Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * drm_irq.c IRQ and vblank support
   3 *
   4 * \author Rickard E. (Rik) Faith <faith@valinux.com>
   5 * \author Gareth Hughes <gareth@valinux.com>
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the "Software"),
   9 * to deal in the Software without restriction, including without limitation
  10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  11 * and/or sell copies of the Software, and to permit persons to whom the
  12 * Software is furnished to do so, subject to the following conditions:
  13 *
  14 * The above copyright notice and this permission notice (including the next
  15 * paragraph) shall be included in all copies or substantial portions of the
  16 * Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
  22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  24 * OTHER DEALINGS IN THE SOFTWARE.
  25 */
  26
  27#include <linux/export.h>
  28#include <linux/kthread.h>
  29#include <linux/moduleparam.h>
  30
  31#include <drm/drm_crtc.h>
  32#include <drm/drm_drv.h>
  33#include <drm/drm_framebuffer.h>
  34#include <drm/drm_managed.h>
  35#include <drm/drm_modeset_helper_vtables.h>
  36#include <drm/drm_print.h>
  37#include <drm/drm_vblank.h>
  38
  39#include "drm_internal.h"
  40#include "drm_trace.h"
  41
  42/**
  43 * DOC: vblank handling
  44 *
  45 * From the computer's perspective, every time the monitor displays
  46 * a new frame the scanout engine has "scanned out" the display image
  47 * from top to bottom, one row of pixels at a time. The current row
  48 * of pixels is referred to as the current scanline.
  49 *
  50 * In addition to the display's visible area, there's usually a couple of
  51 * extra scanlines which aren't actually displayed on the screen.
  52 * These extra scanlines don't contain image data and are occasionally used
  53 * for features like audio and infoframes. The region made up of these
  54 * scanlines is referred to as the vertical blanking region, or vblank for
  55 * short.
  56 *
  57 * For historical reference, the vertical blanking period was designed to
  58 * give the electron gun (on CRTs) enough time to move back to the top of
  59 * the screen to start scanning out the next frame. Similar for horizontal
  60 * blanking periods. They were designed to give the electron gun enough
  61 * time to move back to the other side of the screen to start scanning the
  62 * next scanline.
  63 *
  64 * ::
  65 *
  66 *
  67 *    physical →   ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
  68 *    top of      |                                        |
  69 *    display     |                                        |
  70 *                |               New frame                |
  71 *                |                                        |
  72 *                |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓|
  73 *                |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| ← Scanline,
  74 *                |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓|   updates the
  75 *                |                                        |   frame as it
  76 *                |                                        |   travels down
  77 *                |                                        |   ("scan out")
  78 *                |               Old frame                |
  79 *                |                                        |
  80 *                |                                        |
  81 *                |                                        |
  82 *                |                                        |   physical
  83 *                |                                        |   bottom of
  84 *    vertical    |⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽| ← display
  85 *    blanking    ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
  86 *    region   →  ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
  87 *                ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
  88 *    start of →   ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
  89 *    new frame
  90 *
  91 * "Physical top of display" is the reference point for the high-precision/
  92 * corrected timestamp.
  93 *
  94 * On a lot of display hardware, programming needs to take effect during the
  95 * vertical blanking period so that settings like gamma, the image buffer
  96 * buffer to be scanned out, etc. can safely be changed without showing
  97 * any visual artifacts on the screen. In some unforgiving hardware, some of
  98 * this programming has to both start and end in the same vblank. To help
  99 * with the timing of the hardware programming, an interrupt is usually
 100 * available to notify the driver when it can start the updating of registers.
 101 * The interrupt is in this context named the vblank interrupt.
 102 *
 103 * The vblank interrupt may be fired at different points depending on the
 104 * hardware. Some hardware implementations will fire the interrupt when the
 105 * new frame start, other implementations will fire the interrupt at different
 106 * points in time.
 107 *
 108 * Vertical blanking plays a major role in graphics rendering. To achieve
 109 * tear-free display, users must synchronize page flips and/or rendering to
 110 * vertical blanking. The DRM API offers ioctls to perform page flips
 111 * synchronized to vertical blanking and wait for vertical blanking.
 112 *
 113 * The DRM core handles most of the vertical blanking management logic, which
 114 * involves filtering out spurious interrupts, keeping race-free blanking
 115 * counters, coping with counter wrap-around and resets and keeping use counts.
 116 * It relies on the driver to generate vertical blanking interrupts and
 117 * optionally provide a hardware vertical blanking counter.
 118 *
 119 * Drivers must initialize the vertical blanking handling core with a call to
 120 * drm_vblank_init(). Minimally, a driver needs to implement
 121 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
 122 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank
 123 * support.
 124 *
 125 * Vertical blanking interrupts can be enabled by the DRM core or by drivers
 126 * themselves (for instance to handle page flipping operations).  The DRM core
 127 * maintains a vertical blanking use count to ensure that the interrupts are not
 128 * disabled while a user still needs them. To increment the use count, drivers
 129 * call drm_crtc_vblank_get() and release the vblank reference again with
 130 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
 131 * guaranteed to be enabled.
 132 *
 133 * On many hardware disabling the vblank interrupt cannot be done in a race-free
 134 * manner, see &drm_driver.vblank_disable_immediate and
 135 * &drm_driver.max_vblank_count. In that case the vblank core only disables the
 136 * vblanks after a timer has expired, which can be configured through the
 137 * ``vblankoffdelay`` module parameter.
 138 *
 139 * Drivers for hardware without support for vertical-blanking interrupts
 140 * must not call drm_vblank_init(). For such drivers, atomic helpers will
 141 * automatically generate fake vblank events as part of the display update.
 142 * This functionality also can be controlled by the driver by enabling and
 143 * disabling struct drm_crtc_state.no_vblank.
 144 */
 145
 146/* Retry timestamp calculation up to 3 times to satisfy
 147 * drm_timestamp_precision before giving up.
 148 */
 149#define DRM_TIMESTAMP_MAXRETRIES 3
 150
 151/* Threshold in nanoseconds for detection of redundant
 152 * vblank irq in drm_handle_vblank(). 1 msec should be ok.
 153 */
 154#define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
 155
 156static bool
 157drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
 158			  ktime_t *tvblank, bool in_vblank_irq);
 159
 160static unsigned int drm_timestamp_precision = 20;  /* Default to 20 usecs. */
 161
 162static int drm_vblank_offdelay = 5000;    /* Default to 5000 msecs. */
 163
 164module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
 165module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
 166MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
 167MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
 168
 169static void store_vblank(struct drm_device *dev, unsigned int pipe,
 170			 u32 vblank_count_inc,
 171			 ktime_t t_vblank, u32 last)
 172{
 173	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 174
 175	assert_spin_locked(&dev->vblank_time_lock);
 176
 177	vblank->last = last;
 178
 179	write_seqlock(&vblank->seqlock);
 180	vblank->time = t_vblank;
 181	atomic64_add(vblank_count_inc, &vblank->count);
 182	write_sequnlock(&vblank->seqlock);
 183}
 184
 185static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe)
 186{
 187	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 188
 189	return vblank->max_vblank_count ?: dev->max_vblank_count;
 190}
 191
 192/*
 193 * "No hw counter" fallback implementation of .get_vblank_counter() hook,
 194 * if there is no usable hardware frame counter available.
 195 */
 196static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
 197{
 198	drm_WARN_ON_ONCE(dev, drm_max_vblank_count(dev, pipe) != 0);
 199	return 0;
 200}
 201
 202static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
 203{
 204	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
 205		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
 206
 207		if (drm_WARN_ON(dev, !crtc))
 208			return 0;
 209
 210		if (crtc->funcs->get_vblank_counter)
 211			return crtc->funcs->get_vblank_counter(crtc);
 212	}
 213#ifdef CONFIG_DRM_LEGACY
 214	else if (dev->driver->get_vblank_counter) {
 215		return dev->driver->get_vblank_counter(dev, pipe);
 216	}
 217#endif
 218
 219	return drm_vblank_no_hw_counter(dev, pipe);
 220}
 221
 222/*
 223 * Reset the stored timestamp for the current vblank count to correspond
 224 * to the last vblank occurred.
 225 *
 226 * Only to be called from drm_crtc_vblank_on().
 227 *
 228 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
 229 * device vblank fields.
 230 */
 231static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
 232{
 233	u32 cur_vblank;
 234	bool rc;
 235	ktime_t t_vblank;
 236	int count = DRM_TIMESTAMP_MAXRETRIES;
 237
 238	spin_lock(&dev->vblank_time_lock);
 239
 240	/*
 241	 * sample the current counter to avoid random jumps
 242	 * when drm_vblank_enable() applies the diff
 243	 */
 244	do {
 245		cur_vblank = __get_vblank_counter(dev, pipe);
 246		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
 247	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
 248
 249	/*
 250	 * Only reinitialize corresponding vblank timestamp if high-precision query
 251	 * available and didn't fail. Otherwise reinitialize delayed at next vblank
 252	 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
 253	 */
 254	if (!rc)
 255		t_vblank = 0;
 256
 257	/*
 258	 * +1 to make sure user will never see the same
 259	 * vblank counter value before and after a modeset
 260	 */
 261	store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
 262
 263	spin_unlock(&dev->vblank_time_lock);
 264}
 265
 266/*
 267 * Call back into the driver to update the appropriate vblank counter
 268 * (specified by @pipe).  Deal with wraparound, if it occurred, and
 269 * update the last read value so we can deal with wraparound on the next
 270 * call if necessary.
 271 *
 272 * Only necessary when going from off->on, to account for frames we
 273 * didn't get an interrupt for.
 274 *
 275 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
 276 * device vblank fields.
 277 */
 278static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
 279				    bool in_vblank_irq)
 280{
 281	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 282	u32 cur_vblank, diff;
 283	bool rc;
 284	ktime_t t_vblank;
 285	int count = DRM_TIMESTAMP_MAXRETRIES;
 286	int framedur_ns = vblank->framedur_ns;
 287	u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
 288
 289	/*
 290	 * Interrupts were disabled prior to this call, so deal with counter
 291	 * wrap if needed.
 292	 * NOTE!  It's possible we lost a full dev->max_vblank_count + 1 events
 293	 * here if the register is small or we had vblank interrupts off for
 294	 * a long time.
 295	 *
 296	 * We repeat the hardware vblank counter & timestamp query until
 297	 * we get consistent results. This to prevent races between gpu
 298	 * updating its hardware counter while we are retrieving the
 299	 * corresponding vblank timestamp.
 300	 */
 301	do {
 302		cur_vblank = __get_vblank_counter(dev, pipe);
 303		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
 304	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
 305
 306	if (max_vblank_count) {
 307		/* trust the hw counter when it's around */
 308		diff = (cur_vblank - vblank->last) & max_vblank_count;
 309	} else if (rc && framedur_ns) {
 310		u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
 311
 312		/*
 313		 * Figure out how many vblanks we've missed based
 314		 * on the difference in the timestamps and the
 315		 * frame/field duration.
 316		 */
 317
 318		drm_dbg_vbl(dev, "crtc %u: Calculating number of vblanks."
 319			    " diff_ns = %lld, framedur_ns = %d)\n",
 320			    pipe, (long long)diff_ns, framedur_ns);
 321
 322		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
 323
 324		if (diff == 0 && in_vblank_irq)
 325			drm_dbg_vbl(dev, "crtc %u: Redundant vblirq ignored\n",
 326				    pipe);
 327	} else {
 328		/* some kind of default for drivers w/o accurate vbl timestamping */
 329		diff = in_vblank_irq ? 1 : 0;
 330	}
 331
 332	/*
 333	 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
 334	 * interval? If so then vblank irqs keep running and it will likely
 335	 * happen that the hardware vblank counter is not trustworthy as it
 336	 * might reset at some point in that interval and vblank timestamps
 337	 * are not trustworthy either in that interval. Iow. this can result
 338	 * in a bogus diff >> 1 which must be avoided as it would cause
 339	 * random large forward jumps of the software vblank counter.
 340	 */
 341	if (diff > 1 && (vblank->inmodeset & 0x2)) {
 342		drm_dbg_vbl(dev,
 343			    "clamping vblank bump to 1 on crtc %u: diffr=%u"
 344			    " due to pre-modeset.\n", pipe, diff);
 345		diff = 1;
 346	}
 347
 348	drm_dbg_vbl(dev, "updating vblank count on crtc %u:"
 349		    " current=%llu, diff=%u, hw=%u hw_last=%u\n",
 350		    pipe, (unsigned long long)atomic64_read(&vblank->count),
 351		    diff, cur_vblank, vblank->last);
 352
 353	if (diff == 0) {
 354		drm_WARN_ON_ONCE(dev, cur_vblank != vblank->last);
 355		return;
 356	}
 357
 358	/*
 359	 * Only reinitialize corresponding vblank timestamp if high-precision query
 360	 * available and didn't fail, or we were called from the vblank interrupt.
 361	 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
 362	 * for now, to mark the vblanktimestamp as invalid.
 363	 */
 364	if (!rc && !in_vblank_irq)
 365		t_vblank = 0;
 366
 367	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
 368}
 369
 370u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
 371{
 372	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 373	u64 count;
 374
 375	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
 376		return 0;
 377
 378	count = atomic64_read(&vblank->count);
 379
 380	/*
 381	 * This read barrier corresponds to the implicit write barrier of the
 382	 * write seqlock in store_vblank(). Note that this is the only place
 383	 * where we need an explicit barrier, since all other access goes
 384	 * through drm_vblank_count_and_time(), which already has the required
 385	 * read barrier curtesy of the read seqlock.
 386	 */
 387	smp_rmb();
 388
 389	return count;
 390}
 391
 392/**
 393 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
 394 * @crtc: which counter to retrieve
 395 *
 396 * This function is similar to drm_crtc_vblank_count() but this function
 397 * interpolates to handle a race with vblank interrupts using the high precision
 398 * timestamping support.
 399 *
 400 * This is mostly useful for hardware that can obtain the scanout position, but
 401 * doesn't have a hardware frame counter.
 402 */
 403u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
 404{
 405	struct drm_device *dev = crtc->dev;
 406	unsigned int pipe = drm_crtc_index(crtc);
 407	u64 vblank;
 408	unsigned long flags;
 409
 410	drm_WARN_ONCE(dev, drm_debug_enabled(DRM_UT_VBL) &&
 411		      !crtc->funcs->get_vblank_timestamp,
 412		      "This function requires support for accurate vblank timestamps.");
 413
 414	spin_lock_irqsave(&dev->vblank_time_lock, flags);
 415
 416	drm_update_vblank_count(dev, pipe, false);
 417	vblank = drm_vblank_count(dev, pipe);
 418
 419	spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
 420
 421	return vblank;
 422}
 423EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
 424
 425static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
 426{
 427	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
 428		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
 429
 430		if (drm_WARN_ON(dev, !crtc))
 431			return;
 432
 433		if (crtc->funcs->disable_vblank)
 434			crtc->funcs->disable_vblank(crtc);
 435	}
 436#ifdef CONFIG_DRM_LEGACY
 437	else {
 438		dev->driver->disable_vblank(dev, pipe);
 439	}
 440#endif
 441}
 442
 443/*
 444 * Disable vblank irq's on crtc, make sure that last vblank count
 445 * of hardware and corresponding consistent software vblank counter
 446 * are preserved, even if there are any spurious vblank irq's after
 447 * disable.
 448 */
 449void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
 450{
 451	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 452	unsigned long irqflags;
 453
 454	assert_spin_locked(&dev->vbl_lock);
 455
 456	/* Prevent vblank irq processing while disabling vblank irqs,
 457	 * so no updates of timestamps or count can happen after we've
 458	 * disabled. Needed to prevent races in case of delayed irq's.
 459	 */
 460	spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
 461
 462	/*
 463	 * Update vblank count and disable vblank interrupts only if the
 464	 * interrupts were enabled. This avoids calling the ->disable_vblank()
 465	 * operation in atomic context with the hardware potentially runtime
 466	 * suspended.
 467	 */
 468	if (!vblank->enabled)
 469		goto out;
 470
 471	/*
 472	 * Update the count and timestamp to maintain the
 473	 * appearance that the counter has been ticking all along until
 474	 * this time. This makes the count account for the entire time
 475	 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
 476	 */
 477	drm_update_vblank_count(dev, pipe, false);
 478	__disable_vblank(dev, pipe);
 479	vblank->enabled = false;
 480
 481out:
 482	spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
 483}
 484
 485static void vblank_disable_fn(struct timer_list *t)
 486{
 487	struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer);
 488	struct drm_device *dev = vblank->dev;
 489	unsigned int pipe = vblank->pipe;
 490	unsigned long irqflags;
 491
 492	spin_lock_irqsave(&dev->vbl_lock, irqflags);
 493	if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
 494		drm_dbg_core(dev, "disabling vblank on crtc %u\n", pipe);
 495		drm_vblank_disable_and_save(dev, pipe);
 496	}
 497	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
 498}
 499
 500static void drm_vblank_init_release(struct drm_device *dev, void *ptr)
 501{
 502	struct drm_vblank_crtc *vblank = ptr;
 503
 504	drm_WARN_ON(dev, READ_ONCE(vblank->enabled) &&
 505		    drm_core_check_feature(dev, DRIVER_MODESET));
 506
 507	drm_vblank_destroy_worker(vblank);
 508	del_timer_sync(&vblank->disable_timer);
 509}
 510
 511/**
 512 * drm_vblank_init - initialize vblank support
 513 * @dev: DRM device
 514 * @num_crtcs: number of CRTCs supported by @dev
 515 *
 516 * This function initializes vblank support for @num_crtcs display pipelines.
 517 * Cleanup is handled automatically through a cleanup function added with
 518 * drmm_add_action_or_reset().
 519 *
 520 * Returns:
 521 * Zero on success or a negative error code on failure.
 522 */
 523int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
 524{
 525	int ret;
 526	unsigned int i;
 527
 528	spin_lock_init(&dev->vbl_lock);
 529	spin_lock_init(&dev->vblank_time_lock);
 530
 531	dev->vblank = drmm_kcalloc(dev, num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
 532	if (!dev->vblank)
 533		return -ENOMEM;
 534
 535	dev->num_crtcs = num_crtcs;
 536
 537	for (i = 0; i < num_crtcs; i++) {
 538		struct drm_vblank_crtc *vblank = &dev->vblank[i];
 539
 540		vblank->dev = dev;
 541		vblank->pipe = i;
 542		init_waitqueue_head(&vblank->queue);
 543		timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
 544		seqlock_init(&vblank->seqlock);
 545
 546		ret = drmm_add_action_or_reset(dev, drm_vblank_init_release,
 547					       vblank);
 548		if (ret)
 549			return ret;
 550
 551		ret = drm_vblank_worker_init(vblank);
 552		if (ret)
 553			return ret;
 554	}
 555
 556	return 0;
 557}
 558EXPORT_SYMBOL(drm_vblank_init);
 559
 560/**
 561 * drm_dev_has_vblank - test if vblanking has been initialized for
 562 *                      a device
 563 * @dev: the device
 564 *
 565 * Drivers may call this function to test if vblank support is
 566 * initialized for a device. For most hardware this means that vblanking
 567 * can also be enabled.
 568 *
 569 * Atomic helpers use this function to initialize
 570 * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset().
 571 *
 572 * Returns:
 573 * True if vblanking has been initialized for the given device, false
 574 * otherwise.
 575 */
 576bool drm_dev_has_vblank(const struct drm_device *dev)
 577{
 578	return dev->num_crtcs != 0;
 579}
 580EXPORT_SYMBOL(drm_dev_has_vblank);
 581
 582/**
 583 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
 584 * @crtc: which CRTC's vblank waitqueue to retrieve
 585 *
 586 * This function returns a pointer to the vblank waitqueue for the CRTC.
 587 * Drivers can use this to implement vblank waits using wait_event() and related
 588 * functions.
 589 */
 590wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
 591{
 592	return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
 593}
 594EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
 595
 596
 597/**
 598 * drm_calc_timestamping_constants - calculate vblank timestamp constants
 599 * @crtc: drm_crtc whose timestamp constants should be updated.
 600 * @mode: display mode containing the scanout timings
 601 *
 602 * Calculate and store various constants which are later needed by vblank and
 603 * swap-completion timestamping, e.g, by
 604 * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from
 605 * CRTC's true scanout timing, so they take things like panel scaling or
 606 * other adjustments into account.
 607 */
 608void drm_calc_timestamping_constants(struct drm_crtc *crtc,
 609				     const struct drm_display_mode *mode)
 610{
 611	struct drm_device *dev = crtc->dev;
 612	unsigned int pipe = drm_crtc_index(crtc);
 613	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 614	int linedur_ns = 0, framedur_ns = 0;
 615	int dotclock = mode->crtc_clock;
 616
 617	if (!drm_dev_has_vblank(dev))
 618		return;
 619
 620	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
 621		return;
 622
 623	/* Valid dotclock? */
 624	if (dotclock > 0) {
 625		int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
 626
 627		/*
 628		 * Convert scanline length in pixels and video
 629		 * dot clock to line duration and frame duration
 630		 * in nanoseconds:
 631		 */
 632		linedur_ns  = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
 633		framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
 634
 635		/*
 636		 * Fields of interlaced scanout modes are only half a frame duration.
 637		 */
 638		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 639			framedur_ns /= 2;
 640	} else {
 641		drm_err(dev, "crtc %u: Can't calculate constants, dotclock = 0!\n",
 642			crtc->base.id);
 643	}
 644
 645	vblank->linedur_ns  = linedur_ns;
 646	vblank->framedur_ns = framedur_ns;
 647	drm_mode_copy(&vblank->hwmode, mode);
 648
 649	drm_dbg_core(dev,
 650		     "crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
 651		     crtc->base.id, mode->crtc_htotal,
 652		     mode->crtc_vtotal, mode->crtc_vdisplay);
 653	drm_dbg_core(dev, "crtc %u: clock %d kHz framedur %d linedur %d\n",
 654		     crtc->base.id, dotclock, framedur_ns, linedur_ns);
 655}
 656EXPORT_SYMBOL(drm_calc_timestamping_constants);
 657
 658/**
 659 * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank
 660 *                                                        timestamp helper
 661 * @crtc: CRTC whose vblank timestamp to retrieve
 662 * @max_error: Desired maximum allowable error in timestamps (nanosecs)
 663 *             On return contains true maximum error of timestamp
 664 * @vblank_time: Pointer to time which should receive the timestamp
 665 * @in_vblank_irq:
 666 *     True when called from drm_crtc_handle_vblank().  Some drivers
 667 *     need to apply some workarounds for gpu-specific vblank irq quirks
 668 *     if flag is set.
 669 * @get_scanout_position:
 670 *     Callback function to retrieve the scanout position. See
 671 *     @struct drm_crtc_helper_funcs.get_scanout_position.
 672 *
 673 * Implements calculation of exact vblank timestamps from given drm_display_mode
 674 * timings and current video scanout position of a CRTC.
 675 *
 676 * The current implementation only handles standard video modes. For double scan
 677 * and interlaced modes the driver is supposed to adjust the hardware mode
 678 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
 679 * match the scanout position reported.
 680 *
 681 * Note that atomic drivers must call drm_calc_timestamping_constants() before
 682 * enabling a CRTC. The atomic helpers already take care of that in
 683 * drm_atomic_helper_calc_timestamping_constants().
 684 *
 685 * Returns:
 686 *
 687 * Returns true on success, and false on failure, i.e. when no accurate
 688 * timestamp could be acquired.
 689 */
 690bool
 691drm_crtc_vblank_helper_get_vblank_timestamp_internal(
 692	struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time,
 693	bool in_vblank_irq,
 694	drm_vblank_get_scanout_position_func get_scanout_position)
 695{
 696	struct drm_device *dev = crtc->dev;
 697	unsigned int pipe = crtc->index;
 698	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 699	struct timespec64 ts_etime, ts_vblank_time;
 700	ktime_t stime, etime;
 701	bool vbl_status;
 702	const struct drm_display_mode *mode;
 703	int vpos, hpos, i;
 704	int delta_ns, duration_ns;
 705
 706	if (pipe >= dev->num_crtcs) {
 707		drm_err(dev, "Invalid crtc %u\n", pipe);
 708		return false;
 709	}
 710
 711	/* Scanout position query not supported? Should not happen. */
 712	if (!get_scanout_position) {
 713		drm_err(dev, "Called from CRTC w/o get_scanout_position()!?\n");
 714		return false;
 715	}
 716
 717	if (drm_drv_uses_atomic_modeset(dev))
 718		mode = &vblank->hwmode;
 719	else
 720		mode = &crtc->hwmode;
 721
 722	/* If mode timing undefined, just return as no-op:
 723	 * Happens during initial modesetting of a crtc.
 724	 */
 725	if (mode->crtc_clock == 0) {
 726		drm_dbg_core(dev, "crtc %u: Noop due to uninitialized mode.\n",
 727			     pipe);
 728		drm_WARN_ON_ONCE(dev, drm_drv_uses_atomic_modeset(dev));
 729		return false;
 730	}
 731
 732	/* Get current scanout position with system timestamp.
 733	 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
 734	 * if single query takes longer than max_error nanoseconds.
 735	 *
 736	 * This guarantees a tight bound on maximum error if
 737	 * code gets preempted or delayed for some reason.
 738	 */
 739	for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
 740		/*
 741		 * Get vertical and horizontal scanout position vpos, hpos,
 742		 * and bounding timestamps stime, etime, pre/post query.
 743		 */
 744		vbl_status = get_scanout_position(crtc, in_vblank_irq,
 745						  &vpos, &hpos,
 746						  &stime, &etime,
 747						  mode);
 748
 749		/* Return as no-op if scanout query unsupported or failed. */
 750		if (!vbl_status) {
 751			drm_dbg_core(dev,
 752				     "crtc %u : scanoutpos query failed.\n",
 753				     pipe);
 754			return false;
 755		}
 756
 757		/* Compute uncertainty in timestamp of scanout position query. */
 758		duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
 759
 760		/* Accept result with <  max_error nsecs timing uncertainty. */
 761		if (duration_ns <= *max_error)
 762			break;
 763	}
 764
 765	/* Noisy system timing? */
 766	if (i == DRM_TIMESTAMP_MAXRETRIES) {
 767		drm_dbg_core(dev,
 768			     "crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
 769			     pipe, duration_ns / 1000, *max_error / 1000, i);
 770	}
 771
 772	/* Return upper bound of timestamp precision error. */
 773	*max_error = duration_ns;
 774
 775	/* Convert scanout position into elapsed time at raw_time query
 776	 * since start of scanout at first display scanline. delta_ns
 777	 * can be negative if start of scanout hasn't happened yet.
 778	 */
 779	delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
 780			   mode->crtc_clock);
 781
 782	/* Subtract time delta from raw timestamp to get final
 783	 * vblank_time timestamp for end of vblank.
 784	 */
 785	*vblank_time = ktime_sub_ns(etime, delta_ns);
 786
 787	if (!drm_debug_enabled(DRM_UT_VBL))
 788		return true;
 789
 790	ts_etime = ktime_to_timespec64(etime);
 791	ts_vblank_time = ktime_to_timespec64(*vblank_time);
 792
 793	drm_dbg_vbl(dev,
 794		    "crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n",
 795		    pipe, hpos, vpos,
 796		    (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
 797		    (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
 798		    duration_ns / 1000, i);
 799
 800	return true;
 801}
 802EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal);
 803
 804/**
 805 * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp
 806 *                                               helper
 807 * @crtc: CRTC whose vblank timestamp to retrieve
 808 * @max_error: Desired maximum allowable error in timestamps (nanosecs)
 809 *             On return contains true maximum error of timestamp
 810 * @vblank_time: Pointer to time which should receive the timestamp
 811 * @in_vblank_irq:
 812 *     True when called from drm_crtc_handle_vblank().  Some drivers
 813 *     need to apply some workarounds for gpu-specific vblank irq quirks
 814 *     if flag is set.
 815 *
 816 * Implements calculation of exact vblank timestamps from given drm_display_mode
 817 * timings and current video scanout position of a CRTC. This can be directly
 818 * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms
 819 * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented.
 820 *
 821 * The current implementation only handles standard video modes. For double scan
 822 * and interlaced modes the driver is supposed to adjust the hardware mode
 823 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
 824 * match the scanout position reported.
 825 *
 826 * Note that atomic drivers must call drm_calc_timestamping_constants() before
 827 * enabling a CRTC. The atomic helpers already take care of that in
 828 * drm_atomic_helper_calc_timestamping_constants().
 829 *
 830 * Returns:
 831 *
 832 * Returns true on success, and false on failure, i.e. when no accurate
 833 * timestamp could be acquired.
 834 */
 835bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc,
 836						 int *max_error,
 837						 ktime_t *vblank_time,
 838						 bool in_vblank_irq)
 839{
 840	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
 841		crtc, max_error, vblank_time, in_vblank_irq,
 842		crtc->helper_private->get_scanout_position);
 843}
 844EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp);
 845
 846/**
 847 * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent
 848 *                             vblank interval
 849 * @dev: DRM device
 850 * @pipe: index of CRTC whose vblank timestamp to retrieve
 851 * @tvblank: Pointer to target time which should receive the timestamp
 852 * @in_vblank_irq:
 853 *     True when called from drm_crtc_handle_vblank().  Some drivers
 854 *     need to apply some workarounds for gpu-specific vblank irq quirks
 855 *     if flag is set.
 856 *
 857 * Fetches the system timestamp corresponding to the time of the most recent
 858 * vblank interval on specified CRTC. May call into kms-driver to
 859 * compute the timestamp with a high-precision GPU specific method.
 860 *
 861 * Returns zero if timestamp originates from uncorrected do_gettimeofday()
 862 * call, i.e., it isn't very precisely locked to the true vblank.
 863 *
 864 * Returns:
 865 * True if timestamp is considered to be very precise, false otherwise.
 866 */
 867static bool
 868drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
 869			  ktime_t *tvblank, bool in_vblank_irq)
 870{
 871	struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
 872	bool ret = false;
 873
 874	/* Define requested maximum error on timestamps (nanoseconds). */
 875	int max_error = (int) drm_timestamp_precision * 1000;
 876
 877	/* Query driver if possible and precision timestamping enabled. */
 878	if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) {
 879		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
 880
 881		ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error,
 882							tvblank, in_vblank_irq);
 883	}
 884
 885	/* GPU high precision timestamp query unsupported or failed.
 886	 * Return current monotonic/gettimeofday timestamp as best estimate.
 887	 */
 888	if (!ret)
 889		*tvblank = ktime_get();
 890
 891	return ret;
 892}
 893
 894/**
 895 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
 896 * @crtc: which counter to retrieve
 897 *
 898 * Fetches the "cooked" vblank count value that represents the number of
 899 * vblank events since the system was booted, including lost events due to
 900 * modesetting activity. Note that this timer isn't correct against a racing
 901 * vblank interrupt (since it only reports the software vblank counter), see
 902 * drm_crtc_accurate_vblank_count() for such use-cases.
 903 *
 904 * Note that for a given vblank counter value drm_crtc_handle_vblank()
 905 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
 906 * provide a barrier: Any writes done before calling
 907 * drm_crtc_handle_vblank() will be visible to callers of the later
 908 * functions, if the vblank count is the same or a later one.
 909 *
 910 * See also &drm_vblank_crtc.count.
 911 *
 912 * Returns:
 913 * The software vblank counter.
 914 */
 915u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
 916{
 917	return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
 918}
 919EXPORT_SYMBOL(drm_crtc_vblank_count);
 920
 921/**
 922 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
 923 *     system timestamp corresponding to that vblank counter value.
 924 * @dev: DRM device
 925 * @pipe: index of CRTC whose counter to retrieve
 926 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
 927 *
 928 * Fetches the "cooked" vblank count value that represents the number of
 929 * vblank events since the system was booted, including lost events due to
 930 * modesetting activity. Returns corresponding system timestamp of the time
 931 * of the vblank interval that corresponds to the current vblank counter value.
 932 *
 933 * This is the legacy version of drm_crtc_vblank_count_and_time().
 934 */
 935static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
 936				     ktime_t *vblanktime)
 937{
 938	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 939	u64 vblank_count;
 940	unsigned int seq;
 941
 942	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) {
 943		*vblanktime = 0;
 944		return 0;
 945	}
 946
 947	do {
 948		seq = read_seqbegin(&vblank->seqlock);
 949		vblank_count = atomic64_read(&vblank->count);
 950		*vblanktime = vblank->time;
 951	} while (read_seqretry(&vblank->seqlock, seq));
 952
 953	return vblank_count;
 954}
 955
 956/**
 957 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
 958 *     and the system timestamp corresponding to that vblank counter value
 959 * @crtc: which counter to retrieve
 960 * @vblanktime: Pointer to time to receive the vblank timestamp.
 961 *
 962 * Fetches the "cooked" vblank count value that represents the number of
 963 * vblank events since the system was booted, including lost events due to
 964 * modesetting activity. Returns corresponding system timestamp of the time
 965 * of the vblank interval that corresponds to the current vblank counter value.
 966 *
 967 * Note that for a given vblank counter value drm_crtc_handle_vblank()
 968 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
 969 * provide a barrier: Any writes done before calling
 970 * drm_crtc_handle_vblank() will be visible to callers of the later
 971 * functions, if the vblank count is the same or a later one.
 972 *
 973 * See also &drm_vblank_crtc.count.
 974 */
 975u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
 976				   ktime_t *vblanktime)
 977{
 978	return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
 979					 vblanktime);
 980}
 981EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
 982
 983static void send_vblank_event(struct drm_device *dev,
 984		struct drm_pending_vblank_event *e,
 985		u64 seq, ktime_t now)
 986{
 987	struct timespec64 tv;
 988
 989	switch (e->event.base.type) {
 990	case DRM_EVENT_VBLANK:
 991	case DRM_EVENT_FLIP_COMPLETE:
 992		tv = ktime_to_timespec64(now);
 993		e->event.vbl.sequence = seq;
 994		/*
 995		 * e->event is a user space structure, with hardcoded unsigned
 996		 * 32-bit seconds/microseconds. This is safe as we always use
 997		 * monotonic timestamps since linux-4.15
 998		 */
 999		e->event.vbl.tv_sec = tv.tv_sec;
1000		e->event.vbl.tv_usec = tv.tv_nsec / 1000;
1001		break;
1002	case DRM_EVENT_CRTC_SEQUENCE:
1003		if (seq)
1004			e->event.seq.sequence = seq;
1005		e->event.seq.time_ns = ktime_to_ns(now);
1006		break;
1007	}
1008	trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
1009	/*
1010	 * Use the same timestamp for any associated fence signal to avoid
1011	 * mismatch in timestamps for vsync & fence events triggered by the
1012	 * same HW event. Frameworks like SurfaceFlinger in Android expects the
1013	 * retire-fence timestamp to match exactly with HW vsync as it uses it
1014	 * for its software vsync modeling.
1015	 */
1016	drm_send_event_timestamp_locked(dev, &e->base, now);
1017}
1018
1019/**
1020 * drm_crtc_arm_vblank_event - arm vblank event after pageflip
1021 * @crtc: the source CRTC of the vblank event
1022 * @e: the event to send
1023 *
1024 * A lot of drivers need to generate vblank events for the very next vblank
1025 * interrupt. For example when the page flip interrupt happens when the page
1026 * flip gets armed, but not when it actually executes within the next vblank
1027 * period. This helper function implements exactly the required vblank arming
1028 * behaviour.
1029 *
1030 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
1031 * atomic commit must ensure that the next vblank happens at exactly the same
1032 * time as the atomic commit is committed to the hardware. This function itself
1033 * does **not** protect against the next vblank interrupt racing with either this
1034 * function call or the atomic commit operation. A possible sequence could be:
1035 *
1036 * 1. Driver commits new hardware state into vblank-synchronized registers.
1037 * 2. A vblank happens, committing the hardware state. Also the corresponding
1038 *    vblank interrupt is fired off and fully processed by the interrupt
1039 *    handler.
1040 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
1041 * 4. The event is only send out for the next vblank, which is wrong.
1042 *
1043 * An equivalent race can happen when the driver calls
1044 * drm_crtc_arm_vblank_event() before writing out the new hardware state.
1045 *
1046 * The only way to make this work safely is to prevent the vblank from firing
1047 * (and the hardware from committing anything else) until the entire atomic
1048 * commit sequence has run to completion. If the hardware does not have such a
1049 * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
1050 * Instead drivers need to manually send out the event from their interrupt
1051 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
1052 * possible race with the hardware committing the atomic update.
1053 *
1054 * Caller must hold a vblank reference for the event @e acquired by a
1055 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives.
1056 */
1057void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
1058			       struct drm_pending_vblank_event *e)
1059{
1060	struct drm_device *dev = crtc->dev;
1061	unsigned int pipe = drm_crtc_index(crtc);
1062
1063	assert_spin_locked(&dev->event_lock);
1064
1065	e->pipe = pipe;
1066	e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
1067	list_add_tail(&e->base.link, &dev->vblank_event_list);
1068}
1069EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
1070
1071/**
1072 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
1073 * @crtc: the source CRTC of the vblank event
1074 * @e: the event to send
1075 *
1076 * Updates sequence # and timestamp on event for the most recently processed
1077 * vblank, and sends it to userspace.  Caller must hold event lock.
1078 *
1079 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
1080 * situation, especially to send out events for atomic commit operations.
1081 */
1082void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
1083				struct drm_pending_vblank_event *e)
1084{
1085	struct drm_device *dev = crtc->dev;
1086	u64 seq;
1087	unsigned int pipe = drm_crtc_index(crtc);
1088	ktime_t now;
1089
1090	if (drm_dev_has_vblank(dev)) {
1091		seq = drm_vblank_count_and_time(dev, pipe, &now);
1092	} else {
1093		seq = 0;
1094
1095		now = ktime_get();
1096	}
1097	e->pipe = pipe;
1098	send_vblank_event(dev, e, seq, now);
1099}
1100EXPORT_SYMBOL(drm_crtc_send_vblank_event);
1101
1102static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
1103{
1104	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1105		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1106
1107		if (drm_WARN_ON(dev, !crtc))
1108			return 0;
1109
1110		if (crtc->funcs->enable_vblank)
1111			return crtc->funcs->enable_vblank(crtc);
1112	}
1113#ifdef CONFIG_DRM_LEGACY
1114	else if (dev->driver->enable_vblank) {
1115		return dev->driver->enable_vblank(dev, pipe);
1116	}
1117#endif
1118
1119	return -EINVAL;
1120}
1121
1122static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
1123{
1124	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1125	int ret = 0;
1126
1127	assert_spin_locked(&dev->vbl_lock);
1128
1129	spin_lock(&dev->vblank_time_lock);
1130
1131	if (!vblank->enabled) {
1132		/*
1133		 * Enable vblank irqs under vblank_time_lock protection.
1134		 * All vblank count & timestamp updates are held off
1135		 * until we are done reinitializing master counter and
1136		 * timestamps. Filtercode in drm_handle_vblank() will
1137		 * prevent double-accounting of same vblank interval.
1138		 */
1139		ret = __enable_vblank(dev, pipe);
1140		drm_dbg_core(dev, "enabling vblank on crtc %u, ret: %d\n",
1141			     pipe, ret);
1142		if (ret) {
1143			atomic_dec(&vblank->refcount);
1144		} else {
1145			drm_update_vblank_count(dev, pipe, 0);
1146			/* drm_update_vblank_count() includes a wmb so we just
1147			 * need to ensure that the compiler emits the write
1148			 * to mark the vblank as enabled after the call
1149			 * to drm_update_vblank_count().
1150			 */
1151			WRITE_ONCE(vblank->enabled, true);
1152		}
1153	}
1154
1155	spin_unlock(&dev->vblank_time_lock);
1156
1157	return ret;
1158}
1159
1160int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
1161{
1162	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1163	unsigned long irqflags;
1164	int ret = 0;
1165
1166	if (!drm_dev_has_vblank(dev))
1167		return -EINVAL;
1168
1169	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1170		return -EINVAL;
1171
1172	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1173	/* Going from 0->1 means we have to enable interrupts again */
1174	if (atomic_add_return(1, &vblank->refcount) == 1) {
1175		ret = drm_vblank_enable(dev, pipe);
1176	} else {
1177		if (!vblank->enabled) {
1178			atomic_dec(&vblank->refcount);
1179			ret = -EINVAL;
1180		}
1181	}
1182	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1183
1184	return ret;
1185}
1186
1187/**
1188 * drm_crtc_vblank_get - get a reference count on vblank events
1189 * @crtc: which CRTC to own
1190 *
1191 * Acquire a reference count on vblank events to avoid having them disabled
1192 * while in use.
1193 *
1194 * Returns:
1195 * Zero on success or a negative error code on failure.
1196 */
1197int drm_crtc_vblank_get(struct drm_crtc *crtc)
1198{
1199	return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1200}
1201EXPORT_SYMBOL(drm_crtc_vblank_get);
1202
1203void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1204{
1205	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1206
1207	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1208		return;
1209
1210	if (drm_WARN_ON(dev, atomic_read(&vblank->refcount) == 0))
1211		return;
1212
1213	/* Last user schedules interrupt disable */
1214	if (atomic_dec_and_test(&vblank->refcount)) {
1215		if (drm_vblank_offdelay == 0)
1216			return;
1217		else if (drm_vblank_offdelay < 0)
1218			vblank_disable_fn(&vblank->disable_timer);
1219		else if (!dev->vblank_disable_immediate)
1220			mod_timer(&vblank->disable_timer,
1221				  jiffies + ((drm_vblank_offdelay * HZ)/1000));
1222	}
1223}
1224
1225/**
1226 * drm_crtc_vblank_put - give up ownership of vblank events
1227 * @crtc: which counter to give up
1228 *
1229 * Release ownership of a given vblank counter, turning off interrupts
1230 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
1231 */
1232void drm_crtc_vblank_put(struct drm_crtc *crtc)
1233{
1234	drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1235}
1236EXPORT_SYMBOL(drm_crtc_vblank_put);
1237
1238/**
1239 * drm_wait_one_vblank - wait for one vblank
1240 * @dev: DRM device
1241 * @pipe: CRTC index
1242 *
1243 * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
1244 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
1245 * due to lack of driver support or because the crtc is off.
1246 *
1247 * This is the legacy version of drm_crtc_wait_one_vblank().
1248 */
1249void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
1250{
1251	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1252	int ret;
1253	u64 last;
1254
1255	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1256		return;
1257
1258	ret = drm_vblank_get(dev, pipe);
1259	if (drm_WARN(dev, ret, "vblank not available on crtc %i, ret=%i\n",
1260		     pipe, ret))
1261		return;
1262
1263	last = drm_vblank_count(dev, pipe);
1264
1265	ret = wait_event_timeout(vblank->queue,
1266				 last != drm_vblank_count(dev, pipe),
1267				 msecs_to_jiffies(100));
1268
1269	drm_WARN(dev, ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1270
1271	drm_vblank_put(dev, pipe);
1272}
1273EXPORT_SYMBOL(drm_wait_one_vblank);
1274
1275/**
1276 * drm_crtc_wait_one_vblank - wait for one vblank
1277 * @crtc: DRM crtc
1278 *
1279 * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1280 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1281 * due to lack of driver support or because the crtc is off.
1282 */
1283void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1284{
1285	drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1286}
1287EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1288
1289/**
1290 * drm_crtc_vblank_off - disable vblank events on a CRTC
1291 * @crtc: CRTC in question
1292 *
1293 * Drivers can use this function to shut down the vblank interrupt handling when
1294 * disabling a crtc. This function ensures that the latest vblank frame count is
1295 * stored so that drm_vblank_on can restore it again.
1296 *
1297 * Drivers must use this function when the hardware vblank counter can get
1298 * reset, e.g. when suspending or disabling the @crtc in general.
1299 */
1300void drm_crtc_vblank_off(struct drm_crtc *crtc)
1301{
1302	struct drm_device *dev = crtc->dev;
1303	unsigned int pipe = drm_crtc_index(crtc);
1304	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1305	struct drm_pending_vblank_event *e, *t;
1306	ktime_t now;
1307	u64 seq;
1308
1309	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1310		return;
1311
1312	/*
1313	 * Grab event_lock early to prevent vblank work from being scheduled
1314	 * while we're in the middle of shutting down vblank interrupts
1315	 */
1316	spin_lock_irq(&dev->event_lock);
1317
1318	spin_lock(&dev->vbl_lock);
1319	drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1320		    pipe, vblank->enabled, vblank->inmodeset);
1321
1322	/* Avoid redundant vblank disables without previous
1323	 * drm_crtc_vblank_on(). */
1324	if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1325		drm_vblank_disable_and_save(dev, pipe);
1326
1327	wake_up(&vblank->queue);
1328
1329	/*
1330	 * Prevent subsequent drm_vblank_get() from re-enabling
1331	 * the vblank interrupt by bumping the refcount.
1332	 */
1333	if (!vblank->inmodeset) {
1334		atomic_inc(&vblank->refcount);
1335		vblank->inmodeset = 1;
1336	}
1337	spin_unlock(&dev->vbl_lock);
1338
1339	/* Send any queued vblank events, lest the natives grow disquiet */
1340	seq = drm_vblank_count_and_time(dev, pipe, &now);
1341
1342	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1343		if (e->pipe != pipe)
1344			continue;
1345		drm_dbg_core(dev, "Sending premature vblank event on disable: "
1346			     "wanted %llu, current %llu\n",
1347			     e->sequence, seq);
1348		list_del(&e->base.link);
1349		drm_vblank_put(dev, pipe);
1350		send_vblank_event(dev, e, seq, now);
1351	}
1352
1353	/* Cancel any leftover pending vblank work */
1354	drm_vblank_cancel_pending_works(vblank);
1355
1356	spin_unlock_irq(&dev->event_lock);
1357
1358	/* Will be reset by the modeset helpers when re-enabling the crtc by
1359	 * calling drm_calc_timestamping_constants(). */
1360	vblank->hwmode.crtc_clock = 0;
1361
1362	/* Wait for any vblank work that's still executing to finish */
1363	drm_vblank_flush_worker(vblank);
1364}
1365EXPORT_SYMBOL(drm_crtc_vblank_off);
1366
1367/**
1368 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1369 * @crtc: CRTC in question
1370 *
1371 * Drivers can use this function to reset the vblank state to off at load time.
1372 * Drivers should use this together with the drm_crtc_vblank_off() and
1373 * drm_crtc_vblank_on() functions. The difference compared to
1374 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1375 * and hence doesn't need to call any driver hooks.
1376 *
1377 * This is useful for recovering driver state e.g. on driver load, or on resume.
1378 */
1379void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1380{
1381	struct drm_device *dev = crtc->dev;
1382	unsigned int pipe = drm_crtc_index(crtc);
1383	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1384
1385	spin_lock_irq(&dev->vbl_lock);
1386	/*
1387	 * Prevent subsequent drm_vblank_get() from enabling the vblank
1388	 * interrupt by bumping the refcount.
1389	 */
1390	if (!vblank->inmodeset) {
1391		atomic_inc(&vblank->refcount);
1392		vblank->inmodeset = 1;
1393	}
1394	spin_unlock_irq(&dev->vbl_lock);
1395
1396	drm_WARN_ON(dev, !list_empty(&dev->vblank_event_list));
1397	drm_WARN_ON(dev, !list_empty(&vblank->pending_work));
1398}
1399EXPORT_SYMBOL(drm_crtc_vblank_reset);
1400
1401/**
1402 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value
1403 * @crtc: CRTC in question
1404 * @max_vblank_count: max hardware vblank counter value
1405 *
1406 * Update the maximum hardware vblank counter value for @crtc
1407 * at runtime. Useful for hardware where the operation of the
1408 * hardware vblank counter depends on the currently active
1409 * display configuration.
1410 *
1411 * For example, if the hardware vblank counter does not work
1412 * when a specific connector is active the maximum can be set
1413 * to zero. And when that specific connector isn't active the
1414 * maximum can again be set to the appropriate non-zero value.
1415 *
1416 * If used, must be called before drm_vblank_on().
1417 */
1418void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc,
1419				   u32 max_vblank_count)
1420{
1421	struct drm_device *dev = crtc->dev;
1422	unsigned int pipe = drm_crtc_index(crtc);
1423	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1424
1425	drm_WARN_ON(dev, dev->max_vblank_count);
1426	drm_WARN_ON(dev, !READ_ONCE(vblank->inmodeset));
1427
1428	vblank->max_vblank_count = max_vblank_count;
1429}
1430EXPORT_SYMBOL(drm_crtc_set_max_vblank_count);
1431
1432/**
1433 * drm_crtc_vblank_on - enable vblank events on a CRTC
1434 * @crtc: CRTC in question
1435 *
1436 * This functions restores the vblank interrupt state captured with
1437 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1438 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1439 * unbalanced and so can also be unconditionally called in driver load code to
1440 * reflect the current hardware state of the crtc.
1441 */
1442void drm_crtc_vblank_on(struct drm_crtc *crtc)
1443{
1444	struct drm_device *dev = crtc->dev;
1445	unsigned int pipe = drm_crtc_index(crtc);
1446	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1447
1448	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1449		return;
1450
1451	spin_lock_irq(&dev->vbl_lock);
1452	drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1453		    pipe, vblank->enabled, vblank->inmodeset);
1454
1455	/* Drop our private "prevent drm_vblank_get" refcount */
1456	if (vblank->inmodeset) {
1457		atomic_dec(&vblank->refcount);
1458		vblank->inmodeset = 0;
1459	}
1460
1461	drm_reset_vblank_timestamp(dev, pipe);
1462
1463	/*
1464	 * re-enable interrupts if there are users left, or the
1465	 * user wishes vblank interrupts to be enabled all the time.
1466	 */
1467	if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0)
1468		drm_WARN_ON(dev, drm_vblank_enable(dev, pipe));
1469	spin_unlock_irq(&dev->vbl_lock);
1470}
1471EXPORT_SYMBOL(drm_crtc_vblank_on);
1472
1473static void drm_vblank_restore(struct drm_device *dev, unsigned int pipe)
1474{
1475	ktime_t t_vblank;
1476	struct drm_vblank_crtc *vblank;
1477	int framedur_ns;
1478	u64 diff_ns;
1479	u32 cur_vblank, diff = 1;
1480	int count = DRM_TIMESTAMP_MAXRETRIES;
1481	u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
1482
1483	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1484		return;
1485
1486	assert_spin_locked(&dev->vbl_lock);
1487	assert_spin_locked(&dev->vblank_time_lock);
1488
1489	vblank = &dev->vblank[pipe];
1490	drm_WARN_ONCE(dev,
1491		      drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns,
1492		      "Cannot compute missed vblanks without frame duration\n");
1493	framedur_ns = vblank->framedur_ns;
1494
1495	do {
1496		cur_vblank = __get_vblank_counter(dev, pipe);
1497		drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
1498	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
1499
1500	diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
1501	if (framedur_ns)
1502		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
1503
1504
1505	drm_dbg_vbl(dev,
1506		    "missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n",
1507		    diff, diff_ns, framedur_ns, cur_vblank - vblank->last);
1508	vblank->last = (cur_vblank - diff) & max_vblank_count;
1509}
1510
1511/**
1512 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count.
1513 * @crtc: CRTC in question
1514 *
1515 * Power manamement features can cause frame counter resets between vblank
1516 * disable and enable. Drivers can use this function in their
1517 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1518 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1519 * vblank counter.
1520 *
1521 * Note that drivers must have race-free high-precision timestamping support,
1522 * i.e.  &drm_crtc_funcs.get_vblank_timestamp must be hooked up and
1523 * &drm_driver.vblank_disable_immediate must be set to indicate the
1524 * time-stamping functions are race-free against vblank hardware counter
1525 * increments.
1526 */
1527void drm_crtc_vblank_restore(struct drm_crtc *crtc)
1528{
1529	WARN_ON_ONCE(!crtc->funcs->get_vblank_timestamp);
1530	WARN_ON_ONCE(!crtc->dev->vblank_disable_immediate);
1531
1532	drm_vblank_restore(crtc->dev, drm_crtc_index(crtc));
1533}
1534EXPORT_SYMBOL(drm_crtc_vblank_restore);
1535
1536static void drm_legacy_vblank_pre_modeset(struct drm_device *dev,
1537					  unsigned int pipe)
1538{
1539	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1540
1541	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1542	if (!drm_dev_has_vblank(dev))
1543		return;
1544
1545	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1546		return;
1547
1548	/*
1549	 * To avoid all the problems that might happen if interrupts
1550	 * were enabled/disabled around or between these calls, we just
1551	 * have the kernel take a reference on the CRTC (just once though
1552	 * to avoid corrupting the count if multiple, mismatch calls occur),
1553	 * so that interrupts remain enabled in the interim.
1554	 */
1555	if (!vblank->inmodeset) {
1556		vblank->inmodeset = 0x1;
1557		if (drm_vblank_get(dev, pipe) == 0)
1558			vblank->inmodeset |= 0x2;
1559	}
1560}
1561
1562static void drm_legacy_vblank_post_modeset(struct drm_device *dev,
1563					   unsigned int pipe)
1564{
1565	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1566
1567	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1568	if (!drm_dev_has_vblank(dev))
1569		return;
1570
1571	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1572		return;
1573
1574	if (vblank->inmodeset) {
1575		spin_lock_irq(&dev->vbl_lock);
1576		drm_reset_vblank_timestamp(dev, pipe);
1577		spin_unlock_irq(&dev->vbl_lock);
1578
1579		if (vblank->inmodeset & 0x2)
1580			drm_vblank_put(dev, pipe);
1581
1582		vblank->inmodeset = 0;
1583	}
1584}
1585
1586int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data,
1587				 struct drm_file *file_priv)
1588{
1589	struct drm_modeset_ctl *modeset = data;
1590	unsigned int pipe;
1591
1592	/* If drm_vblank_init() hasn't been called yet, just no-op */
1593	if (!drm_dev_has_vblank(dev))
1594		return 0;
1595
1596	/* KMS drivers handle this internally */
1597	if (!drm_core_check_feature(dev, DRIVER_LEGACY))
1598		return 0;
1599
1600	pipe = modeset->crtc;
1601	if (pipe >= dev->num_crtcs)
1602		return -EINVAL;
1603
1604	switch (modeset->cmd) {
1605	case _DRM_PRE_MODESET:
1606		drm_legacy_vblank_pre_modeset(dev, pipe);
1607		break;
1608	case _DRM_POST_MODESET:
1609		drm_legacy_vblank_post_modeset(dev, pipe);
1610		break;
1611	default:
1612		return -EINVAL;
1613	}
1614
1615	return 0;
1616}
1617
1618static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1619				  u64 req_seq,
1620				  union drm_wait_vblank *vblwait,
1621				  struct drm_file *file_priv)
1622{
1623	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1624	struct drm_pending_vblank_event *e;
1625	ktime_t now;
1626	u64 seq;
1627	int ret;
1628
1629	e = kzalloc(sizeof(*e), GFP_KERNEL);
1630	if (e == NULL) {
1631		ret = -ENOMEM;
1632		goto err_put;
1633	}
1634
1635	e->pipe = pipe;
1636	e->event.base.type = DRM_EVENT_VBLANK;
1637	e->event.base.length = sizeof(e->event.vbl);
1638	e->event.vbl.user_data = vblwait->request.signal;
1639	e->event.vbl.crtc_id = 0;
1640	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1641		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1642
1643		if (crtc)
1644			e->event.vbl.crtc_id = crtc->base.id;
1645	}
1646
1647	spin_lock_irq(&dev->event_lock);
1648
1649	/*
1650	 * drm_crtc_vblank_off() might have been called after we called
1651	 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1652	 * vblank disable, so no need for further locking.  The reference from
1653	 * drm_vblank_get() protects against vblank disable from another source.
1654	 */
1655	if (!READ_ONCE(vblank->enabled)) {
1656		ret = -EINVAL;
1657		goto err_unlock;
1658	}
1659
1660	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1661					    &e->event.base);
1662
1663	if (ret)
1664		goto err_unlock;
1665
1666	seq = drm_vblank_count_and_time(dev, pipe, &now);
1667
1668	drm_dbg_core(dev, "event on vblank count %llu, current %llu, crtc %u\n",
1669		     req_seq, seq, pipe);
1670
1671	trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1672
1673	e->sequence = req_seq;
1674	if (drm_vblank_passed(seq, req_seq)) {
1675		drm_vblank_put(dev, pipe);
1676		send_vblank_event(dev, e, seq, now);
1677		vblwait->reply.sequence = seq;
1678	} else {
1679		/* drm_handle_vblank_events will call drm_vblank_put */
1680		list_add_tail(&e->base.link, &dev->vblank_event_list);
1681		vblwait->reply.sequence = req_seq;
1682	}
1683
1684	spin_unlock_irq(&dev->event_lock);
1685
1686	return 0;
1687
1688err_unlock:
1689	spin_unlock_irq(&dev->event_lock);
1690	kfree(e);
1691err_put:
1692	drm_vblank_put(dev, pipe);
1693	return ret;
1694}
1695
1696static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1697{
1698	if (vblwait->request.sequence)
1699		return false;
1700
1701	return _DRM_VBLANK_RELATIVE ==
1702		(vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1703					  _DRM_VBLANK_EVENT |
1704					  _DRM_VBLANK_NEXTONMISS));
1705}
1706
1707/*
1708 * Widen a 32-bit param to 64-bits.
1709 *
1710 * \param narrow 32-bit value (missing upper 32 bits)
1711 * \param near 64-bit value that should be 'close' to near
1712 *
1713 * This function returns a 64-bit value using the lower 32-bits from
1714 * 'narrow' and constructing the upper 32-bits so that the result is
1715 * as close as possible to 'near'.
1716 */
1717
1718static u64 widen_32_to_64(u32 narrow, u64 near)
1719{
1720	return near + (s32) (narrow - near);
1721}
1722
1723static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1724				  struct drm_wait_vblank_reply *reply)
1725{
1726	ktime_t now;
1727	struct timespec64 ts;
1728
1729	/*
1730	 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1731	 * to store the seconds. This is safe as we always use monotonic
1732	 * timestamps since linux-4.15.
1733	 */
1734	reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1735	ts = ktime_to_timespec64(now);
1736	reply->tval_sec = (u32)ts.tv_sec;
1737	reply->tval_usec = ts.tv_nsec / 1000;
1738}
1739
1740static bool drm_wait_vblank_supported(struct drm_device *dev)
1741{
1742#if IS_ENABLED(CONFIG_DRM_LEGACY)
1743	if (unlikely(drm_core_check_feature(dev, DRIVER_LEGACY)))
1744		return dev->irq_enabled;
1745#endif
1746	return drm_dev_has_vblank(dev);
1747}
1748
1749int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1750			  struct drm_file *file_priv)
1751{
1752	struct drm_crtc *crtc;
1753	struct drm_vblank_crtc *vblank;
1754	union drm_wait_vblank *vblwait = data;
1755	int ret;
1756	u64 req_seq, seq;
1757	unsigned int pipe_index;
1758	unsigned int flags, pipe, high_pipe;
1759
1760	if (!drm_wait_vblank_supported(dev))
1761		return -EOPNOTSUPP;
1762
1763	if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1764		return -EINVAL;
1765
1766	if (vblwait->request.type &
1767	    ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1768	      _DRM_VBLANK_HIGH_CRTC_MASK)) {
1769		drm_dbg_core(dev,
1770			     "Unsupported type value 0x%x, supported mask 0x%x\n",
1771			     vblwait->request.type,
1772			     (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1773			      _DRM_VBLANK_HIGH_CRTC_MASK));
1774		return -EINVAL;
1775	}
1776
1777	flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1778	high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1779	if (high_pipe)
1780		pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1781	else
1782		pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1783
1784	/* Convert lease-relative crtc index into global crtc index */
1785	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1786		pipe = 0;
1787		drm_for_each_crtc(crtc, dev) {
1788			if (drm_lease_held(file_priv, crtc->base.id)) {
1789				if (pipe_index == 0)
1790					break;
1791				pipe_index--;
1792			}
1793			pipe++;
1794		}
1795	} else {
1796		pipe = pipe_index;
1797	}
1798
1799	if (pipe >= dev->num_crtcs)
1800		return -EINVAL;
1801
1802	vblank = &dev->vblank[pipe];
1803
1804	/* If the counter is currently enabled and accurate, short-circuit
1805	 * queries to return the cached timestamp of the last vblank.
1806	 */
1807	if (dev->vblank_disable_immediate &&
1808	    drm_wait_vblank_is_query(vblwait) &&
1809	    READ_ONCE(vblank->enabled)) {
1810		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1811		return 0;
1812	}
1813
1814	ret = drm_vblank_get(dev, pipe);
1815	if (ret) {
1816		drm_dbg_core(dev,
1817			     "crtc %d failed to acquire vblank counter, %d\n",
1818			     pipe, ret);
1819		return ret;
1820	}
1821	seq = drm_vblank_count(dev, pipe);
1822
1823	switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1824	case _DRM_VBLANK_RELATIVE:
1825		req_seq = seq + vblwait->request.sequence;
1826		vblwait->request.sequence = req_seq;
1827		vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1828		break;
1829	case _DRM_VBLANK_ABSOLUTE:
1830		req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1831		break;
1832	default:
1833		ret = -EINVAL;
1834		goto done;
1835	}
1836
1837	if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1838	    drm_vblank_passed(seq, req_seq)) {
1839		req_seq = seq + 1;
1840		vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1841		vblwait->request.sequence = req_seq;
1842	}
1843
1844	if (flags & _DRM_VBLANK_EVENT) {
1845		/* must hold on to the vblank ref until the event fires
1846		 * drm_vblank_put will be called asynchronously
1847		 */
1848		return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1849	}
1850
1851	if (req_seq != seq) {
1852		int wait;
1853
1854		drm_dbg_core(dev, "waiting on vblank count %llu, crtc %u\n",
1855			     req_seq, pipe);
1856		wait = wait_event_interruptible_timeout(vblank->queue,
1857			drm_vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
1858				      !READ_ONCE(vblank->enabled),
1859			msecs_to_jiffies(3000));
1860
1861		switch (wait) {
1862		case 0:
1863			/* timeout */
1864			ret = -EBUSY;
1865			break;
1866		case -ERESTARTSYS:
1867			/* interrupted by signal */
1868			ret = -EINTR;
1869			break;
1870		default:
1871			ret = 0;
1872			break;
1873		}
1874	}
1875
1876	if (ret != -EINTR) {
1877		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1878
1879		drm_dbg_core(dev, "crtc %d returning %u to client\n",
1880			     pipe, vblwait->reply.sequence);
1881	} else {
1882		drm_dbg_core(dev, "crtc %d vblank wait interrupted by signal\n",
1883			     pipe);
1884	}
1885
1886done:
1887	drm_vblank_put(dev, pipe);
1888	return ret;
1889}
1890
1891static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1892{
1893	struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1894	bool high_prec = false;
1895	struct drm_pending_vblank_event *e, *t;
1896	ktime_t now;
1897	u64 seq;
1898
1899	assert_spin_locked(&dev->event_lock);
1900
1901	seq = drm_vblank_count_and_time(dev, pipe, &now);
1902
1903	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1904		if (e->pipe != pipe)
1905			continue;
1906		if (!drm_vblank_passed(seq, e->sequence))
1907			continue;
1908
1909		drm_dbg_core(dev, "vblank event on %llu, current %llu\n",
1910			     e->sequence, seq);
1911
1912		list_del(&e->base.link);
1913		drm_vblank_put(dev, pipe);
1914		send_vblank_event(dev, e, seq, now);
1915	}
1916
1917	if (crtc && crtc->funcs->get_vblank_timestamp)
1918		high_prec = true;
1919
1920	trace_drm_vblank_event(pipe, seq, now, high_prec);
1921}
1922
1923/**
1924 * drm_handle_vblank - handle a vblank event
1925 * @dev: DRM device
1926 * @pipe: index of CRTC where this event occurred
1927 *
1928 * Drivers should call this routine in their vblank interrupt handlers to
1929 * update the vblank counter and send any signals that may be pending.
1930 *
1931 * This is the legacy version of drm_crtc_handle_vblank().
1932 */
1933bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1934{
1935	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1936	unsigned long irqflags;
1937	bool disable_irq;
1938
1939	if (drm_WARN_ON_ONCE(dev, !drm_dev_has_vblank(dev)))
1940		return false;
1941
1942	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1943		return false;
1944
1945	spin_lock_irqsave(&dev->event_lock, irqflags);
1946
1947	/* Need timestamp lock to prevent concurrent execution with
1948	 * vblank enable/disable, as this would cause inconsistent
1949	 * or corrupted timestamps and vblank counts.
1950	 */
1951	spin_lock(&dev->vblank_time_lock);
1952
1953	/* Vblank irq handling disabled. Nothing to do. */
1954	if (!vblank->enabled) {
1955		spin_unlock(&dev->vblank_time_lock);
1956		spin_unlock_irqrestore(&dev->event_lock, irqflags);
1957		return false;
1958	}
1959
1960	drm_update_vblank_count(dev, pipe, true);
1961
1962	spin_unlock(&dev->vblank_time_lock);
1963
1964	wake_up(&vblank->queue);
1965
1966	/* With instant-off, we defer disabling the interrupt until after
1967	 * we finish processing the following vblank after all events have
1968	 * been signaled. The disable has to be last (after
1969	 * drm_handle_vblank_events) so that the timestamp is always accurate.
1970	 */
1971	disable_irq = (dev->vblank_disable_immediate &&
1972		       drm_vblank_offdelay > 0 &&
1973		       !atomic_read(&vblank->refcount));
1974
1975	drm_handle_vblank_events(dev, pipe);
1976	drm_handle_vblank_works(vblank);
1977
1978	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1979
1980	if (disable_irq)
1981		vblank_disable_fn(&vblank->disable_timer);
1982
1983	return true;
1984}
1985EXPORT_SYMBOL(drm_handle_vblank);
1986
1987/**
1988 * drm_crtc_handle_vblank - handle a vblank event
1989 * @crtc: where this event occurred
1990 *
1991 * Drivers should call this routine in their vblank interrupt handlers to
1992 * update the vblank counter and send any signals that may be pending.
1993 *
1994 * This is the native KMS version of drm_handle_vblank().
1995 *
1996 * Note that for a given vblank counter value drm_crtc_handle_vblank()
1997 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
1998 * provide a barrier: Any writes done before calling
1999 * drm_crtc_handle_vblank() will be visible to callers of the later
2000 * functions, if the vblank count is the same or a later one.
2001 *
2002 * See also &drm_vblank_crtc.count.
2003 *
2004 * Returns:
2005 * True if the event was successfully handled, false on failure.
2006 */
2007bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
2008{
2009	return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
2010}
2011EXPORT_SYMBOL(drm_crtc_handle_vblank);
2012
2013/*
2014 * Get crtc VBLANK count.
2015 *
2016 * \param dev DRM device
2017 * \param data user argument, pointing to a drm_crtc_get_sequence structure.
2018 * \param file_priv drm file private for the user's open file descriptor
2019 */
2020
2021int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
2022				struct drm_file *file_priv)
2023{
2024	struct drm_crtc *crtc;
2025	struct drm_vblank_crtc *vblank;
2026	int pipe;
2027	struct drm_crtc_get_sequence *get_seq = data;
2028	ktime_t now;
2029	bool vblank_enabled;
2030	int ret;
2031
2032	if (!drm_core_check_feature(dev, DRIVER_MODESET))
2033		return -EOPNOTSUPP;
2034
2035	if (!drm_dev_has_vblank(dev))
2036		return -EOPNOTSUPP;
2037
2038	crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
2039	if (!crtc)
2040		return -ENOENT;
2041
2042	pipe = drm_crtc_index(crtc);
2043
2044	vblank = &dev->vblank[pipe];
2045	vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled);
2046
2047	if (!vblank_enabled) {
2048		ret = drm_crtc_vblank_get(crtc);
2049		if (ret) {
2050			drm_dbg_core(dev,
2051				     "crtc %d failed to acquire vblank counter, %d\n",
2052				     pipe, ret);
2053			return ret;
2054		}
2055	}
2056	drm_modeset_lock(&crtc->mutex, NULL);
2057	if (crtc->state)
2058		get_seq->active = crtc->state->enable;
2059	else
2060		get_seq->active = crtc->enabled;
2061	drm_modeset_unlock(&crtc->mutex);
2062	get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
2063	get_seq->sequence_ns = ktime_to_ns(now);
2064	if (!vblank_enabled)
2065		drm_crtc_vblank_put(crtc);
2066	return 0;
2067}
2068
2069/*
2070 * Queue a event for VBLANK sequence
2071 *
2072 * \param dev DRM device
2073 * \param data user argument, pointing to a drm_crtc_queue_sequence structure.
2074 * \param file_priv drm file private for the user's open file descriptor
2075 */
2076
2077int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
2078				  struct drm_file *file_priv)
2079{
2080	struct drm_crtc *crtc;
2081	struct drm_vblank_crtc *vblank;
2082	int pipe;
2083	struct drm_crtc_queue_sequence *queue_seq = data;
2084	ktime_t now;
2085	struct drm_pending_vblank_event *e;
2086	u32 flags;
2087	u64 seq;
2088	u64 req_seq;
2089	int ret;
2090
2091	if (!drm_core_check_feature(dev, DRIVER_MODESET))
2092		return -EOPNOTSUPP;
2093
2094	if (!drm_dev_has_vblank(dev))
2095		return -EOPNOTSUPP;
2096
2097	crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
2098	if (!crtc)
2099		return -ENOENT;
2100
2101	flags = queue_seq->flags;
2102	/* Check valid flag bits */
2103	if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
2104		      DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
2105		return -EINVAL;
2106
2107	pipe = drm_crtc_index(crtc);
2108
2109	vblank = &dev->vblank[pipe];
2110
2111	e = kzalloc(sizeof(*e), GFP_KERNEL);
2112	if (e == NULL)
2113		return -ENOMEM;
2114
2115	ret = drm_crtc_vblank_get(crtc);
2116	if (ret) {
2117		drm_dbg_core(dev,
2118			     "crtc %d failed to acquire vblank counter, %d\n",
2119			     pipe, ret);
2120		goto err_free;
2121	}
2122
2123	seq = drm_vblank_count_and_time(dev, pipe, &now);
2124	req_seq = queue_seq->sequence;
2125
2126	if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
2127		req_seq += seq;
2128
2129	if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && drm_vblank_passed(seq, req_seq))
2130		req_seq = seq + 1;
2131
2132	e->pipe = pipe;
2133	e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
2134	e->event.base.length = sizeof(e->event.seq);
2135	e->event.seq.user_data = queue_seq->user_data;
2136
2137	spin_lock_irq(&dev->event_lock);
2138
2139	/*
2140	 * drm_crtc_vblank_off() might have been called after we called
2141	 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
2142	 * vblank disable, so no need for further locking.  The reference from
2143	 * drm_crtc_vblank_get() protects against vblank disable from another source.
2144	 */
2145	if (!READ_ONCE(vblank->enabled)) {
2146		ret = -EINVAL;
2147		goto err_unlock;
2148	}
2149
2150	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
2151					    &e->event.base);
2152
2153	if (ret)
2154		goto err_unlock;
2155
2156	e->sequence = req_seq;
2157
2158	if (drm_vblank_passed(seq, req_seq)) {
2159		drm_crtc_vblank_put(crtc);
2160		send_vblank_event(dev, e, seq, now);
2161		queue_seq->sequence = seq;
2162	} else {
2163		/* drm_handle_vblank_events will call drm_vblank_put */
2164		list_add_tail(&e->base.link, &dev->vblank_event_list);
2165		queue_seq->sequence = req_seq;
2166	}
2167
2168	spin_unlock_irq(&dev->event_lock);
2169	return 0;
2170
2171err_unlock:
2172	spin_unlock_irq(&dev->event_lock);
2173	drm_crtc_vblank_put(crtc);
2174err_free:
2175	kfree(e);
2176	return ret;
2177}
2178