Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * DMA driver for Nvidia's Tegra20 APB DMA controller.
   4 *
   5 * Copyright (c) 2012-2013, NVIDIA CORPORATION.  All rights reserved.
   6 */
   7
   8#include <linux/bitops.h>
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/dmaengine.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/err.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/io.h>
  17#include <linux/mm.h>
  18#include <linux/module.h>
  19#include <linux/of.h>
  20#include <linux/of_device.h>
  21#include <linux/of_dma.h>
  22#include <linux/platform_device.h>
  23#include <linux/pm.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/reset.h>
  26#include <linux/slab.h>
  27#include <linux/wait.h>
  28
  29#include "dmaengine.h"
  30
  31#define CREATE_TRACE_POINTS
  32#include <trace/events/tegra_apb_dma.h>
  33
  34#define TEGRA_APBDMA_GENERAL			0x0
  35#define TEGRA_APBDMA_GENERAL_ENABLE		BIT(31)
  36
  37#define TEGRA_APBDMA_CONTROL			0x010
  38#define TEGRA_APBDMA_IRQ_MASK			0x01c
  39#define TEGRA_APBDMA_IRQ_MASK_SET		0x020
  40
  41/* CSR register */
  42#define TEGRA_APBDMA_CHAN_CSR			0x00
  43#define TEGRA_APBDMA_CSR_ENB			BIT(31)
  44#define TEGRA_APBDMA_CSR_IE_EOC			BIT(30)
  45#define TEGRA_APBDMA_CSR_HOLD			BIT(29)
  46#define TEGRA_APBDMA_CSR_DIR			BIT(28)
  47#define TEGRA_APBDMA_CSR_ONCE			BIT(27)
  48#define TEGRA_APBDMA_CSR_FLOW			BIT(21)
  49#define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT		16
  50#define TEGRA_APBDMA_CSR_REQ_SEL_MASK		0x1F
  51#define TEGRA_APBDMA_CSR_WCOUNT_MASK		0xFFFC
  52
  53/* STATUS register */
  54#define TEGRA_APBDMA_CHAN_STATUS		0x004
  55#define TEGRA_APBDMA_STATUS_BUSY		BIT(31)
  56#define TEGRA_APBDMA_STATUS_ISE_EOC		BIT(30)
  57#define TEGRA_APBDMA_STATUS_HALT		BIT(29)
  58#define TEGRA_APBDMA_STATUS_PING_PONG		BIT(28)
  59#define TEGRA_APBDMA_STATUS_COUNT_SHIFT		2
  60#define TEGRA_APBDMA_STATUS_COUNT_MASK		0xFFFC
  61
  62#define TEGRA_APBDMA_CHAN_CSRE			0x00C
  63#define TEGRA_APBDMA_CHAN_CSRE_PAUSE		BIT(31)
  64
  65/* AHB memory address */
  66#define TEGRA_APBDMA_CHAN_AHBPTR		0x010
  67
  68/* AHB sequence register */
  69#define TEGRA_APBDMA_CHAN_AHBSEQ		0x14
  70#define TEGRA_APBDMA_AHBSEQ_INTR_ENB		BIT(31)
  71#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8		(0 << 28)
  72#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16	(1 << 28)
  73#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32	(2 << 28)
  74#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64	(3 << 28)
  75#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128	(4 << 28)
  76#define TEGRA_APBDMA_AHBSEQ_DATA_SWAP		BIT(27)
  77#define TEGRA_APBDMA_AHBSEQ_BURST_1		(4 << 24)
  78#define TEGRA_APBDMA_AHBSEQ_BURST_4		(5 << 24)
  79#define TEGRA_APBDMA_AHBSEQ_BURST_8		(6 << 24)
  80#define TEGRA_APBDMA_AHBSEQ_DBL_BUF		BIT(19)
  81#define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT		16
  82#define TEGRA_APBDMA_AHBSEQ_WRAP_NONE		0
  83
  84/* APB address */
  85#define TEGRA_APBDMA_CHAN_APBPTR		0x018
  86
  87/* APB sequence register */
  88#define TEGRA_APBDMA_CHAN_APBSEQ		0x01c
  89#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8		(0 << 28)
  90#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16	(1 << 28)
  91#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32	(2 << 28)
  92#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64	(3 << 28)
  93#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128	(4 << 28)
  94#define TEGRA_APBDMA_APBSEQ_DATA_SWAP		BIT(27)
  95#define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1		(1 << 16)
  96
  97/* Tegra148 specific registers */
  98#define TEGRA_APBDMA_CHAN_WCOUNT		0x20
  99
 100#define TEGRA_APBDMA_CHAN_WORD_TRANSFER		0x24
 101
 102/*
 103 * If any burst is in flight and DMA paused then this is the time to complete
 104 * on-flight burst and update DMA status register.
 105 */
 106#define TEGRA_APBDMA_BURST_COMPLETE_TIME	20
 107
 108/* Channel base address offset from APBDMA base address */
 109#define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET	0x1000
 110
 111#define TEGRA_APBDMA_SLAVE_ID_INVALID	(TEGRA_APBDMA_CSR_REQ_SEL_MASK + 1)
 112
 113struct tegra_dma;
 114
 115/*
 116 * tegra_dma_chip_data Tegra chip specific DMA data
 117 * @nr_channels: Number of channels available in the controller.
 118 * @channel_reg_size: Channel register size/stride.
 119 * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
 120 * @support_channel_pause: Support channel wise pause of dma.
 121 * @support_separate_wcount_reg: Support separate word count register.
 122 */
 123struct tegra_dma_chip_data {
 124	unsigned int nr_channels;
 125	unsigned int channel_reg_size;
 126	unsigned int max_dma_count;
 127	bool support_channel_pause;
 128	bool support_separate_wcount_reg;
 129};
 130
 131/* DMA channel registers */
 132struct tegra_dma_channel_regs {
 133	u32 csr;
 134	u32 ahb_ptr;
 135	u32 apb_ptr;
 136	u32 ahb_seq;
 137	u32 apb_seq;
 138	u32 wcount;
 139};
 140
 141/*
 142 * tegra_dma_sg_req: DMA request details to configure hardware. This
 143 * contains the details for one transfer to configure DMA hw.
 144 * The client's request for data transfer can be broken into multiple
 145 * sub-transfer as per requester details and hw support.
 146 * This sub transfer get added in the list of transfer and point to Tegra
 147 * DMA descriptor which manages the transfer details.
 148 */
 149struct tegra_dma_sg_req {
 150	struct tegra_dma_channel_regs	ch_regs;
 151	unsigned int			req_len;
 152	bool				configured;
 153	bool				last_sg;
 154	struct list_head		node;
 155	struct tegra_dma_desc		*dma_desc;
 156	unsigned int			words_xferred;
 157};
 158
 159/*
 160 * tegra_dma_desc: Tegra DMA descriptors which manages the client requests.
 161 * This descriptor keep track of transfer status, callbacks and request
 162 * counts etc.
 163 */
 164struct tegra_dma_desc {
 165	struct dma_async_tx_descriptor	txd;
 166	unsigned int			bytes_requested;
 167	unsigned int			bytes_transferred;
 168	enum dma_status			dma_status;
 169	struct list_head		node;
 170	struct list_head		tx_list;
 171	struct list_head		cb_node;
 172	unsigned int			cb_count;
 173};
 174
 175struct tegra_dma_channel;
 176
 177typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
 178				bool to_terminate);
 179
 180/* tegra_dma_channel: Channel specific information */
 181struct tegra_dma_channel {
 182	struct dma_chan		dma_chan;
 183	char			name[12];
 184	bool			config_init;
 185	unsigned int		id;
 186	void __iomem		*chan_addr;
 187	spinlock_t		lock;
 188	bool			busy;
 189	struct tegra_dma	*tdma;
 190	bool			cyclic;
 191
 192	/* Different lists for managing the requests */
 193	struct list_head	free_sg_req;
 194	struct list_head	pending_sg_req;
 195	struct list_head	free_dma_desc;
 196	struct list_head	cb_desc;
 197
 198	/* ISR handler and tasklet for bottom half of isr handling */
 199	dma_isr_handler		isr_handler;
 200	struct tasklet_struct	tasklet;
 201
 202	/* Channel-slave specific configuration */
 203	unsigned int slave_id;
 204	struct dma_slave_config dma_sconfig;
 205	struct tegra_dma_channel_regs channel_reg;
 206
 207	struct wait_queue_head wq;
 208};
 209
 210/* tegra_dma: Tegra DMA specific information */
 211struct tegra_dma {
 212	struct dma_device		dma_dev;
 213	struct device			*dev;
 214	struct clk			*dma_clk;
 215	struct reset_control		*rst;
 216	spinlock_t			global_lock;
 217	void __iomem			*base_addr;
 218	const struct tegra_dma_chip_data *chip_data;
 219
 220	/*
 221	 * Counter for managing global pausing of the DMA controller.
 222	 * Only applicable for devices that don't support individual
 223	 * channel pausing.
 224	 */
 225	u32				global_pause_count;
 226
 227	/* Last member of the structure */
 228	struct tegra_dma_channel channels[];
 229};
 230
 231static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val)
 232{
 233	writel(val, tdma->base_addr + reg);
 234}
 235
 236static inline u32 tdma_read(struct tegra_dma *tdma, u32 reg)
 237{
 238	return readl(tdma->base_addr + reg);
 239}
 240
 241static inline void tdc_write(struct tegra_dma_channel *tdc,
 242			     u32 reg, u32 val)
 243{
 244	writel(val, tdc->chan_addr + reg);
 245}
 246
 247static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
 248{
 249	return readl(tdc->chan_addr + reg);
 250}
 251
 252static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
 253{
 254	return container_of(dc, struct tegra_dma_channel, dma_chan);
 255}
 256
 257static inline struct tegra_dma_desc *
 258txd_to_tegra_dma_desc(struct dma_async_tx_descriptor *td)
 259{
 260	return container_of(td, struct tegra_dma_desc, txd);
 261}
 262
 263static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
 264{
 265	return &tdc->dma_chan.dev->device;
 266}
 267
 268static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx);
 269
 270/* Get DMA desc from free list, if not there then allocate it.  */
 271static struct tegra_dma_desc *tegra_dma_desc_get(struct tegra_dma_channel *tdc)
 272{
 273	struct tegra_dma_desc *dma_desc;
 274	unsigned long flags;
 275
 276	spin_lock_irqsave(&tdc->lock, flags);
 277
 278	/* Do not allocate if desc are waiting for ack */
 279	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
 280		if (async_tx_test_ack(&dma_desc->txd) && !dma_desc->cb_count) {
 281			list_del(&dma_desc->node);
 282			spin_unlock_irqrestore(&tdc->lock, flags);
 283			dma_desc->txd.flags = 0;
 284			return dma_desc;
 285		}
 286	}
 287
 288	spin_unlock_irqrestore(&tdc->lock, flags);
 289
 290	/* Allocate DMA desc */
 291	dma_desc = kzalloc(sizeof(*dma_desc), GFP_NOWAIT);
 292	if (!dma_desc)
 293		return NULL;
 294
 295	dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan);
 296	dma_desc->txd.tx_submit = tegra_dma_tx_submit;
 297	dma_desc->txd.flags = 0;
 298
 299	return dma_desc;
 300}
 301
 302static void tegra_dma_desc_put(struct tegra_dma_channel *tdc,
 303			       struct tegra_dma_desc *dma_desc)
 304{
 305	unsigned long flags;
 306
 307	spin_lock_irqsave(&tdc->lock, flags);
 308	if (!list_empty(&dma_desc->tx_list))
 309		list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req);
 310	list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
 311	spin_unlock_irqrestore(&tdc->lock, flags);
 312}
 313
 314static struct tegra_dma_sg_req *
 315tegra_dma_sg_req_get(struct tegra_dma_channel *tdc)
 316{
 317	struct tegra_dma_sg_req *sg_req;
 318	unsigned long flags;
 319
 320	spin_lock_irqsave(&tdc->lock, flags);
 321	if (!list_empty(&tdc->free_sg_req)) {
 322		sg_req = list_first_entry(&tdc->free_sg_req, typeof(*sg_req),
 323					  node);
 324		list_del(&sg_req->node);
 325		spin_unlock_irqrestore(&tdc->lock, flags);
 326		return sg_req;
 327	}
 328	spin_unlock_irqrestore(&tdc->lock, flags);
 329
 330	sg_req = kzalloc(sizeof(*sg_req), GFP_NOWAIT);
 331
 332	return sg_req;
 333}
 334
 335static int tegra_dma_slave_config(struct dma_chan *dc,
 336				  struct dma_slave_config *sconfig)
 337{
 338	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 339
 340	if (!list_empty(&tdc->pending_sg_req)) {
 341		dev_err(tdc2dev(tdc), "Configuration not allowed\n");
 342		return -EBUSY;
 343	}
 344
 345	memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
 346	tdc->config_init = true;
 347
 348	return 0;
 349}
 350
 351static void tegra_dma_global_pause(struct tegra_dma_channel *tdc,
 352				   bool wait_for_burst_complete)
 353{
 354	struct tegra_dma *tdma = tdc->tdma;
 355
 356	spin_lock(&tdma->global_lock);
 357
 358	if (tdc->tdma->global_pause_count == 0) {
 359		tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0);
 360		if (wait_for_burst_complete)
 361			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
 362	}
 363
 364	tdc->tdma->global_pause_count++;
 365
 366	spin_unlock(&tdma->global_lock);
 367}
 368
 369static void tegra_dma_global_resume(struct tegra_dma_channel *tdc)
 370{
 371	struct tegra_dma *tdma = tdc->tdma;
 372
 373	spin_lock(&tdma->global_lock);
 374
 375	if (WARN_ON(tdc->tdma->global_pause_count == 0))
 376		goto out;
 377
 378	if (--tdc->tdma->global_pause_count == 0)
 379		tdma_write(tdma, TEGRA_APBDMA_GENERAL,
 380			   TEGRA_APBDMA_GENERAL_ENABLE);
 381
 382out:
 383	spin_unlock(&tdma->global_lock);
 384}
 385
 386static void tegra_dma_pause(struct tegra_dma_channel *tdc,
 387			    bool wait_for_burst_complete)
 388{
 389	struct tegra_dma *tdma = tdc->tdma;
 390
 391	if (tdma->chip_data->support_channel_pause) {
 392		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE,
 393			  TEGRA_APBDMA_CHAN_CSRE_PAUSE);
 394		if (wait_for_burst_complete)
 395			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
 396	} else {
 397		tegra_dma_global_pause(tdc, wait_for_burst_complete);
 398	}
 399}
 400
 401static void tegra_dma_resume(struct tegra_dma_channel *tdc)
 402{
 403	struct tegra_dma *tdma = tdc->tdma;
 404
 405	if (tdma->chip_data->support_channel_pause)
 406		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, 0);
 407	else
 408		tegra_dma_global_resume(tdc);
 409}
 410
 411static void tegra_dma_stop(struct tegra_dma_channel *tdc)
 412{
 413	u32 csr, status;
 414
 415	/* Disable interrupts */
 416	csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
 417	csr &= ~TEGRA_APBDMA_CSR_IE_EOC;
 418	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
 419
 420	/* Disable DMA */
 421	csr &= ~TEGRA_APBDMA_CSR_ENB;
 422	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
 423
 424	/* Clear interrupt status if it is there */
 425	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 426	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
 427		dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
 428		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
 429	}
 430	tdc->busy = false;
 431}
 432
 433static void tegra_dma_start(struct tegra_dma_channel *tdc,
 434			    struct tegra_dma_sg_req *sg_req)
 435{
 436	struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs;
 437
 438	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr);
 439	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq);
 440	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr);
 441	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq);
 442	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr);
 443	if (tdc->tdma->chip_data->support_separate_wcount_reg)
 444		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT, ch_regs->wcount);
 445
 446	/* Start DMA */
 447	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
 448		  ch_regs->csr | TEGRA_APBDMA_CSR_ENB);
 449}
 450
 451static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc,
 452					 struct tegra_dma_sg_req *nsg_req)
 453{
 454	unsigned long status;
 455
 456	/*
 457	 * The DMA controller reloads the new configuration for next transfer
 458	 * after last burst of current transfer completes.
 459	 * If there is no IEC status then this makes sure that last burst
 460	 * has not be completed. There may be case that last burst is on
 461	 * flight and so it can complete but because DMA is paused, it
 462	 * will not generates interrupt as well as not reload the new
 463	 * configuration.
 464	 * If there is already IEC status then interrupt handler need to
 465	 * load new configuration.
 466	 */
 467	tegra_dma_pause(tdc, false);
 468	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 469
 470	/*
 471	 * If interrupt is pending then do nothing as the ISR will handle
 472	 * the programing for new request.
 473	 */
 474	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
 475		dev_err(tdc2dev(tdc),
 476			"Skipping new configuration as interrupt is pending\n");
 477		tegra_dma_resume(tdc);
 478		return;
 479	}
 480
 481	/* Safe to program new configuration */
 482	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr);
 483	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr);
 484	if (tdc->tdma->chip_data->support_separate_wcount_reg)
 485		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
 486			  nsg_req->ch_regs.wcount);
 487	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
 488		  nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB);
 489	nsg_req->configured = true;
 490	nsg_req->words_xferred = 0;
 491
 492	tegra_dma_resume(tdc);
 493}
 494
 495static void tdc_start_head_req(struct tegra_dma_channel *tdc)
 496{
 497	struct tegra_dma_sg_req *sg_req;
 498
 499	sg_req = list_first_entry(&tdc->pending_sg_req, typeof(*sg_req), node);
 500	tegra_dma_start(tdc, sg_req);
 501	sg_req->configured = true;
 502	sg_req->words_xferred = 0;
 503	tdc->busy = true;
 504}
 505
 506static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc)
 507{
 508	struct tegra_dma_sg_req *hsgreq, *hnsgreq;
 509
 510	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
 511	if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) {
 512		hnsgreq = list_first_entry(&hsgreq->node, typeof(*hnsgreq),
 513					   node);
 514		tegra_dma_configure_for_next(tdc, hnsgreq);
 515	}
 516}
 517
 518static inline unsigned int
 519get_current_xferred_count(struct tegra_dma_channel *tdc,
 520			  struct tegra_dma_sg_req *sg_req,
 521			  unsigned long status)
 522{
 523	return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4;
 524}
 525
 526static void tegra_dma_abort_all(struct tegra_dma_channel *tdc)
 527{
 528	struct tegra_dma_desc *dma_desc;
 529	struct tegra_dma_sg_req *sgreq;
 530
 531	while (!list_empty(&tdc->pending_sg_req)) {
 532		sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq),
 533					 node);
 534		list_move_tail(&sgreq->node, &tdc->free_sg_req);
 535		if (sgreq->last_sg) {
 536			dma_desc = sgreq->dma_desc;
 537			dma_desc->dma_status = DMA_ERROR;
 538			list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
 539
 540			/* Add in cb list if it is not there. */
 541			if (!dma_desc->cb_count)
 542				list_add_tail(&dma_desc->cb_node,
 543					      &tdc->cb_desc);
 544			dma_desc->cb_count++;
 545		}
 546	}
 547	tdc->isr_handler = NULL;
 548}
 549
 550static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
 551					   bool to_terminate)
 552{
 553	struct tegra_dma_sg_req *hsgreq;
 554
 555	/*
 556	 * Check that head req on list should be in flight.
 557	 * If it is not in flight then abort transfer as
 558	 * looping of transfer can not continue.
 559	 */
 560	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
 561	if (!hsgreq->configured) {
 562		tegra_dma_stop(tdc);
 563		pm_runtime_put(tdc->tdma->dev);
 564		dev_err(tdc2dev(tdc), "DMA transfer underflow, aborting DMA\n");
 565		tegra_dma_abort_all(tdc);
 566		return false;
 567	}
 568
 569	/* Configure next request */
 570	if (!to_terminate)
 571		tdc_configure_next_head_desc(tdc);
 572
 573	return true;
 574}
 575
 576static void handle_once_dma_done(struct tegra_dma_channel *tdc,
 577				 bool to_terminate)
 578{
 579	struct tegra_dma_desc *dma_desc;
 580	struct tegra_dma_sg_req *sgreq;
 581
 582	tdc->busy = false;
 583	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
 584	dma_desc = sgreq->dma_desc;
 585	dma_desc->bytes_transferred += sgreq->req_len;
 586
 587	list_del(&sgreq->node);
 588	if (sgreq->last_sg) {
 589		dma_desc->dma_status = DMA_COMPLETE;
 590		dma_cookie_complete(&dma_desc->txd);
 591		if (!dma_desc->cb_count)
 592			list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
 593		dma_desc->cb_count++;
 594		list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
 595	}
 596	list_add_tail(&sgreq->node, &tdc->free_sg_req);
 597
 598	/* Do not start DMA if it is going to be terminate */
 599	if (to_terminate)
 600		return;
 601
 602	if (list_empty(&tdc->pending_sg_req)) {
 603		pm_runtime_put(tdc->tdma->dev);
 604		return;
 605	}
 606
 607	tdc_start_head_req(tdc);
 608}
 609
 610static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
 611					    bool to_terminate)
 612{
 613	struct tegra_dma_desc *dma_desc;
 614	struct tegra_dma_sg_req *sgreq;
 615	bool st;
 616
 617	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
 618	dma_desc = sgreq->dma_desc;
 619	/* if we dma for long enough the transfer count will wrap */
 620	dma_desc->bytes_transferred =
 621		(dma_desc->bytes_transferred + sgreq->req_len) %
 622		dma_desc->bytes_requested;
 623
 624	/* Callback need to be call */
 625	if (!dma_desc->cb_count)
 626		list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
 627	dma_desc->cb_count++;
 628
 629	sgreq->words_xferred = 0;
 630
 631	/* If not last req then put at end of pending list */
 632	if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) {
 633		list_move_tail(&sgreq->node, &tdc->pending_sg_req);
 634		sgreq->configured = false;
 635		st = handle_continuous_head_request(tdc, to_terminate);
 636		if (!st)
 637			dma_desc->dma_status = DMA_ERROR;
 638	}
 639}
 640
 641static void tegra_dma_tasklet(struct tasklet_struct *t)
 642{
 643	struct tegra_dma_channel *tdc = from_tasklet(tdc, t, tasklet);
 644	struct dmaengine_desc_callback cb;
 645	struct tegra_dma_desc *dma_desc;
 646	unsigned int cb_count;
 647	unsigned long flags;
 648
 649	spin_lock_irqsave(&tdc->lock, flags);
 650	while (!list_empty(&tdc->cb_desc)) {
 651		dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc),
 652					    cb_node);
 653		list_del(&dma_desc->cb_node);
 654		dmaengine_desc_get_callback(&dma_desc->txd, &cb);
 655		cb_count = dma_desc->cb_count;
 656		dma_desc->cb_count = 0;
 657		trace_tegra_dma_complete_cb(&tdc->dma_chan, cb_count,
 658					    cb.callback);
 659		spin_unlock_irqrestore(&tdc->lock, flags);
 660		while (cb_count--)
 661			dmaengine_desc_callback_invoke(&cb, NULL);
 662		spin_lock_irqsave(&tdc->lock, flags);
 663	}
 664	spin_unlock_irqrestore(&tdc->lock, flags);
 665}
 666
 667static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
 668{
 669	struct tegra_dma_channel *tdc = dev_id;
 670	u32 status;
 671
 672	spin_lock(&tdc->lock);
 673
 674	trace_tegra_dma_isr(&tdc->dma_chan, irq);
 675	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 676	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
 677		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
 678		tdc->isr_handler(tdc, false);
 679		tasklet_schedule(&tdc->tasklet);
 680		wake_up_all(&tdc->wq);
 681		spin_unlock(&tdc->lock);
 682		return IRQ_HANDLED;
 683	}
 684
 685	spin_unlock(&tdc->lock);
 686	dev_info(tdc2dev(tdc), "Interrupt already served status 0x%08x\n",
 687		 status);
 688
 689	return IRQ_NONE;
 690}
 691
 692static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd)
 693{
 694	struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd);
 695	struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan);
 696	unsigned long flags;
 697	dma_cookie_t cookie;
 698
 699	spin_lock_irqsave(&tdc->lock, flags);
 700	dma_desc->dma_status = DMA_IN_PROGRESS;
 701	cookie = dma_cookie_assign(&dma_desc->txd);
 702	list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req);
 703	spin_unlock_irqrestore(&tdc->lock, flags);
 704
 705	return cookie;
 706}
 707
 708static void tegra_dma_issue_pending(struct dma_chan *dc)
 709{
 710	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 711	unsigned long flags;
 712	int err;
 713
 714	spin_lock_irqsave(&tdc->lock, flags);
 715	if (list_empty(&tdc->pending_sg_req)) {
 716		dev_err(tdc2dev(tdc), "No DMA request\n");
 717		goto end;
 718	}
 719	if (!tdc->busy) {
 720		err = pm_runtime_resume_and_get(tdc->tdma->dev);
 721		if (err < 0) {
 722			dev_err(tdc2dev(tdc), "Failed to enable DMA\n");
 723			goto end;
 724		}
 725
 726		tdc_start_head_req(tdc);
 727
 728		/* Continuous single mode: Configure next req */
 729		if (tdc->cyclic) {
 730			/*
 731			 * Wait for 1 burst time for configure DMA for
 732			 * next transfer.
 733			 */
 734			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
 735			tdc_configure_next_head_desc(tdc);
 736		}
 737	}
 738end:
 739	spin_unlock_irqrestore(&tdc->lock, flags);
 740}
 741
 742static int tegra_dma_terminate_all(struct dma_chan *dc)
 743{
 744	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 745	struct tegra_dma_desc *dma_desc;
 746	struct tegra_dma_sg_req *sgreq;
 747	unsigned long flags;
 748	u32 status, wcount;
 749	bool was_busy;
 750
 751	spin_lock_irqsave(&tdc->lock, flags);
 752
 753	if (!tdc->busy)
 754		goto skip_dma_stop;
 755
 756	/* Pause DMA before checking the queue status */
 757	tegra_dma_pause(tdc, true);
 758
 759	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 760	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
 761		dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__);
 762		tdc->isr_handler(tdc, true);
 763		status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 764	}
 765	if (tdc->tdma->chip_data->support_separate_wcount_reg)
 766		wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
 767	else
 768		wcount = status;
 769
 770	was_busy = tdc->busy;
 771	tegra_dma_stop(tdc);
 772
 773	if (!list_empty(&tdc->pending_sg_req) && was_busy) {
 774		sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq),
 775					 node);
 776		sgreq->dma_desc->bytes_transferred +=
 777				get_current_xferred_count(tdc, sgreq, wcount);
 778	}
 779	tegra_dma_resume(tdc);
 780
 781	pm_runtime_put(tdc->tdma->dev);
 782	wake_up_all(&tdc->wq);
 783
 784skip_dma_stop:
 785	tegra_dma_abort_all(tdc);
 786
 787	while (!list_empty(&tdc->cb_desc)) {
 788		dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc),
 789					    cb_node);
 790		list_del(&dma_desc->cb_node);
 791		dma_desc->cb_count = 0;
 792	}
 793	spin_unlock_irqrestore(&tdc->lock, flags);
 794
 795	return 0;
 796}
 797
 798static bool tegra_dma_eoc_interrupt_deasserted(struct tegra_dma_channel *tdc)
 799{
 800	unsigned long flags;
 801	u32 status;
 802
 803	spin_lock_irqsave(&tdc->lock, flags);
 804	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 805	spin_unlock_irqrestore(&tdc->lock, flags);
 806
 807	return !(status & TEGRA_APBDMA_STATUS_ISE_EOC);
 808}
 809
 810static void tegra_dma_synchronize(struct dma_chan *dc)
 811{
 812	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 813	int err;
 814
 815	err = pm_runtime_resume_and_get(tdc->tdma->dev);
 816	if (err < 0) {
 817		dev_err(tdc2dev(tdc), "Failed to synchronize DMA: %d\n", err);
 818		return;
 819	}
 820
 821	/*
 822	 * CPU, which handles interrupt, could be busy in
 823	 * uninterruptible state, in this case sibling CPU
 824	 * should wait until interrupt is handled.
 825	 */
 826	wait_event(tdc->wq, tegra_dma_eoc_interrupt_deasserted(tdc));
 827
 828	tasklet_kill(&tdc->tasklet);
 829
 830	pm_runtime_put(tdc->tdma->dev);
 831}
 832
 833static unsigned int tegra_dma_sg_bytes_xferred(struct tegra_dma_channel *tdc,
 834					       struct tegra_dma_sg_req *sg_req)
 835{
 836	u32 status, wcount = 0;
 837
 838	if (!list_is_first(&sg_req->node, &tdc->pending_sg_req))
 839		return 0;
 840
 841	if (tdc->tdma->chip_data->support_separate_wcount_reg)
 842		wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
 843
 844	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 845
 846	if (!tdc->tdma->chip_data->support_separate_wcount_reg)
 847		wcount = status;
 848
 849	if (status & TEGRA_APBDMA_STATUS_ISE_EOC)
 850		return sg_req->req_len;
 851
 852	wcount = get_current_xferred_count(tdc, sg_req, wcount);
 853
 854	if (!wcount) {
 855		/*
 856		 * If wcount wasn't ever polled for this SG before, then
 857		 * simply assume that transfer hasn't started yet.
 858		 *
 859		 * Otherwise it's the end of the transfer.
 860		 *
 861		 * The alternative would be to poll the status register
 862		 * until EOC bit is set or wcount goes UP. That's so
 863		 * because EOC bit is getting set only after the last
 864		 * burst's completion and counter is less than the actual
 865		 * transfer size by 4 bytes. The counter value wraps around
 866		 * in a cyclic mode before EOC is set(!), so we can't easily
 867		 * distinguish start of transfer from its end.
 868		 */
 869		if (sg_req->words_xferred)
 870			wcount = sg_req->req_len - 4;
 871
 872	} else if (wcount < sg_req->words_xferred) {
 873		/*
 874		 * This case will never happen for a non-cyclic transfer.
 875		 *
 876		 * For a cyclic transfer, although it is possible for the
 877		 * next transfer to have already started (resetting the word
 878		 * count), this case should still not happen because we should
 879		 * have detected that the EOC bit is set and hence the transfer
 880		 * was completed.
 881		 */
 882		WARN_ON_ONCE(1);
 883
 884		wcount = sg_req->req_len - 4;
 885	} else {
 886		sg_req->words_xferred = wcount;
 887	}
 888
 889	return wcount;
 890}
 891
 892static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
 893					   dma_cookie_t cookie,
 894					   struct dma_tx_state *txstate)
 895{
 896	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 897	struct tegra_dma_desc *dma_desc;
 898	struct tegra_dma_sg_req *sg_req;
 899	enum dma_status ret;
 900	unsigned long flags;
 901	unsigned int residual;
 902	unsigned int bytes = 0;
 903
 904	ret = dma_cookie_status(dc, cookie, txstate);
 905	if (ret == DMA_COMPLETE)
 906		return ret;
 907
 908	spin_lock_irqsave(&tdc->lock, flags);
 909
 910	/* Check on wait_ack desc status */
 911	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
 912		if (dma_desc->txd.cookie == cookie) {
 913			ret = dma_desc->dma_status;
 914			goto found;
 915		}
 916	}
 917
 918	/* Check in pending list */
 919	list_for_each_entry(sg_req, &tdc->pending_sg_req, node) {
 920		dma_desc = sg_req->dma_desc;
 921		if (dma_desc->txd.cookie == cookie) {
 922			bytes = tegra_dma_sg_bytes_xferred(tdc, sg_req);
 923			ret = dma_desc->dma_status;
 924			goto found;
 925		}
 926	}
 927
 928	dev_dbg(tdc2dev(tdc), "cookie %d not found\n", cookie);
 929	dma_desc = NULL;
 930
 931found:
 932	if (dma_desc && txstate) {
 933		residual = dma_desc->bytes_requested -
 934			   ((dma_desc->bytes_transferred + bytes) %
 935			    dma_desc->bytes_requested);
 936		dma_set_residue(txstate, residual);
 937	}
 938
 939	trace_tegra_dma_tx_status(&tdc->dma_chan, cookie, txstate);
 940	spin_unlock_irqrestore(&tdc->lock, flags);
 941
 942	return ret;
 943}
 944
 945static inline unsigned int get_bus_width(struct tegra_dma_channel *tdc,
 946					 enum dma_slave_buswidth slave_bw)
 947{
 948	switch (slave_bw) {
 949	case DMA_SLAVE_BUSWIDTH_1_BYTE:
 950		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8;
 951	case DMA_SLAVE_BUSWIDTH_2_BYTES:
 952		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16;
 953	case DMA_SLAVE_BUSWIDTH_4_BYTES:
 954		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
 955	case DMA_SLAVE_BUSWIDTH_8_BYTES:
 956		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64;
 957	default:
 958		dev_warn(tdc2dev(tdc),
 959			 "slave bw is not supported, using 32bits\n");
 960		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
 961	}
 962}
 963
 964static inline unsigned int get_burst_size(struct tegra_dma_channel *tdc,
 965					  u32 burst_size,
 966					  enum dma_slave_buswidth slave_bw,
 967					  u32 len)
 968{
 969	unsigned int burst_byte, burst_ahb_width;
 970
 971	/*
 972	 * burst_size from client is in terms of the bus_width.
 973	 * convert them into AHB memory width which is 4 byte.
 974	 */
 975	burst_byte = burst_size * slave_bw;
 976	burst_ahb_width = burst_byte / 4;
 977
 978	/* If burst size is 0 then calculate the burst size based on length */
 979	if (!burst_ahb_width) {
 980		if (len & 0xF)
 981			return TEGRA_APBDMA_AHBSEQ_BURST_1;
 982		else if ((len >> 4) & 0x1)
 983			return TEGRA_APBDMA_AHBSEQ_BURST_4;
 984		else
 985			return TEGRA_APBDMA_AHBSEQ_BURST_8;
 986	}
 987	if (burst_ahb_width < 4)
 988		return TEGRA_APBDMA_AHBSEQ_BURST_1;
 989	else if (burst_ahb_width < 8)
 990		return TEGRA_APBDMA_AHBSEQ_BURST_4;
 991	else
 992		return TEGRA_APBDMA_AHBSEQ_BURST_8;
 993}
 994
 995static int get_transfer_param(struct tegra_dma_channel *tdc,
 996			      enum dma_transfer_direction direction,
 997			      u32 *apb_addr,
 998			      u32 *apb_seq,
 999			      u32 *csr,
1000			      unsigned int *burst_size,
1001			      enum dma_slave_buswidth *slave_bw)
1002{
1003	switch (direction) {
1004	case DMA_MEM_TO_DEV:
1005		*apb_addr = tdc->dma_sconfig.dst_addr;
1006		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
1007		*burst_size = tdc->dma_sconfig.dst_maxburst;
1008		*slave_bw = tdc->dma_sconfig.dst_addr_width;
1009		*csr = TEGRA_APBDMA_CSR_DIR;
1010		return 0;
1011
1012	case DMA_DEV_TO_MEM:
1013		*apb_addr = tdc->dma_sconfig.src_addr;
1014		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
1015		*burst_size = tdc->dma_sconfig.src_maxburst;
1016		*slave_bw = tdc->dma_sconfig.src_addr_width;
1017		*csr = 0;
1018		return 0;
1019
1020	default:
1021		dev_err(tdc2dev(tdc), "DMA direction is not supported\n");
1022		break;
1023	}
1024
1025	return -EINVAL;
1026}
1027
1028static void tegra_dma_prep_wcount(struct tegra_dma_channel *tdc,
1029				  struct tegra_dma_channel_regs *ch_regs,
1030				  u32 len)
1031{
1032	u32 len_field = (len - 4) & 0xFFFC;
1033
1034	if (tdc->tdma->chip_data->support_separate_wcount_reg)
1035		ch_regs->wcount = len_field;
1036	else
1037		ch_regs->csr |= len_field;
1038}
1039
1040static struct dma_async_tx_descriptor *
1041tegra_dma_prep_slave_sg(struct dma_chan *dc,
1042			struct scatterlist *sgl,
1043			unsigned int sg_len,
1044			enum dma_transfer_direction direction,
1045			unsigned long flags,
1046			void *context)
1047{
1048	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1049	struct tegra_dma_sg_req *sg_req = NULL;
1050	u32 csr, ahb_seq, apb_ptr, apb_seq;
1051	enum dma_slave_buswidth slave_bw;
1052	struct tegra_dma_desc *dma_desc;
1053	struct list_head req_list;
1054	struct scatterlist *sg;
1055	unsigned int burst_size;
1056	unsigned int i;
1057
1058	if (!tdc->config_init) {
1059		dev_err(tdc2dev(tdc), "DMA channel is not configured\n");
1060		return NULL;
1061	}
1062	if (sg_len < 1) {
1063		dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
1064		return NULL;
1065	}
1066
1067	if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1068			       &burst_size, &slave_bw) < 0)
1069		return NULL;
1070
1071	INIT_LIST_HEAD(&req_list);
1072
1073	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1074	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1075					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1076	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1077
1078	csr |= TEGRA_APBDMA_CSR_ONCE;
1079
1080	if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1081		csr |= TEGRA_APBDMA_CSR_FLOW;
1082		csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1083	}
1084
1085	if (flags & DMA_PREP_INTERRUPT) {
1086		csr |= TEGRA_APBDMA_CSR_IE_EOC;
1087	} else {
1088		WARN_ON_ONCE(1);
1089		return NULL;
1090	}
1091
1092	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1093
1094	dma_desc = tegra_dma_desc_get(tdc);
1095	if (!dma_desc) {
1096		dev_err(tdc2dev(tdc), "DMA descriptors not available\n");
1097		return NULL;
1098	}
1099	INIT_LIST_HEAD(&dma_desc->tx_list);
1100	INIT_LIST_HEAD(&dma_desc->cb_node);
1101	dma_desc->cb_count = 0;
1102	dma_desc->bytes_requested = 0;
1103	dma_desc->bytes_transferred = 0;
1104	dma_desc->dma_status = DMA_IN_PROGRESS;
1105
1106	/* Make transfer requests */
1107	for_each_sg(sgl, sg, sg_len, i) {
1108		u32 len, mem;
1109
1110		mem = sg_dma_address(sg);
1111		len = sg_dma_len(sg);
1112
1113		if ((len & 3) || (mem & 3) ||
1114		    len > tdc->tdma->chip_data->max_dma_count) {
1115			dev_err(tdc2dev(tdc),
1116				"DMA length/memory address is not supported\n");
1117			tegra_dma_desc_put(tdc, dma_desc);
1118			return NULL;
1119		}
1120
1121		sg_req = tegra_dma_sg_req_get(tdc);
1122		if (!sg_req) {
1123			dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1124			tegra_dma_desc_put(tdc, dma_desc);
1125			return NULL;
1126		}
1127
1128		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1129		dma_desc->bytes_requested += len;
1130
1131		sg_req->ch_regs.apb_ptr = apb_ptr;
1132		sg_req->ch_regs.ahb_ptr = mem;
1133		sg_req->ch_regs.csr = csr;
1134		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1135		sg_req->ch_regs.apb_seq = apb_seq;
1136		sg_req->ch_regs.ahb_seq = ahb_seq;
1137		sg_req->configured = false;
1138		sg_req->last_sg = false;
1139		sg_req->dma_desc = dma_desc;
1140		sg_req->req_len = len;
1141
1142		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1143	}
1144	sg_req->last_sg = true;
1145	if (flags & DMA_CTRL_ACK)
1146		dma_desc->txd.flags = DMA_CTRL_ACK;
1147
1148	/*
1149	 * Make sure that mode should not be conflicting with currently
1150	 * configured mode.
1151	 */
1152	if (!tdc->isr_handler) {
1153		tdc->isr_handler = handle_once_dma_done;
1154		tdc->cyclic = false;
1155	} else {
1156		if (tdc->cyclic) {
1157			dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n");
1158			tegra_dma_desc_put(tdc, dma_desc);
1159			return NULL;
1160		}
1161	}
1162
1163	return &dma_desc->txd;
1164}
1165
1166static struct dma_async_tx_descriptor *
1167tegra_dma_prep_dma_cyclic(struct dma_chan *dc, dma_addr_t buf_addr,
1168			  size_t buf_len,
1169			  size_t period_len,
1170			  enum dma_transfer_direction direction,
1171			  unsigned long flags)
1172{
1173	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1174	struct tegra_dma_sg_req *sg_req = NULL;
1175	u32 csr, ahb_seq, apb_ptr, apb_seq;
1176	enum dma_slave_buswidth slave_bw;
1177	struct tegra_dma_desc *dma_desc;
1178	dma_addr_t mem = buf_addr;
1179	unsigned int burst_size;
1180	size_t len, remain_len;
1181
1182	if (!buf_len || !period_len) {
1183		dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1184		return NULL;
1185	}
1186
1187	if (!tdc->config_init) {
1188		dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1189		return NULL;
1190	}
1191
1192	/*
1193	 * We allow to take more number of requests till DMA is
1194	 * not started. The driver will loop over all requests.
1195	 * Once DMA is started then new requests can be queued only after
1196	 * terminating the DMA.
1197	 */
1198	if (tdc->busy) {
1199		dev_err(tdc2dev(tdc), "Request not allowed when DMA running\n");
1200		return NULL;
1201	}
1202
1203	/*
1204	 * We only support cycle transfer when buf_len is multiple of
1205	 * period_len.
1206	 */
1207	if (buf_len % period_len) {
1208		dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1209		return NULL;
1210	}
1211
1212	len = period_len;
1213	if ((len & 3) || (buf_addr & 3) ||
1214	    len > tdc->tdma->chip_data->max_dma_count) {
1215		dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1216		return NULL;
1217	}
1218
1219	if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1220			       &burst_size, &slave_bw) < 0)
1221		return NULL;
1222
1223	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1224	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1225					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1226	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1227
1228	if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1229		csr |= TEGRA_APBDMA_CSR_FLOW;
1230		csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1231	}
1232
1233	if (flags & DMA_PREP_INTERRUPT) {
1234		csr |= TEGRA_APBDMA_CSR_IE_EOC;
1235	} else {
1236		WARN_ON_ONCE(1);
1237		return NULL;
1238	}
1239
1240	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1241
1242	dma_desc = tegra_dma_desc_get(tdc);
1243	if (!dma_desc) {
1244		dev_err(tdc2dev(tdc), "not enough descriptors available\n");
1245		return NULL;
1246	}
1247
1248	INIT_LIST_HEAD(&dma_desc->tx_list);
1249	INIT_LIST_HEAD(&dma_desc->cb_node);
1250	dma_desc->cb_count = 0;
1251
1252	dma_desc->bytes_transferred = 0;
1253	dma_desc->bytes_requested = buf_len;
1254	remain_len = buf_len;
1255
1256	/* Split transfer equal to period size */
1257	while (remain_len) {
1258		sg_req = tegra_dma_sg_req_get(tdc);
1259		if (!sg_req) {
1260			dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1261			tegra_dma_desc_put(tdc, dma_desc);
1262			return NULL;
1263		}
1264
1265		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1266		sg_req->ch_regs.apb_ptr = apb_ptr;
1267		sg_req->ch_regs.ahb_ptr = mem;
1268		sg_req->ch_regs.csr = csr;
1269		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1270		sg_req->ch_regs.apb_seq = apb_seq;
1271		sg_req->ch_regs.ahb_seq = ahb_seq;
1272		sg_req->configured = false;
1273		sg_req->last_sg = false;
1274		sg_req->dma_desc = dma_desc;
1275		sg_req->req_len = len;
1276
1277		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1278		remain_len -= len;
1279		mem += len;
1280	}
1281	sg_req->last_sg = true;
1282	if (flags & DMA_CTRL_ACK)
1283		dma_desc->txd.flags = DMA_CTRL_ACK;
1284
1285	/*
1286	 * Make sure that mode should not be conflicting with currently
1287	 * configured mode.
1288	 */
1289	if (!tdc->isr_handler) {
1290		tdc->isr_handler = handle_cont_sngl_cycle_dma_done;
1291		tdc->cyclic = true;
1292	} else {
1293		if (!tdc->cyclic) {
1294			dev_err(tdc2dev(tdc), "DMA configuration conflict\n");
1295			tegra_dma_desc_put(tdc, dma_desc);
1296			return NULL;
1297		}
1298	}
1299
1300	return &dma_desc->txd;
1301}
1302
1303static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1304{
1305	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1306
1307	dma_cookie_init(&tdc->dma_chan);
1308
1309	return 0;
1310}
1311
1312static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1313{
1314	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1315	struct tegra_dma_desc *dma_desc;
1316	struct tegra_dma_sg_req *sg_req;
1317	struct list_head dma_desc_list;
1318	struct list_head sg_req_list;
1319
1320	INIT_LIST_HEAD(&dma_desc_list);
1321	INIT_LIST_HEAD(&sg_req_list);
1322
1323	dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1324
1325	tegra_dma_terminate_all(dc);
1326	tasklet_kill(&tdc->tasklet);
1327
1328	list_splice_init(&tdc->pending_sg_req, &sg_req_list);
1329	list_splice_init(&tdc->free_sg_req, &sg_req_list);
1330	list_splice_init(&tdc->free_dma_desc, &dma_desc_list);
1331	INIT_LIST_HEAD(&tdc->cb_desc);
1332	tdc->config_init = false;
1333	tdc->isr_handler = NULL;
1334
1335	while (!list_empty(&dma_desc_list)) {
1336		dma_desc = list_first_entry(&dma_desc_list, typeof(*dma_desc),
1337					    node);
1338		list_del(&dma_desc->node);
1339		kfree(dma_desc);
1340	}
1341
1342	while (!list_empty(&sg_req_list)) {
1343		sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node);
1344		list_del(&sg_req->node);
1345		kfree(sg_req);
1346	}
1347
1348	tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1349}
1350
1351static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
1352					   struct of_dma *ofdma)
1353{
1354	struct tegra_dma *tdma = ofdma->of_dma_data;
1355	struct tegra_dma_channel *tdc;
1356	struct dma_chan *chan;
1357
1358	if (dma_spec->args[0] > TEGRA_APBDMA_CSR_REQ_SEL_MASK) {
1359		dev_err(tdma->dev, "Invalid slave id: %d\n", dma_spec->args[0]);
1360		return NULL;
1361	}
1362
1363	chan = dma_get_any_slave_channel(&tdma->dma_dev);
1364	if (!chan)
1365		return NULL;
1366
1367	tdc = to_tegra_dma_chan(chan);
1368	tdc->slave_id = dma_spec->args[0];
1369
1370	return chan;
1371}
1372
1373/* Tegra20 specific DMA controller information */
1374static const struct tegra_dma_chip_data tegra20_dma_chip_data = {
1375	.nr_channels		= 16,
1376	.channel_reg_size	= 0x20,
1377	.max_dma_count		= 1024UL * 64,
1378	.support_channel_pause	= false,
1379	.support_separate_wcount_reg = false,
1380};
1381
1382/* Tegra30 specific DMA controller information */
1383static const struct tegra_dma_chip_data tegra30_dma_chip_data = {
1384	.nr_channels		= 32,
1385	.channel_reg_size	= 0x20,
1386	.max_dma_count		= 1024UL * 64,
1387	.support_channel_pause	= false,
1388	.support_separate_wcount_reg = false,
1389};
1390
1391/* Tegra114 specific DMA controller information */
1392static const struct tegra_dma_chip_data tegra114_dma_chip_data = {
1393	.nr_channels		= 32,
1394	.channel_reg_size	= 0x20,
1395	.max_dma_count		= 1024UL * 64,
1396	.support_channel_pause	= true,
1397	.support_separate_wcount_reg = false,
1398};
1399
1400/* Tegra148 specific DMA controller information */
1401static const struct tegra_dma_chip_data tegra148_dma_chip_data = {
1402	.nr_channels		= 32,
1403	.channel_reg_size	= 0x40,
1404	.max_dma_count		= 1024UL * 64,
1405	.support_channel_pause	= true,
1406	.support_separate_wcount_reg = true,
1407};
1408
1409static int tegra_dma_init_hw(struct tegra_dma *tdma)
1410{
1411	int err;
1412
1413	err = reset_control_assert(tdma->rst);
1414	if (err) {
1415		dev_err(tdma->dev, "failed to assert reset: %d\n", err);
1416		return err;
1417	}
1418
1419	err = clk_enable(tdma->dma_clk);
1420	if (err) {
1421		dev_err(tdma->dev, "failed to enable clk: %d\n", err);
1422		return err;
1423	}
1424
1425	/* reset DMA controller */
1426	udelay(2);
1427	reset_control_deassert(tdma->rst);
1428
1429	/* enable global DMA registers */
1430	tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
1431	tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1432	tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFF);
1433
1434	clk_disable(tdma->dma_clk);
1435
1436	return 0;
1437}
1438
1439static int tegra_dma_probe(struct platform_device *pdev)
1440{
1441	const struct tegra_dma_chip_data *cdata;
1442	struct tegra_dma *tdma;
1443	unsigned int i;
1444	size_t size;
1445	int ret;
1446
1447	cdata = of_device_get_match_data(&pdev->dev);
1448	size = struct_size(tdma, channels, cdata->nr_channels);
1449
1450	tdma = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1451	if (!tdma)
1452		return -ENOMEM;
1453
1454	tdma->dev = &pdev->dev;
1455	tdma->chip_data = cdata;
1456	platform_set_drvdata(pdev, tdma);
1457
1458	tdma->base_addr = devm_platform_ioremap_resource(pdev, 0);
1459	if (IS_ERR(tdma->base_addr))
1460		return PTR_ERR(tdma->base_addr);
1461
1462	tdma->dma_clk = devm_clk_get(&pdev->dev, NULL);
1463	if (IS_ERR(tdma->dma_clk)) {
1464		dev_err(&pdev->dev, "Error: Missing controller clock\n");
1465		return PTR_ERR(tdma->dma_clk);
1466	}
1467
1468	tdma->rst = devm_reset_control_get(&pdev->dev, "dma");
1469	if (IS_ERR(tdma->rst)) {
1470		dev_err(&pdev->dev, "Error: Missing reset\n");
1471		return PTR_ERR(tdma->rst);
1472	}
1473
1474	spin_lock_init(&tdma->global_lock);
1475
1476	ret = clk_prepare(tdma->dma_clk);
1477	if (ret)
1478		return ret;
1479
1480	ret = tegra_dma_init_hw(tdma);
1481	if (ret)
1482		goto err_clk_unprepare;
1483
1484	pm_runtime_irq_safe(&pdev->dev);
1485	pm_runtime_enable(&pdev->dev);
1486
1487	INIT_LIST_HEAD(&tdma->dma_dev.channels);
1488	for (i = 0; i < cdata->nr_channels; i++) {
1489		struct tegra_dma_channel *tdc = &tdma->channels[i];
1490		int irq;
1491
1492		tdc->chan_addr = tdma->base_addr +
1493				 TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET +
1494				 (i * cdata->channel_reg_size);
1495
1496		irq = platform_get_irq(pdev, i);
1497		if (irq < 0) {
1498			ret = irq;
1499			goto err_pm_disable;
1500		}
1501
1502		snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i);
1503		ret = devm_request_irq(&pdev->dev, irq, tegra_dma_isr, 0,
1504				       tdc->name, tdc);
1505		if (ret) {
1506			dev_err(&pdev->dev,
1507				"request_irq failed with err %d channel %d\n",
1508				ret, i);
1509			goto err_pm_disable;
1510		}
1511
1512		tdc->dma_chan.device = &tdma->dma_dev;
1513		dma_cookie_init(&tdc->dma_chan);
1514		list_add_tail(&tdc->dma_chan.device_node,
1515			      &tdma->dma_dev.channels);
1516		tdc->tdma = tdma;
1517		tdc->id = i;
1518		tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1519
1520		tasklet_setup(&tdc->tasklet, tegra_dma_tasklet);
1521		spin_lock_init(&tdc->lock);
1522		init_waitqueue_head(&tdc->wq);
1523
1524		INIT_LIST_HEAD(&tdc->pending_sg_req);
1525		INIT_LIST_HEAD(&tdc->free_sg_req);
1526		INIT_LIST_HEAD(&tdc->free_dma_desc);
1527		INIT_LIST_HEAD(&tdc->cb_desc);
1528	}
1529
1530	dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1531	dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1532	dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1533
1534	tdma->global_pause_count = 0;
1535	tdma->dma_dev.dev = &pdev->dev;
1536	tdma->dma_dev.device_alloc_chan_resources =
1537					tegra_dma_alloc_chan_resources;
1538	tdma->dma_dev.device_free_chan_resources =
1539					tegra_dma_free_chan_resources;
1540	tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1541	tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1542	tdma->dma_dev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1543		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1544		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1545		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1546	tdma->dma_dev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1547		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1548		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1549		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1550	tdma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1551	tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1552	tdma->dma_dev.device_config = tegra_dma_slave_config;
1553	tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
1554	tdma->dma_dev.device_synchronize = tegra_dma_synchronize;
1555	tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1556	tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1557
1558	ret = dma_async_device_register(&tdma->dma_dev);
1559	if (ret < 0) {
1560		dev_err(&pdev->dev,
1561			"Tegra20 APB DMA driver registration failed %d\n", ret);
1562		goto err_pm_disable;
1563	}
1564
1565	ret = of_dma_controller_register(pdev->dev.of_node,
1566					 tegra_dma_of_xlate, tdma);
1567	if (ret < 0) {
1568		dev_err(&pdev->dev,
1569			"Tegra20 APB DMA OF registration failed %d\n", ret);
1570		goto err_unregister_dma_dev;
1571	}
1572
1573	dev_info(&pdev->dev, "Tegra20 APB DMA driver registered %u channels\n",
1574		 cdata->nr_channels);
1575
1576	return 0;
1577
1578err_unregister_dma_dev:
1579	dma_async_device_unregister(&tdma->dma_dev);
1580
1581err_pm_disable:
1582	pm_runtime_disable(&pdev->dev);
1583
1584err_clk_unprepare:
1585	clk_unprepare(tdma->dma_clk);
1586
1587	return ret;
1588}
1589
1590static int tegra_dma_remove(struct platform_device *pdev)
1591{
1592	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1593
1594	of_dma_controller_free(pdev->dev.of_node);
1595	dma_async_device_unregister(&tdma->dma_dev);
1596	pm_runtime_disable(&pdev->dev);
1597	clk_unprepare(tdma->dma_clk);
1598
1599	return 0;
1600}
1601
1602static int __maybe_unused tegra_dma_runtime_suspend(struct device *dev)
1603{
1604	struct tegra_dma *tdma = dev_get_drvdata(dev);
1605
1606	clk_disable(tdma->dma_clk);
1607
1608	return 0;
1609}
1610
1611static int __maybe_unused tegra_dma_runtime_resume(struct device *dev)
1612{
1613	struct tegra_dma *tdma = dev_get_drvdata(dev);
1614
1615	return clk_enable(tdma->dma_clk);
1616}
1617
1618static int __maybe_unused tegra_dma_dev_suspend(struct device *dev)
1619{
1620	struct tegra_dma *tdma = dev_get_drvdata(dev);
1621	unsigned long flags;
1622	unsigned int i;
1623	bool busy;
1624
1625	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1626		struct tegra_dma_channel *tdc = &tdma->channels[i];
1627
1628		tasklet_kill(&tdc->tasklet);
1629
1630		spin_lock_irqsave(&tdc->lock, flags);
1631		busy = tdc->busy;
1632		spin_unlock_irqrestore(&tdc->lock, flags);
1633
1634		if (busy) {
1635			dev_err(tdma->dev, "channel %u busy\n", i);
1636			return -EBUSY;
1637		}
1638	}
1639
1640	return pm_runtime_force_suspend(dev);
1641}
1642
1643static int __maybe_unused tegra_dma_dev_resume(struct device *dev)
1644{
1645	struct tegra_dma *tdma = dev_get_drvdata(dev);
1646	int err;
1647
1648	err = tegra_dma_init_hw(tdma);
1649	if (err)
1650		return err;
1651
1652	return pm_runtime_force_resume(dev);
1653}
1654
1655static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1656	SET_RUNTIME_PM_OPS(tegra_dma_runtime_suspend, tegra_dma_runtime_resume,
1657			   NULL)
1658	SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_dev_suspend, tegra_dma_dev_resume)
1659};
1660
1661static const struct of_device_id tegra_dma_of_match[] = {
1662	{
1663		.compatible = "nvidia,tegra148-apbdma",
1664		.data = &tegra148_dma_chip_data,
1665	}, {
1666		.compatible = "nvidia,tegra114-apbdma",
1667		.data = &tegra114_dma_chip_data,
1668	}, {
1669		.compatible = "nvidia,tegra30-apbdma",
1670		.data = &tegra30_dma_chip_data,
1671	}, {
1672		.compatible = "nvidia,tegra20-apbdma",
1673		.data = &tegra20_dma_chip_data,
1674	}, {
1675	},
1676};
1677MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1678
1679static struct platform_driver tegra_dmac_driver = {
1680	.driver = {
1681		.name	= "tegra-apbdma",
1682		.pm	= &tegra_dma_dev_pm_ops,
1683		.of_match_table = tegra_dma_of_match,
1684	},
1685	.probe		= tegra_dma_probe,
1686	.remove		= tegra_dma_remove,
1687};
1688
1689module_platform_driver(tegra_dmac_driver);
1690
1691MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver");
1692MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1693MODULE_LICENSE("GPL v2");