Loading...
Note: File does not exist in v3.1.
1// SPDX-License-Identifier: MIT
2/*
3 * Copyright © 2022 Intel Corporation
4 */
5
6#include "i915_drv.h"
7
8#include "intel_gt_mcr.h"
9#include "intel_gt_regs.h"
10
11/**
12 * DOC: GT Multicast/Replicated (MCR) Register Support
13 *
14 * Some GT registers are designed as "multicast" or "replicated" registers:
15 * multiple instances of the same register share a single MMIO offset. MCR
16 * registers are generally used when the hardware needs to potentially track
17 * independent values of a register per hardware unit (e.g., per-subslice,
18 * per-L3bank, etc.). The specific types of replication that exist vary
19 * per-platform.
20 *
21 * MMIO accesses to MCR registers are controlled according to the settings
22 * programmed in the platform's MCR_SELECTOR register(s). MMIO writes to MCR
23 * registers can be done in either a (i.e., a single write updates all
24 * instances of the register to the same value) or unicast (a write updates only
25 * one specific instance). Reads of MCR registers always operate in a unicast
26 * manner regardless of how the multicast/unicast bit is set in MCR_SELECTOR.
27 * Selection of a specific MCR instance for unicast operations is referred to
28 * as "steering."
29 *
30 * If MCR register operations are steered toward a hardware unit that is
31 * fused off or currently powered down due to power gating, the MMIO operation
32 * is "terminated" by the hardware. Terminated read operations will return a
33 * value of zero and terminated unicast write operations will be silently
34 * ignored.
35 */
36
37#define HAS_MSLICE_STEERING(dev_priv) (INTEL_INFO(dev_priv)->has_mslice_steering)
38
39static const char * const intel_steering_types[] = {
40 "L3BANK",
41 "MSLICE",
42 "LNCF",
43 "GAM",
44 "DSS",
45 "OADDRM",
46 "INSTANCE 0",
47};
48
49static const struct intel_mmio_range icl_l3bank_steering_table[] = {
50 { 0x00B100, 0x00B3FF },
51 {},
52};
53
54/*
55 * Although the bspec lists more "MSLICE" ranges than shown here, some of those
56 * are of a "GAM" subclass that has special rules. Thus we use a separate
57 * GAM table farther down for those.
58 */
59static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = {
60 { 0x00DD00, 0x00DDFF },
61 { 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */
62 {},
63};
64
65static const struct intel_mmio_range xehpsdv_gam_steering_table[] = {
66 { 0x004000, 0x004AFF },
67 { 0x00C800, 0x00CFFF },
68 {},
69};
70
71static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = {
72 { 0x00B000, 0x00B0FF },
73 { 0x00D800, 0x00D8FF },
74 {},
75};
76
77static const struct intel_mmio_range dg2_lncf_steering_table[] = {
78 { 0x00B000, 0x00B0FF },
79 { 0x00D880, 0x00D8FF },
80 {},
81};
82
83/*
84 * We have several types of MCR registers on PVC where steering to (0,0)
85 * will always provide us with a non-terminated value. We'll stick them
86 * all in the same table for simplicity.
87 */
88static const struct intel_mmio_range pvc_instance0_steering_table[] = {
89 { 0x004000, 0x004AFF }, /* HALF-BSLICE */
90 { 0x008800, 0x00887F }, /* CC */
91 { 0x008A80, 0x008AFF }, /* TILEPSMI */
92 { 0x00B000, 0x00B0FF }, /* HALF-BSLICE */
93 { 0x00B100, 0x00B3FF }, /* L3BANK */
94 { 0x00C800, 0x00CFFF }, /* HALF-BSLICE */
95 { 0x00D800, 0x00D8FF }, /* HALF-BSLICE */
96 { 0x00DD00, 0x00DDFF }, /* BSLICE */
97 { 0x00E900, 0x00E9FF }, /* HALF-BSLICE */
98 { 0x00EC00, 0x00EEFF }, /* HALF-BSLICE */
99 { 0x00F000, 0x00FFFF }, /* HALF-BSLICE */
100 { 0x024180, 0x0241FF }, /* HALF-BSLICE */
101 {},
102};
103
104static const struct intel_mmio_range xelpg_instance0_steering_table[] = {
105 { 0x000B00, 0x000BFF }, /* SQIDI */
106 { 0x001000, 0x001FFF }, /* SQIDI */
107 { 0x004000, 0x0048FF }, /* GAM */
108 { 0x008700, 0x0087FF }, /* SQIDI */
109 { 0x00B000, 0x00B0FF }, /* NODE */
110 { 0x00C800, 0x00CFFF }, /* GAM */
111 { 0x00D880, 0x00D8FF }, /* NODE */
112 { 0x00DD00, 0x00DDFF }, /* OAAL2 */
113 {},
114};
115
116static const struct intel_mmio_range xelpg_l3bank_steering_table[] = {
117 { 0x00B100, 0x00B3FF },
118 {},
119};
120
121/* DSS steering is used for SLICE ranges as well */
122static const struct intel_mmio_range xelpg_dss_steering_table[] = {
123 { 0x005200, 0x0052FF }, /* SLICE */
124 { 0x005500, 0x007FFF }, /* SLICE */
125 { 0x008140, 0x00815F }, /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
126 { 0x0094D0, 0x00955F }, /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
127 { 0x009680, 0x0096FF }, /* DSS */
128 { 0x00D800, 0x00D87F }, /* SLICE */
129 { 0x00DC00, 0x00DCFF }, /* SLICE */
130 { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved) */
131 {},
132};
133
134static const struct intel_mmio_range xelpmp_oaddrm_steering_table[] = {
135 { 0x393200, 0x39323F },
136 { 0x393400, 0x3934FF },
137 {},
138};
139
140void intel_gt_mcr_init(struct intel_gt *gt)
141{
142 struct drm_i915_private *i915 = gt->i915;
143 unsigned long fuse;
144 int i;
145
146 /*
147 * An mslice is unavailable only if both the meml3 for the slice is
148 * disabled *and* all of the DSS in the slice (quadrant) are disabled.
149 */
150 if (HAS_MSLICE_STEERING(i915)) {
151 gt->info.mslice_mask =
152 intel_slicemask_from_xehp_dssmask(gt->info.sseu.subslice_mask,
153 GEN_DSS_PER_MSLICE);
154 gt->info.mslice_mask |=
155 (intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
156 GEN12_MEML3_EN_MASK);
157
158 if (!gt->info.mslice_mask) /* should be impossible! */
159 drm_warn(&i915->drm, "mslice mask all zero!\n");
160 }
161
162 if (MEDIA_VER(i915) >= 13 && gt->type == GT_MEDIA) {
163 gt->steering_table[OADDRM] = xelpmp_oaddrm_steering_table;
164 } else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) {
165 fuse = REG_FIELD_GET(GT_L3_EXC_MASK,
166 intel_uncore_read(gt->uncore, XEHP_FUSE4));
167
168 /*
169 * Despite the register field being named "exclude mask" the
170 * bits actually represent enabled banks (two banks per bit).
171 */
172 for_each_set_bit(i, &fuse, 3)
173 gt->info.l3bank_mask |= 0x3 << 2 * i;
174
175 gt->steering_table[INSTANCE0] = xelpg_instance0_steering_table;
176 gt->steering_table[L3BANK] = xelpg_l3bank_steering_table;
177 gt->steering_table[DSS] = xelpg_dss_steering_table;
178 } else if (IS_PONTEVECCHIO(i915)) {
179 gt->steering_table[INSTANCE0] = pvc_instance0_steering_table;
180 } else if (IS_DG2(i915)) {
181 gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
182 gt->steering_table[LNCF] = dg2_lncf_steering_table;
183 /*
184 * No need to hook up the GAM table since it has a dedicated
185 * steering control register on DG2 and can use implicit
186 * steering.
187 */
188 } else if (IS_XEHPSDV(i915)) {
189 gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
190 gt->steering_table[LNCF] = xehpsdv_lncf_steering_table;
191 gt->steering_table[GAM] = xehpsdv_gam_steering_table;
192 } else if (GRAPHICS_VER(i915) >= 11 &&
193 GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) {
194 gt->steering_table[L3BANK] = icl_l3bank_steering_table;
195 gt->info.l3bank_mask =
196 ~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
197 GEN10_L3BANK_MASK;
198 if (!gt->info.l3bank_mask) /* should be impossible! */
199 drm_warn(&i915->drm, "L3 bank mask is all zero!\n");
200 } else if (GRAPHICS_VER(i915) >= 11) {
201 /*
202 * We expect all modern platforms to have at least some
203 * type of steering that needs to be initialized.
204 */
205 MISSING_CASE(INTEL_INFO(i915)->platform);
206 }
207}
208
209/*
210 * Although the rest of the driver should use MCR-specific functions to
211 * read/write MCR registers, we still use the regular intel_uncore_* functions
212 * internally to implement those, so we need a way for the functions in this
213 * file to "cast" an i915_mcr_reg_t into an i915_reg_t.
214 */
215static i915_reg_t mcr_reg_cast(const i915_mcr_reg_t mcr)
216{
217 i915_reg_t r = { .reg = mcr.reg };
218
219 return r;
220}
221
222/*
223 * rw_with_mcr_steering_fw - Access a register with specific MCR steering
224 * @uncore: pointer to struct intel_uncore
225 * @reg: register being accessed
226 * @rw_flag: FW_REG_READ for read access or FW_REG_WRITE for write access
227 * @group: group number (documented as "sliceid" on older platforms)
228 * @instance: instance number (documented as "subsliceid" on older platforms)
229 * @value: register value to be written (ignored for read)
230 *
231 * Return: 0 for write access. register value for read access.
232 *
233 * Caller needs to make sure the relevant forcewake wells are up.
234 */
235static u32 rw_with_mcr_steering_fw(struct intel_uncore *uncore,
236 i915_mcr_reg_t reg, u8 rw_flag,
237 int group, int instance, u32 value)
238{
239 u32 mcr_mask, mcr_ss, mcr, old_mcr, val = 0;
240
241 lockdep_assert_held(&uncore->lock);
242
243 if (GRAPHICS_VER_FULL(uncore->i915) >= IP_VER(12, 70)) {
244 /*
245 * Always leave the hardware in multicast mode when doing reads
246 * (see comment about Wa_22013088509 below) and only change it
247 * to unicast mode when doing writes of a specific instance.
248 *
249 * No need to save old steering reg value.
250 */
251 intel_uncore_write_fw(uncore, MTL_MCR_SELECTOR,
252 REG_FIELD_PREP(MTL_MCR_GROUPID, group) |
253 REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance) |
254 (rw_flag == FW_REG_READ ? GEN11_MCR_MULTICAST : 0));
255 } else if (GRAPHICS_VER(uncore->i915) >= 11) {
256 mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
257 mcr_ss = GEN11_MCR_SLICE(group) | GEN11_MCR_SUBSLICE(instance);
258
259 /*
260 * Wa_22013088509
261 *
262 * The setting of the multicast/unicast bit usually wouldn't
263 * matter for read operations (which always return the value
264 * from a single register instance regardless of how that bit
265 * is set), but some platforms have a workaround requiring us
266 * to remain in multicast mode for reads. There's no real
267 * downside to this, so we'll just go ahead and do so on all
268 * platforms; we'll only clear the multicast bit from the mask
269 * when exlicitly doing a write operation.
270 */
271 if (rw_flag == FW_REG_WRITE)
272 mcr_mask |= GEN11_MCR_MULTICAST;
273
274 mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
275 old_mcr = mcr;
276
277 mcr &= ~mcr_mask;
278 mcr |= mcr_ss;
279 intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
280 } else {
281 mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
282 mcr_ss = GEN8_MCR_SLICE(group) | GEN8_MCR_SUBSLICE(instance);
283
284 mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
285 old_mcr = mcr;
286
287 mcr &= ~mcr_mask;
288 mcr |= mcr_ss;
289 intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
290 }
291
292 if (rw_flag == FW_REG_READ)
293 val = intel_uncore_read_fw(uncore, mcr_reg_cast(reg));
294 else
295 intel_uncore_write_fw(uncore, mcr_reg_cast(reg), value);
296
297 /*
298 * For pre-MTL platforms, we need to restore the old value of the
299 * steering control register to ensure that implicit steering continues
300 * to behave as expected. For MTL and beyond, we need only reinstate
301 * the 'multicast' bit (and only if we did a write that cleared it).
302 */
303 if (GRAPHICS_VER_FULL(uncore->i915) >= IP_VER(12, 70) && rw_flag == FW_REG_WRITE)
304 intel_uncore_write_fw(uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST);
305 else if (GRAPHICS_VER_FULL(uncore->i915) < IP_VER(12, 70))
306 intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, old_mcr);
307
308 return val;
309}
310
311static u32 rw_with_mcr_steering(struct intel_uncore *uncore,
312 i915_mcr_reg_t reg, u8 rw_flag,
313 int group, int instance,
314 u32 value)
315{
316 enum forcewake_domains fw_domains;
317 u32 val;
318
319 fw_domains = intel_uncore_forcewake_for_reg(uncore, mcr_reg_cast(reg),
320 rw_flag);
321 fw_domains |= intel_uncore_forcewake_for_reg(uncore,
322 GEN8_MCR_SELECTOR,
323 FW_REG_READ | FW_REG_WRITE);
324
325 spin_lock_irq(&uncore->lock);
326 intel_uncore_forcewake_get__locked(uncore, fw_domains);
327
328 val = rw_with_mcr_steering_fw(uncore, reg, rw_flag, group, instance, value);
329
330 intel_uncore_forcewake_put__locked(uncore, fw_domains);
331 spin_unlock_irq(&uncore->lock);
332
333 return val;
334}
335
336/**
337 * intel_gt_mcr_read - read a specific instance of an MCR register
338 * @gt: GT structure
339 * @reg: the MCR register to read
340 * @group: the MCR group
341 * @instance: the MCR instance
342 *
343 * Returns the value read from an MCR register after steering toward a specific
344 * group/instance.
345 */
346u32 intel_gt_mcr_read(struct intel_gt *gt,
347 i915_mcr_reg_t reg,
348 int group, int instance)
349{
350 return rw_with_mcr_steering(gt->uncore, reg, FW_REG_READ, group, instance, 0);
351}
352
353/**
354 * intel_gt_mcr_unicast_write - write a specific instance of an MCR register
355 * @gt: GT structure
356 * @reg: the MCR register to write
357 * @value: value to write
358 * @group: the MCR group
359 * @instance: the MCR instance
360 *
361 * Write an MCR register in unicast mode after steering toward a specific
362 * group/instance.
363 */
364void intel_gt_mcr_unicast_write(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value,
365 int group, int instance)
366{
367 rw_with_mcr_steering(gt->uncore, reg, FW_REG_WRITE, group, instance, value);
368}
369
370/**
371 * intel_gt_mcr_multicast_write - write a value to all instances of an MCR register
372 * @gt: GT structure
373 * @reg: the MCR register to write
374 * @value: value to write
375 *
376 * Write an MCR register in multicast mode to update all instances.
377 */
378void intel_gt_mcr_multicast_write(struct intel_gt *gt,
379 i915_mcr_reg_t reg, u32 value)
380{
381 /*
382 * Ensure we have multicast behavior, just in case some non-i915 agent
383 * left the hardware in unicast mode.
384 */
385 if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70))
386 intel_uncore_write_fw(gt->uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST);
387
388 intel_uncore_write(gt->uncore, mcr_reg_cast(reg), value);
389}
390
391/**
392 * intel_gt_mcr_multicast_write_fw - write a value to all instances of an MCR register
393 * @gt: GT structure
394 * @reg: the MCR register to write
395 * @value: value to write
396 *
397 * Write an MCR register in multicast mode to update all instances. This
398 * function assumes the caller is already holding any necessary forcewake
399 * domains; use intel_gt_mcr_multicast_write() in cases where forcewake should
400 * be obtained automatically.
401 */
402void intel_gt_mcr_multicast_write_fw(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value)
403{
404 /*
405 * Ensure we have multicast behavior, just in case some non-i915 agent
406 * left the hardware in unicast mode.
407 */
408 if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70))
409 intel_uncore_write_fw(gt->uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST);
410
411 intel_uncore_write_fw(gt->uncore, mcr_reg_cast(reg), value);
412}
413
414/**
415 * intel_gt_mcr_multicast_rmw - Performs a multicast RMW operations
416 * @gt: GT structure
417 * @reg: the MCR register to read and write
418 * @clear: bits to clear during RMW
419 * @set: bits to set during RMW
420 *
421 * Performs a read-modify-write on an MCR register in a multicast manner.
422 * This operation only makes sense on MCR registers where all instances are
423 * expected to have the same value. The read will target any non-terminated
424 * instance and the write will be applied to all instances.
425 *
426 * This function assumes the caller is already holding any necessary forcewake
427 * domains; use intel_gt_mcr_multicast_rmw() in cases where forcewake should
428 * be obtained automatically.
429 *
430 * Returns the old (unmodified) value read.
431 */
432u32 intel_gt_mcr_multicast_rmw(struct intel_gt *gt, i915_mcr_reg_t reg,
433 u32 clear, u32 set)
434{
435 u32 val = intel_gt_mcr_read_any(gt, reg);
436
437 intel_gt_mcr_multicast_write(gt, reg, (val & ~clear) | set);
438
439 return val;
440}
441
442/*
443 * reg_needs_read_steering - determine whether a register read requires
444 * explicit steering
445 * @gt: GT structure
446 * @reg: the register to check steering requirements for
447 * @type: type of multicast steering to check
448 *
449 * Determines whether @reg needs explicit steering of a specific type for
450 * reads.
451 *
452 * Returns false if @reg does not belong to a register range of the given
453 * steering type, or if the default (subslice-based) steering IDs are suitable
454 * for @type steering too.
455 */
456static bool reg_needs_read_steering(struct intel_gt *gt,
457 i915_mcr_reg_t reg,
458 enum intel_steering_type type)
459{
460 const u32 offset = i915_mmio_reg_offset(reg);
461 const struct intel_mmio_range *entry;
462
463 if (likely(!gt->steering_table[type]))
464 return false;
465
466 for (entry = gt->steering_table[type]; entry->end; entry++) {
467 if (offset >= entry->start && offset <= entry->end)
468 return true;
469 }
470
471 return false;
472}
473
474/*
475 * get_nonterminated_steering - determines valid IDs for a class of MCR steering
476 * @gt: GT structure
477 * @type: multicast register type
478 * @group: Group ID returned
479 * @instance: Instance ID returned
480 *
481 * Determines group and instance values that will steer reads of the specified
482 * MCR class to a non-terminated instance.
483 */
484static void get_nonterminated_steering(struct intel_gt *gt,
485 enum intel_steering_type type,
486 u8 *group, u8 *instance)
487{
488 u32 dss;
489
490 switch (type) {
491 case L3BANK:
492 *group = 0; /* unused */
493 *instance = __ffs(gt->info.l3bank_mask);
494 break;
495 case MSLICE:
496 GEM_WARN_ON(!HAS_MSLICE_STEERING(gt->i915));
497 *group = __ffs(gt->info.mslice_mask);
498 *instance = 0; /* unused */
499 break;
500 case LNCF:
501 /*
502 * An LNCF is always present if its mslice is present, so we
503 * can safely just steer to LNCF 0 in all cases.
504 */
505 GEM_WARN_ON(!HAS_MSLICE_STEERING(gt->i915));
506 *group = __ffs(gt->info.mslice_mask) << 1;
507 *instance = 0; /* unused */
508 break;
509 case GAM:
510 *group = IS_DG2(gt->i915) ? 1 : 0;
511 *instance = 0;
512 break;
513 case DSS:
514 dss = intel_sseu_find_first_xehp_dss(>->info.sseu, 0, 0);
515 *group = dss / GEN_DSS_PER_GSLICE;
516 *instance = dss % GEN_DSS_PER_GSLICE;
517 break;
518 case INSTANCE0:
519 /*
520 * There are a lot of MCR types for which instance (0, 0)
521 * will always provide a non-terminated value.
522 */
523 *group = 0;
524 *instance = 0;
525 break;
526 case OADDRM:
527 if ((VDBOX_MASK(gt) | VEBOX_MASK(gt) | gt->info.sfc_mask) & BIT(0))
528 *group = 0;
529 else
530 *group = 1;
531 *instance = 0;
532 break;
533 default:
534 MISSING_CASE(type);
535 *group = 0;
536 *instance = 0;
537 }
538}
539
540/**
541 * intel_gt_mcr_get_nonterminated_steering - find group/instance values that
542 * will steer a register to a non-terminated instance
543 * @gt: GT structure
544 * @reg: register for which the steering is required
545 * @group: return variable for group steering
546 * @instance: return variable for instance steering
547 *
548 * This function returns a group/instance pair that is guaranteed to work for
549 * read steering of the given register. Note that a value will be returned even
550 * if the register is not replicated and therefore does not actually require
551 * steering.
552 */
553void intel_gt_mcr_get_nonterminated_steering(struct intel_gt *gt,
554 i915_mcr_reg_t reg,
555 u8 *group, u8 *instance)
556{
557 int type;
558
559 for (type = 0; type < NUM_STEERING_TYPES; type++) {
560 if (reg_needs_read_steering(gt, reg, type)) {
561 get_nonterminated_steering(gt, type, group, instance);
562 return;
563 }
564 }
565
566 *group = gt->default_steering.groupid;
567 *instance = gt->default_steering.instanceid;
568}
569
570/**
571 * intel_gt_mcr_read_any_fw - reads one instance of an MCR register
572 * @gt: GT structure
573 * @reg: register to read
574 *
575 * Reads a GT MCR register. The read will be steered to a non-terminated
576 * instance (i.e., one that isn't fused off or powered down by power gating).
577 * This function assumes the caller is already holding any necessary forcewake
578 * domains; use intel_gt_mcr_read_any() in cases where forcewake should be
579 * obtained automatically.
580 *
581 * Returns the value from a non-terminated instance of @reg.
582 */
583u32 intel_gt_mcr_read_any_fw(struct intel_gt *gt, i915_mcr_reg_t reg)
584{
585 int type;
586 u8 group, instance;
587
588 for (type = 0; type < NUM_STEERING_TYPES; type++) {
589 if (reg_needs_read_steering(gt, reg, type)) {
590 get_nonterminated_steering(gt, type, &group, &instance);
591 return rw_with_mcr_steering_fw(gt->uncore, reg,
592 FW_REG_READ,
593 group, instance, 0);
594 }
595 }
596
597 return intel_uncore_read_fw(gt->uncore, mcr_reg_cast(reg));
598}
599
600/**
601 * intel_gt_mcr_read_any - reads one instance of an MCR register
602 * @gt: GT structure
603 * @reg: register to read
604 *
605 * Reads a GT MCR register. The read will be steered to a non-terminated
606 * instance (i.e., one that isn't fused off or powered down by power gating).
607 *
608 * Returns the value from a non-terminated instance of @reg.
609 */
610u32 intel_gt_mcr_read_any(struct intel_gt *gt, i915_mcr_reg_t reg)
611{
612 int type;
613 u8 group, instance;
614
615 for (type = 0; type < NUM_STEERING_TYPES; type++) {
616 if (reg_needs_read_steering(gt, reg, type)) {
617 get_nonterminated_steering(gt, type, &group, &instance);
618 return rw_with_mcr_steering(gt->uncore, reg,
619 FW_REG_READ,
620 group, instance, 0);
621 }
622 }
623
624 return intel_uncore_read(gt->uncore, mcr_reg_cast(reg));
625}
626
627static void report_steering_type(struct drm_printer *p,
628 struct intel_gt *gt,
629 enum intel_steering_type type,
630 bool dump_table)
631{
632 const struct intel_mmio_range *entry;
633 u8 group, instance;
634
635 BUILD_BUG_ON(ARRAY_SIZE(intel_steering_types) != NUM_STEERING_TYPES);
636
637 if (!gt->steering_table[type]) {
638 drm_printf(p, "%s steering: uses default steering\n",
639 intel_steering_types[type]);
640 return;
641 }
642
643 get_nonterminated_steering(gt, type, &group, &instance);
644 drm_printf(p, "%s steering: group=0x%x, instance=0x%x\n",
645 intel_steering_types[type], group, instance);
646
647 if (!dump_table)
648 return;
649
650 for (entry = gt->steering_table[type]; entry->end; entry++)
651 drm_printf(p, "\t0x%06x - 0x%06x\n", entry->start, entry->end);
652}
653
654void intel_gt_mcr_report_steering(struct drm_printer *p, struct intel_gt *gt,
655 bool dump_table)
656{
657 /*
658 * Starting with MTL we no longer have default steering;
659 * all ranges are explicitly steered.
660 */
661 if (GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 70))
662 drm_printf(p, "Default steering: group=0x%x, instance=0x%x\n",
663 gt->default_steering.groupid,
664 gt->default_steering.instanceid);
665
666 if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
667 for (int i = 0; i < NUM_STEERING_TYPES; i++)
668 if (gt->steering_table[i])
669 report_steering_type(p, gt, i, dump_table);
670 } else if (IS_PONTEVECCHIO(gt->i915)) {
671 report_steering_type(p, gt, INSTANCE0, dump_table);
672 } else if (HAS_MSLICE_STEERING(gt->i915)) {
673 report_steering_type(p, gt, MSLICE, dump_table);
674 report_steering_type(p, gt, LNCF, dump_table);
675 }
676}
677
678/**
679 * intel_gt_mcr_get_ss_steering - returns the group/instance steering for a SS
680 * @gt: GT structure
681 * @dss: DSS ID to obtain steering for
682 * @group: pointer to storage for steering group ID
683 * @instance: pointer to storage for steering instance ID
684 *
685 * Returns the steering IDs (via the @group and @instance parameters) that
686 * correspond to a specific subslice/DSS ID.
687 */
688void intel_gt_mcr_get_ss_steering(struct intel_gt *gt, unsigned int dss,
689 unsigned int *group, unsigned int *instance)
690{
691 if (IS_PONTEVECCHIO(gt->i915)) {
692 *group = dss / GEN_DSS_PER_CSLICE;
693 *instance = dss % GEN_DSS_PER_CSLICE;
694 } else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50)) {
695 *group = dss / GEN_DSS_PER_GSLICE;
696 *instance = dss % GEN_DSS_PER_GSLICE;
697 } else {
698 *group = dss / GEN_MAX_SS_PER_HSW_SLICE;
699 *instance = dss % GEN_MAX_SS_PER_HSW_SLICE;
700 return;
701 }
702}
703
704/**
705 * intel_gt_mcr_wait_for_reg - wait until MCR register matches expected state
706 * @gt: GT structure
707 * @reg: the register to read
708 * @mask: mask to apply to register value
709 * @value: value to wait for
710 * @fast_timeout_us: fast timeout in microsecond for atomic/tight wait
711 * @slow_timeout_ms: slow timeout in millisecond
712 *
713 * This routine waits until the target register @reg contains the expected
714 * @value after applying the @mask, i.e. it waits until ::
715 *
716 * (intel_gt_mcr_read_any_fw(gt, reg) & mask) == value
717 *
718 * Otherwise, the wait will timeout after @slow_timeout_ms milliseconds.
719 * For atomic context @slow_timeout_ms must be zero and @fast_timeout_us
720 * must be not larger than 20,0000 microseconds.
721 *
722 * This function is basically an MCR-friendly version of
723 * __intel_wait_for_register_fw(). Generally this function will only be used
724 * on GAM registers which are a bit special --- although they're MCR registers,
725 * reads (e.g., waiting for status updates) are always directed to the primary
726 * instance.
727 *
728 * Note that this routine assumes the caller holds forcewake asserted, it is
729 * not suitable for very long waits.
730 *
731 * Return: 0 if the register matches the desired condition, or -ETIMEDOUT.
732 */
733int intel_gt_mcr_wait_for_reg(struct intel_gt *gt,
734 i915_mcr_reg_t reg,
735 u32 mask,
736 u32 value,
737 unsigned int fast_timeout_us,
738 unsigned int slow_timeout_ms)
739{
740 int ret;
741
742 lockdep_assert_not_held(>->uncore->lock);
743
744#define done ((intel_gt_mcr_read_any(gt, reg) & mask) == value)
745
746 /* Catch any overuse of this function */
747 might_sleep_if(slow_timeout_ms);
748 GEM_BUG_ON(fast_timeout_us > 20000);
749 GEM_BUG_ON(!fast_timeout_us && !slow_timeout_ms);
750
751 ret = -ETIMEDOUT;
752 if (fast_timeout_us && fast_timeout_us <= 20000)
753 ret = _wait_for_atomic(done, fast_timeout_us, 0);
754 if (ret && slow_timeout_ms)
755 ret = wait_for(done, slow_timeout_ms);
756
757 return ret;
758#undef done
759}