Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0 OR MIT
   2/*
   3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice shall be included in
  13 * all copies or substantial portions of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21 * OTHER DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#include <linux/mutex.h>
  25#include <linux/log2.h>
  26#include <linux/sched.h>
  27#include <linux/sched/mm.h>
  28#include <linux/sched/task.h>
  29#include <linux/mmu_context.h>
  30#include <linux/slab.h>
  31#include <linux/amd-iommu.h>
  32#include <linux/notifier.h>
  33#include <linux/compat.h>
  34#include <linux/mman.h>
  35#include <linux/file.h>
  36#include <linux/pm_runtime.h>
  37#include "amdgpu_amdkfd.h"
  38#include "amdgpu.h"
  39
  40struct mm_struct;
  41
  42#include "kfd_priv.h"
  43#include "kfd_device_queue_manager.h"
  44#include "kfd_iommu.h"
  45#include "kfd_svm.h"
  46#include "kfd_smi_events.h"
  47
  48/*
  49 * List of struct kfd_process (field kfd_process).
  50 * Unique/indexed by mm_struct*
  51 */
  52DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
  53static DEFINE_MUTEX(kfd_processes_mutex);
  54
  55DEFINE_SRCU(kfd_processes_srcu);
  56
  57/* For process termination handling */
  58static struct workqueue_struct *kfd_process_wq;
  59
  60/* Ordered, single-threaded workqueue for restoring evicted
  61 * processes. Restoring multiple processes concurrently under memory
  62 * pressure can lead to processes blocking each other from validating
  63 * their BOs and result in a live-lock situation where processes
  64 * remain evicted indefinitely.
  65 */
  66static struct workqueue_struct *kfd_restore_wq;
  67
  68static struct kfd_process *find_process(const struct task_struct *thread,
  69					bool ref);
  70static void kfd_process_ref_release(struct kref *ref);
  71static struct kfd_process *create_process(const struct task_struct *thread);
  72static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep);
  73
  74static void evict_process_worker(struct work_struct *work);
  75static void restore_process_worker(struct work_struct *work);
  76
  77static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
  78
  79struct kfd_procfs_tree {
  80	struct kobject *kobj;
  81};
  82
  83static struct kfd_procfs_tree procfs;
  84
  85/*
  86 * Structure for SDMA activity tracking
  87 */
  88struct kfd_sdma_activity_handler_workarea {
  89	struct work_struct sdma_activity_work;
  90	struct kfd_process_device *pdd;
  91	uint64_t sdma_activity_counter;
  92};
  93
  94struct temp_sdma_queue_list {
  95	uint64_t __user *rptr;
  96	uint64_t sdma_val;
  97	unsigned int queue_id;
  98	struct list_head list;
  99};
 100
 101static void kfd_sdma_activity_worker(struct work_struct *work)
 102{
 103	struct kfd_sdma_activity_handler_workarea *workarea;
 104	struct kfd_process_device *pdd;
 105	uint64_t val;
 106	struct mm_struct *mm;
 107	struct queue *q;
 108	struct qcm_process_device *qpd;
 109	struct device_queue_manager *dqm;
 110	int ret = 0;
 111	struct temp_sdma_queue_list sdma_q_list;
 112	struct temp_sdma_queue_list *sdma_q, *next;
 113
 114	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
 115				sdma_activity_work);
 116
 117	pdd = workarea->pdd;
 118	if (!pdd)
 119		return;
 120	dqm = pdd->dev->dqm;
 121	qpd = &pdd->qpd;
 122	if (!dqm || !qpd)
 123		return;
 124	/*
 125	 * Total SDMA activity is current SDMA activity + past SDMA activity
 126	 * Past SDMA count is stored in pdd.
 127	 * To get the current activity counters for all active SDMA queues,
 128	 * we loop over all SDMA queues and get their counts from user-space.
 129	 *
 130	 * We cannot call get_user() with dqm_lock held as it can cause
 131	 * a circular lock dependency situation. To read the SDMA stats,
 132	 * we need to do the following:
 133	 *
 134	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
 135	 *    with dqm_lock/dqm_unlock().
 136	 * 2. Call get_user() for each node in temporary list without dqm_lock.
 137	 *    Save the SDMA count for each node and also add the count to the total
 138	 *    SDMA count counter.
 139	 *    Its possible, during this step, a few SDMA queue nodes got deleted
 140	 *    from the qpd->queues_list.
 141	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
 142	 *    If any node got deleted, its SDMA count would be captured in the sdma
 143	 *    past activity counter. So subtract the SDMA counter stored in step 2
 144	 *    for this node from the total SDMA count.
 145	 */
 146	INIT_LIST_HEAD(&sdma_q_list.list);
 147
 148	/*
 149	 * Create the temp list of all SDMA queues
 150	 */
 151	dqm_lock(dqm);
 152
 153	list_for_each_entry(q, &qpd->queues_list, list) {
 154		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
 155		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
 156			continue;
 157
 158		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
 159		if (!sdma_q) {
 160			dqm_unlock(dqm);
 161			goto cleanup;
 162		}
 163
 164		INIT_LIST_HEAD(&sdma_q->list);
 165		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
 166		sdma_q->queue_id = q->properties.queue_id;
 167		list_add_tail(&sdma_q->list, &sdma_q_list.list);
 168	}
 169
 170	/*
 171	 * If the temp list is empty, then no SDMA queues nodes were found in
 172	 * qpd->queues_list. Return the past activity count as the total sdma
 173	 * count
 174	 */
 175	if (list_empty(&sdma_q_list.list)) {
 176		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
 177		dqm_unlock(dqm);
 178		return;
 179	}
 180
 181	dqm_unlock(dqm);
 182
 183	/*
 184	 * Get the usage count for each SDMA queue in temp_list.
 185	 */
 186	mm = get_task_mm(pdd->process->lead_thread);
 187	if (!mm)
 188		goto cleanup;
 189
 190	kthread_use_mm(mm);
 191
 192	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
 193		val = 0;
 194		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
 195		if (ret) {
 196			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
 197				 sdma_q->queue_id);
 198		} else {
 199			sdma_q->sdma_val = val;
 200			workarea->sdma_activity_counter += val;
 201		}
 202	}
 203
 204	kthread_unuse_mm(mm);
 205	mmput(mm);
 206
 207	/*
 208	 * Do a second iteration over qpd_queues_list to check if any SDMA
 209	 * nodes got deleted while fetching SDMA counter.
 210	 */
 211	dqm_lock(dqm);
 212
 213	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
 214
 215	list_for_each_entry(q, &qpd->queues_list, list) {
 216		if (list_empty(&sdma_q_list.list))
 217			break;
 218
 219		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
 220		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
 221			continue;
 222
 223		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 224			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
 225			     (sdma_q->queue_id == q->properties.queue_id)) {
 226				list_del(&sdma_q->list);
 227				kfree(sdma_q);
 228				break;
 229			}
 230		}
 231	}
 232
 233	dqm_unlock(dqm);
 234
 235	/*
 236	 * If temp list is not empty, it implies some queues got deleted
 237	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
 238	 * count for each node from the total SDMA count.
 239	 */
 240	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 241		workarea->sdma_activity_counter -= sdma_q->sdma_val;
 242		list_del(&sdma_q->list);
 243		kfree(sdma_q);
 244	}
 245
 246	return;
 247
 248cleanup:
 249	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 250		list_del(&sdma_q->list);
 251		kfree(sdma_q);
 252	}
 253}
 254
 255/**
 256 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
 257 * by current process. Translates acquired wave count into number of compute units
 258 * that are occupied.
 259 *
 260 * @attr: Handle of attribute that allows reporting of wave count. The attribute
 261 * handle encapsulates GPU device it is associated with, thereby allowing collection
 262 * of waves in flight, etc
 263 * @buffer: Handle of user provided buffer updated with wave count
 264 *
 265 * Return: Number of bytes written to user buffer or an error value
 266 */
 267static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
 268{
 269	int cu_cnt;
 270	int wave_cnt;
 271	int max_waves_per_cu;
 272	struct kfd_dev *dev = NULL;
 273	struct kfd_process *proc = NULL;
 274	struct kfd_process_device *pdd = NULL;
 275
 276	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
 277	dev = pdd->dev;
 278	if (dev->kfd2kgd->get_cu_occupancy == NULL)
 279		return -EINVAL;
 280
 281	cu_cnt = 0;
 282	proc = pdd->process;
 283	if (pdd->qpd.queue_count == 0) {
 284		pr_debug("Gpu-Id: %d has no active queues for process %d\n",
 285			 dev->id, proc->pasid);
 286		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
 287	}
 288
 289	/* Collect wave count from device if it supports */
 290	wave_cnt = 0;
 291	max_waves_per_cu = 0;
 292	dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt,
 293			&max_waves_per_cu);
 294
 295	/* Translate wave count to number of compute units */
 296	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
 297	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
 298}
 299
 300static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
 301			       char *buffer)
 302{
 303	if (strcmp(attr->name, "pasid") == 0) {
 304		struct kfd_process *p = container_of(attr, struct kfd_process,
 305						     attr_pasid);
 306
 307		return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
 308	} else if (strncmp(attr->name, "vram_", 5) == 0) {
 309		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
 310							      attr_vram);
 311		return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
 312	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
 313		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
 314							      attr_sdma);
 315		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
 316
 317		INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
 318					kfd_sdma_activity_worker);
 319
 320		sdma_activity_work_handler.pdd = pdd;
 321		sdma_activity_work_handler.sdma_activity_counter = 0;
 322
 323		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
 324
 325		flush_work(&sdma_activity_work_handler.sdma_activity_work);
 326
 327		return snprintf(buffer, PAGE_SIZE, "%llu\n",
 328				(sdma_activity_work_handler.sdma_activity_counter)/
 329				 SDMA_ACTIVITY_DIVISOR);
 330	} else {
 331		pr_err("Invalid attribute");
 332		return -EINVAL;
 333	}
 334
 335	return 0;
 336}
 337
 338static void kfd_procfs_kobj_release(struct kobject *kobj)
 339{
 340	kfree(kobj);
 341}
 342
 343static const struct sysfs_ops kfd_procfs_ops = {
 344	.show = kfd_procfs_show,
 345};
 346
 347static struct kobj_type procfs_type = {
 348	.release = kfd_procfs_kobj_release,
 349	.sysfs_ops = &kfd_procfs_ops,
 350};
 351
 352void kfd_procfs_init(void)
 353{
 354	int ret = 0;
 355
 356	procfs.kobj = kfd_alloc_struct(procfs.kobj);
 357	if (!procfs.kobj)
 358		return;
 359
 360	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
 361				   &kfd_device->kobj, "proc");
 362	if (ret) {
 363		pr_warn("Could not create procfs proc folder");
 364		/* If we fail to create the procfs, clean up */
 365		kfd_procfs_shutdown();
 366	}
 367}
 368
 369void kfd_procfs_shutdown(void)
 370{
 371	if (procfs.kobj) {
 372		kobject_del(procfs.kobj);
 373		kobject_put(procfs.kobj);
 374		procfs.kobj = NULL;
 375	}
 376}
 377
 378static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
 379				     struct attribute *attr, char *buffer)
 380{
 381	struct queue *q = container_of(kobj, struct queue, kobj);
 382
 383	if (!strcmp(attr->name, "size"))
 384		return snprintf(buffer, PAGE_SIZE, "%llu",
 385				q->properties.queue_size);
 386	else if (!strcmp(attr->name, "type"))
 387		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
 388	else if (!strcmp(attr->name, "gpuid"))
 389		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
 390	else
 391		pr_err("Invalid attribute");
 392
 393	return 0;
 394}
 395
 396static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
 397				     struct attribute *attr, char *buffer)
 398{
 399	if (strcmp(attr->name, "evicted_ms") == 0) {
 400		struct kfd_process_device *pdd = container_of(attr,
 401				struct kfd_process_device,
 402				attr_evict);
 403		uint64_t evict_jiffies;
 404
 405		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
 406
 407		return snprintf(buffer,
 408				PAGE_SIZE,
 409				"%llu\n",
 410				jiffies64_to_msecs(evict_jiffies));
 411
 412	/* Sysfs handle that gets CU occupancy is per device */
 413	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
 414		return kfd_get_cu_occupancy(attr, buffer);
 415	} else {
 416		pr_err("Invalid attribute");
 417	}
 418
 419	return 0;
 420}
 421
 422static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
 423				       struct attribute *attr, char *buf)
 424{
 425	struct kfd_process_device *pdd;
 426
 427	if (!strcmp(attr->name, "faults")) {
 428		pdd = container_of(attr, struct kfd_process_device,
 429				   attr_faults);
 430		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
 431	}
 432	if (!strcmp(attr->name, "page_in")) {
 433		pdd = container_of(attr, struct kfd_process_device,
 434				   attr_page_in);
 435		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
 436	}
 437	if (!strcmp(attr->name, "page_out")) {
 438		pdd = container_of(attr, struct kfd_process_device,
 439				   attr_page_out);
 440		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
 441	}
 442	return 0;
 443}
 444
 445static struct attribute attr_queue_size = {
 446	.name = "size",
 447	.mode = KFD_SYSFS_FILE_MODE
 448};
 449
 450static struct attribute attr_queue_type = {
 451	.name = "type",
 452	.mode = KFD_SYSFS_FILE_MODE
 453};
 454
 455static struct attribute attr_queue_gpuid = {
 456	.name = "gpuid",
 457	.mode = KFD_SYSFS_FILE_MODE
 458};
 459
 460static struct attribute *procfs_queue_attrs[] = {
 461	&attr_queue_size,
 462	&attr_queue_type,
 463	&attr_queue_gpuid,
 464	NULL
 465};
 466ATTRIBUTE_GROUPS(procfs_queue);
 467
 468static const struct sysfs_ops procfs_queue_ops = {
 469	.show = kfd_procfs_queue_show,
 470};
 471
 472static struct kobj_type procfs_queue_type = {
 473	.sysfs_ops = &procfs_queue_ops,
 474	.default_groups = procfs_queue_groups,
 475};
 476
 477static const struct sysfs_ops procfs_stats_ops = {
 478	.show = kfd_procfs_stats_show,
 479};
 480
 481static struct kobj_type procfs_stats_type = {
 482	.sysfs_ops = &procfs_stats_ops,
 483	.release = kfd_procfs_kobj_release,
 484};
 485
 486static const struct sysfs_ops sysfs_counters_ops = {
 487	.show = kfd_sysfs_counters_show,
 488};
 489
 490static struct kobj_type sysfs_counters_type = {
 491	.sysfs_ops = &sysfs_counters_ops,
 492	.release = kfd_procfs_kobj_release,
 493};
 494
 495int kfd_procfs_add_queue(struct queue *q)
 496{
 497	struct kfd_process *proc;
 498	int ret;
 499
 500	if (!q || !q->process)
 501		return -EINVAL;
 502	proc = q->process;
 503
 504	/* Create proc/<pid>/queues/<queue id> folder */
 505	if (!proc->kobj_queues)
 506		return -EFAULT;
 507	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
 508			proc->kobj_queues, "%u", q->properties.queue_id);
 509	if (ret < 0) {
 510		pr_warn("Creating proc/<pid>/queues/%u failed",
 511			q->properties.queue_id);
 512		kobject_put(&q->kobj);
 513		return ret;
 514	}
 515
 516	return 0;
 517}
 518
 519static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
 520				 char *name)
 521{
 522	int ret;
 523
 524	if (!kobj || !attr || !name)
 525		return;
 526
 527	attr->name = name;
 528	attr->mode = KFD_SYSFS_FILE_MODE;
 529	sysfs_attr_init(attr);
 530
 531	ret = sysfs_create_file(kobj, attr);
 532	if (ret)
 533		pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
 534}
 535
 536static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
 537{
 538	int ret;
 539	int i;
 540	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
 541
 542	if (!p || !p->kobj)
 543		return;
 544
 545	/*
 546	 * Create sysfs files for each GPU:
 547	 * - proc/<pid>/stats_<gpuid>/
 548	 * - proc/<pid>/stats_<gpuid>/evicted_ms
 549	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
 550	 */
 551	for (i = 0; i < p->n_pdds; i++) {
 552		struct kfd_process_device *pdd = p->pdds[i];
 553
 554		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
 555				"stats_%u", pdd->dev->id);
 556		pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
 557		if (!pdd->kobj_stats)
 558			return;
 559
 560		ret = kobject_init_and_add(pdd->kobj_stats,
 561					   &procfs_stats_type,
 562					   p->kobj,
 563					   stats_dir_filename);
 564
 565		if (ret) {
 566			pr_warn("Creating KFD proc/stats_%s folder failed",
 567				stats_dir_filename);
 568			kobject_put(pdd->kobj_stats);
 569			pdd->kobj_stats = NULL;
 570			return;
 571		}
 572
 573		kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
 574				      "evicted_ms");
 575		/* Add sysfs file to report compute unit occupancy */
 576		if (pdd->dev->kfd2kgd->get_cu_occupancy)
 577			kfd_sysfs_create_file(pdd->kobj_stats,
 578					      &pdd->attr_cu_occupancy,
 579					      "cu_occupancy");
 580	}
 581}
 582
 583static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
 584{
 585	int ret = 0;
 586	int i;
 587	char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
 588
 589	if (!p || !p->kobj)
 590		return;
 591
 592	/*
 593	 * Create sysfs files for each GPU which supports SVM
 594	 * - proc/<pid>/counters_<gpuid>/
 595	 * - proc/<pid>/counters_<gpuid>/faults
 596	 * - proc/<pid>/counters_<gpuid>/page_in
 597	 * - proc/<pid>/counters_<gpuid>/page_out
 598	 */
 599	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
 600		struct kfd_process_device *pdd = p->pdds[i];
 601		struct kobject *kobj_counters;
 602
 603		snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
 604			"counters_%u", pdd->dev->id);
 605		kobj_counters = kfd_alloc_struct(kobj_counters);
 606		if (!kobj_counters)
 607			return;
 608
 609		ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
 610					   p->kobj, counters_dir_filename);
 611		if (ret) {
 612			pr_warn("Creating KFD proc/%s folder failed",
 613				counters_dir_filename);
 614			kobject_put(kobj_counters);
 615			return;
 616		}
 617
 618		pdd->kobj_counters = kobj_counters;
 619		kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
 620				      "faults");
 621		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
 622				      "page_in");
 623		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
 624				      "page_out");
 625	}
 626}
 627
 628static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
 629{
 630	int i;
 631
 632	if (!p || !p->kobj)
 633		return;
 634
 635	/*
 636	 * Create sysfs files for each GPU:
 637	 * - proc/<pid>/vram_<gpuid>
 638	 * - proc/<pid>/sdma_<gpuid>
 639	 */
 640	for (i = 0; i < p->n_pdds; i++) {
 641		struct kfd_process_device *pdd = p->pdds[i];
 642
 643		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
 644			 pdd->dev->id);
 645		kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
 646				      pdd->vram_filename);
 647
 648		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
 649			 pdd->dev->id);
 650		kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
 651					    pdd->sdma_filename);
 652	}
 653}
 654
 655void kfd_procfs_del_queue(struct queue *q)
 656{
 657	if (!q)
 658		return;
 659
 660	kobject_del(&q->kobj);
 661	kobject_put(&q->kobj);
 662}
 663
 664int kfd_process_create_wq(void)
 665{
 666	if (!kfd_process_wq)
 667		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
 668	if (!kfd_restore_wq)
 669		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
 670
 671	if (!kfd_process_wq || !kfd_restore_wq) {
 672		kfd_process_destroy_wq();
 673		return -ENOMEM;
 674	}
 675
 676	return 0;
 677}
 678
 679void kfd_process_destroy_wq(void)
 680{
 681	if (kfd_process_wq) {
 682		destroy_workqueue(kfd_process_wq);
 683		kfd_process_wq = NULL;
 684	}
 685	if (kfd_restore_wq) {
 686		destroy_workqueue(kfd_restore_wq);
 687		kfd_restore_wq = NULL;
 688	}
 689}
 690
 691static void kfd_process_free_gpuvm(struct kgd_mem *mem,
 692			struct kfd_process_device *pdd, void **kptr)
 693{
 694	struct kfd_dev *dev = pdd->dev;
 695
 696	if (kptr && *kptr) {
 697		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
 698		*kptr = NULL;
 699	}
 700
 701	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
 702	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
 703					       NULL);
 704}
 705
 706/* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
 707 *	This function should be only called right after the process
 708 *	is created and when kfd_processes_mutex is still being held
 709 *	to avoid concurrency. Because of that exclusiveness, we do
 710 *	not need to take p->mutex.
 711 */
 712static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
 713				   uint64_t gpu_va, uint32_t size,
 714				   uint32_t flags, struct kgd_mem **mem, void **kptr)
 715{
 716	struct kfd_dev *kdev = pdd->dev;
 717	int err;
 718
 719	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
 720						 pdd->drm_priv, mem, NULL,
 721						 flags, false);
 722	if (err)
 723		goto err_alloc_mem;
 724
 725	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
 726			pdd->drm_priv);
 727	if (err)
 728		goto err_map_mem;
 729
 730	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
 731	if (err) {
 732		pr_debug("Sync memory failed, wait interrupted by user signal\n");
 733		goto sync_memory_failed;
 734	}
 735
 736	if (kptr) {
 737		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
 738				(struct kgd_mem *)*mem, kptr, NULL);
 739		if (err) {
 740			pr_debug("Map GTT BO to kernel failed\n");
 741			goto sync_memory_failed;
 742		}
 743	}
 744
 745	return err;
 746
 747sync_memory_failed:
 748	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
 749
 750err_map_mem:
 751	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
 752					       NULL);
 753err_alloc_mem:
 754	*mem = NULL;
 755	*kptr = NULL;
 756	return err;
 757}
 758
 759/* kfd_process_device_reserve_ib_mem - Reserve memory inside the
 760 *	process for IB usage The memory reserved is for KFD to submit
 761 *	IB to AMDGPU from kernel.  If the memory is reserved
 762 *	successfully, ib_kaddr will have the CPU/kernel
 763 *	address. Check ib_kaddr before accessing the memory.
 764 */
 765static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
 766{
 767	struct qcm_process_device *qpd = &pdd->qpd;
 768	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
 769			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
 770			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
 771			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
 772	struct kgd_mem *mem;
 773	void *kaddr;
 774	int ret;
 775
 776	if (qpd->ib_kaddr || !qpd->ib_base)
 777		return 0;
 778
 779	/* ib_base is only set for dGPU */
 780	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
 781				      &mem, &kaddr);
 782	if (ret)
 783		return ret;
 784
 785	qpd->ib_mem = mem;
 786	qpd->ib_kaddr = kaddr;
 787
 788	return 0;
 789}
 790
 791static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
 792{
 793	struct qcm_process_device *qpd = &pdd->qpd;
 794
 795	if (!qpd->ib_kaddr || !qpd->ib_base)
 796		return;
 797
 798	kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
 799}
 800
 801struct kfd_process *kfd_create_process(struct file *filep)
 802{
 803	struct kfd_process *process;
 804	struct task_struct *thread = current;
 805	int ret;
 806
 807	if (!thread->mm)
 808		return ERR_PTR(-EINVAL);
 809
 810	/* Only the pthreads threading model is supported. */
 811	if (thread->group_leader->mm != thread->mm)
 812		return ERR_PTR(-EINVAL);
 813
 814	/*
 815	 * take kfd processes mutex before starting of process creation
 816	 * so there won't be a case where two threads of the same process
 817	 * create two kfd_process structures
 818	 */
 819	mutex_lock(&kfd_processes_mutex);
 820
 821	/* A prior open of /dev/kfd could have already created the process. */
 822	process = find_process(thread, false);
 823	if (process) {
 824		pr_debug("Process already found\n");
 825	} else {
 826		process = create_process(thread);
 827		if (IS_ERR(process))
 828			goto out;
 829
 830		ret = kfd_process_init_cwsr_apu(process, filep);
 831		if (ret)
 832			goto out_destroy;
 833
 834		if (!procfs.kobj)
 835			goto out;
 836
 837		process->kobj = kfd_alloc_struct(process->kobj);
 838		if (!process->kobj) {
 839			pr_warn("Creating procfs kobject failed");
 840			goto out;
 841		}
 842		ret = kobject_init_and_add(process->kobj, &procfs_type,
 843					   procfs.kobj, "%d",
 844					   (int)process->lead_thread->pid);
 845		if (ret) {
 846			pr_warn("Creating procfs pid directory failed");
 847			kobject_put(process->kobj);
 848			goto out;
 849		}
 850
 851		kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
 852				      "pasid");
 853
 854		process->kobj_queues = kobject_create_and_add("queues",
 855							process->kobj);
 856		if (!process->kobj_queues)
 857			pr_warn("Creating KFD proc/queues folder failed");
 858
 859		kfd_procfs_add_sysfs_stats(process);
 860		kfd_procfs_add_sysfs_files(process);
 861		kfd_procfs_add_sysfs_counters(process);
 862	}
 863out:
 864	if (!IS_ERR(process))
 865		kref_get(&process->ref);
 866	mutex_unlock(&kfd_processes_mutex);
 867
 868	return process;
 869
 870out_destroy:
 871	hash_del_rcu(&process->kfd_processes);
 872	mutex_unlock(&kfd_processes_mutex);
 873	synchronize_srcu(&kfd_processes_srcu);
 874	/* kfd_process_free_notifier will trigger the cleanup */
 875	mmu_notifier_put(&process->mmu_notifier);
 876	return ERR_PTR(ret);
 877}
 878
 879struct kfd_process *kfd_get_process(const struct task_struct *thread)
 880{
 881	struct kfd_process *process;
 882
 883	if (!thread->mm)
 884		return ERR_PTR(-EINVAL);
 885
 886	/* Only the pthreads threading model is supported. */
 887	if (thread->group_leader->mm != thread->mm)
 888		return ERR_PTR(-EINVAL);
 889
 890	process = find_process(thread, false);
 891	if (!process)
 892		return ERR_PTR(-EINVAL);
 893
 894	return process;
 895}
 896
 897static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
 898{
 899	struct kfd_process *process;
 900
 901	hash_for_each_possible_rcu(kfd_processes_table, process,
 902					kfd_processes, (uintptr_t)mm)
 903		if (process->mm == mm)
 904			return process;
 905
 906	return NULL;
 907}
 908
 909static struct kfd_process *find_process(const struct task_struct *thread,
 910					bool ref)
 911{
 912	struct kfd_process *p;
 913	int idx;
 914
 915	idx = srcu_read_lock(&kfd_processes_srcu);
 916	p = find_process_by_mm(thread->mm);
 917	if (p && ref)
 918		kref_get(&p->ref);
 919	srcu_read_unlock(&kfd_processes_srcu, idx);
 920
 921	return p;
 922}
 923
 924void kfd_unref_process(struct kfd_process *p)
 925{
 926	kref_put(&p->ref, kfd_process_ref_release);
 927}
 928
 929/* This increments the process->ref counter. */
 930struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
 931{
 932	struct task_struct *task = NULL;
 933	struct kfd_process *p    = NULL;
 934
 935	if (!pid) {
 936		task = current;
 937		get_task_struct(task);
 938	} else {
 939		task = get_pid_task(pid, PIDTYPE_PID);
 940	}
 941
 942	if (task) {
 943		p = find_process(task, true);
 944		put_task_struct(task);
 945	}
 946
 947	return p;
 948}
 949
 950static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
 951{
 952	struct kfd_process *p = pdd->process;
 953	void *mem;
 954	int id;
 955	int i;
 956
 957	/*
 958	 * Remove all handles from idr and release appropriate
 959	 * local memory object
 960	 */
 961	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
 962
 963		for (i = 0; i < p->n_pdds; i++) {
 964			struct kfd_process_device *peer_pdd = p->pdds[i];
 965
 966			if (!peer_pdd->drm_priv)
 967				continue;
 968			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
 969				peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
 970		}
 971
 972		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
 973						       pdd->drm_priv, NULL);
 974		kfd_process_device_remove_obj_handle(pdd, id);
 975	}
 976}
 977
 978/*
 979 * Just kunmap and unpin signal BO here. It will be freed in
 980 * kfd_process_free_outstanding_kfd_bos()
 981 */
 982static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
 983{
 984	struct kfd_process_device *pdd;
 985	struct kfd_dev *kdev;
 986	void *mem;
 987
 988	kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
 989	if (!kdev)
 990		return;
 991
 992	mutex_lock(&p->mutex);
 993
 994	pdd = kfd_get_process_device_data(kdev, p);
 995	if (!pdd)
 996		goto out;
 997
 998	mem = kfd_process_device_translate_handle(
 999		pdd, GET_IDR_HANDLE(p->signal_handle));
1000	if (!mem)
1001		goto out;
1002
1003	amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1004
1005out:
1006	mutex_unlock(&p->mutex);
1007}
1008
1009static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1010{
1011	int i;
1012
1013	for (i = 0; i < p->n_pdds; i++)
1014		kfd_process_device_free_bos(p->pdds[i]);
1015}
1016
1017static void kfd_process_destroy_pdds(struct kfd_process *p)
1018{
1019	int i;
1020
1021	for (i = 0; i < p->n_pdds; i++) {
1022		struct kfd_process_device *pdd = p->pdds[i];
1023
1024		pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1025				pdd->dev->id, p->pasid);
1026
1027		kfd_process_device_destroy_cwsr_dgpu(pdd);
1028		kfd_process_device_destroy_ib_mem(pdd);
1029
1030		if (pdd->drm_file) {
1031			amdgpu_amdkfd_gpuvm_release_process_vm(
1032					pdd->dev->adev, pdd->drm_priv);
1033			fput(pdd->drm_file);
1034		}
1035
1036		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1037			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1038				get_order(KFD_CWSR_TBA_TMA_SIZE));
1039
1040		bitmap_free(pdd->qpd.doorbell_bitmap);
1041		idr_destroy(&pdd->alloc_idr);
1042
1043		kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index);
1044
1045		if (pdd->dev->shared_resources.enable_mes)
1046			amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1047						   pdd->proc_ctx_bo);
1048		/*
1049		 * before destroying pdd, make sure to report availability
1050		 * for auto suspend
1051		 */
1052		if (pdd->runtime_inuse) {
1053			pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1054			pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1055			pdd->runtime_inuse = false;
1056		}
1057
1058		kfree(pdd);
1059		p->pdds[i] = NULL;
1060	}
1061	p->n_pdds = 0;
1062}
1063
1064static void kfd_process_remove_sysfs(struct kfd_process *p)
1065{
1066	struct kfd_process_device *pdd;
1067	int i;
1068
1069	if (!p->kobj)
1070		return;
1071
1072	sysfs_remove_file(p->kobj, &p->attr_pasid);
1073	kobject_del(p->kobj_queues);
1074	kobject_put(p->kobj_queues);
1075	p->kobj_queues = NULL;
1076
1077	for (i = 0; i < p->n_pdds; i++) {
1078		pdd = p->pdds[i];
1079
1080		sysfs_remove_file(p->kobj, &pdd->attr_vram);
1081		sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1082
1083		sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1084		if (pdd->dev->kfd2kgd->get_cu_occupancy)
1085			sysfs_remove_file(pdd->kobj_stats,
1086					  &pdd->attr_cu_occupancy);
1087		kobject_del(pdd->kobj_stats);
1088		kobject_put(pdd->kobj_stats);
1089		pdd->kobj_stats = NULL;
1090	}
1091
1092	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1093		pdd = p->pdds[i];
1094
1095		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1096		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1097		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1098		kobject_del(pdd->kobj_counters);
1099		kobject_put(pdd->kobj_counters);
1100		pdd->kobj_counters = NULL;
1101	}
1102
1103	kobject_del(p->kobj);
1104	kobject_put(p->kobj);
1105	p->kobj = NULL;
1106}
1107
1108/* No process locking is needed in this function, because the process
1109 * is not findable any more. We must assume that no other thread is
1110 * using it any more, otherwise we couldn't safely free the process
1111 * structure in the end.
1112 */
1113static void kfd_process_wq_release(struct work_struct *work)
1114{
1115	struct kfd_process *p = container_of(work, struct kfd_process,
1116					     release_work);
1117
1118	kfd_process_dequeue_from_all_devices(p);
1119	pqm_uninit(&p->pqm);
1120
1121	/* Signal the eviction fence after user mode queues are
1122	 * destroyed. This allows any BOs to be freed without
1123	 * triggering pointless evictions or waiting for fences.
1124	 */
1125	dma_fence_signal(p->ef);
1126
1127	kfd_process_remove_sysfs(p);
1128	kfd_iommu_unbind_process(p);
1129
1130	kfd_process_kunmap_signal_bo(p);
1131	kfd_process_free_outstanding_kfd_bos(p);
1132	svm_range_list_fini(p);
1133
1134	kfd_process_destroy_pdds(p);
1135	dma_fence_put(p->ef);
1136
1137	kfd_event_free_process(p);
1138
1139	kfd_pasid_free(p->pasid);
1140	mutex_destroy(&p->mutex);
1141
1142	put_task_struct(p->lead_thread);
1143
1144	kfree(p);
1145}
1146
1147static void kfd_process_ref_release(struct kref *ref)
1148{
1149	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1150
1151	INIT_WORK(&p->release_work, kfd_process_wq_release);
1152	queue_work(kfd_process_wq, &p->release_work);
1153}
1154
1155static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1156{
1157	int idx = srcu_read_lock(&kfd_processes_srcu);
1158	struct kfd_process *p = find_process_by_mm(mm);
1159
1160	srcu_read_unlock(&kfd_processes_srcu, idx);
1161
1162	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1163}
1164
1165static void kfd_process_free_notifier(struct mmu_notifier *mn)
1166{
1167	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1168}
1169
1170static void kfd_process_notifier_release(struct mmu_notifier *mn,
1171					struct mm_struct *mm)
1172{
1173	struct kfd_process *p;
1174
1175	/*
1176	 * The kfd_process structure can not be free because the
1177	 * mmu_notifier srcu is read locked
1178	 */
1179	p = container_of(mn, struct kfd_process, mmu_notifier);
1180	if (WARN_ON(p->mm != mm))
1181		return;
1182
1183	mutex_lock(&kfd_processes_mutex);
1184	hash_del_rcu(&p->kfd_processes);
1185	mutex_unlock(&kfd_processes_mutex);
1186	synchronize_srcu(&kfd_processes_srcu);
1187
1188	cancel_delayed_work_sync(&p->eviction_work);
1189	cancel_delayed_work_sync(&p->restore_work);
1190
1191	/* Indicate to other users that MM is no longer valid */
1192	p->mm = NULL;
1193
1194	mmu_notifier_put(&p->mmu_notifier);
1195}
1196
1197static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1198	.release = kfd_process_notifier_release,
1199	.alloc_notifier = kfd_process_alloc_notifier,
1200	.free_notifier = kfd_process_free_notifier,
1201};
1202
1203static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1204{
1205	unsigned long  offset;
1206	int i;
1207
1208	for (i = 0; i < p->n_pdds; i++) {
1209		struct kfd_dev *dev = p->pdds[i]->dev;
1210		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1211
1212		if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1213			continue;
1214
1215		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1216		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1217			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1218			MAP_SHARED, offset);
1219
1220		if (IS_ERR_VALUE(qpd->tba_addr)) {
1221			int err = qpd->tba_addr;
1222
1223			pr_err("Failure to set tba address. error %d.\n", err);
1224			qpd->tba_addr = 0;
1225			qpd->cwsr_kaddr = NULL;
1226			return err;
1227		}
1228
1229		memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1230
1231		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1232		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1233			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1234	}
1235
1236	return 0;
1237}
1238
1239static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1240{
1241	struct kfd_dev *dev = pdd->dev;
1242	struct qcm_process_device *qpd = &pdd->qpd;
1243	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1244			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1245			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1246	struct kgd_mem *mem;
1247	void *kaddr;
1248	int ret;
1249
1250	if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1251		return 0;
1252
1253	/* cwsr_base is only set for dGPU */
1254	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1255				      KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1256	if (ret)
1257		return ret;
1258
1259	qpd->cwsr_mem = mem;
1260	qpd->cwsr_kaddr = kaddr;
1261	qpd->tba_addr = qpd->cwsr_base;
1262
1263	memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1264
1265	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1266	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1267		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1268
1269	return 0;
1270}
1271
1272static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1273{
1274	struct kfd_dev *dev = pdd->dev;
1275	struct qcm_process_device *qpd = &pdd->qpd;
1276
1277	if (!dev->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1278		return;
1279
1280	kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1281}
1282
1283void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1284				  uint64_t tba_addr,
1285				  uint64_t tma_addr)
1286{
1287	if (qpd->cwsr_kaddr) {
1288		/* KFD trap handler is bound, record as second-level TBA/TMA
1289		 * in first-level TMA. First-level trap will jump to second.
1290		 */
1291		uint64_t *tma =
1292			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1293		tma[0] = tba_addr;
1294		tma[1] = tma_addr;
1295	} else {
1296		/* No trap handler bound, bind as first-level TBA/TMA. */
1297		qpd->tba_addr = tba_addr;
1298		qpd->tma_addr = tma_addr;
1299	}
1300}
1301
1302bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1303{
1304	int i;
1305
1306	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
1307	 * boot time retry setting. Mixing processes with different
1308	 * XNACK/retry settings can hang the GPU.
1309	 *
1310	 * Different GPUs can have different noretry settings depending
1311	 * on HW bugs or limitations. We need to find at least one
1312	 * XNACK mode for this process that's compatible with all GPUs.
1313	 * Fortunately GPUs with retry enabled (noretry=0) can run code
1314	 * built for XNACK-off. On GFXv9 it may perform slower.
1315	 *
1316	 * Therefore applications built for XNACK-off can always be
1317	 * supported and will be our fallback if any GPU does not
1318	 * support retry.
1319	 */
1320	for (i = 0; i < p->n_pdds; i++) {
1321		struct kfd_dev *dev = p->pdds[i]->dev;
1322
1323		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
1324		 * support the SVM APIs and don't need to be considered
1325		 * for the XNACK mode selection.
1326		 */
1327		if (!KFD_IS_SOC15(dev))
1328			continue;
1329		/* Aldebaran can always support XNACK because it can support
1330		 * per-process XNACK mode selection. But let the dev->noretry
1331		 * setting still influence the default XNACK mode.
1332		 */
1333		if (supported && KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2))
1334			continue;
1335
1336		/* GFXv10 and later GPUs do not support shader preemption
1337		 * during page faults. This can lead to poor QoS for queue
1338		 * management and memory-manager-related preemptions or
1339		 * even deadlocks.
1340		 */
1341		if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1342			return false;
1343
1344		if (dev->noretry)
1345			return false;
1346	}
1347
1348	return true;
1349}
1350
1351/*
1352 * On return the kfd_process is fully operational and will be freed when the
1353 * mm is released
1354 */
1355static struct kfd_process *create_process(const struct task_struct *thread)
1356{
1357	struct kfd_process *process;
1358	struct mmu_notifier *mn;
1359	int err = -ENOMEM;
1360
1361	process = kzalloc(sizeof(*process), GFP_KERNEL);
1362	if (!process)
1363		goto err_alloc_process;
1364
1365	kref_init(&process->ref);
1366	mutex_init(&process->mutex);
1367	process->mm = thread->mm;
1368	process->lead_thread = thread->group_leader;
1369	process->n_pdds = 0;
1370	process->queues_paused = false;
1371	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1372	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1373	process->last_restore_timestamp = get_jiffies_64();
1374	err = kfd_event_init_process(process);
1375	if (err)
1376		goto err_event_init;
1377	process->is_32bit_user_mode = in_compat_syscall();
1378
1379	process->pasid = kfd_pasid_alloc();
1380	if (process->pasid == 0) {
1381		err = -ENOSPC;
1382		goto err_alloc_pasid;
1383	}
1384
1385	err = pqm_init(&process->pqm, process);
1386	if (err != 0)
1387		goto err_process_pqm_init;
1388
1389	/* init process apertures*/
1390	err = kfd_init_apertures(process);
1391	if (err != 0)
1392		goto err_init_apertures;
1393
1394	/* Check XNACK support after PDDs are created in kfd_init_apertures */
1395	process->xnack_enabled = kfd_process_xnack_mode(process, false);
1396
1397	err = svm_range_list_init(process);
1398	if (err)
1399		goto err_init_svm_range_list;
1400
1401	/* alloc_notifier needs to find the process in the hash table */
1402	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1403			(uintptr_t)process->mm);
1404
1405	/* Avoid free_notifier to start kfd_process_wq_release if
1406	 * mmu_notifier_get failed because of pending signal.
1407	 */
1408	kref_get(&process->ref);
1409
1410	/* MMU notifier registration must be the last call that can fail
1411	 * because after this point we cannot unwind the process creation.
1412	 * After this point, mmu_notifier_put will trigger the cleanup by
1413	 * dropping the last process reference in the free_notifier.
1414	 */
1415	mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1416	if (IS_ERR(mn)) {
1417		err = PTR_ERR(mn);
1418		goto err_register_notifier;
1419	}
1420	BUG_ON(mn != &process->mmu_notifier);
1421
1422	kfd_unref_process(process);
1423	get_task_struct(process->lead_thread);
1424
1425	return process;
1426
1427err_register_notifier:
1428	hash_del_rcu(&process->kfd_processes);
1429	svm_range_list_fini(process);
1430err_init_svm_range_list:
1431	kfd_process_free_outstanding_kfd_bos(process);
1432	kfd_process_destroy_pdds(process);
1433err_init_apertures:
1434	pqm_uninit(&process->pqm);
1435err_process_pqm_init:
1436	kfd_pasid_free(process->pasid);
1437err_alloc_pasid:
1438	kfd_event_free_process(process);
1439err_event_init:
1440	mutex_destroy(&process->mutex);
1441	kfree(process);
1442err_alloc_process:
1443	return ERR_PTR(err);
1444}
1445
1446static int init_doorbell_bitmap(struct qcm_process_device *qpd,
1447			struct kfd_dev *dev)
1448{
1449	unsigned int i;
1450	int range_start = dev->shared_resources.non_cp_doorbells_start;
1451	int range_end = dev->shared_resources.non_cp_doorbells_end;
1452
1453	if (!KFD_IS_SOC15(dev))
1454		return 0;
1455
1456	qpd->doorbell_bitmap = bitmap_zalloc(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
1457					     GFP_KERNEL);
1458	if (!qpd->doorbell_bitmap)
1459		return -ENOMEM;
1460
1461	/* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */
1462	pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end);
1463	pr_debug("reserved doorbell 0x%03x - 0x%03x\n",
1464			range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1465			range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET);
1466
1467	for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) {
1468		if (i >= range_start && i <= range_end) {
1469			__set_bit(i, qpd->doorbell_bitmap);
1470			__set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1471				  qpd->doorbell_bitmap);
1472		}
1473	}
1474
1475	return 0;
1476}
1477
1478struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
1479							struct kfd_process *p)
1480{
1481	int i;
1482
1483	for (i = 0; i < p->n_pdds; i++)
1484		if (p->pdds[i]->dev == dev)
1485			return p->pdds[i];
1486
1487	return NULL;
1488}
1489
1490struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
1491							struct kfd_process *p)
1492{
1493	struct kfd_process_device *pdd = NULL;
1494	int retval = 0;
1495
1496	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1497		return NULL;
1498	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1499	if (!pdd)
1500		return NULL;
1501
1502	if (init_doorbell_bitmap(&pdd->qpd, dev)) {
1503		pr_err("Failed to init doorbell for process\n");
1504		goto err_free_pdd;
1505	}
1506
1507	pdd->dev = dev;
1508	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1509	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1510	pdd->qpd.dqm = dev->dqm;
1511	pdd->qpd.pqm = &p->pqm;
1512	pdd->qpd.evicted = 0;
1513	pdd->qpd.mapped_gws_queue = false;
1514	pdd->process = p;
1515	pdd->bound = PDD_UNBOUND;
1516	pdd->already_dequeued = false;
1517	pdd->runtime_inuse = false;
1518	pdd->vram_usage = 0;
1519	pdd->sdma_past_activity_counter = 0;
1520	pdd->user_gpu_id = dev->id;
1521	atomic64_set(&pdd->evict_duration_counter, 0);
1522
1523	if (dev->shared_resources.enable_mes) {
1524		retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
1525						AMDGPU_MES_PROC_CTX_SIZE,
1526						&pdd->proc_ctx_bo,
1527						&pdd->proc_ctx_gpu_addr,
1528						&pdd->proc_ctx_cpu_ptr,
1529						false);
1530		if (retval) {
1531			pr_err("failed to allocate process context bo\n");
1532			goto err_free_pdd;
1533		}
1534		memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
1535	}
1536
1537	p->pdds[p->n_pdds++] = pdd;
1538
1539	/* Init idr used for memory handle translation */
1540	idr_init(&pdd->alloc_idr);
1541
1542	return pdd;
1543
1544err_free_pdd:
1545	kfree(pdd);
1546	return NULL;
1547}
1548
1549/**
1550 * kfd_process_device_init_vm - Initialize a VM for a process-device
1551 *
1552 * @pdd: The process-device
1553 * @drm_file: Optional pointer to a DRM file descriptor
1554 *
1555 * If @drm_file is specified, it will be used to acquire the VM from
1556 * that file descriptor. If successful, the @pdd takes ownership of
1557 * the file descriptor.
1558 *
1559 * If @drm_file is NULL, a new VM is created.
1560 *
1561 * Returns 0 on success, -errno on failure.
1562 */
1563int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1564			       struct file *drm_file)
1565{
1566	struct kfd_process *p;
1567	struct kfd_dev *dev;
1568	int ret;
1569
1570	if (!drm_file)
1571		return -EINVAL;
1572
1573	if (pdd->drm_priv)
1574		return -EBUSY;
1575
1576	p = pdd->process;
1577	dev = pdd->dev;
1578
1579	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, drm_file,
1580						     &p->kgd_process_info,
1581						     &p->ef);
1582	if (ret) {
1583		pr_err("Failed to create process VM object\n");
1584		return ret;
1585	}
1586	pdd->drm_priv = drm_file->private_data;
1587	atomic64_set(&pdd->tlb_seq, 0);
1588
1589	ret = kfd_process_device_reserve_ib_mem(pdd);
1590	if (ret)
1591		goto err_reserve_ib_mem;
1592	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1593	if (ret)
1594		goto err_init_cwsr;
1595
1596	ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, drm_file, p->pasid);
1597	if (ret)
1598		goto err_set_pasid;
1599
1600	pdd->drm_file = drm_file;
1601
1602	return 0;
1603
1604err_set_pasid:
1605	kfd_process_device_destroy_cwsr_dgpu(pdd);
1606err_init_cwsr:
1607	kfd_process_device_destroy_ib_mem(pdd);
1608err_reserve_ib_mem:
1609	pdd->drm_priv = NULL;
1610
1611	return ret;
1612}
1613
1614/*
1615 * Direct the IOMMU to bind the process (specifically the pasid->mm)
1616 * to the device.
1617 * Unbinding occurs when the process dies or the device is removed.
1618 *
1619 * Assumes that the process lock is held.
1620 */
1621struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
1622							struct kfd_process *p)
1623{
1624	struct kfd_process_device *pdd;
1625	int err;
1626
1627	pdd = kfd_get_process_device_data(dev, p);
1628	if (!pdd) {
1629		pr_err("Process device data doesn't exist\n");
1630		return ERR_PTR(-ENOMEM);
1631	}
1632
1633	if (!pdd->drm_priv)
1634		return ERR_PTR(-ENODEV);
1635
1636	/*
1637	 * signal runtime-pm system to auto resume and prevent
1638	 * further runtime suspend once device pdd is created until
1639	 * pdd is destroyed.
1640	 */
1641	if (!pdd->runtime_inuse) {
1642		err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1643		if (err < 0) {
1644			pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1645			return ERR_PTR(err);
1646		}
1647	}
1648
1649	err = kfd_iommu_bind_process_to_device(pdd);
1650	if (err)
1651		goto out;
1652
1653	/*
1654	 * make sure that runtime_usage counter is incremented just once
1655	 * per pdd
1656	 */
1657	pdd->runtime_inuse = true;
1658
1659	return pdd;
1660
1661out:
1662	/* balance runpm reference count and exit with error */
1663	if (!pdd->runtime_inuse) {
1664		pm_runtime_mark_last_busy(adev_to_drm(dev->adev)->dev);
1665		pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1666	}
1667
1668	return ERR_PTR(err);
1669}
1670
1671/* Create specific handle mapped to mem from process local memory idr
1672 * Assumes that the process lock is held.
1673 */
1674int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1675					void *mem)
1676{
1677	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1678}
1679
1680/* Translate specific handle from process local memory idr
1681 * Assumes that the process lock is held.
1682 */
1683void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1684					int handle)
1685{
1686	if (handle < 0)
1687		return NULL;
1688
1689	return idr_find(&pdd->alloc_idr, handle);
1690}
1691
1692/* Remove specific handle from process local memory idr
1693 * Assumes that the process lock is held.
1694 */
1695void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1696					int handle)
1697{
1698	if (handle >= 0)
1699		idr_remove(&pdd->alloc_idr, handle);
1700}
1701
1702/* This increments the process->ref counter. */
1703struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1704{
1705	struct kfd_process *p, *ret_p = NULL;
1706	unsigned int temp;
1707
1708	int idx = srcu_read_lock(&kfd_processes_srcu);
1709
1710	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1711		if (p->pasid == pasid) {
1712			kref_get(&p->ref);
1713			ret_p = p;
1714			break;
1715		}
1716	}
1717
1718	srcu_read_unlock(&kfd_processes_srcu, idx);
1719
1720	return ret_p;
1721}
1722
1723/* This increments the process->ref counter. */
1724struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1725{
1726	struct kfd_process *p;
1727
1728	int idx = srcu_read_lock(&kfd_processes_srcu);
1729
1730	p = find_process_by_mm(mm);
1731	if (p)
1732		kref_get(&p->ref);
1733
1734	srcu_read_unlock(&kfd_processes_srcu, idx);
1735
1736	return p;
1737}
1738
1739/* kfd_process_evict_queues - Evict all user queues of a process
1740 *
1741 * Eviction is reference-counted per process-device. This means multiple
1742 * evictions from different sources can be nested safely.
1743 */
1744int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1745{
1746	int r = 0;
1747	int i;
1748	unsigned int n_evicted = 0;
1749
1750	for (i = 0; i < p->n_pdds; i++) {
1751		struct kfd_process_device *pdd = p->pdds[i];
1752
1753		kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1754					     trigger);
1755
1756		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1757							    &pdd->qpd);
1758		/* evict return -EIO if HWS is hang or asic is resetting, in this case
1759		 * we would like to set all the queues to be in evicted state to prevent
1760		 * them been add back since they actually not be saved right now.
1761		 */
1762		if (r && r != -EIO) {
1763			pr_err("Failed to evict process queues\n");
1764			goto fail;
1765		}
1766		n_evicted++;
1767	}
1768
1769	return r;
1770
1771fail:
1772	/* To keep state consistent, roll back partial eviction by
1773	 * restoring queues
1774	 */
1775	for (i = 0; i < p->n_pdds; i++) {
1776		struct kfd_process_device *pdd = p->pdds[i];
1777
1778		if (n_evicted == 0)
1779			break;
1780
1781		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1782
1783		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1784							      &pdd->qpd))
1785			pr_err("Failed to restore queues\n");
1786
1787		n_evicted--;
1788	}
1789
1790	return r;
1791}
1792
1793/* kfd_process_restore_queues - Restore all user queues of a process */
1794int kfd_process_restore_queues(struct kfd_process *p)
1795{
1796	int r, ret = 0;
1797	int i;
1798
1799	for (i = 0; i < p->n_pdds; i++) {
1800		struct kfd_process_device *pdd = p->pdds[i];
1801
1802		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1803
1804		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1805							      &pdd->qpd);
1806		if (r) {
1807			pr_err("Failed to restore process queues\n");
1808			if (!ret)
1809				ret = r;
1810		}
1811	}
1812
1813	return ret;
1814}
1815
1816int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1817{
1818	int i;
1819
1820	for (i = 0; i < p->n_pdds; i++)
1821		if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1822			return i;
1823	return -EINVAL;
1824}
1825
1826int
1827kfd_process_gpuid_from_adev(struct kfd_process *p, struct amdgpu_device *adev,
1828			   uint32_t *gpuid, uint32_t *gpuidx)
1829{
1830	int i;
1831
1832	for (i = 0; i < p->n_pdds; i++)
1833		if (p->pdds[i] && p->pdds[i]->dev->adev == adev) {
1834			*gpuid = p->pdds[i]->user_gpu_id;
1835			*gpuidx = i;
1836			return 0;
1837		}
1838	return -EINVAL;
1839}
1840
1841static void evict_process_worker(struct work_struct *work)
1842{
1843	int ret;
1844	struct kfd_process *p;
1845	struct delayed_work *dwork;
1846
1847	dwork = to_delayed_work(work);
1848
1849	/* Process termination destroys this worker thread. So during the
1850	 * lifetime of this thread, kfd_process p will be valid
1851	 */
1852	p = container_of(dwork, struct kfd_process, eviction_work);
1853	WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
1854		  "Eviction fence mismatch\n");
1855
1856	/* Narrow window of overlap between restore and evict work
1857	 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
1858	 * unreserves KFD BOs, it is possible to evicted again. But
1859	 * restore has few more steps of finish. So lets wait for any
1860	 * previous restore work to complete
1861	 */
1862	flush_delayed_work(&p->restore_work);
1863
1864	pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1865	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
1866	if (!ret) {
1867		dma_fence_signal(p->ef);
1868		dma_fence_put(p->ef);
1869		p->ef = NULL;
1870		queue_delayed_work(kfd_restore_wq, &p->restore_work,
1871				msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1872
1873		pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1874	} else
1875		pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1876}
1877
1878static void restore_process_worker(struct work_struct *work)
1879{
1880	struct delayed_work *dwork;
1881	struct kfd_process *p;
1882	int ret = 0;
1883
1884	dwork = to_delayed_work(work);
1885
1886	/* Process termination destroys this worker thread. So during the
1887	 * lifetime of this thread, kfd_process p will be valid
1888	 */
1889	p = container_of(dwork, struct kfd_process, restore_work);
1890	pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1891
1892	/* Setting last_restore_timestamp before successful restoration.
1893	 * Otherwise this would have to be set by KGD (restore_process_bos)
1894	 * before KFD BOs are unreserved. If not, the process can be evicted
1895	 * again before the timestamp is set.
1896	 * If restore fails, the timestamp will be set again in the next
1897	 * attempt. This would mean that the minimum GPU quanta would be
1898	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
1899	 * functions)
1900	 */
1901
1902	p->last_restore_timestamp = get_jiffies_64();
1903	ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1904						     &p->ef);
1905	if (ret) {
1906		pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1907			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
1908		ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1909				msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
1910		WARN(!ret, "reschedule restore work failed\n");
1911		return;
1912	}
1913
1914	ret = kfd_process_restore_queues(p);
1915	if (!ret)
1916		pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1917	else
1918		pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1919}
1920
1921void kfd_suspend_all_processes(void)
1922{
1923	struct kfd_process *p;
1924	unsigned int temp;
1925	int idx = srcu_read_lock(&kfd_processes_srcu);
1926
1927	WARN(debug_evictions, "Evicting all processes");
1928	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1929		cancel_delayed_work_sync(&p->eviction_work);
1930		cancel_delayed_work_sync(&p->restore_work);
1931
1932		if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
1933			pr_err("Failed to suspend process 0x%x\n", p->pasid);
1934		dma_fence_signal(p->ef);
1935		dma_fence_put(p->ef);
1936		p->ef = NULL;
1937	}
1938	srcu_read_unlock(&kfd_processes_srcu, idx);
1939}
1940
1941int kfd_resume_all_processes(void)
1942{
1943	struct kfd_process *p;
1944	unsigned int temp;
1945	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
1946
1947	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1948		if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
1949			pr_err("Restore process %d failed during resume\n",
1950			       p->pasid);
1951			ret = -EFAULT;
1952		}
1953	}
1954	srcu_read_unlock(&kfd_processes_srcu, idx);
1955	return ret;
1956}
1957
1958int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
1959			  struct vm_area_struct *vma)
1960{
1961	struct kfd_process_device *pdd;
1962	struct qcm_process_device *qpd;
1963
1964	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
1965		pr_err("Incorrect CWSR mapping size.\n");
1966		return -EINVAL;
1967	}
1968
1969	pdd = kfd_get_process_device_data(dev, process);
1970	if (!pdd)
1971		return -EINVAL;
1972	qpd = &pdd->qpd;
1973
1974	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1975					get_order(KFD_CWSR_TBA_TMA_SIZE));
1976	if (!qpd->cwsr_kaddr) {
1977		pr_err("Error allocating per process CWSR buffer.\n");
1978		return -ENOMEM;
1979	}
1980
1981	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND
1982		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP;
1983	/* Mapping pages to user process */
1984	return remap_pfn_range(vma, vma->vm_start,
1985			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
1986			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
1987}
1988
1989void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type)
1990{
1991	struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1992	uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm);
1993	struct kfd_dev *dev = pdd->dev;
1994
1995	/*
1996	 * It can be that we race and lose here, but that is extremely unlikely
1997	 * and the worst thing which could happen is that we flush the changes
1998	 * into the TLB once more which is harmless.
1999	 */
2000	if (atomic64_xchg(&pdd->tlb_seq, tlb_seq) == tlb_seq)
2001		return;
2002
2003	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2004		/* Nothing to flush until a VMID is assigned, which
2005		 * only happens when the first queue is created.
2006		 */
2007		if (pdd->qpd.vmid)
2008			amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->adev,
2009							pdd->qpd.vmid);
2010	} else {
2011		amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->adev,
2012					pdd->process->pasid, type);
2013	}
2014}
2015
2016struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2017{
2018	int i;
2019
2020	if (gpu_id) {
2021		for (i = 0; i < p->n_pdds; i++) {
2022			struct kfd_process_device *pdd = p->pdds[i];
2023
2024			if (pdd->user_gpu_id == gpu_id)
2025				return pdd;
2026		}
2027	}
2028	return NULL;
2029}
2030
2031int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2032{
2033	int i;
2034
2035	if (!actual_gpu_id)
2036		return 0;
2037
2038	for (i = 0; i < p->n_pdds; i++) {
2039		struct kfd_process_device *pdd = p->pdds[i];
2040
2041		if (pdd->dev->id == actual_gpu_id)
2042			return pdd->user_gpu_id;
2043	}
2044	return -EINVAL;
2045}
2046
2047#if defined(CONFIG_DEBUG_FS)
2048
2049int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2050{
2051	struct kfd_process *p;
2052	unsigned int temp;
2053	int r = 0;
2054
2055	int idx = srcu_read_lock(&kfd_processes_srcu);
2056
2057	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2058		seq_printf(m, "Process %d PASID 0x%x:\n",
2059			   p->lead_thread->tgid, p->pasid);
2060
2061		mutex_lock(&p->mutex);
2062		r = pqm_debugfs_mqds(m, &p->pqm);
2063		mutex_unlock(&p->mutex);
2064
2065		if (r)
2066			break;
2067	}
2068
2069	srcu_read_unlock(&kfd_processes_srcu, idx);
2070
2071	return r;
2072}
2073
2074#endif
2075