_intf && !phys->hw_wb) {
2351			DPU_ERROR_ENC(dpu_enc, "no intf or wb block assigned at idx: %d\n", i);
2352			ret = -EINVAL;
2353		}
2354
2355		if (phys->hw_intf && phys->hw_wb) {
2356			DPU_ERROR_ENC(dpu_enc,
2357					"invalid phys both intf and wb block at idx: %d\n", i);
2358			ret = -EINVAL;
2359		}
2360	}
2361
2362	mutex_unlock(&dpu_enc->enc_lock);
2363
2364	return ret;
2365}
2366
2367static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2368{
2369	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2370			frame_done_timer);
2371	struct drm_encoder *drm_enc = &dpu_enc->base;
2372	u32 event;
2373
2374	if (!drm_enc->dev) {
2375		DPU_ERROR("invalid parameters\n");
2376		return;
2377	}
2378
2379	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2380		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2381			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2382		return;
2383	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2384		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2385		return;
2386	}
2387
2388	DPU_ERROR_ENC(dpu_enc, "frame done timeout\n");
2389
2390	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2391	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2392	dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2393}
2394
2395static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2396	.atomic_mode_set = dpu_encoder_virt_atomic_mode_set,
2397	.disable = dpu_encoder_virt_disable,
2398	.enable = dpu_encoder_virt_enable,
2399	.atomic_check = dpu_encoder_virt_atomic_check,
2400};
2401
2402static const struct drm_encoder_funcs dpu_encoder_funcs = {
2403		.destroy = dpu_encoder_destroy,
2404		.late_register = dpu_encoder_late_register,
2405		.early_unregister = dpu_encoder_early_unregister,
2406};
2407
2408int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc,
2409		struct msm_display_info *disp_info)
2410{
2411	struct msm_drm_private *priv = dev->dev_private;
2412	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2413	struct drm_encoder *drm_enc = NULL;
2414	struct dpu_encoder_virt *dpu_enc = NULL;
2415	int ret = 0;
2416
2417	dpu_enc = to_dpu_encoder_virt(enc);
2418
2419	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2420	if (ret)
2421		goto fail;
2422
2423	atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2424	timer_setup(&dpu_enc->frame_done_timer,
2425			dpu_encoder_frame_done_timeout, 0);
2426
2427	if (disp_info->intf_type == DRM_MODE_ENCODER_DSI)
2428		timer_setup(&dpu_enc->vsync_event_timer,
2429				dpu_encoder_vsync_event_handler,
2430				0);
2431	else if (disp_info->intf_type == DRM_MODE_ENCODER_TMDS)
2432		dpu_enc->wide_bus_en = msm_dp_wide_bus_available(
2433				priv->dp[disp_info->h_tile_instance[0]]);
2434
2435	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2436			dpu_encoder_off_work);
2437	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2438
2439	kthread_init_work(&dpu_enc->vsync_event_work,
2440			dpu_encoder_vsync_event_work_handler);
2441
2442	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2443
2444	DPU_DEBUG_ENC(dpu_enc, "created\n");
2445
2446	return ret;
2447
2448fail:
2449	DPU_ERROR("failed to create encoder\n");
2450	if (drm_enc)
2451		dpu_encoder_destroy(drm_enc);
2452
2453	return ret;
2454
2455
2456}
2457
2458struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2459		int drm_enc_mode)
2460{
2461	struct dpu_encoder_virt *dpu_enc = NULL;
2462	int rc = 0;
2463
2464	dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2465	if (!dpu_enc)
2466		return ERR_PTR(-ENOMEM);
2467
2468
2469	rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2470							  drm_enc_mode, NULL);
2471	if (rc) {
2472		devm_kfree(dev->dev, dpu_enc);
2473		return ERR_PTR(rc);
2474	}
2475
2476	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2477
2478	spin_lock_init(&dpu_enc->enc_spinlock);
2479	dpu_enc->enabled = false;
2480	mutex_init(&dpu_enc->enc_lock);
2481	mutex_init(&dpu_enc->rc_lock);
2482
2483	return &dpu_enc->base;
2484}
2485
2486int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2487	enum msm_event_wait event)
2488{
2489	int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2490	struct dpu_encoder_virt *dpu_enc = NULL;
2491	int i, ret = 0;
2492
2493	if (!drm_enc) {
2494		DPU_ERROR("invalid encoder\n");
2495		return -EINVAL;
2496	}
2497	dpu_enc = to_dpu_encoder_virt(drm_enc);
2498	DPU_DEBUG_ENC(dpu_enc, "\n");
2499
2500	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2501		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2502
2503		switch (event) {
2504		case MSM_ENC_COMMIT_DONE:
2505			fn_wait = phys->ops.wait_for_commit_done;
2506			break;
2507		case MSM_ENC_TX_COMPLETE:
2508			fn_wait = phys->ops.wait_for_tx_complete;
2509			break;
2510		case MSM_ENC_VBLANK:
2511			fn_wait = phys->ops.wait_for_vblank;
2512			break;
2513		default:
2514			DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2515					event);
2516			return -EINVAL;
2517		}
2518
2519		if (fn_wait) {
2520			DPU_ATRACE_BEGIN("wait_for_completion_event");
2521			ret = fn_wait(phys);
2522			DPU_ATRACE_END("wait_for_completion_event");
2523			if (ret)
2524				return ret;
2525		}
2526	}
2527
2528	return ret;
2529}
2530
2531enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2532{
2533	struct dpu_encoder_virt *dpu_enc = NULL;
2534
2535	if (!encoder) {
2536		DPU_ERROR("invalid encoder\n");
2537		return INTF_MODE_NONE;
2538	}
2539	dpu_enc = to_dpu_encoder_virt(encoder);
2540
2541	if (dpu_enc->cur_master)
2542		return dpu_enc->cur_master->intf_mode;
2543
2544	if (dpu_enc->num_phys_encs)
2545		return dpu_enc->phys_encs[0]->intf_mode;
2546
2547	return INTF_MODE_NONE;
2548}
2549
2550unsigned int dpu_encoder_helper_get_dsc(struct dpu_encoder_phys *phys_enc)
2551{
2552	struct drm_encoder *encoder = phys_enc->parent;
2553	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2554
2555	return dpu_enc->dsc_mask;
2556}