Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/* SPDX-License-Identifier: MIT */
   2/*
   3 * Copyright © 2019 Intel Corporation
   4 */
   5
   6#include <linux/string_helpers.h>
   7
   8#include "i915_drv.h"
   9#include "i915_irq.h"
  10#include "intel_backlight_regs.h"
  11#include "intel_cdclk.h"
  12#include "intel_combo_phy.h"
  13#include "intel_de.h"
  14#include "intel_display_power.h"
  15#include "intel_display_power_map.h"
  16#include "intel_display_power_well.h"
  17#include "intel_display_types.h"
  18#include "intel_dmc.h"
  19#include "intel_mchbar_regs.h"
  20#include "intel_pch_refclk.h"
  21#include "intel_pcode.h"
  22#include "intel_snps_phy.h"
  23#include "skl_watermark.h"
  24#include "vlv_sideband.h"
  25
  26#define for_each_power_domain_well(__dev_priv, __power_well, __domain)	\
  27	for_each_power_well(__dev_priv, __power_well)				\
  28		for_each_if(test_bit((__domain), (__power_well)->domains.bits))
  29
  30#define for_each_power_domain_well_reverse(__dev_priv, __power_well, __domain) \
  31	for_each_power_well_reverse(__dev_priv, __power_well)		        \
  32		for_each_if(test_bit((__domain), (__power_well)->domains.bits))
  33
  34const char *
  35intel_display_power_domain_str(enum intel_display_power_domain domain)
  36{
  37	switch (domain) {
  38	case POWER_DOMAIN_DISPLAY_CORE:
  39		return "DISPLAY_CORE";
  40	case POWER_DOMAIN_PIPE_A:
  41		return "PIPE_A";
  42	case POWER_DOMAIN_PIPE_B:
  43		return "PIPE_B";
  44	case POWER_DOMAIN_PIPE_C:
  45		return "PIPE_C";
  46	case POWER_DOMAIN_PIPE_D:
  47		return "PIPE_D";
  48	case POWER_DOMAIN_PIPE_PANEL_FITTER_A:
  49		return "PIPE_PANEL_FITTER_A";
  50	case POWER_DOMAIN_PIPE_PANEL_FITTER_B:
  51		return "PIPE_PANEL_FITTER_B";
  52	case POWER_DOMAIN_PIPE_PANEL_FITTER_C:
  53		return "PIPE_PANEL_FITTER_C";
  54	case POWER_DOMAIN_PIPE_PANEL_FITTER_D:
  55		return "PIPE_PANEL_FITTER_D";
  56	case POWER_DOMAIN_TRANSCODER_A:
  57		return "TRANSCODER_A";
  58	case POWER_DOMAIN_TRANSCODER_B:
  59		return "TRANSCODER_B";
  60	case POWER_DOMAIN_TRANSCODER_C:
  61		return "TRANSCODER_C";
  62	case POWER_DOMAIN_TRANSCODER_D:
  63		return "TRANSCODER_D";
  64	case POWER_DOMAIN_TRANSCODER_EDP:
  65		return "TRANSCODER_EDP";
  66	case POWER_DOMAIN_TRANSCODER_DSI_A:
  67		return "TRANSCODER_DSI_A";
  68	case POWER_DOMAIN_TRANSCODER_DSI_C:
  69		return "TRANSCODER_DSI_C";
  70	case POWER_DOMAIN_TRANSCODER_VDSC_PW2:
  71		return "TRANSCODER_VDSC_PW2";
  72	case POWER_DOMAIN_PORT_DDI_LANES_A:
  73		return "PORT_DDI_LANES_A";
  74	case POWER_DOMAIN_PORT_DDI_LANES_B:
  75		return "PORT_DDI_LANES_B";
  76	case POWER_DOMAIN_PORT_DDI_LANES_C:
  77		return "PORT_DDI_LANES_C";
  78	case POWER_DOMAIN_PORT_DDI_LANES_D:
  79		return "PORT_DDI_LANES_D";
  80	case POWER_DOMAIN_PORT_DDI_LANES_E:
  81		return "PORT_DDI_LANES_E";
  82	case POWER_DOMAIN_PORT_DDI_LANES_F:
  83		return "PORT_DDI_LANES_F";
  84	case POWER_DOMAIN_PORT_DDI_LANES_TC1:
  85		return "PORT_DDI_LANES_TC1";
  86	case POWER_DOMAIN_PORT_DDI_LANES_TC2:
  87		return "PORT_DDI_LANES_TC2";
  88	case POWER_DOMAIN_PORT_DDI_LANES_TC3:
  89		return "PORT_DDI_LANES_TC3";
  90	case POWER_DOMAIN_PORT_DDI_LANES_TC4:
  91		return "PORT_DDI_LANES_TC4";
  92	case POWER_DOMAIN_PORT_DDI_LANES_TC5:
  93		return "PORT_DDI_LANES_TC5";
  94	case POWER_DOMAIN_PORT_DDI_LANES_TC6:
  95		return "PORT_DDI_LANES_TC6";
  96	case POWER_DOMAIN_PORT_DDI_IO_A:
  97		return "PORT_DDI_IO_A";
  98	case POWER_DOMAIN_PORT_DDI_IO_B:
  99		return "PORT_DDI_IO_B";
 100	case POWER_DOMAIN_PORT_DDI_IO_C:
 101		return "PORT_DDI_IO_C";
 102	case POWER_DOMAIN_PORT_DDI_IO_D:
 103		return "PORT_DDI_IO_D";
 104	case POWER_DOMAIN_PORT_DDI_IO_E:
 105		return "PORT_DDI_IO_E";
 106	case POWER_DOMAIN_PORT_DDI_IO_F:
 107		return "PORT_DDI_IO_F";
 108	case POWER_DOMAIN_PORT_DDI_IO_TC1:
 109		return "PORT_DDI_IO_TC1";
 110	case POWER_DOMAIN_PORT_DDI_IO_TC2:
 111		return "PORT_DDI_IO_TC2";
 112	case POWER_DOMAIN_PORT_DDI_IO_TC3:
 113		return "PORT_DDI_IO_TC3";
 114	case POWER_DOMAIN_PORT_DDI_IO_TC4:
 115		return "PORT_DDI_IO_TC4";
 116	case POWER_DOMAIN_PORT_DDI_IO_TC5:
 117		return "PORT_DDI_IO_TC5";
 118	case POWER_DOMAIN_PORT_DDI_IO_TC6:
 119		return "PORT_DDI_IO_TC6";
 120	case POWER_DOMAIN_PORT_DSI:
 121		return "PORT_DSI";
 122	case POWER_DOMAIN_PORT_CRT:
 123		return "PORT_CRT";
 124	case POWER_DOMAIN_PORT_OTHER:
 125		return "PORT_OTHER";
 126	case POWER_DOMAIN_VGA:
 127		return "VGA";
 128	case POWER_DOMAIN_AUDIO_MMIO:
 129		return "AUDIO_MMIO";
 130	case POWER_DOMAIN_AUDIO_PLAYBACK:
 131		return "AUDIO_PLAYBACK";
 132	case POWER_DOMAIN_AUX_IO_A:
 133		return "AUX_IO_A";
 134	case POWER_DOMAIN_AUX_IO_B:
 135		return "AUX_IO_B";
 136	case POWER_DOMAIN_AUX_IO_C:
 137		return "AUX_IO_C";
 138	case POWER_DOMAIN_AUX_IO_D:
 139		return "AUX_IO_D";
 140	case POWER_DOMAIN_AUX_IO_E:
 141		return "AUX_IO_E";
 142	case POWER_DOMAIN_AUX_IO_F:
 143		return "AUX_IO_F";
 144	case POWER_DOMAIN_AUX_A:
 145		return "AUX_A";
 146	case POWER_DOMAIN_AUX_B:
 147		return "AUX_B";
 148	case POWER_DOMAIN_AUX_C:
 149		return "AUX_C";
 150	case POWER_DOMAIN_AUX_D:
 151		return "AUX_D";
 152	case POWER_DOMAIN_AUX_E:
 153		return "AUX_E";
 154	case POWER_DOMAIN_AUX_F:
 155		return "AUX_F";
 156	case POWER_DOMAIN_AUX_USBC1:
 157		return "AUX_USBC1";
 158	case POWER_DOMAIN_AUX_USBC2:
 159		return "AUX_USBC2";
 160	case POWER_DOMAIN_AUX_USBC3:
 161		return "AUX_USBC3";
 162	case POWER_DOMAIN_AUX_USBC4:
 163		return "AUX_USBC4";
 164	case POWER_DOMAIN_AUX_USBC5:
 165		return "AUX_USBC5";
 166	case POWER_DOMAIN_AUX_USBC6:
 167		return "AUX_USBC6";
 168	case POWER_DOMAIN_AUX_TBT1:
 169		return "AUX_TBT1";
 170	case POWER_DOMAIN_AUX_TBT2:
 171		return "AUX_TBT2";
 172	case POWER_DOMAIN_AUX_TBT3:
 173		return "AUX_TBT3";
 174	case POWER_DOMAIN_AUX_TBT4:
 175		return "AUX_TBT4";
 176	case POWER_DOMAIN_AUX_TBT5:
 177		return "AUX_TBT5";
 178	case POWER_DOMAIN_AUX_TBT6:
 179		return "AUX_TBT6";
 180	case POWER_DOMAIN_GMBUS:
 181		return "GMBUS";
 182	case POWER_DOMAIN_INIT:
 183		return "INIT";
 184	case POWER_DOMAIN_MODESET:
 185		return "MODESET";
 186	case POWER_DOMAIN_GT_IRQ:
 187		return "GT_IRQ";
 188	case POWER_DOMAIN_DC_OFF:
 189		return "DC_OFF";
 190	case POWER_DOMAIN_TC_COLD_OFF:
 191		return "TC_COLD_OFF";
 192	default:
 193		MISSING_CASE(domain);
 194		return "?";
 195	}
 196}
 197
 198/**
 199 * __intel_display_power_is_enabled - unlocked check for a power domain
 200 * @dev_priv: i915 device instance
 201 * @domain: power domain to check
 202 *
 203 * This is the unlocked version of intel_display_power_is_enabled() and should
 204 * only be used from error capture and recovery code where deadlocks are
 205 * possible.
 206 *
 207 * Returns:
 208 * True when the power domain is enabled, false otherwise.
 209 */
 210bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
 211				      enum intel_display_power_domain domain)
 212{
 213	struct i915_power_well *power_well;
 214	bool is_enabled;
 215
 216	if (dev_priv->runtime_pm.suspended)
 217		return false;
 218
 219	is_enabled = true;
 220
 221	for_each_power_domain_well_reverse(dev_priv, power_well, domain) {
 222		if (intel_power_well_is_always_on(power_well))
 223			continue;
 224
 225		if (!intel_power_well_is_enabled_cached(power_well)) {
 226			is_enabled = false;
 227			break;
 228		}
 229	}
 230
 231	return is_enabled;
 232}
 233
 234/**
 235 * intel_display_power_is_enabled - check for a power domain
 236 * @dev_priv: i915 device instance
 237 * @domain: power domain to check
 238 *
 239 * This function can be used to check the hw power domain state. It is mostly
 240 * used in hardware state readout functions. Everywhere else code should rely
 241 * upon explicit power domain reference counting to ensure that the hardware
 242 * block is powered up before accessing it.
 243 *
 244 * Callers must hold the relevant modesetting locks to ensure that concurrent
 245 * threads can't disable the power well while the caller tries to read a few
 246 * registers.
 247 *
 248 * Returns:
 249 * True when the power domain is enabled, false otherwise.
 250 */
 251bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
 252				    enum intel_display_power_domain domain)
 253{
 254	struct i915_power_domains *power_domains;
 255	bool ret;
 256
 257	power_domains = &dev_priv->display.power.domains;
 258
 259	mutex_lock(&power_domains->lock);
 260	ret = __intel_display_power_is_enabled(dev_priv, domain);
 261	mutex_unlock(&power_domains->lock);
 262
 263	return ret;
 264}
 265
 266static u32
 267sanitize_target_dc_state(struct drm_i915_private *dev_priv,
 268			 u32 target_dc_state)
 269{
 270	static const u32 states[] = {
 271		DC_STATE_EN_UPTO_DC6,
 272		DC_STATE_EN_UPTO_DC5,
 273		DC_STATE_EN_DC3CO,
 274		DC_STATE_DISABLE,
 275	};
 276	int i;
 277
 278	for (i = 0; i < ARRAY_SIZE(states) - 1; i++) {
 279		if (target_dc_state != states[i])
 280			continue;
 281
 282		if (dev_priv->display.dmc.allowed_dc_mask & target_dc_state)
 283			break;
 284
 285		target_dc_state = states[i + 1];
 286	}
 287
 288	return target_dc_state;
 289}
 290
 291/**
 292 * intel_display_power_set_target_dc_state - Set target dc state.
 293 * @dev_priv: i915 device
 294 * @state: state which needs to be set as target_dc_state.
 295 *
 296 * This function set the "DC off" power well target_dc_state,
 297 * based upon this target_dc_stste, "DC off" power well will
 298 * enable desired DC state.
 299 */
 300void intel_display_power_set_target_dc_state(struct drm_i915_private *dev_priv,
 301					     u32 state)
 302{
 303	struct i915_power_well *power_well;
 304	bool dc_off_enabled;
 305	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
 306
 307	mutex_lock(&power_domains->lock);
 308	power_well = lookup_power_well(dev_priv, SKL_DISP_DC_OFF);
 309
 310	if (drm_WARN_ON(&dev_priv->drm, !power_well))
 311		goto unlock;
 312
 313	state = sanitize_target_dc_state(dev_priv, state);
 314
 315	if (state == dev_priv->display.dmc.target_dc_state)
 316		goto unlock;
 317
 318	dc_off_enabled = intel_power_well_is_enabled(dev_priv, power_well);
 319	/*
 320	 * If DC off power well is disabled, need to enable and disable the
 321	 * DC off power well to effect target DC state.
 322	 */
 323	if (!dc_off_enabled)
 324		intel_power_well_enable(dev_priv, power_well);
 325
 326	dev_priv->display.dmc.target_dc_state = state;
 327
 328	if (!dc_off_enabled)
 329		intel_power_well_disable(dev_priv, power_well);
 330
 331unlock:
 332	mutex_unlock(&power_domains->lock);
 333}
 334
 335#define POWER_DOMAIN_MASK (GENMASK_ULL(POWER_DOMAIN_NUM - 1, 0))
 336
 337static void __async_put_domains_mask(struct i915_power_domains *power_domains,
 338				     struct intel_power_domain_mask *mask)
 339{
 340	bitmap_or(mask->bits,
 341		  power_domains->async_put_domains[0].bits,
 342		  power_domains->async_put_domains[1].bits,
 343		  POWER_DOMAIN_NUM);
 344}
 345
 346#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
 347
 348static bool
 349assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
 350{
 351	struct drm_i915_private *i915 = container_of(power_domains,
 352						     struct drm_i915_private,
 353						     display.power.domains);
 354
 355	return !drm_WARN_ON(&i915->drm,
 356			    bitmap_intersects(power_domains->async_put_domains[0].bits,
 357					      power_domains->async_put_domains[1].bits,
 358					      POWER_DOMAIN_NUM));
 359}
 360
 361static bool
 362__async_put_domains_state_ok(struct i915_power_domains *power_domains)
 363{
 364	struct drm_i915_private *i915 = container_of(power_domains,
 365						     struct drm_i915_private,
 366						     display.power.domains);
 367	struct intel_power_domain_mask async_put_mask;
 368	enum intel_display_power_domain domain;
 369	bool err = false;
 370
 371	err |= !assert_async_put_domain_masks_disjoint(power_domains);
 372	__async_put_domains_mask(power_domains, &async_put_mask);
 373	err |= drm_WARN_ON(&i915->drm,
 374			   !!power_domains->async_put_wakeref !=
 375			   !bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM));
 376
 377	for_each_power_domain(domain, &async_put_mask)
 378		err |= drm_WARN_ON(&i915->drm,
 379				   power_domains->domain_use_count[domain] != 1);
 380
 381	return !err;
 382}
 383
 384static void print_power_domains(struct i915_power_domains *power_domains,
 385				const char *prefix, struct intel_power_domain_mask *mask)
 386{
 387	struct drm_i915_private *i915 = container_of(power_domains,
 388						     struct drm_i915_private,
 389						     display.power.domains);
 390	enum intel_display_power_domain domain;
 391
 392	drm_dbg(&i915->drm, "%s (%d):\n", prefix, bitmap_weight(mask->bits, POWER_DOMAIN_NUM));
 393	for_each_power_domain(domain, mask)
 394		drm_dbg(&i915->drm, "%s use_count %d\n",
 395			intel_display_power_domain_str(domain),
 396			power_domains->domain_use_count[domain]);
 397}
 398
 399static void
 400print_async_put_domains_state(struct i915_power_domains *power_domains)
 401{
 402	struct drm_i915_private *i915 = container_of(power_domains,
 403						     struct drm_i915_private,
 404						     display.power.domains);
 405
 406	drm_dbg(&i915->drm, "async_put_wakeref %u\n",
 407		power_domains->async_put_wakeref);
 408
 409	print_power_domains(power_domains, "async_put_domains[0]",
 410			    &power_domains->async_put_domains[0]);
 411	print_power_domains(power_domains, "async_put_domains[1]",
 412			    &power_domains->async_put_domains[1]);
 413}
 414
 415static void
 416verify_async_put_domains_state(struct i915_power_domains *power_domains)
 417{
 418	if (!__async_put_domains_state_ok(power_domains))
 419		print_async_put_domains_state(power_domains);
 420}
 421
 422#else
 423
 424static void
 425assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
 426{
 427}
 428
 429static void
 430verify_async_put_domains_state(struct i915_power_domains *power_domains)
 431{
 432}
 433
 434#endif /* CONFIG_DRM_I915_DEBUG_RUNTIME_PM */
 435
 436static void async_put_domains_mask(struct i915_power_domains *power_domains,
 437				   struct intel_power_domain_mask *mask)
 438
 439{
 440	assert_async_put_domain_masks_disjoint(power_domains);
 441
 442	__async_put_domains_mask(power_domains, mask);
 443}
 444
 445static void
 446async_put_domains_clear_domain(struct i915_power_domains *power_domains,
 447			       enum intel_display_power_domain domain)
 448{
 449	assert_async_put_domain_masks_disjoint(power_domains);
 450
 451	clear_bit(domain, power_domains->async_put_domains[0].bits);
 452	clear_bit(domain, power_domains->async_put_domains[1].bits);
 453}
 454
 455static bool
 456intel_display_power_grab_async_put_ref(struct drm_i915_private *dev_priv,
 457				       enum intel_display_power_domain domain)
 458{
 459	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
 460	struct intel_power_domain_mask async_put_mask;
 461	bool ret = false;
 462
 463	async_put_domains_mask(power_domains, &async_put_mask);
 464	if (!test_bit(domain, async_put_mask.bits))
 465		goto out_verify;
 466
 467	async_put_domains_clear_domain(power_domains, domain);
 468
 469	ret = true;
 470
 471	async_put_domains_mask(power_domains, &async_put_mask);
 472	if (!bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM))
 473		goto out_verify;
 474
 475	cancel_delayed_work(&power_domains->async_put_work);
 476	intel_runtime_pm_put_raw(&dev_priv->runtime_pm,
 477				 fetch_and_zero(&power_domains->async_put_wakeref));
 478out_verify:
 479	verify_async_put_domains_state(power_domains);
 480
 481	return ret;
 482}
 483
 484static void
 485__intel_display_power_get_domain(struct drm_i915_private *dev_priv,
 486				 enum intel_display_power_domain domain)
 487{
 488	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
 489	struct i915_power_well *power_well;
 490
 491	if (intel_display_power_grab_async_put_ref(dev_priv, domain))
 492		return;
 493
 494	for_each_power_domain_well(dev_priv, power_well, domain)
 495		intel_power_well_get(dev_priv, power_well);
 496
 497	power_domains->domain_use_count[domain]++;
 498}
 499
 500/**
 501 * intel_display_power_get - grab a power domain reference
 502 * @dev_priv: i915 device instance
 503 * @domain: power domain to reference
 504 *
 505 * This function grabs a power domain reference for @domain and ensures that the
 506 * power domain and all its parents are powered up. Therefore users should only
 507 * grab a reference to the innermost power domain they need.
 508 *
 509 * Any power domain reference obtained by this function must have a symmetric
 510 * call to intel_display_power_put() to release the reference again.
 511 */
 512intel_wakeref_t intel_display_power_get(struct drm_i915_private *dev_priv,
 513					enum intel_display_power_domain domain)
 514{
 515	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
 516	intel_wakeref_t wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
 517
 518	mutex_lock(&power_domains->lock);
 519	__intel_display_power_get_domain(dev_priv, domain);
 520	mutex_unlock(&power_domains->lock);
 521
 522	return wakeref;
 523}
 524
 525/**
 526 * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
 527 * @dev_priv: i915 device instance
 528 * @domain: power domain to reference
 529 *
 530 * This function grabs a power domain reference for @domain and ensures that the
 531 * power domain and all its parents are powered up. Therefore users should only
 532 * grab a reference to the innermost power domain they need.
 533 *
 534 * Any power domain reference obtained by this function must have a symmetric
 535 * call to intel_display_power_put() to release the reference again.
 536 */
 537intel_wakeref_t
 538intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
 539				   enum intel_display_power_domain domain)
 540{
 541	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
 542	intel_wakeref_t wakeref;
 543	bool is_enabled;
 544
 545	wakeref = intel_runtime_pm_get_if_in_use(&dev_priv->runtime_pm);
 546	if (!wakeref)
 547		return false;
 548
 549	mutex_lock(&power_domains->lock);
 550
 551	if (__intel_display_power_is_enabled(dev_priv, domain)) {
 552		__intel_display_power_get_domain(dev_priv, domain);
 553		is_enabled = true;
 554	} else {
 555		is_enabled = false;
 556	}
 557
 558	mutex_unlock(&power_domains->lock);
 559
 560	if (!is_enabled) {
 561		intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
 562		wakeref = 0;
 563	}
 564
 565	return wakeref;
 566}
 567
 568static void
 569__intel_display_power_put_domain(struct drm_i915_private *dev_priv,
 570				 enum intel_display_power_domain domain)
 571{
 572	struct i915_power_domains *power_domains;
 573	struct i915_power_well *power_well;
 574	const char *name = intel_display_power_domain_str(domain);
 575	struct intel_power_domain_mask async_put_mask;
 576
 577	power_domains = &dev_priv->display.power.domains;
 578
 579	drm_WARN(&dev_priv->drm, !power_domains->domain_use_count[domain],
 580		 "Use count on domain %s is already zero\n",
 581		 name);
 582	async_put_domains_mask(power_domains, &async_put_mask);
 583	drm_WARN(&dev_priv->drm,
 584		 test_bit(domain, async_put_mask.bits),
 585		 "Async disabling of domain %s is pending\n",
 586		 name);
 587
 588	power_domains->domain_use_count[domain]--;
 589
 590	for_each_power_domain_well_reverse(dev_priv, power_well, domain)
 591		intel_power_well_put(dev_priv, power_well);
 592}
 593
 594static void __intel_display_power_put(struct drm_i915_private *dev_priv,
 595				      enum intel_display_power_domain domain)
 596{
 597	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
 598
 599	mutex_lock(&power_domains->lock);
 600	__intel_display_power_put_domain(dev_priv, domain);
 601	mutex_unlock(&power_domains->lock);
 602}
 603
 604static void
 605queue_async_put_domains_work(struct i915_power_domains *power_domains,
 606			     intel_wakeref_t wakeref)
 607{
 608	struct drm_i915_private *i915 = container_of(power_domains,
 609						     struct drm_i915_private,
 610						     display.power.domains);
 611	drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
 612	power_domains->async_put_wakeref = wakeref;
 613	drm_WARN_ON(&i915->drm, !queue_delayed_work(system_unbound_wq,
 614						    &power_domains->async_put_work,
 615						    msecs_to_jiffies(100)));
 616}
 617
 618static void
 619release_async_put_domains(struct i915_power_domains *power_domains,
 620			  struct intel_power_domain_mask *mask)
 621{
 622	struct drm_i915_private *dev_priv =
 623		container_of(power_domains, struct drm_i915_private,
 624			     display.power.domains);
 625	struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
 626	enum intel_display_power_domain domain;
 627	intel_wakeref_t wakeref;
 628
 629	/*
 630	 * The caller must hold already raw wakeref, upgrade that to a proper
 631	 * wakeref to make the state checker happy about the HW access during
 632	 * power well disabling.
 633	 */
 634	assert_rpm_raw_wakeref_held(rpm);
 635	wakeref = intel_runtime_pm_get(rpm);
 636
 637	for_each_power_domain(domain, mask) {
 638		/* Clear before put, so put's sanity check is happy. */
 639		async_put_domains_clear_domain(power_domains, domain);
 640		__intel_display_power_put_domain(dev_priv, domain);
 641	}
 642
 643	intel_runtime_pm_put(rpm, wakeref);
 644}
 645
 646static void
 647intel_display_power_put_async_work(struct work_struct *work)
 648{
 649	struct drm_i915_private *dev_priv =
 650		container_of(work, struct drm_i915_private,
 651			     display.power.domains.async_put_work.work);
 652	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
 653	struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
 654	intel_wakeref_t new_work_wakeref = intel_runtime_pm_get_raw(rpm);
 655	intel_wakeref_t old_work_wakeref = 0;
 656
 657	mutex_lock(&power_domains->lock);
 658
 659	/*
 660	 * Bail out if all the domain refs pending to be released were grabbed
 661	 * by subsequent gets or a flush_work.
 662	 */
 663	old_work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
 664	if (!old_work_wakeref)
 665		goto out_verify;
 666
 667	release_async_put_domains(power_domains,
 668				  &power_domains->async_put_domains[0]);
 669
 670	/* Requeue the work if more domains were async put meanwhile. */
 671	if (!bitmap_empty(power_domains->async_put_domains[1].bits, POWER_DOMAIN_NUM)) {
 672		bitmap_copy(power_domains->async_put_domains[0].bits,
 673			    power_domains->async_put_domains[1].bits,
 674			    POWER_DOMAIN_NUM);
 675		bitmap_zero(power_domains->async_put_domains[1].bits,
 676			    POWER_DOMAIN_NUM);
 677		queue_async_put_domains_work(power_domains,
 678					     fetch_and_zero(&new_work_wakeref));
 679	} else {
 680		/*
 681		 * Cancel the work that got queued after this one got dequeued,
 682		 * since here we released the corresponding async-put reference.
 683		 */
 684		cancel_delayed_work(&power_domains->async_put_work);
 685	}
 686
 687out_verify:
 688	verify_async_put_domains_state(power_domains);
 689
 690	mutex_unlock(&power_domains->lock);
 691
 692	if (old_work_wakeref)
 693		intel_runtime_pm_put_raw(rpm, old_work_wakeref);
 694	if (new_work_wakeref)
 695		intel_runtime_pm_put_raw(rpm, new_work_wakeref);
 696}
 697
 698/**
 699 * intel_display_power_put_async - release a power domain reference asynchronously
 700 * @i915: i915 device instance
 701 * @domain: power domain to reference
 702 * @wakeref: wakeref acquired for the reference that is being released
 703 *
 704 * This function drops the power domain reference obtained by
 705 * intel_display_power_get*() and schedules a work to power down the
 706 * corresponding hardware block if this is the last reference.
 707 */
 708void __intel_display_power_put_async(struct drm_i915_private *i915,
 709				     enum intel_display_power_domain domain,
 710				     intel_wakeref_t wakeref)
 711{
 712	struct i915_power_domains *power_domains = &i915->display.power.domains;
 713	struct intel_runtime_pm *rpm = &i915->runtime_pm;
 714	intel_wakeref_t work_wakeref = intel_runtime_pm_get_raw(rpm);
 715
 716	mutex_lock(&power_domains->lock);
 717
 718	if (power_domains->domain_use_count[domain] > 1) {
 719		__intel_display_power_put_domain(i915, domain);
 720
 721		goto out_verify;
 722	}
 723
 724	drm_WARN_ON(&i915->drm, power_domains->domain_use_count[domain] != 1);
 725
 726	/* Let a pending work requeue itself or queue a new one. */
 727	if (power_domains->async_put_wakeref) {
 728		set_bit(domain, power_domains->async_put_domains[1].bits);
 729	} else {
 730		set_bit(domain, power_domains->async_put_domains[0].bits);
 731		queue_async_put_domains_work(power_domains,
 732					     fetch_and_zero(&work_wakeref));
 733	}
 734
 735out_verify:
 736	verify_async_put_domains_state(power_domains);
 737
 738	mutex_unlock(&power_domains->lock);
 739
 740	if (work_wakeref)
 741		intel_runtime_pm_put_raw(rpm, work_wakeref);
 742
 743	intel_runtime_pm_put(rpm, wakeref);
 744}
 745
 746/**
 747 * intel_display_power_flush_work - flushes the async display power disabling work
 748 * @i915: i915 device instance
 749 *
 750 * Flushes any pending work that was scheduled by a preceding
 751 * intel_display_power_put_async() call, completing the disabling of the
 752 * corresponding power domains.
 753 *
 754 * Note that the work handler function may still be running after this
 755 * function returns; to ensure that the work handler isn't running use
 756 * intel_display_power_flush_work_sync() instead.
 757 */
 758void intel_display_power_flush_work(struct drm_i915_private *i915)
 759{
 760	struct i915_power_domains *power_domains = &i915->display.power.domains;
 761	struct intel_power_domain_mask async_put_mask;
 762	intel_wakeref_t work_wakeref;
 763
 764	mutex_lock(&power_domains->lock);
 765
 766	work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
 767	if (!work_wakeref)
 768		goto out_verify;
 769
 770	async_put_domains_mask(power_domains, &async_put_mask);
 771	release_async_put_domains(power_domains, &async_put_mask);
 772	cancel_delayed_work(&power_domains->async_put_work);
 773
 774out_verify:
 775	verify_async_put_domains_state(power_domains);
 776
 777	mutex_unlock(&power_domains->lock);
 778
 779	if (work_wakeref)
 780		intel_runtime_pm_put_raw(&i915->runtime_pm, work_wakeref);
 781}
 782
 783/**
 784 * intel_display_power_flush_work_sync - flushes and syncs the async display power disabling work
 785 * @i915: i915 device instance
 786 *
 787 * Like intel_display_power_flush_work(), but also ensure that the work
 788 * handler function is not running any more when this function returns.
 789 */
 790static void
 791intel_display_power_flush_work_sync(struct drm_i915_private *i915)
 792{
 793	struct i915_power_domains *power_domains = &i915->display.power.domains;
 794
 795	intel_display_power_flush_work(i915);
 796	cancel_delayed_work_sync(&power_domains->async_put_work);
 797
 798	verify_async_put_domains_state(power_domains);
 799
 800	drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
 801}
 802
 803#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
 804/**
 805 * intel_display_power_put - release a power domain reference
 806 * @dev_priv: i915 device instance
 807 * @domain: power domain to reference
 808 * @wakeref: wakeref acquired for the reference that is being released
 809 *
 810 * This function drops the power domain reference obtained by
 811 * intel_display_power_get() and might power down the corresponding hardware
 812 * block right away if this is the last reference.
 813 */
 814void intel_display_power_put(struct drm_i915_private *dev_priv,
 815			     enum intel_display_power_domain domain,
 816			     intel_wakeref_t wakeref)
 817{
 818	__intel_display_power_put(dev_priv, domain);
 819	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
 820}
 821#else
 822/**
 823 * intel_display_power_put_unchecked - release an unchecked power domain reference
 824 * @dev_priv: i915 device instance
 825 * @domain: power domain to reference
 826 *
 827 * This function drops the power domain reference obtained by
 828 * intel_display_power_get() and might power down the corresponding hardware
 829 * block right away if this is the last reference.
 830 *
 831 * This function is only for the power domain code's internal use to suppress wakeref
 832 * tracking when the correspondig debug kconfig option is disabled, should not
 833 * be used otherwise.
 834 */
 835void intel_display_power_put_unchecked(struct drm_i915_private *dev_priv,
 836				       enum intel_display_power_domain domain)
 837{
 838	__intel_display_power_put(dev_priv, domain);
 839	intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
 840}
 841#endif
 842
 843void
 844intel_display_power_get_in_set(struct drm_i915_private *i915,
 845			       struct intel_display_power_domain_set *power_domain_set,
 846			       enum intel_display_power_domain domain)
 847{
 848	intel_wakeref_t __maybe_unused wf;
 849
 850	drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits));
 851
 852	wf = intel_display_power_get(i915, domain);
 853#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
 854	power_domain_set->wakerefs[domain] = wf;
 855#endif
 856	set_bit(domain, power_domain_set->mask.bits);
 857}
 858
 859bool
 860intel_display_power_get_in_set_if_enabled(struct drm_i915_private *i915,
 861					  struct intel_display_power_domain_set *power_domain_set,
 862					  enum intel_display_power_domain domain)
 863{
 864	intel_wakeref_t wf;
 865
 866	drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits));
 867
 868	wf = intel_display_power_get_if_enabled(i915, domain);
 869	if (!wf)
 870		return false;
 871
 872#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
 873	power_domain_set->wakerefs[domain] = wf;
 874#endif
 875	set_bit(domain, power_domain_set->mask.bits);
 876
 877	return true;
 878}
 879
 880void
 881intel_display_power_put_mask_in_set(struct drm_i915_private *i915,
 882				    struct intel_display_power_domain_set *power_domain_set,
 883				    struct intel_power_domain_mask *mask)
 884{
 885	enum intel_display_power_domain domain;
 886
 887	drm_WARN_ON(&i915->drm,
 888		    !bitmap_subset(mask->bits, power_domain_set->mask.bits, POWER_DOMAIN_NUM));
 889
 890	for_each_power_domain(domain, mask) {
 891		intel_wakeref_t __maybe_unused wf = -1;
 892
 893#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
 894		wf = fetch_and_zero(&power_domain_set->wakerefs[domain]);
 895#endif
 896		intel_display_power_put(i915, domain, wf);
 897		clear_bit(domain, power_domain_set->mask.bits);
 898	}
 899}
 900
 901static int
 902sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
 903				   int disable_power_well)
 904{
 905	if (disable_power_well >= 0)
 906		return !!disable_power_well;
 907
 908	return 1;
 909}
 910
 911static u32 get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
 912			       int enable_dc)
 913{
 914	u32 mask;
 915	int requested_dc;
 916	int max_dc;
 917
 918	if (!HAS_DISPLAY(dev_priv))
 919		return 0;
 920
 921	if (IS_DG2(dev_priv))
 922		max_dc = 1;
 923	else if (IS_DG1(dev_priv))
 924		max_dc = 3;
 925	else if (DISPLAY_VER(dev_priv) >= 12)
 926		max_dc = 4;
 927	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
 928		max_dc = 1;
 929	else if (DISPLAY_VER(dev_priv) >= 9)
 930		max_dc = 2;
 931	else
 932		max_dc = 0;
 933
 934	/*
 935	 * DC9 has a separate HW flow from the rest of the DC states,
 936	 * not depending on the DMC firmware. It's needed by system
 937	 * suspend/resume, so allow it unconditionally.
 938	 */
 939	mask = IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv) ||
 940		DISPLAY_VER(dev_priv) >= 11 ?
 941	       DC_STATE_EN_DC9 : 0;
 942
 943	if (!dev_priv->params.disable_power_well)
 944		max_dc = 0;
 945
 946	if (enable_dc >= 0 && enable_dc <= max_dc) {
 947		requested_dc = enable_dc;
 948	} else if (enable_dc == -1) {
 949		requested_dc = max_dc;
 950	} else if (enable_dc > max_dc && enable_dc <= 4) {
 951		drm_dbg_kms(&dev_priv->drm,
 952			    "Adjusting requested max DC state (%d->%d)\n",
 953			    enable_dc, max_dc);
 954		requested_dc = max_dc;
 955	} else {
 956		drm_err(&dev_priv->drm,
 957			"Unexpected value for enable_dc (%d)\n", enable_dc);
 958		requested_dc = max_dc;
 959	}
 960
 961	switch (requested_dc) {
 962	case 4:
 963		mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC6;
 964		break;
 965	case 3:
 966		mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC5;
 967		break;
 968	case 2:
 969		mask |= DC_STATE_EN_UPTO_DC6;
 970		break;
 971	case 1:
 972		mask |= DC_STATE_EN_UPTO_DC5;
 973		break;
 974	}
 975
 976	drm_dbg_kms(&dev_priv->drm, "Allowed DC state mask %02x\n", mask);
 977
 978	return mask;
 979}
 980
 981/**
 982 * intel_power_domains_init - initializes the power domain structures
 983 * @dev_priv: i915 device instance
 984 *
 985 * Initializes the power domain structures for @dev_priv depending upon the
 986 * supported platform.
 987 */
 988int intel_power_domains_init(struct drm_i915_private *dev_priv)
 989{
 990	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
 991
 992	dev_priv->params.disable_power_well =
 993		sanitize_disable_power_well_option(dev_priv,
 994						   dev_priv->params.disable_power_well);
 995	dev_priv->display.dmc.allowed_dc_mask =
 996		get_allowed_dc_mask(dev_priv, dev_priv->params.enable_dc);
 997
 998	dev_priv->display.dmc.target_dc_state =
 999		sanitize_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
1000
1001	mutex_init(&power_domains->lock);
1002
1003	INIT_DELAYED_WORK(&power_domains->async_put_work,
1004			  intel_display_power_put_async_work);
1005
1006	return intel_display_power_map_init(power_domains);
1007}
1008
1009/**
1010 * intel_power_domains_cleanup - clean up power domains resources
1011 * @dev_priv: i915 device instance
1012 *
1013 * Release any resources acquired by intel_power_domains_init()
1014 */
1015void intel_power_domains_cleanup(struct drm_i915_private *dev_priv)
1016{
1017	intel_display_power_map_cleanup(&dev_priv->display.power.domains);
1018}
1019
1020static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
1021{
1022	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1023	struct i915_power_well *power_well;
1024
1025	mutex_lock(&power_domains->lock);
1026	for_each_power_well(dev_priv, power_well)
1027		intel_power_well_sync_hw(dev_priv, power_well);
1028	mutex_unlock(&power_domains->lock);
1029}
1030
1031static void gen9_dbuf_slice_set(struct drm_i915_private *dev_priv,
1032				enum dbuf_slice slice, bool enable)
1033{
1034	i915_reg_t reg = DBUF_CTL_S(slice);
1035	bool state;
1036
1037	intel_de_rmw(dev_priv, reg, DBUF_POWER_REQUEST,
1038		     enable ? DBUF_POWER_REQUEST : 0);
1039	intel_de_posting_read(dev_priv, reg);
1040	udelay(10);
1041
1042	state = intel_de_read(dev_priv, reg) & DBUF_POWER_STATE;
1043	drm_WARN(&dev_priv->drm, enable != state,
1044		 "DBuf slice %d power %s timeout!\n",
1045		 slice, str_enable_disable(enable));
1046}
1047
1048void gen9_dbuf_slices_update(struct drm_i915_private *dev_priv,
1049			     u8 req_slices)
1050{
1051	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1052	u8 slice_mask = INTEL_INFO(dev_priv)->display.dbuf.slice_mask;
1053	enum dbuf_slice slice;
1054
1055	drm_WARN(&dev_priv->drm, req_slices & ~slice_mask,
1056		 "Invalid set of dbuf slices (0x%x) requested (total dbuf slices 0x%x)\n",
1057		 req_slices, slice_mask);
1058
1059	drm_dbg_kms(&dev_priv->drm, "Updating dbuf slices to 0x%x\n",
1060		    req_slices);
1061
1062	/*
1063	 * Might be running this in parallel to gen9_dc_off_power_well_enable
1064	 * being called from intel_dp_detect for instance,
1065	 * which causes assertion triggered by race condition,
1066	 * as gen9_assert_dbuf_enabled might preempt this when registers
1067	 * were already updated, while dev_priv was not.
1068	 */
1069	mutex_lock(&power_domains->lock);
1070
1071	for_each_dbuf_slice(dev_priv, slice)
1072		gen9_dbuf_slice_set(dev_priv, slice, req_slices & BIT(slice));
1073
1074	dev_priv->display.dbuf.enabled_slices = req_slices;
1075
1076	mutex_unlock(&power_domains->lock);
1077}
1078
1079static void gen9_dbuf_enable(struct drm_i915_private *dev_priv)
1080{
1081	dev_priv->display.dbuf.enabled_slices =
1082		intel_enabled_dbuf_slices_mask(dev_priv);
1083
1084	/*
1085	 * Just power up at least 1 slice, we will
1086	 * figure out later which slices we have and what we need.
1087	 */
1088	gen9_dbuf_slices_update(dev_priv, BIT(DBUF_S1) |
1089				dev_priv->display.dbuf.enabled_slices);
1090}
1091
1092static void gen9_dbuf_disable(struct drm_i915_private *dev_priv)
1093{
1094	gen9_dbuf_slices_update(dev_priv, 0);
1095}
1096
1097static void gen12_dbuf_slices_config(struct drm_i915_private *dev_priv)
1098{
1099	enum dbuf_slice slice;
1100
1101	if (IS_ALDERLAKE_P(dev_priv))
1102		return;
1103
1104	for_each_dbuf_slice(dev_priv, slice)
1105		intel_de_rmw(dev_priv, DBUF_CTL_S(slice),
1106			     DBUF_TRACKER_STATE_SERVICE_MASK,
1107			     DBUF_TRACKER_STATE_SERVICE(8));
1108}
1109
1110static void icl_mbus_init(struct drm_i915_private *dev_priv)
1111{
1112	unsigned long abox_regs = INTEL_INFO(dev_priv)->display.abox_mask;
1113	u32 mask, val, i;
1114
1115	if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14)
1116		return;
1117
1118	mask = MBUS_ABOX_BT_CREDIT_POOL1_MASK |
1119		MBUS_ABOX_BT_CREDIT_POOL2_MASK |
1120		MBUS_ABOX_B_CREDIT_MASK |
1121		MBUS_ABOX_BW_CREDIT_MASK;
1122	val = MBUS_ABOX_BT_CREDIT_POOL1(16) |
1123		MBUS_ABOX_BT_CREDIT_POOL2(16) |
1124		MBUS_ABOX_B_CREDIT(1) |
1125		MBUS_ABOX_BW_CREDIT(1);
1126
1127	/*
1128	 * gen12 platforms that use abox1 and abox2 for pixel data reads still
1129	 * expect us to program the abox_ctl0 register as well, even though
1130	 * we don't have to program other instance-0 registers like BW_BUDDY.
1131	 */
1132	if (DISPLAY_VER(dev_priv) == 12)
1133		abox_regs |= BIT(0);
1134
1135	for_each_set_bit(i, &abox_regs, sizeof(abox_regs))
1136		intel_de_rmw(dev_priv, MBUS_ABOX_CTL(i), mask, val);
1137}
1138
1139static void hsw_assert_cdclk(struct drm_i915_private *dev_priv)
1140{
1141	u32 val = intel_de_read(dev_priv, LCPLL_CTL);
1142
1143	/*
1144	 * The LCPLL register should be turned on by the BIOS. For now
1145	 * let's just check its state and print errors in case
1146	 * something is wrong.  Don't even try to turn it on.
1147	 */
1148
1149	if (val & LCPLL_CD_SOURCE_FCLK)
1150		drm_err(&dev_priv->drm, "CDCLK source is not LCPLL\n");
1151
1152	if (val & LCPLL_PLL_DISABLE)
1153		drm_err(&dev_priv->drm, "LCPLL is disabled\n");
1154
1155	if ((val & LCPLL_REF_MASK) != LCPLL_REF_NON_SSC)
1156		drm_err(&dev_priv->drm, "LCPLL not using non-SSC reference\n");
1157}
1158
1159static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
1160{
1161	struct intel_crtc *crtc;
1162
1163	for_each_intel_crtc(&dev_priv->drm, crtc)
1164		I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
1165				pipe_name(crtc->pipe));
1166
1167	I915_STATE_WARN(intel_de_read(dev_priv, HSW_PWR_WELL_CTL2),
1168			"Display power well on\n");
1169	I915_STATE_WARN(intel_de_read(dev_priv, SPLL_CTL) & SPLL_PLL_ENABLE,
1170			"SPLL enabled\n");
1171	I915_STATE_WARN(intel_de_read(dev_priv, WRPLL_CTL(0)) & WRPLL_PLL_ENABLE,
1172			"WRPLL1 enabled\n");
1173	I915_STATE_WARN(intel_de_read(dev_priv, WRPLL_CTL(1)) & WRPLL_PLL_ENABLE,
1174			"WRPLL2 enabled\n");
1175	I915_STATE_WARN(intel_de_read(dev_priv, PP_STATUS(0)) & PP_ON,
1176			"Panel power on\n");
1177	I915_STATE_WARN(intel_de_read(dev_priv, BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
1178			"CPU PWM1 enabled\n");
1179	if (IS_HASWELL(dev_priv))
1180		I915_STATE_WARN(intel_de_read(dev_priv, HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
1181				"CPU PWM2 enabled\n");
1182	I915_STATE_WARN(intel_de_read(dev_priv, BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
1183			"PCH PWM1 enabled\n");
1184	I915_STATE_WARN(intel_de_read(dev_priv, UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
1185			"Utility pin enabled\n");
1186	I915_STATE_WARN(intel_de_read(dev_priv, PCH_GTC_CTL) & PCH_GTC_ENABLE,
1187			"PCH GTC enabled\n");
1188
1189	/*
1190	 * In theory we can still leave IRQs enabled, as long as only the HPD
1191	 * interrupts remain enabled. We used to check for that, but since it's
1192	 * gen-specific and since we only disable LCPLL after we fully disable
1193	 * the interrupts, the check below should be enough.
1194	 */
1195	I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
1196}
1197
1198static u32 hsw_read_dcomp(struct drm_i915_private *dev_priv)
1199{
1200	if (IS_HASWELL(dev_priv))
1201		return intel_de_read(dev_priv, D_COMP_HSW);
1202	else
1203		return intel_de_read(dev_priv, D_COMP_BDW);
1204}
1205
1206static void hsw_write_dcomp(struct drm_i915_private *dev_priv, u32 val)
1207{
1208	if (IS_HASWELL(dev_priv)) {
1209		if (snb_pcode_write(&dev_priv->uncore, GEN6_PCODE_WRITE_D_COMP, val))
1210			drm_dbg_kms(&dev_priv->drm,
1211				    "Failed to write to D_COMP\n");
1212	} else {
1213		intel_de_write(dev_priv, D_COMP_BDW, val);
1214		intel_de_posting_read(dev_priv, D_COMP_BDW);
1215	}
1216}
1217
1218/*
1219 * This function implements pieces of two sequences from BSpec:
1220 * - Sequence for display software to disable LCPLL
1221 * - Sequence for display software to allow package C8+
1222 * The steps implemented here are just the steps that actually touch the LCPLL
1223 * register. Callers should take care of disabling all the display engine
1224 * functions, doing the mode unset, fixing interrupts, etc.
1225 */
1226static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
1227			      bool switch_to_fclk, bool allow_power_down)
1228{
1229	u32 val;
1230
1231	assert_can_disable_lcpll(dev_priv);
1232
1233	val = intel_de_read(dev_priv, LCPLL_CTL);
1234
1235	if (switch_to_fclk) {
1236		val |= LCPLL_CD_SOURCE_FCLK;
1237		intel_de_write(dev_priv, LCPLL_CTL, val);
1238
1239		if (wait_for_us(intel_de_read(dev_priv, LCPLL_CTL) &
1240				LCPLL_CD_SOURCE_FCLK_DONE, 1))
1241			drm_err(&dev_priv->drm, "Switching to FCLK failed\n");
1242
1243		val = intel_de_read(dev_priv, LCPLL_CTL);
1244	}
1245
1246	val |= LCPLL_PLL_DISABLE;
1247	intel_de_write(dev_priv, LCPLL_CTL, val);
1248	intel_de_posting_read(dev_priv, LCPLL_CTL);
1249
1250	if (intel_de_wait_for_clear(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 1))
1251		drm_err(&dev_priv->drm, "LCPLL still locked\n");
1252
1253	val = hsw_read_dcomp(dev_priv);
1254	val |= D_COMP_COMP_DISABLE;
1255	hsw_write_dcomp(dev_priv, val);
1256	ndelay(100);
1257
1258	if (wait_for((hsw_read_dcomp(dev_priv) &
1259		      D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
1260		drm_err(&dev_priv->drm, "D_COMP RCOMP still in progress\n");
1261
1262	if (allow_power_down) {
1263		val = intel_de_read(dev_priv, LCPLL_CTL);
1264		val |= LCPLL_POWER_DOWN_ALLOW;
1265		intel_de_write(dev_priv, LCPLL_CTL, val);
1266		intel_de_posting_read(dev_priv, LCPLL_CTL);
1267	}
1268}
1269
1270/*
1271 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
1272 * source.
1273 */
1274static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
1275{
1276	u32 val;
1277
1278	val = intel_de_read(dev_priv, LCPLL_CTL);
1279
1280	if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
1281		    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
1282		return;
1283
1284	/*
1285	 * Make sure we're not on PC8 state before disabling PC8, otherwise
1286	 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
1287	 */
1288	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1289
1290	if (val & LCPLL_POWER_DOWN_ALLOW) {
1291		val &= ~LCPLL_POWER_DOWN_ALLOW;
1292		intel_de_write(dev_priv, LCPLL_CTL, val);
1293		intel_de_posting_read(dev_priv, LCPLL_CTL);
1294	}
1295
1296	val = hsw_read_dcomp(dev_priv);
1297	val |= D_COMP_COMP_FORCE;
1298	val &= ~D_COMP_COMP_DISABLE;
1299	hsw_write_dcomp(dev_priv, val);
1300
1301	val = intel_de_read(dev_priv, LCPLL_CTL);
1302	val &= ~LCPLL_PLL_DISABLE;
1303	intel_de_write(dev_priv, LCPLL_CTL, val);
1304
1305	if (intel_de_wait_for_set(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 5))
1306		drm_err(&dev_priv->drm, "LCPLL not locked yet\n");
1307
1308	if (val & LCPLL_CD_SOURCE_FCLK) {
1309		val = intel_de_read(dev_priv, LCPLL_CTL);
1310		val &= ~LCPLL_CD_SOURCE_FCLK;
1311		intel_de_write(dev_priv, LCPLL_CTL, val);
1312
1313		if (wait_for_us((intel_de_read(dev_priv, LCPLL_CTL) &
1314				 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
1315			drm_err(&dev_priv->drm,
1316				"Switching back to LCPLL failed\n");
1317	}
1318
1319	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1320
1321	intel_update_cdclk(dev_priv);
1322	intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "Current CDCLK");
1323}
1324
1325/*
1326 * Package states C8 and deeper are really deep PC states that can only be
1327 * reached when all the devices on the system allow it, so even if the graphics
1328 * device allows PC8+, it doesn't mean the system will actually get to these
1329 * states. Our driver only allows PC8+ when going into runtime PM.
1330 *
1331 * The requirements for PC8+ are that all the outputs are disabled, the power
1332 * well is disabled and most interrupts are disabled, and these are also
1333 * requirements for runtime PM. When these conditions are met, we manually do
1334 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
1335 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
1336 * hang the machine.
1337 *
1338 * When we really reach PC8 or deeper states (not just when we allow it) we lose
1339 * the state of some registers, so when we come back from PC8+ we need to
1340 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
1341 * need to take care of the registers kept by RC6. Notice that this happens even
1342 * if we don't put the device in PCI D3 state (which is what currently happens
1343 * because of the runtime PM support).
1344 *
1345 * For more, read "Display Sequences for Package C8" on the hardware
1346 * documentation.
1347 */
1348static void hsw_enable_pc8(struct drm_i915_private *dev_priv)
1349{
1350	u32 val;
1351
1352	drm_dbg_kms(&dev_priv->drm, "Enabling package C8+\n");
1353
1354	if (HAS_PCH_LPT_LP(dev_priv)) {
1355		val = intel_de_read(dev_priv, SOUTH_DSPCLK_GATE_D);
1356		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
1357		intel_de_write(dev_priv, SOUTH_DSPCLK_GATE_D, val);
1358	}
1359
1360	lpt_disable_clkout_dp(dev_priv);
1361	hsw_disable_lcpll(dev_priv, true, true);
1362}
1363
1364static void hsw_disable_pc8(struct drm_i915_private *dev_priv)
1365{
1366	u32 val;
1367
1368	drm_dbg_kms(&dev_priv->drm, "Disabling package C8+\n");
1369
1370	hsw_restore_lcpll(dev_priv);
1371	intel_init_pch_refclk(dev_priv);
1372
1373	if (HAS_PCH_LPT_LP(dev_priv)) {
1374		val = intel_de_read(dev_priv, SOUTH_DSPCLK_GATE_D);
1375		val |= PCH_LP_PARTITION_LEVEL_DISABLE;
1376		intel_de_write(dev_priv, SOUTH_DSPCLK_GATE_D, val);
1377	}
1378}
1379
1380static void intel_pch_reset_handshake(struct drm_i915_private *dev_priv,
1381				      bool enable)
1382{
1383	i915_reg_t reg;
1384	u32 reset_bits, val;
1385
1386	if (IS_IVYBRIDGE(dev_priv)) {
1387		reg = GEN7_MSG_CTL;
1388		reset_bits = WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK;
1389	} else {
1390		reg = HSW_NDE_RSTWRN_OPT;
1391		reset_bits = RESET_PCH_HANDSHAKE_ENABLE;
1392	}
1393
1394	if (DISPLAY_VER(dev_priv) >= 14)
1395		reset_bits |= MTL_RESET_PICA_HANDSHAKE_EN;
1396
1397	val = intel_de_read(dev_priv, reg);
1398
1399	if (enable)
1400		val |= reset_bits;
1401	else
1402		val &= ~reset_bits;
1403
1404	intel_de_write(dev_priv, reg, val);
1405}
1406
1407static void skl_display_core_init(struct drm_i915_private *dev_priv,
1408				  bool resume)
1409{
1410	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1411	struct i915_power_well *well;
1412
1413	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1414
1415	/* enable PCH reset handshake */
1416	intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
1417
1418	if (!HAS_DISPLAY(dev_priv))
1419		return;
1420
1421	/* enable PG1 and Misc I/O */
1422	mutex_lock(&power_domains->lock);
1423
1424	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1425	intel_power_well_enable(dev_priv, well);
1426
1427	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
1428	intel_power_well_enable(dev_priv, well);
1429
1430	mutex_unlock(&power_domains->lock);
1431
1432	intel_cdclk_init_hw(dev_priv);
1433
1434	gen9_dbuf_enable(dev_priv);
1435
1436	if (resume)
1437		intel_dmc_load_program(dev_priv);
1438}
1439
1440static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
1441{
1442	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1443	struct i915_power_well *well;
1444
1445	if (!HAS_DISPLAY(dev_priv))
1446		return;
1447
1448	gen9_disable_dc_states(dev_priv);
1449	/* TODO: disable DMC program */
1450
1451	gen9_dbuf_disable(dev_priv);
1452
1453	intel_cdclk_uninit_hw(dev_priv);
1454
1455	/* The spec doesn't call for removing the reset handshake flag */
1456	/* disable PG1 and Misc I/O */
1457
1458	mutex_lock(&power_domains->lock);
1459
1460	/*
1461	 * BSpec says to keep the MISC IO power well enabled here, only
1462	 * remove our request for power well 1.
1463	 * Note that even though the driver's request is removed power well 1
1464	 * may stay enabled after this due to DMC's own request on it.
1465	 */
1466	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1467	intel_power_well_disable(dev_priv, well);
1468
1469	mutex_unlock(&power_domains->lock);
1470
1471	usleep_range(10, 30);		/* 10 us delay per Bspec */
1472}
1473
1474static void bxt_display_core_init(struct drm_i915_private *dev_priv, bool resume)
1475{
1476	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1477	struct i915_power_well *well;
1478
1479	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1480
1481	/*
1482	 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
1483	 * or else the reset will hang because there is no PCH to respond.
1484	 * Move the handshake programming to initialization sequence.
1485	 * Previously was left up to BIOS.
1486	 */
1487	intel_pch_reset_handshake(dev_priv, false);
1488
1489	if (!HAS_DISPLAY(dev_priv))
1490		return;
1491
1492	/* Enable PG1 */
1493	mutex_lock(&power_domains->lock);
1494
1495	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1496	intel_power_well_enable(dev_priv, well);
1497
1498	mutex_unlock(&power_domains->lock);
1499
1500	intel_cdclk_init_hw(dev_priv);
1501
1502	gen9_dbuf_enable(dev_priv);
1503
1504	if (resume)
1505		intel_dmc_load_program(dev_priv);
1506}
1507
1508static void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
1509{
1510	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1511	struct i915_power_well *well;
1512
1513	if (!HAS_DISPLAY(dev_priv))
1514		return;
1515
1516	gen9_disable_dc_states(dev_priv);
1517	/* TODO: disable DMC program */
1518
1519	gen9_dbuf_disable(dev_priv);
1520
1521	intel_cdclk_uninit_hw(dev_priv);
1522
1523	/* The spec doesn't call for removing the reset handshake flag */
1524
1525	/*
1526	 * Disable PW1 (PG1).
1527	 * Note that even though the driver's request is removed power well 1
1528	 * may stay enabled after this due to DMC's own request on it.
1529	 */
1530	mutex_lock(&power_domains->lock);
1531
1532	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1533	intel_power_well_disable(dev_priv, well);
1534
1535	mutex_unlock(&power_domains->lock);
1536
1537	usleep_range(10, 30);		/* 10 us delay per Bspec */
1538}
1539
1540struct buddy_page_mask {
1541	u32 page_mask;
1542	u8 type;
1543	u8 num_channels;
1544};
1545
1546static const struct buddy_page_mask tgl_buddy_page_masks[] = {
1547	{ .num_channels = 1, .type = INTEL_DRAM_DDR4,   .page_mask = 0xF },
1548	{ .num_channels = 1, .type = INTEL_DRAM_DDR5,	.page_mask = 0xF },
1549	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1C },
1550	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1C },
1551	{ .num_channels = 2, .type = INTEL_DRAM_DDR4,   .page_mask = 0x1F },
1552	{ .num_channels = 2, .type = INTEL_DRAM_DDR5,   .page_mask = 0x1E },
1553	{ .num_channels = 4, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x38 },
1554	{ .num_channels = 4, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x38 },
1555	{}
1556};
1557
1558static const struct buddy_page_mask wa_1409767108_buddy_page_masks[] = {
1559	{ .num_channels = 1, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1 },
1560	{ .num_channels = 1, .type = INTEL_DRAM_DDR4,   .page_mask = 0x1 },
1561	{ .num_channels = 1, .type = INTEL_DRAM_DDR5,   .page_mask = 0x1 },
1562	{ .num_channels = 1, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1 },
1563	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x3 },
1564	{ .num_channels = 2, .type = INTEL_DRAM_DDR4,   .page_mask = 0x3 },
1565	{ .num_channels = 2, .type = INTEL_DRAM_DDR5,   .page_mask = 0x3 },
1566	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x3 },
1567	{}
1568};
1569
1570static void tgl_bw_buddy_init(struct drm_i915_private *dev_priv)
1571{
1572	enum intel_dram_type type = dev_priv->dram_info.type;
1573	u8 num_channels = dev_priv->dram_info.num_channels;
1574	const struct buddy_page_mask *table;
1575	unsigned long abox_mask = INTEL_INFO(dev_priv)->display.abox_mask;
1576	int config, i;
1577
1578	/* BW_BUDDY registers are not used on dgpu's beyond DG1 */
1579	if (IS_DGFX(dev_priv) && !IS_DG1(dev_priv))
1580		return;
1581
1582	if (IS_ALDERLAKE_S(dev_priv) ||
1583	    IS_DG1_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0) ||
1584	    IS_RKL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0) ||
1585	    IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_C0))
1586		/* Wa_1409767108:tgl,dg1,adl-s */
1587		table = wa_1409767108_buddy_page_masks;
1588	else
1589		table = tgl_buddy_page_masks;
1590
1591	for (config = 0; table[config].page_mask != 0; config++)
1592		if (table[config].num_channels == num_channels &&
1593		    table[config].type == type)
1594			break;
1595
1596	if (table[config].page_mask == 0) {
1597		drm_dbg(&dev_priv->drm,
1598			"Unknown memory configuration; disabling address buddy logic.\n");
1599		for_each_set_bit(i, &abox_mask, sizeof(abox_mask))
1600			intel_de_write(dev_priv, BW_BUDDY_CTL(i),
1601				       BW_BUDDY_DISABLE);
1602	} else {
1603		for_each_set_bit(i, &abox_mask, sizeof(abox_mask)) {
1604			intel_de_write(dev_priv, BW_BUDDY_PAGE_MASK(i),
1605				       table[config].page_mask);
1606
1607			/* Wa_22010178259:tgl,dg1,rkl,adl-s */
1608			if (DISPLAY_VER(dev_priv) == 12)
1609				intel_de_rmw(dev_priv, BW_BUDDY_CTL(i),
1610					     BW_BUDDY_TLB_REQ_TIMER_MASK,
1611					     BW_BUDDY_TLB_REQ_TIMER(0x8));
1612		}
1613	}
1614}
1615
1616static void icl_display_core_init(struct drm_i915_private *dev_priv,
1617				  bool resume)
1618{
1619	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1620	struct i915_power_well *well;
1621	u32 val;
1622
1623	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1624
1625	/* Wa_14011294188:ehl,jsl,tgl,rkl,adl-s */
1626	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP &&
1627	    INTEL_PCH_TYPE(dev_priv) < PCH_DG1)
1628		intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D, 0,
1629			     PCH_DPMGUNIT_CLOCK_GATE_DISABLE);
1630
1631	/* 1. Enable PCH reset handshake. */
1632	intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
1633
1634	if (!HAS_DISPLAY(dev_priv))
1635		return;
1636
1637	/* 2. Initialize all combo phys */
1638	intel_combo_phy_init(dev_priv);
1639
1640	/*
1641	 * 3. Enable Power Well 1 (PG1).
1642	 *    The AUX IO power wells will be enabled on demand.
1643	 */
1644	mutex_lock(&power_domains->lock);
1645	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1646	intel_power_well_enable(dev_priv, well);
1647	mutex_unlock(&power_domains->lock);
1648
1649	/* 4. Enable CDCLK. */
1650	intel_cdclk_init_hw(dev_priv);
1651
1652	if (DISPLAY_VER(dev_priv) >= 12)
1653		gen12_dbuf_slices_config(dev_priv);
1654
1655	/* 5. Enable DBUF. */
1656	gen9_dbuf_enable(dev_priv);
1657
1658	/* 6. Setup MBUS. */
1659	icl_mbus_init(dev_priv);
1660
1661	/* 7. Program arbiter BW_BUDDY registers */
1662	if (DISPLAY_VER(dev_priv) >= 12)
1663		tgl_bw_buddy_init(dev_priv);
1664
1665	/* 8. Ensure PHYs have completed calibration and adaptation */
1666	if (IS_DG2(dev_priv))
1667		intel_snps_phy_wait_for_calibration(dev_priv);
1668
1669	if (resume)
1670		intel_dmc_load_program(dev_priv);
1671
1672	/* Wa_14011508470:tgl,dg1,rkl,adl-s,adl-p */
1673	if (DISPLAY_VER(dev_priv) >= 12) {
1674		val = DCPR_CLEAR_MEMSTAT_DIS | DCPR_SEND_RESP_IMM |
1675		      DCPR_MASK_LPMODE | DCPR_MASK_MAXLATENCY_MEMUP_CLR;
1676		intel_uncore_rmw(&dev_priv->uncore, GEN11_CHICKEN_DCPR_2, 0, val);
1677	}
1678
1679	/* Wa_14011503030:xelpd */
1680	if (DISPLAY_VER(dev_priv) >= 13)
1681		intel_de_write(dev_priv, XELPD_DISPLAY_ERR_FATAL_MASK, ~0);
1682}
1683
1684static void icl_display_core_uninit(struct drm_i915_private *dev_priv)
1685{
1686	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1687	struct i915_power_well *well;
1688
1689	if (!HAS_DISPLAY(dev_priv))
1690		return;
1691
1692	gen9_disable_dc_states(dev_priv);
1693	intel_dmc_disable_program(dev_priv);
1694
1695	/* 1. Disable all display engine functions -> aready done */
1696
1697	/* 2. Disable DBUF */
1698	gen9_dbuf_disable(dev_priv);
1699
1700	/* 3. Disable CD clock */
1701	intel_cdclk_uninit_hw(dev_priv);
1702
1703	/*
1704	 * 4. Disable Power Well 1 (PG1).
1705	 *    The AUX IO power wells are toggled on demand, so they are already
1706	 *    disabled at this point.
1707	 */
1708	mutex_lock(&power_domains->lock);
1709	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1710	intel_power_well_disable(dev_priv, well);
1711	mutex_unlock(&power_domains->lock);
1712
1713	/* 5. */
1714	intel_combo_phy_uninit(dev_priv);
1715}
1716
1717static void chv_phy_control_init(struct drm_i915_private *dev_priv)
1718{
1719	struct i915_power_well *cmn_bc =
1720		lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
1721	struct i915_power_well *cmn_d =
1722		lookup_power_well(dev_priv, CHV_DISP_PW_DPIO_CMN_D);
1723
1724	/*
1725	 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
1726	 * workaround never ever read DISPLAY_PHY_CONTROL, and
1727	 * instead maintain a shadow copy ourselves. Use the actual
1728	 * power well state and lane status to reconstruct the
1729	 * expected initial value.
1730	 */
1731	dev_priv->display.power.chv_phy_control =
1732		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
1733		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
1734		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
1735		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
1736		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
1737
1738	/*
1739	 * If all lanes are disabled we leave the override disabled
1740	 * with all power down bits cleared to match the state we
1741	 * would use after disabling the port. Otherwise enable the
1742	 * override and set the lane powerdown bits accding to the
1743	 * current lane status.
1744	 */
1745	if (intel_power_well_is_enabled(dev_priv, cmn_bc)) {
1746		u32 status = intel_de_read(dev_priv, DPLL(PIPE_A));
1747		unsigned int mask;
1748
1749		mask = status & DPLL_PORTB_READY_MASK;
1750		if (mask == 0xf)
1751			mask = 0x0;
1752		else
1753			dev_priv->display.power.chv_phy_control |=
1754				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
1755
1756		dev_priv->display.power.chv_phy_control |=
1757			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
1758
1759		mask = (status & DPLL_PORTC_READY_MASK) >> 4;
1760		if (mask == 0xf)
1761			mask = 0x0;
1762		else
1763			dev_priv->display.power.chv_phy_control |=
1764				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
1765
1766		dev_priv->display.power.chv_phy_control |=
1767			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
1768
1769		dev_priv->display.power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
1770
1771		dev_priv->display.power.chv_phy_assert[DPIO_PHY0] = false;
1772	} else {
1773		dev_priv->display.power.chv_phy_assert[DPIO_PHY0] = true;
1774	}
1775
1776	if (intel_power_well_is_enabled(dev_priv, cmn_d)) {
1777		u32 status = intel_de_read(dev_priv, DPIO_PHY_STATUS);
1778		unsigned int mask;
1779
1780		mask = status & DPLL_PORTD_READY_MASK;
1781
1782		if (mask == 0xf)
1783			mask = 0x0;
1784		else
1785			dev_priv->display.power.chv_phy_control |=
1786				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
1787
1788		dev_priv->display.power.chv_phy_control |=
1789			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
1790
1791		dev_priv->display.power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
1792
1793		dev_priv->display.power.chv_phy_assert[DPIO_PHY1] = false;
1794	} else {
1795		dev_priv->display.power.chv_phy_assert[DPIO_PHY1] = true;
1796	}
1797
1798	drm_dbg_kms(&dev_priv->drm, "Initial PHY_CONTROL=0x%08x\n",
1799		    dev_priv->display.power.chv_phy_control);
1800
1801	/* Defer application of initial phy_control to enabling the powerwell */
1802}
1803
1804static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
1805{
1806	struct i915_power_well *cmn =
1807		lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
1808	struct i915_power_well *disp2d =
1809		lookup_power_well(dev_priv, VLV_DISP_PW_DISP2D);
1810
1811	/* If the display might be already active skip this */
1812	if (intel_power_well_is_enabled(dev_priv, cmn) &&
1813	    intel_power_well_is_enabled(dev_priv, disp2d) &&
1814	    intel_de_read(dev_priv, DPIO_CTL) & DPIO_CMNRST)
1815		return;
1816
1817	drm_dbg_kms(&dev_priv->drm, "toggling display PHY side reset\n");
1818
1819	/* cmnlane needs DPLL registers */
1820	intel_power_well_enable(dev_priv, disp2d);
1821
1822	/*
1823	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
1824	 * Need to assert and de-assert PHY SB reset by gating the
1825	 * common lane power, then un-gating it.
1826	 * Simply ungating isn't enough to reset the PHY enough to get
1827	 * ports and lanes running.
1828	 */
1829	intel_power_well_disable(dev_priv, cmn);
1830}
1831
1832static bool vlv_punit_is_power_gated(struct drm_i915_private *dev_priv, u32 reg0)
1833{
1834	bool ret;
1835
1836	vlv_punit_get(dev_priv);
1837	ret = (vlv_punit_read(dev_priv, reg0) & SSPM0_SSC_MASK) == SSPM0_SSC_PWR_GATE;
1838	vlv_punit_put(dev_priv);
1839
1840	return ret;
1841}
1842
1843static void assert_ved_power_gated(struct drm_i915_private *dev_priv)
1844{
1845	drm_WARN(&dev_priv->drm,
1846		 !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_VEDSSPM0),
1847		 "VED not power gated\n");
1848}
1849
1850static void assert_isp_power_gated(struct drm_i915_private *dev_priv)
1851{
1852	static const struct pci_device_id isp_ids[] = {
1853		{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x0f38)},
1854		{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x22b8)},
1855		{}
1856	};
1857
1858	drm_WARN(&dev_priv->drm, !pci_dev_present(isp_ids) &&
1859		 !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_ISPSSPM0),
1860		 "ISP not power gated\n");
1861}
1862
1863static void intel_power_domains_verify_state(struct drm_i915_private *dev_priv);
1864
1865/**
1866 * intel_power_domains_init_hw - initialize hardware power domain state
1867 * @i915: i915 device instance
1868 * @resume: Called from resume code paths or not
1869 *
1870 * This function initializes the hardware power domain state and enables all
1871 * power wells belonging to the INIT power domain. Power wells in other
1872 * domains (and not in the INIT domain) are referenced or disabled by
1873 * intel_modeset_readout_hw_state(). After that the reference count of each
1874 * power well must match its HW enabled state, see
1875 * intel_power_domains_verify_state().
1876 *
1877 * It will return with power domains disabled (to be enabled later by
1878 * intel_power_domains_enable()) and must be paired with
1879 * intel_power_domains_driver_remove().
1880 */
1881void intel_power_domains_init_hw(struct drm_i915_private *i915, bool resume)
1882{
1883	struct i915_power_domains *power_domains = &i915->display.power.domains;
1884
1885	power_domains->initializing = true;
1886
1887	if (DISPLAY_VER(i915) >= 11) {
1888		icl_display_core_init(i915, resume);
1889	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
1890		bxt_display_core_init(i915, resume);
1891	} else if (DISPLAY_VER(i915) == 9) {
1892		skl_display_core_init(i915, resume);
1893	} else if (IS_CHERRYVIEW(i915)) {
1894		mutex_lock(&power_domains->lock);
1895		chv_phy_control_init(i915);
1896		mutex_unlock(&power_domains->lock);
1897		assert_isp_power_gated(i915);
1898	} else if (IS_VALLEYVIEW(i915)) {
1899		mutex_lock(&power_domains->lock);
1900		vlv_cmnlane_wa(i915);
1901		mutex_unlock(&power_domains->lock);
1902		assert_ved_power_gated(i915);
1903		assert_isp_power_gated(i915);
1904	} else if (IS_BROADWELL(i915) || IS_HASWELL(i915)) {
1905		hsw_assert_cdclk(i915);
1906		intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
1907	} else if (IS_IVYBRIDGE(i915)) {
1908		intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
1909	}
1910
1911	/*
1912	 * Keep all power wells enabled for any dependent HW access during
1913	 * initialization and to make sure we keep BIOS enabled display HW
1914	 * resources powered until display HW readout is complete. We drop
1915	 * this reference in intel_power_domains_enable().
1916	 */
1917	drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
1918	power_domains->init_wakeref =
1919		intel_display_power_get(i915, POWER_DOMAIN_INIT);
1920
1921	/* Disable power support if the user asked so. */
1922	if (!i915->params.disable_power_well) {
1923		drm_WARN_ON(&i915->drm, power_domains->disable_wakeref);
1924		i915->display.power.domains.disable_wakeref = intel_display_power_get(i915,
1925										      POWER_DOMAIN_INIT);
1926	}
1927	intel_power_domains_sync_hw(i915);
1928
1929	power_domains->initializing = false;
1930}
1931
1932/**
1933 * intel_power_domains_driver_remove - deinitialize hw power domain state
1934 * @i915: i915 device instance
1935 *
1936 * De-initializes the display power domain HW state. It also ensures that the
1937 * device stays powered up so that the driver can be reloaded.
1938 *
1939 * It must be called with power domains already disabled (after a call to
1940 * intel_power_domains_disable()) and must be paired with
1941 * intel_power_domains_init_hw().
1942 */
1943void intel_power_domains_driver_remove(struct drm_i915_private *i915)
1944{
1945	intel_wakeref_t wakeref __maybe_unused =
1946		fetch_and_zero(&i915->display.power.domains.init_wakeref);
1947
1948	/* Remove the refcount we took to keep power well support disabled. */
1949	if (!i915->params.disable_power_well)
1950		intel_display_power_put(i915, POWER_DOMAIN_INIT,
1951					fetch_and_zero(&i915->display.power.domains.disable_wakeref));
1952
1953	intel_display_power_flush_work_sync(i915);
1954
1955	intel_power_domains_verify_state(i915);
1956
1957	/* Keep the power well enabled, but cancel its rpm wakeref. */
1958	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1959}
1960
1961/**
1962 * intel_power_domains_sanitize_state - sanitize power domains state
1963 * @i915: i915 device instance
1964 *
1965 * Sanitize the power domains state during driver loading and system resume.
1966 * The function will disable all display power wells that BIOS has enabled
1967 * without a user for it (any user for a power well has taken a reference
1968 * on it by the time this function is called, after the state of all the
1969 * pipe, encoder, etc. HW resources have been sanitized).
1970 */
1971void intel_power_domains_sanitize_state(struct drm_i915_private *i915)
1972{
1973	struct i915_power_domains *power_domains = &i915->display.power.domains;
1974	struct i915_power_well *power_well;
1975
1976	mutex_lock(&power_domains->lock);
1977
1978	for_each_power_well_reverse(i915, power_well) {
1979		if (power_well->desc->always_on || power_well->count ||
1980		    !intel_power_well_is_enabled(i915, power_well))
1981			continue;
1982
1983		drm_dbg_kms(&i915->drm,
1984			    "BIOS left unused %s power well enabled, disabling it\n",
1985			    intel_power_well_name(power_well));
1986		intel_power_well_disable(i915, power_well);
1987	}
1988
1989	mutex_unlock(&power_domains->lock);
1990}
1991
1992/**
1993 * intel_power_domains_enable - enable toggling of display power wells
1994 * @i915: i915 device instance
1995 *
1996 * Enable the ondemand enabling/disabling of the display power wells. Note that
1997 * power wells not belonging to POWER_DOMAIN_INIT are allowed to be toggled
1998 * only at specific points of the display modeset sequence, thus they are not
1999 * affected by the intel_power_domains_enable()/disable() calls. The purpose
2000 * of these function is to keep the rest of power wells enabled until the end
2001 * of display HW readout (which will acquire the power references reflecting
2002 * the current HW state).
2003 */
2004void intel_power_domains_enable(struct drm_i915_private *i915)
2005{
2006	intel_wakeref_t wakeref __maybe_unused =
2007		fetch_and_zero(&i915->display.power.domains.init_wakeref);
2008
2009	intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
2010	intel_power_domains_verify_state(i915);
2011}
2012
2013/**
2014 * intel_power_domains_disable - disable toggling of display power wells
2015 * @i915: i915 device instance
2016 *
2017 * Disable the ondemand enabling/disabling of the display power wells. See
2018 * intel_power_domains_enable() for which power wells this call controls.
2019 */
2020void intel_power_domains_disable(struct drm_i915_private *i915)
2021{
2022	struct i915_power_domains *power_domains = &i915->display.power.domains;
2023
2024	drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
2025	power_domains->init_wakeref =
2026		intel_display_power_get(i915, POWER_DOMAIN_INIT);
2027
2028	intel_power_domains_verify_state(i915);
2029}
2030
2031/**
2032 * intel_power_domains_suspend - suspend power domain state
2033 * @i915: i915 device instance
2034 * @suspend_mode: specifies the target suspend state (idle, mem, hibernation)
2035 *
2036 * This function prepares the hardware power domain state before entering
2037 * system suspend.
2038 *
2039 * It must be called with power domains already disabled (after a call to
2040 * intel_power_domains_disable()) and paired with intel_power_domains_resume().
2041 */
2042void intel_power_domains_suspend(struct drm_i915_private *i915,
2043				 enum i915_drm_suspend_mode suspend_mode)
2044{
2045	struct i915_power_domains *power_domains = &i915->display.power.domains;
2046	intel_wakeref_t wakeref __maybe_unused =
2047		fetch_and_zero(&power_domains->init_wakeref);
2048
2049	intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
2050
2051	/*
2052	 * In case of suspend-to-idle (aka S0ix) on a DMC platform without DC9
2053	 * support don't manually deinit the power domains. This also means the
2054	 * DMC firmware will stay active, it will power down any HW
2055	 * resources as required and also enable deeper system power states
2056	 * that would be blocked if the firmware was inactive.
2057	 */
2058	if (!(i915->display.dmc.allowed_dc_mask & DC_STATE_EN_DC9) &&
2059	    suspend_mode == I915_DRM_SUSPEND_IDLE &&
2060	    intel_dmc_has_payload(i915)) {
2061		intel_display_power_flush_work(i915);
2062		intel_power_domains_verify_state(i915);
2063		return;
2064	}
2065
2066	/*
2067	 * Even if power well support was disabled we still want to disable
2068	 * power wells if power domains must be deinitialized for suspend.
2069	 */
2070	if (!i915->params.disable_power_well)
2071		intel_display_power_put(i915, POWER_DOMAIN_INIT,
2072					fetch_and_zero(&i915->display.power.domains.disable_wakeref));
2073
2074	intel_display_power_flush_work(i915);
2075	intel_power_domains_verify_state(i915);
2076
2077	if (DISPLAY_VER(i915) >= 11)
2078		icl_display_core_uninit(i915);
2079	else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915))
2080		bxt_display_core_uninit(i915);
2081	else if (DISPLAY_VER(i915) == 9)
2082		skl_display_core_uninit(i915);
2083
2084	power_domains->display_core_suspended = true;
2085}
2086
2087/**
2088 * intel_power_domains_resume - resume power domain state
2089 * @i915: i915 device instance
2090 *
2091 * This function resume the hardware power domain state during system resume.
2092 *
2093 * It will return with power domain support disabled (to be enabled later by
2094 * intel_power_domains_enable()) and must be paired with
2095 * intel_power_domains_suspend().
2096 */
2097void intel_power_domains_resume(struct drm_i915_private *i915)
2098{
2099	struct i915_power_domains *power_domains = &i915->display.power.domains;
2100
2101	if (power_domains->display_core_suspended) {
2102		intel_power_domains_init_hw(i915, true);
2103		power_domains->display_core_suspended = false;
2104	} else {
2105		drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
2106		power_domains->init_wakeref =
2107			intel_display_power_get(i915, POWER_DOMAIN_INIT);
2108	}
2109
2110	intel_power_domains_verify_state(i915);
2111}
2112
2113#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
2114
2115static void intel_power_domains_dump_info(struct drm_i915_private *i915)
2116{
2117	struct i915_power_domains *power_domains = &i915->display.power.domains;
2118	struct i915_power_well *power_well;
2119
2120	for_each_power_well(i915, power_well) {
2121		enum intel_display_power_domain domain;
2122
2123		drm_dbg(&i915->drm, "%-25s %d\n",
2124			intel_power_well_name(power_well), intel_power_well_refcount(power_well));
2125
2126		for_each_power_domain(domain, intel_power_well_domains(power_well))
2127			drm_dbg(&i915->drm, "  %-23s %d\n",
2128				intel_display_power_domain_str(domain),
2129				power_domains->domain_use_count[domain]);
2130	}
2131}
2132
2133/**
2134 * intel_power_domains_verify_state - verify the HW/SW state for all power wells
2135 * @i915: i915 device instance
2136 *
2137 * Verify if the reference count of each power well matches its HW enabled
2138 * state and the total refcount of the domains it belongs to. This must be
2139 * called after modeset HW state sanitization, which is responsible for
2140 * acquiring reference counts for any power wells in use and disabling the
2141 * ones left on by BIOS but not required by any active output.
2142 */
2143static void intel_power_domains_verify_state(struct drm_i915_private *i915)
2144{
2145	struct i915_power_domains *power_domains = &i915->display.power.domains;
2146	struct i915_power_well *power_well;
2147	bool dump_domain_info;
2148
2149	mutex_lock(&power_domains->lock);
2150
2151	verify_async_put_domains_state(power_domains);
2152
2153	dump_domain_info = false;
2154	for_each_power_well(i915, power_well) {
2155		enum intel_display_power_domain domain;
2156		int domains_count;
2157		bool enabled;
2158
2159		enabled = intel_power_well_is_enabled(i915, power_well);
2160		if ((intel_power_well_refcount(power_well) ||
2161		     intel_power_well_is_always_on(power_well)) !=
2162		    enabled)
2163			drm_err(&i915->drm,
2164				"power well %s state mismatch (refcount %d/enabled %d)",
2165				intel_power_well_name(power_well),
2166				intel_power_well_refcount(power_well), enabled);
2167
2168		domains_count = 0;
2169		for_each_power_domain(domain, intel_power_well_domains(power_well))
2170			domains_count += power_domains->domain_use_count[domain];
2171
2172		if (intel_power_well_refcount(power_well) != domains_count) {
2173			drm_err(&i915->drm,
2174				"power well %s refcount/domain refcount mismatch "
2175				"(refcount %d/domains refcount %d)\n",
2176				intel_power_well_name(power_well),
2177				intel_power_well_refcount(power_well),
2178				domains_count);
2179			dump_domain_info = true;
2180		}
2181	}
2182
2183	if (dump_domain_info) {
2184		static bool dumped;
2185
2186		if (!dumped) {
2187			intel_power_domains_dump_info(i915);
2188			dumped = true;
2189		}
2190	}
2191
2192	mutex_unlock(&power_domains->lock);
2193}
2194
2195#else
2196
2197static void intel_power_domains_verify_state(struct drm_i915_private *i915)
2198{
2199}
2200
2201#endif
2202
2203void intel_display_power_suspend_late(struct drm_i915_private *i915)
2204{
2205	if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
2206	    IS_BROXTON(i915)) {
2207		bxt_enable_dc9(i915);
2208	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2209		hsw_enable_pc8(i915);
2210	}
2211
2212	/* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
2213	if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
2214		intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS);
2215}
2216
2217void intel_display_power_resume_early(struct drm_i915_private *i915)
2218{
2219	if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
2220	    IS_BROXTON(i915)) {
2221		gen9_sanitize_dc_state(i915);
2222		bxt_disable_dc9(i915);
2223	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2224		hsw_disable_pc8(i915);
2225	}
2226
2227	/* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
2228	if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
2229		intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, 0);
2230}
2231
2232void intel_display_power_suspend(struct drm_i915_private *i915)
2233{
2234	if (DISPLAY_VER(i915) >= 11) {
2235		icl_display_core_uninit(i915);
2236		bxt_enable_dc9(i915);
2237	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
2238		bxt_display_core_uninit(i915);
2239		bxt_enable_dc9(i915);
2240	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2241		hsw_enable_pc8(i915);
2242	}
2243}
2244
2245void intel_display_power_resume(struct drm_i915_private *i915)
2246{
2247	if (DISPLAY_VER(i915) >= 11) {
2248		bxt_disable_dc9(i915);
2249		icl_display_core_init(i915, true);
2250		if (intel_dmc_has_payload(i915)) {
2251			if (i915->display.dmc.allowed_dc_mask &
2252			    DC_STATE_EN_UPTO_DC6)
2253				skl_enable_dc6(i915);
2254			else if (i915->display.dmc.allowed_dc_mask &
2255				 DC_STATE_EN_UPTO_DC5)
2256				gen9_enable_dc5(i915);
2257		}
2258	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
2259		bxt_disable_dc9(i915);
2260		bxt_display_core_init(i915, true);
2261		if (intel_dmc_has_payload(i915) &&
2262		    (i915->display.dmc.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2263			gen9_enable_dc5(i915);
2264	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2265		hsw_disable_pc8(i915);
2266	}
2267}
2268
2269void intel_display_power_debug(struct drm_i915_private *i915, struct seq_file *m)
2270{
2271	struct i915_power_domains *power_domains = &i915->display.power.domains;
2272	int i;
2273
2274	mutex_lock(&power_domains->lock);
2275
2276	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2277	for (i = 0; i < power_domains->power_well_count; i++) {
2278		struct i915_power_well *power_well;
2279		enum intel_display_power_domain power_domain;
2280
2281		power_well = &power_domains->power_wells[i];
2282		seq_printf(m, "%-25s %d\n", intel_power_well_name(power_well),
2283			   intel_power_well_refcount(power_well));
2284
2285		for_each_power_domain(power_domain, intel_power_well_domains(power_well))
2286			seq_printf(m, "  %-23s %d\n",
2287				   intel_display_power_domain_str(power_domain),
2288				   power_domains->domain_use_count[power_domain]);
2289	}
2290
2291	mutex_unlock(&power_domains->lock);
2292}
2293
2294struct intel_ddi_port_domains {
2295	enum port port_start;
2296	enum port port_end;
2297	enum aux_ch aux_ch_start;
2298	enum aux_ch aux_ch_end;
2299
2300	enum intel_display_power_domain ddi_lanes;
2301	enum intel_display_power_domain ddi_io;
2302	enum intel_display_power_domain aux_io;
2303	enum intel_display_power_domain aux_legacy_usbc;
2304	enum intel_display_power_domain aux_tbt;
2305};
2306
2307static const struct intel_ddi_port_domains
2308i9xx_port_domains[] = {
2309	{
2310		.port_start = PORT_A,
2311		.port_end = PORT_F,
2312		.aux_ch_start = AUX_CH_A,
2313		.aux_ch_end = AUX_CH_F,
2314
2315		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2316		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2317		.aux_io = POWER_DOMAIN_AUX_IO_A,
2318		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2319		.aux_tbt = POWER_DOMAIN_INVALID,
2320	},
2321};
2322
2323static const struct intel_ddi_port_domains
2324d11_port_domains[] = {
2325	{
2326		.port_start = PORT_A,
2327		.port_end = PORT_B,
2328		.aux_ch_start = AUX_CH_A,
2329		.aux_ch_end = AUX_CH_B,
2330
2331		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2332		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2333		.aux_io = POWER_DOMAIN_AUX_IO_A,
2334		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2335		.aux_tbt = POWER_DOMAIN_INVALID,
2336	}, {
2337		.port_start = PORT_C,
2338		.port_end = PORT_F,
2339		.aux_ch_start = AUX_CH_C,
2340		.aux_ch_end = AUX_CH_F,
2341
2342		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_C,
2343		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_C,
2344		.aux_io = POWER_DOMAIN_AUX_IO_C,
2345		.aux_legacy_usbc = POWER_DOMAIN_AUX_C,
2346		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2347	},
2348};
2349
2350static const struct intel_ddi_port_domains
2351d12_port_domains[] = {
2352	{
2353		.port_start = PORT_A,
2354		.port_end = PORT_C,
2355		.aux_ch_start = AUX_CH_A,
2356		.aux_ch_end = AUX_CH_C,
2357
2358		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2359		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2360		.aux_io = POWER_DOMAIN_AUX_IO_A,
2361		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2362		.aux_tbt = POWER_DOMAIN_INVALID,
2363	}, {
2364		.port_start = PORT_TC1,
2365		.port_end = PORT_TC6,
2366		.aux_ch_start = AUX_CH_USBC1,
2367		.aux_ch_end = AUX_CH_USBC6,
2368
2369		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
2370		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
2371		.aux_io = POWER_DOMAIN_INVALID,
2372		.aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
2373		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2374	},
2375};
2376
2377static const struct intel_ddi_port_domains
2378d13_port_domains[] = {
2379	{
2380		.port_start = PORT_A,
2381		.port_end = PORT_C,
2382		.aux_ch_start = AUX_CH_A,
2383		.aux_ch_end = AUX_CH_C,
2384
2385		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2386		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2387		.aux_io = POWER_DOMAIN_AUX_IO_A,
2388		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2389		.aux_tbt = POWER_DOMAIN_INVALID,
2390	}, {
2391		.port_start = PORT_TC1,
2392		.port_end = PORT_TC4,
2393		.aux_ch_start = AUX_CH_USBC1,
2394		.aux_ch_end = AUX_CH_USBC4,
2395
2396		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
2397		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
2398		.aux_io = POWER_DOMAIN_INVALID,
2399		.aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
2400		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2401	}, {
2402		.port_start = PORT_D_XELPD,
2403		.port_end = PORT_E_XELPD,
2404		.aux_ch_start = AUX_CH_D_XELPD,
2405		.aux_ch_end = AUX_CH_E_XELPD,
2406
2407		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_D,
2408		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_D,
2409		.aux_io = POWER_DOMAIN_AUX_IO_D,
2410		.aux_legacy_usbc = POWER_DOMAIN_AUX_D,
2411		.aux_tbt = POWER_DOMAIN_INVALID,
2412	},
2413};
2414
2415static void
2416intel_port_domains_for_platform(struct drm_i915_private *i915,
2417				const struct intel_ddi_port_domains **domains,
2418				int *domains_size)
2419{
2420	if (DISPLAY_VER(i915) >= 13) {
2421		*domains = d13_port_domains;
2422		*domains_size = ARRAY_SIZE(d13_port_domains);
2423	} else if (DISPLAY_VER(i915) >= 12) {
2424		*domains = d12_port_domains;
2425		*domains_size = ARRAY_SIZE(d12_port_domains);
2426	} else if (DISPLAY_VER(i915) >= 11) {
2427		*domains = d11_port_domains;
2428		*domains_size = ARRAY_SIZE(d11_port_domains);
2429	} else {
2430		*domains = i9xx_port_domains;
2431		*domains_size = ARRAY_SIZE(i9xx_port_domains);
2432	}
2433}
2434
2435static const struct intel_ddi_port_domains *
2436intel_port_domains_for_port(struct drm_i915_private *i915, enum port port)
2437{
2438	const struct intel_ddi_port_domains *domains;
2439	int domains_size;
2440	int i;
2441
2442	intel_port_domains_for_platform(i915, &domains, &domains_size);
2443	for (i = 0; i < domains_size; i++)
2444		if (port >= domains[i].port_start && port <= domains[i].port_end)
2445			return &domains[i];
2446
2447	return NULL;
2448}
2449
2450enum intel_display_power_domain
2451intel_display_power_ddi_io_domain(struct drm_i915_private *i915, enum port port)
2452{
2453	const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port);
2454
2455	if (drm_WARN_ON(&i915->drm, !domains || domains->ddi_io == POWER_DOMAIN_INVALID))
2456		return POWER_DOMAIN_PORT_DDI_IO_A;
2457
2458	return domains->ddi_io + (int)(port - domains->port_start);
2459}
2460
2461enum intel_display_power_domain
2462intel_display_power_ddi_lanes_domain(struct drm_i915_private *i915, enum port port)
2463{
2464	const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port);
2465
2466	if (drm_WARN_ON(&i915->drm, !domains || domains->ddi_lanes == POWER_DOMAIN_INVALID))
2467		return POWER_DOMAIN_PORT_DDI_LANES_A;
2468
2469	return domains->ddi_lanes + (int)(port - domains->port_start);
2470}
2471
2472static const struct intel_ddi_port_domains *
2473intel_port_domains_for_aux_ch(struct drm_i915_private *i915, enum aux_ch aux_ch)
2474{
2475	const struct intel_ddi_port_domains *domains;
2476	int domains_size;
2477	int i;
2478
2479	intel_port_domains_for_platform(i915, &domains, &domains_size);
2480	for (i = 0; i < domains_size; i++)
2481		if (aux_ch >= domains[i].aux_ch_start && aux_ch <= domains[i].aux_ch_end)
2482			return &domains[i];
2483
2484	return NULL;
2485}
2486
2487enum intel_display_power_domain
2488intel_display_power_aux_io_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2489{
2490	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2491
2492	if (drm_WARN_ON(&i915->drm, !domains || domains->aux_io == POWER_DOMAIN_INVALID))
2493		return POWER_DOMAIN_AUX_IO_A;
2494
2495	return domains->aux_io + (int)(aux_ch - domains->aux_ch_start);
2496}
2497
2498enum intel_display_power_domain
2499intel_display_power_legacy_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2500{
2501	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2502
2503	if (drm_WARN_ON(&i915->drm, !domains || domains->aux_legacy_usbc == POWER_DOMAIN_INVALID))
2504		return POWER_DOMAIN_AUX_A;
2505
2506	return domains->aux_legacy_usbc + (int)(aux_ch - domains->aux_ch_start);
2507}
2508
2509enum intel_display_power_domain
2510intel_display_power_tbt_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2511{
2512	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2513
2514	if (drm_WARN_ON(&i915->drm, !domains || domains->aux_tbt == POWER_DOMAIN_INVALID))
2515		return POWER_DOMAIN_AUX_TBT1;
2516
2517	return domains->aux_tbt + (int)(aux_ch - domains->aux_ch_start);
2518}