Loading...
Note: File does not exist in v3.1.
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5 *
6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst
7 */
8
9#include <linux/clk.h>
10#include <linux/clk-provider.h>
11#include <linux/clk/clk-conf.h>
12#include <linux/module.h>
13#include <linux/mutex.h>
14#include <linux/spinlock.h>
15#include <linux/err.h>
16#include <linux/list.h>
17#include <linux/slab.h>
18#include <linux/of.h>
19#include <linux/device.h>
20#include <linux/init.h>
21#include <linux/pm_runtime.h>
22#include <linux/sched.h>
23#include <linux/clkdev.h>
24
25#include "clk.h"
26
27static DEFINE_SPINLOCK(enable_lock);
28static DEFINE_MUTEX(prepare_lock);
29
30static struct task_struct *prepare_owner;
31static struct task_struct *enable_owner;
32
33static int prepare_refcnt;
34static int enable_refcnt;
35
36static HLIST_HEAD(clk_root_list);
37static HLIST_HEAD(clk_orphan_list);
38static LIST_HEAD(clk_notifier_list);
39
40static const struct hlist_head *all_lists[] = {
41 &clk_root_list,
42 &clk_orphan_list,
43 NULL,
44};
45
46/*** private data structures ***/
47
48struct clk_parent_map {
49 const struct clk_hw *hw;
50 struct clk_core *core;
51 const char *fw_name;
52 const char *name;
53 int index;
54};
55
56struct clk_core {
57 const char *name;
58 const struct clk_ops *ops;
59 struct clk_hw *hw;
60 struct module *owner;
61 struct device *dev;
62 struct device_node *of_node;
63 struct clk_core *parent;
64 struct clk_parent_map *parents;
65 u8 num_parents;
66 u8 new_parent_index;
67 unsigned long rate;
68 unsigned long req_rate;
69 unsigned long new_rate;
70 struct clk_core *new_parent;
71 struct clk_core *new_child;
72 unsigned long flags;
73 bool orphan;
74 bool rpm_enabled;
75 unsigned int enable_count;
76 unsigned int prepare_count;
77 unsigned int protect_count;
78 unsigned long min_rate;
79 unsigned long max_rate;
80 unsigned long accuracy;
81 int phase;
82 struct clk_duty duty;
83 struct hlist_head children;
84 struct hlist_node child_node;
85 struct hlist_head clks;
86 unsigned int notifier_count;
87#ifdef CONFIG_DEBUG_FS
88 struct dentry *dentry;
89 struct hlist_node debug_node;
90#endif
91 struct kref ref;
92};
93
94#define CREATE_TRACE_POINTS
95#include <trace/events/clk.h>
96
97struct clk {
98 struct clk_core *core;
99 struct device *dev;
100 const char *dev_id;
101 const char *con_id;
102 unsigned long min_rate;
103 unsigned long max_rate;
104 unsigned int exclusive_count;
105 struct hlist_node clks_node;
106};
107
108/*** runtime pm ***/
109static int clk_pm_runtime_get(struct clk_core *core)
110{
111 if (!core->rpm_enabled)
112 return 0;
113
114 return pm_runtime_resume_and_get(core->dev);
115}
116
117static void clk_pm_runtime_put(struct clk_core *core)
118{
119 if (!core->rpm_enabled)
120 return;
121
122 pm_runtime_put_sync(core->dev);
123}
124
125/*** locking ***/
126static void clk_prepare_lock(void)
127{
128 if (!mutex_trylock(&prepare_lock)) {
129 if (prepare_owner == current) {
130 prepare_refcnt++;
131 return;
132 }
133 mutex_lock(&prepare_lock);
134 }
135 WARN_ON_ONCE(prepare_owner != NULL);
136 WARN_ON_ONCE(prepare_refcnt != 0);
137 prepare_owner = current;
138 prepare_refcnt = 1;
139}
140
141static void clk_prepare_unlock(void)
142{
143 WARN_ON_ONCE(prepare_owner != current);
144 WARN_ON_ONCE(prepare_refcnt == 0);
145
146 if (--prepare_refcnt)
147 return;
148 prepare_owner = NULL;
149 mutex_unlock(&prepare_lock);
150}
151
152static unsigned long clk_enable_lock(void)
153 __acquires(enable_lock)
154{
155 unsigned long flags;
156
157 /*
158 * On UP systems, spin_trylock_irqsave() always returns true, even if
159 * we already hold the lock. So, in that case, we rely only on
160 * reference counting.
161 */
162 if (!IS_ENABLED(CONFIG_SMP) ||
163 !spin_trylock_irqsave(&enable_lock, flags)) {
164 if (enable_owner == current) {
165 enable_refcnt++;
166 __acquire(enable_lock);
167 if (!IS_ENABLED(CONFIG_SMP))
168 local_save_flags(flags);
169 return flags;
170 }
171 spin_lock_irqsave(&enable_lock, flags);
172 }
173 WARN_ON_ONCE(enable_owner != NULL);
174 WARN_ON_ONCE(enable_refcnt != 0);
175 enable_owner = current;
176 enable_refcnt = 1;
177 return flags;
178}
179
180static void clk_enable_unlock(unsigned long flags)
181 __releases(enable_lock)
182{
183 WARN_ON_ONCE(enable_owner != current);
184 WARN_ON_ONCE(enable_refcnt == 0);
185
186 if (--enable_refcnt) {
187 __release(enable_lock);
188 return;
189 }
190 enable_owner = NULL;
191 spin_unlock_irqrestore(&enable_lock, flags);
192}
193
194static bool clk_core_rate_is_protected(struct clk_core *core)
195{
196 return core->protect_count;
197}
198
199static bool clk_core_is_prepared(struct clk_core *core)
200{
201 bool ret = false;
202
203 /*
204 * .is_prepared is optional for clocks that can prepare
205 * fall back to software usage counter if it is missing
206 */
207 if (!core->ops->is_prepared)
208 return core->prepare_count;
209
210 if (!clk_pm_runtime_get(core)) {
211 ret = core->ops->is_prepared(core->hw);
212 clk_pm_runtime_put(core);
213 }
214
215 return ret;
216}
217
218static bool clk_core_is_enabled(struct clk_core *core)
219{
220 bool ret = false;
221
222 /*
223 * .is_enabled is only mandatory for clocks that gate
224 * fall back to software usage counter if .is_enabled is missing
225 */
226 if (!core->ops->is_enabled)
227 return core->enable_count;
228
229 /*
230 * Check if clock controller's device is runtime active before
231 * calling .is_enabled callback. If not, assume that clock is
232 * disabled, because we might be called from atomic context, from
233 * which pm_runtime_get() is not allowed.
234 * This function is called mainly from clk_disable_unused_subtree,
235 * which ensures proper runtime pm activation of controller before
236 * taking enable spinlock, but the below check is needed if one tries
237 * to call it from other places.
238 */
239 if (core->rpm_enabled) {
240 pm_runtime_get_noresume(core->dev);
241 if (!pm_runtime_active(core->dev)) {
242 ret = false;
243 goto done;
244 }
245 }
246
247 ret = core->ops->is_enabled(core->hw);
248done:
249 if (core->rpm_enabled)
250 pm_runtime_put(core->dev);
251
252 return ret;
253}
254
255/*** helper functions ***/
256
257const char *__clk_get_name(const struct clk *clk)
258{
259 return !clk ? NULL : clk->core->name;
260}
261EXPORT_SYMBOL_GPL(__clk_get_name);
262
263const char *clk_hw_get_name(const struct clk_hw *hw)
264{
265 return hw->core->name;
266}
267EXPORT_SYMBOL_GPL(clk_hw_get_name);
268
269struct clk_hw *__clk_get_hw(struct clk *clk)
270{
271 return !clk ? NULL : clk->core->hw;
272}
273EXPORT_SYMBOL_GPL(__clk_get_hw);
274
275unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
276{
277 return hw->core->num_parents;
278}
279EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
280
281struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
282{
283 return hw->core->parent ? hw->core->parent->hw : NULL;
284}
285EXPORT_SYMBOL_GPL(clk_hw_get_parent);
286
287static struct clk_core *__clk_lookup_subtree(const char *name,
288 struct clk_core *core)
289{
290 struct clk_core *child;
291 struct clk_core *ret;
292
293 if (!strcmp(core->name, name))
294 return core;
295
296 hlist_for_each_entry(child, &core->children, child_node) {
297 ret = __clk_lookup_subtree(name, child);
298 if (ret)
299 return ret;
300 }
301
302 return NULL;
303}
304
305static struct clk_core *clk_core_lookup(const char *name)
306{
307 struct clk_core *root_clk;
308 struct clk_core *ret;
309
310 if (!name)
311 return NULL;
312
313 /* search the 'proper' clk tree first */
314 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
315 ret = __clk_lookup_subtree(name, root_clk);
316 if (ret)
317 return ret;
318 }
319
320 /* if not found, then search the orphan tree */
321 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
322 ret = __clk_lookup_subtree(name, root_clk);
323 if (ret)
324 return ret;
325 }
326
327 return NULL;
328}
329
330#ifdef CONFIG_OF
331static int of_parse_clkspec(const struct device_node *np, int index,
332 const char *name, struct of_phandle_args *out_args);
333static struct clk_hw *
334of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
335#else
336static inline int of_parse_clkspec(const struct device_node *np, int index,
337 const char *name,
338 struct of_phandle_args *out_args)
339{
340 return -ENOENT;
341}
342static inline struct clk_hw *
343of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
344{
345 return ERR_PTR(-ENOENT);
346}
347#endif
348
349/**
350 * clk_core_get - Find the clk_core parent of a clk
351 * @core: clk to find parent of
352 * @p_index: parent index to search for
353 *
354 * This is the preferred method for clk providers to find the parent of a
355 * clk when that parent is external to the clk controller. The parent_names
356 * array is indexed and treated as a local name matching a string in the device
357 * node's 'clock-names' property or as the 'con_id' matching the device's
358 * dev_name() in a clk_lookup. This allows clk providers to use their own
359 * namespace instead of looking for a globally unique parent string.
360 *
361 * For example the following DT snippet would allow a clock registered by the
362 * clock-controller@c001 that has a clk_init_data::parent_data array
363 * with 'xtal' in the 'name' member to find the clock provided by the
364 * clock-controller@f00abcd without needing to get the globally unique name of
365 * the xtal clk.
366 *
367 * parent: clock-controller@f00abcd {
368 * reg = <0xf00abcd 0xabcd>;
369 * #clock-cells = <0>;
370 * };
371 *
372 * clock-controller@c001 {
373 * reg = <0xc001 0xf00d>;
374 * clocks = <&parent>;
375 * clock-names = "xtal";
376 * #clock-cells = <1>;
377 * };
378 *
379 * Returns: -ENOENT when the provider can't be found or the clk doesn't
380 * exist in the provider or the name can't be found in the DT node or
381 * in a clkdev lookup. NULL when the provider knows about the clk but it
382 * isn't provided on this system.
383 * A valid clk_core pointer when the clk can be found in the provider.
384 */
385static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
386{
387 const char *name = core->parents[p_index].fw_name;
388 int index = core->parents[p_index].index;
389 struct clk_hw *hw = ERR_PTR(-ENOENT);
390 struct device *dev = core->dev;
391 const char *dev_id = dev ? dev_name(dev) : NULL;
392 struct device_node *np = core->of_node;
393 struct of_phandle_args clkspec;
394
395 if (np && (name || index >= 0) &&
396 !of_parse_clkspec(np, index, name, &clkspec)) {
397 hw = of_clk_get_hw_from_clkspec(&clkspec);
398 of_node_put(clkspec.np);
399 } else if (name) {
400 /*
401 * If the DT search above couldn't find the provider fallback to
402 * looking up via clkdev based clk_lookups.
403 */
404 hw = clk_find_hw(dev_id, name);
405 }
406
407 if (IS_ERR(hw))
408 return ERR_CAST(hw);
409
410 return hw->core;
411}
412
413static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
414{
415 struct clk_parent_map *entry = &core->parents[index];
416 struct clk_core *parent;
417
418 if (entry->hw) {
419 parent = entry->hw->core;
420 } else {
421 parent = clk_core_get(core, index);
422 if (PTR_ERR(parent) == -ENOENT && entry->name)
423 parent = clk_core_lookup(entry->name);
424 }
425
426 /*
427 * We have a direct reference but it isn't registered yet?
428 * Orphan it and let clk_reparent() update the orphan status
429 * when the parent is registered.
430 */
431 if (!parent)
432 parent = ERR_PTR(-EPROBE_DEFER);
433
434 /* Only cache it if it's not an error */
435 if (!IS_ERR(parent))
436 entry->core = parent;
437}
438
439static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
440 u8 index)
441{
442 if (!core || index >= core->num_parents || !core->parents)
443 return NULL;
444
445 if (!core->parents[index].core)
446 clk_core_fill_parent_index(core, index);
447
448 return core->parents[index].core;
449}
450
451struct clk_hw *
452clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
453{
454 struct clk_core *parent;
455
456 parent = clk_core_get_parent_by_index(hw->core, index);
457
458 return !parent ? NULL : parent->hw;
459}
460EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
461
462unsigned int __clk_get_enable_count(struct clk *clk)
463{
464 return !clk ? 0 : clk->core->enable_count;
465}
466
467static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
468{
469 if (!core)
470 return 0;
471
472 if (!core->num_parents || core->parent)
473 return core->rate;
474
475 /*
476 * Clk must have a parent because num_parents > 0 but the parent isn't
477 * known yet. Best to return 0 as the rate of this clk until we can
478 * properly recalc the rate based on the parent's rate.
479 */
480 return 0;
481}
482
483unsigned long clk_hw_get_rate(const struct clk_hw *hw)
484{
485 return clk_core_get_rate_nolock(hw->core);
486}
487EXPORT_SYMBOL_GPL(clk_hw_get_rate);
488
489static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
490{
491 if (!core)
492 return 0;
493
494 return core->accuracy;
495}
496
497unsigned long clk_hw_get_flags(const struct clk_hw *hw)
498{
499 return hw->core->flags;
500}
501EXPORT_SYMBOL_GPL(clk_hw_get_flags);
502
503bool clk_hw_is_prepared(const struct clk_hw *hw)
504{
505 return clk_core_is_prepared(hw->core);
506}
507EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
508
509bool clk_hw_rate_is_protected(const struct clk_hw *hw)
510{
511 return clk_core_rate_is_protected(hw->core);
512}
513EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
514
515bool clk_hw_is_enabled(const struct clk_hw *hw)
516{
517 return clk_core_is_enabled(hw->core);
518}
519EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
520
521bool __clk_is_enabled(struct clk *clk)
522{
523 if (!clk)
524 return false;
525
526 return clk_core_is_enabled(clk->core);
527}
528EXPORT_SYMBOL_GPL(__clk_is_enabled);
529
530static bool mux_is_better_rate(unsigned long rate, unsigned long now,
531 unsigned long best, unsigned long flags)
532{
533 if (flags & CLK_MUX_ROUND_CLOSEST)
534 return abs(now - rate) < abs(best - rate);
535
536 return now <= rate && now > best;
537}
538
539static void clk_core_init_rate_req(struct clk_core * const core,
540 struct clk_rate_request *req,
541 unsigned long rate);
542
543static int clk_core_round_rate_nolock(struct clk_core *core,
544 struct clk_rate_request *req);
545
546static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent)
547{
548 struct clk_core *tmp;
549 unsigned int i;
550
551 /* Optimize for the case where the parent is already the parent. */
552 if (core->parent == parent)
553 return true;
554
555 for (i = 0; i < core->num_parents; i++) {
556 tmp = clk_core_get_parent_by_index(core, i);
557 if (!tmp)
558 continue;
559
560 if (tmp == parent)
561 return true;
562 }
563
564 return false;
565}
566
567static void
568clk_core_forward_rate_req(struct clk_core *core,
569 const struct clk_rate_request *old_req,
570 struct clk_core *parent,
571 struct clk_rate_request *req,
572 unsigned long parent_rate)
573{
574 if (WARN_ON(!clk_core_has_parent(core, parent)))
575 return;
576
577 clk_core_init_rate_req(parent, req, parent_rate);
578
579 if (req->min_rate < old_req->min_rate)
580 req->min_rate = old_req->min_rate;
581
582 if (req->max_rate > old_req->max_rate)
583 req->max_rate = old_req->max_rate;
584}
585
586int clk_mux_determine_rate_flags(struct clk_hw *hw,
587 struct clk_rate_request *req,
588 unsigned long flags)
589{
590 struct clk_core *core = hw->core, *parent, *best_parent = NULL;
591 int i, num_parents, ret;
592 unsigned long best = 0;
593
594 /* if NO_REPARENT flag set, pass through to current parent */
595 if (core->flags & CLK_SET_RATE_NO_REPARENT) {
596 parent = core->parent;
597 if (core->flags & CLK_SET_RATE_PARENT) {
598 struct clk_rate_request parent_req;
599
600 if (!parent) {
601 req->rate = 0;
602 return 0;
603 }
604
605 clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
606
607 trace_clk_rate_request_start(&parent_req);
608
609 ret = clk_core_round_rate_nolock(parent, &parent_req);
610 if (ret)
611 return ret;
612
613 trace_clk_rate_request_done(&parent_req);
614
615 best = parent_req.rate;
616 } else if (parent) {
617 best = clk_core_get_rate_nolock(parent);
618 } else {
619 best = clk_core_get_rate_nolock(core);
620 }
621
622 goto out;
623 }
624
625 /* find the parent that can provide the fastest rate <= rate */
626 num_parents = core->num_parents;
627 for (i = 0; i < num_parents; i++) {
628 unsigned long parent_rate;
629
630 parent = clk_core_get_parent_by_index(core, i);
631 if (!parent)
632 continue;
633
634 if (core->flags & CLK_SET_RATE_PARENT) {
635 struct clk_rate_request parent_req;
636
637 clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
638
639 trace_clk_rate_request_start(&parent_req);
640
641 ret = clk_core_round_rate_nolock(parent, &parent_req);
642 if (ret)
643 continue;
644
645 trace_clk_rate_request_done(&parent_req);
646
647 parent_rate = parent_req.rate;
648 } else {
649 parent_rate = clk_core_get_rate_nolock(parent);
650 }
651
652 if (mux_is_better_rate(req->rate, parent_rate,
653 best, flags)) {
654 best_parent = parent;
655 best = parent_rate;
656 }
657 }
658
659 if (!best_parent)
660 return -EINVAL;
661
662out:
663 if (best_parent)
664 req->best_parent_hw = best_parent->hw;
665 req->best_parent_rate = best;
666 req->rate = best;
667
668 return 0;
669}
670EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
671
672struct clk *__clk_lookup(const char *name)
673{
674 struct clk_core *core = clk_core_lookup(name);
675
676 return !core ? NULL : core->hw->clk;
677}
678
679static void clk_core_get_boundaries(struct clk_core *core,
680 unsigned long *min_rate,
681 unsigned long *max_rate)
682{
683 struct clk *clk_user;
684
685 lockdep_assert_held(&prepare_lock);
686
687 *min_rate = core->min_rate;
688 *max_rate = core->max_rate;
689
690 hlist_for_each_entry(clk_user, &core->clks, clks_node)
691 *min_rate = max(*min_rate, clk_user->min_rate);
692
693 hlist_for_each_entry(clk_user, &core->clks, clks_node)
694 *max_rate = min(*max_rate, clk_user->max_rate);
695}
696
697/*
698 * clk_hw_get_rate_range() - returns the clock rate range for a hw clk
699 * @hw: the hw clk we want to get the range from
700 * @min_rate: pointer to the variable that will hold the minimum
701 * @max_rate: pointer to the variable that will hold the maximum
702 *
703 * Fills the @min_rate and @max_rate variables with the minimum and
704 * maximum that clock can reach.
705 */
706void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate,
707 unsigned long *max_rate)
708{
709 clk_core_get_boundaries(hw->core, min_rate, max_rate);
710}
711EXPORT_SYMBOL_GPL(clk_hw_get_rate_range);
712
713static bool clk_core_check_boundaries(struct clk_core *core,
714 unsigned long min_rate,
715 unsigned long max_rate)
716{
717 struct clk *user;
718
719 lockdep_assert_held(&prepare_lock);
720
721 if (min_rate > core->max_rate || max_rate < core->min_rate)
722 return false;
723
724 hlist_for_each_entry(user, &core->clks, clks_node)
725 if (min_rate > user->max_rate || max_rate < user->min_rate)
726 return false;
727
728 return true;
729}
730
731void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
732 unsigned long max_rate)
733{
734 hw->core->min_rate = min_rate;
735 hw->core->max_rate = max_rate;
736}
737EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
738
739/*
740 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
741 * @hw: mux type clk to determine rate on
742 * @req: rate request, also used to return preferred parent and frequencies
743 *
744 * Helper for finding best parent to provide a given frequency. This can be used
745 * directly as a determine_rate callback (e.g. for a mux), or from a more
746 * complex clock that may combine a mux with other operations.
747 *
748 * Returns: 0 on success, -EERROR value on error
749 */
750int __clk_mux_determine_rate(struct clk_hw *hw,
751 struct clk_rate_request *req)
752{
753 return clk_mux_determine_rate_flags(hw, req, 0);
754}
755EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
756
757int __clk_mux_determine_rate_closest(struct clk_hw *hw,
758 struct clk_rate_request *req)
759{
760 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
761}
762EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
763
764/*** clk api ***/
765
766static void clk_core_rate_unprotect(struct clk_core *core)
767{
768 lockdep_assert_held(&prepare_lock);
769
770 if (!core)
771 return;
772
773 if (WARN(core->protect_count == 0,
774 "%s already unprotected\n", core->name))
775 return;
776
777 if (--core->protect_count > 0)
778 return;
779
780 clk_core_rate_unprotect(core->parent);
781}
782
783static int clk_core_rate_nuke_protect(struct clk_core *core)
784{
785 int ret;
786
787 lockdep_assert_held(&prepare_lock);
788
789 if (!core)
790 return -EINVAL;
791
792 if (core->protect_count == 0)
793 return 0;
794
795 ret = core->protect_count;
796 core->protect_count = 1;
797 clk_core_rate_unprotect(core);
798
799 return ret;
800}
801
802/**
803 * clk_rate_exclusive_put - release exclusivity over clock rate control
804 * @clk: the clk over which the exclusivity is released
805 *
806 * clk_rate_exclusive_put() completes a critical section during which a clock
807 * consumer cannot tolerate any other consumer making any operation on the
808 * clock which could result in a rate change or rate glitch. Exclusive clocks
809 * cannot have their rate changed, either directly or indirectly due to changes
810 * further up the parent chain of clocks. As a result, clocks up parent chain
811 * also get under exclusive control of the calling consumer.
812 *
813 * If exlusivity is claimed more than once on clock, even by the same consumer,
814 * the rate effectively gets locked as exclusivity can't be preempted.
815 *
816 * Calls to clk_rate_exclusive_put() must be balanced with calls to
817 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
818 * error status.
819 */
820void clk_rate_exclusive_put(struct clk *clk)
821{
822 if (!clk)
823 return;
824
825 clk_prepare_lock();
826
827 /*
828 * if there is something wrong with this consumer protect count, stop
829 * here before messing with the provider
830 */
831 if (WARN_ON(clk->exclusive_count <= 0))
832 goto out;
833
834 clk_core_rate_unprotect(clk->core);
835 clk->exclusive_count--;
836out:
837 clk_prepare_unlock();
838}
839EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
840
841static void clk_core_rate_protect(struct clk_core *core)
842{
843 lockdep_assert_held(&prepare_lock);
844
845 if (!core)
846 return;
847
848 if (core->protect_count == 0)
849 clk_core_rate_protect(core->parent);
850
851 core->protect_count++;
852}
853
854static void clk_core_rate_restore_protect(struct clk_core *core, int count)
855{
856 lockdep_assert_held(&prepare_lock);
857
858 if (!core)
859 return;
860
861 if (count == 0)
862 return;
863
864 clk_core_rate_protect(core);
865 core->protect_count = count;
866}
867
868/**
869 * clk_rate_exclusive_get - get exclusivity over the clk rate control
870 * @clk: the clk over which the exclusity of rate control is requested
871 *
872 * clk_rate_exclusive_get() begins a critical section during which a clock
873 * consumer cannot tolerate any other consumer making any operation on the
874 * clock which could result in a rate change or rate glitch. Exclusive clocks
875 * cannot have their rate changed, either directly or indirectly due to changes
876 * further up the parent chain of clocks. As a result, clocks up parent chain
877 * also get under exclusive control of the calling consumer.
878 *
879 * If exlusivity is claimed more than once on clock, even by the same consumer,
880 * the rate effectively gets locked as exclusivity can't be preempted.
881 *
882 * Calls to clk_rate_exclusive_get() should be balanced with calls to
883 * clk_rate_exclusive_put(). Calls to this function may sleep.
884 * Returns 0 on success, -EERROR otherwise
885 */
886int clk_rate_exclusive_get(struct clk *clk)
887{
888 if (!clk)
889 return 0;
890
891 clk_prepare_lock();
892 clk_core_rate_protect(clk->core);
893 clk->exclusive_count++;
894 clk_prepare_unlock();
895
896 return 0;
897}
898EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
899
900static void clk_core_unprepare(struct clk_core *core)
901{
902 lockdep_assert_held(&prepare_lock);
903
904 if (!core)
905 return;
906
907 if (WARN(core->prepare_count == 0,
908 "%s already unprepared\n", core->name))
909 return;
910
911 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
912 "Unpreparing critical %s\n", core->name))
913 return;
914
915 if (core->flags & CLK_SET_RATE_GATE)
916 clk_core_rate_unprotect(core);
917
918 if (--core->prepare_count > 0)
919 return;
920
921 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
922
923 trace_clk_unprepare(core);
924
925 if (core->ops->unprepare)
926 core->ops->unprepare(core->hw);
927
928 trace_clk_unprepare_complete(core);
929 clk_core_unprepare(core->parent);
930 clk_pm_runtime_put(core);
931}
932
933static void clk_core_unprepare_lock(struct clk_core *core)
934{
935 clk_prepare_lock();
936 clk_core_unprepare(core);
937 clk_prepare_unlock();
938}
939
940/**
941 * clk_unprepare - undo preparation of a clock source
942 * @clk: the clk being unprepared
943 *
944 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
945 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
946 * if the operation may sleep. One example is a clk which is accessed over
947 * I2c. In the complex case a clk gate operation may require a fast and a slow
948 * part. It is this reason that clk_unprepare and clk_disable are not mutually
949 * exclusive. In fact clk_disable must be called before clk_unprepare.
950 */
951void clk_unprepare(struct clk *clk)
952{
953 if (IS_ERR_OR_NULL(clk))
954 return;
955
956 clk_core_unprepare_lock(clk->core);
957}
958EXPORT_SYMBOL_GPL(clk_unprepare);
959
960static int clk_core_prepare(struct clk_core *core)
961{
962 int ret = 0;
963
964 lockdep_assert_held(&prepare_lock);
965
966 if (!core)
967 return 0;
968
969 if (core->prepare_count == 0) {
970 ret = clk_pm_runtime_get(core);
971 if (ret)
972 return ret;
973
974 ret = clk_core_prepare(core->parent);
975 if (ret)
976 goto runtime_put;
977
978 trace_clk_prepare(core);
979
980 if (core->ops->prepare)
981 ret = core->ops->prepare(core->hw);
982
983 trace_clk_prepare_complete(core);
984
985 if (ret)
986 goto unprepare;
987 }
988
989 core->prepare_count++;
990
991 /*
992 * CLK_SET_RATE_GATE is a special case of clock protection
993 * Instead of a consumer claiming exclusive rate control, it is
994 * actually the provider which prevents any consumer from making any
995 * operation which could result in a rate change or rate glitch while
996 * the clock is prepared.
997 */
998 if (core->flags & CLK_SET_RATE_GATE)
999 clk_core_rate_protect(core);
1000
1001 return 0;
1002unprepare:
1003 clk_core_unprepare(core->parent);
1004runtime_put:
1005 clk_pm_runtime_put(core);
1006 return ret;
1007}
1008
1009static int clk_core_prepare_lock(struct clk_core *core)
1010{
1011 int ret;
1012
1013 clk_prepare_lock();
1014 ret = clk_core_prepare(core);
1015 clk_prepare_unlock();
1016
1017 return ret;
1018}
1019
1020/**
1021 * clk_prepare - prepare a clock source
1022 * @clk: the clk being prepared
1023 *
1024 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
1025 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
1026 * operation may sleep. One example is a clk which is accessed over I2c. In
1027 * the complex case a clk ungate operation may require a fast and a slow part.
1028 * It is this reason that clk_prepare and clk_enable are not mutually
1029 * exclusive. In fact clk_prepare must be called before clk_enable.
1030 * Returns 0 on success, -EERROR otherwise.
1031 */
1032int clk_prepare(struct clk *clk)
1033{
1034 if (!clk)
1035 return 0;
1036
1037 return clk_core_prepare_lock(clk->core);
1038}
1039EXPORT_SYMBOL_GPL(clk_prepare);
1040
1041static void clk_core_disable(struct clk_core *core)
1042{
1043 lockdep_assert_held(&enable_lock);
1044
1045 if (!core)
1046 return;
1047
1048 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
1049 return;
1050
1051 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
1052 "Disabling critical %s\n", core->name))
1053 return;
1054
1055 if (--core->enable_count > 0)
1056 return;
1057
1058 trace_clk_disable_rcuidle(core);
1059
1060 if (core->ops->disable)
1061 core->ops->disable(core->hw);
1062
1063 trace_clk_disable_complete_rcuidle(core);
1064
1065 clk_core_disable(core->parent);
1066}
1067
1068static void clk_core_disable_lock(struct clk_core *core)
1069{
1070 unsigned long flags;
1071
1072 flags = clk_enable_lock();
1073 clk_core_disable(core);
1074 clk_enable_unlock(flags);
1075}
1076
1077/**
1078 * clk_disable - gate a clock
1079 * @clk: the clk being gated
1080 *
1081 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
1082 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1083 * clk if the operation is fast and will never sleep. One example is a
1084 * SoC-internal clk which is controlled via simple register writes. In the
1085 * complex case a clk gate operation may require a fast and a slow part. It is
1086 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1087 * In fact clk_disable must be called before clk_unprepare.
1088 */
1089void clk_disable(struct clk *clk)
1090{
1091 if (IS_ERR_OR_NULL(clk))
1092 return;
1093
1094 clk_core_disable_lock(clk->core);
1095}
1096EXPORT_SYMBOL_GPL(clk_disable);
1097
1098static int clk_core_enable(struct clk_core *core)
1099{
1100 int ret = 0;
1101
1102 lockdep_assert_held(&enable_lock);
1103
1104 if (!core)
1105 return 0;
1106
1107 if (WARN(core->prepare_count == 0,
1108 "Enabling unprepared %s\n", core->name))
1109 return -ESHUTDOWN;
1110
1111 if (core->enable_count == 0) {
1112 ret = clk_core_enable(core->parent);
1113
1114 if (ret)
1115 return ret;
1116
1117 trace_clk_enable_rcuidle(core);
1118
1119 if (core->ops->enable)
1120 ret = core->ops->enable(core->hw);
1121
1122 trace_clk_enable_complete_rcuidle(core);
1123
1124 if (ret) {
1125 clk_core_disable(core->parent);
1126 return ret;
1127 }
1128 }
1129
1130 core->enable_count++;
1131 return 0;
1132}
1133
1134static int clk_core_enable_lock(struct clk_core *core)
1135{
1136 unsigned long flags;
1137 int ret;
1138
1139 flags = clk_enable_lock();
1140 ret = clk_core_enable(core);
1141 clk_enable_unlock(flags);
1142
1143 return ret;
1144}
1145
1146/**
1147 * clk_gate_restore_context - restore context for poweroff
1148 * @hw: the clk_hw pointer of clock whose state is to be restored
1149 *
1150 * The clock gate restore context function enables or disables
1151 * the gate clocks based on the enable_count. This is done in cases
1152 * where the clock context is lost and based on the enable_count
1153 * the clock either needs to be enabled/disabled. This
1154 * helps restore the state of gate clocks.
1155 */
1156void clk_gate_restore_context(struct clk_hw *hw)
1157{
1158 struct clk_core *core = hw->core;
1159
1160 if (core->enable_count)
1161 core->ops->enable(hw);
1162 else
1163 core->ops->disable(hw);
1164}
1165EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1166
1167static int clk_core_save_context(struct clk_core *core)
1168{
1169 struct clk_core *child;
1170 int ret = 0;
1171
1172 hlist_for_each_entry(child, &core->children, child_node) {
1173 ret = clk_core_save_context(child);
1174 if (ret < 0)
1175 return ret;
1176 }
1177
1178 if (core->ops && core->ops->save_context)
1179 ret = core->ops->save_context(core->hw);
1180
1181 return ret;
1182}
1183
1184static void clk_core_restore_context(struct clk_core *core)
1185{
1186 struct clk_core *child;
1187
1188 if (core->ops && core->ops->restore_context)
1189 core->ops->restore_context(core->hw);
1190
1191 hlist_for_each_entry(child, &core->children, child_node)
1192 clk_core_restore_context(child);
1193}
1194
1195/**
1196 * clk_save_context - save clock context for poweroff
1197 *
1198 * Saves the context of the clock register for powerstates in which the
1199 * contents of the registers will be lost. Occurs deep within the suspend
1200 * code. Returns 0 on success.
1201 */
1202int clk_save_context(void)
1203{
1204 struct clk_core *clk;
1205 int ret;
1206
1207 hlist_for_each_entry(clk, &clk_root_list, child_node) {
1208 ret = clk_core_save_context(clk);
1209 if (ret < 0)
1210 return ret;
1211 }
1212
1213 hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1214 ret = clk_core_save_context(clk);
1215 if (ret < 0)
1216 return ret;
1217 }
1218
1219 return 0;
1220}
1221EXPORT_SYMBOL_GPL(clk_save_context);
1222
1223/**
1224 * clk_restore_context - restore clock context after poweroff
1225 *
1226 * Restore the saved clock context upon resume.
1227 *
1228 */
1229void clk_restore_context(void)
1230{
1231 struct clk_core *core;
1232
1233 hlist_for_each_entry(core, &clk_root_list, child_node)
1234 clk_core_restore_context(core);
1235
1236 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1237 clk_core_restore_context(core);
1238}
1239EXPORT_SYMBOL_GPL(clk_restore_context);
1240
1241/**
1242 * clk_enable - ungate a clock
1243 * @clk: the clk being ungated
1244 *
1245 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
1246 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1247 * if the operation will never sleep. One example is a SoC-internal clk which
1248 * is controlled via simple register writes. In the complex case a clk ungate
1249 * operation may require a fast and a slow part. It is this reason that
1250 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
1251 * must be called before clk_enable. Returns 0 on success, -EERROR
1252 * otherwise.
1253 */
1254int clk_enable(struct clk *clk)
1255{
1256 if (!clk)
1257 return 0;
1258
1259 return clk_core_enable_lock(clk->core);
1260}
1261EXPORT_SYMBOL_GPL(clk_enable);
1262
1263/**
1264 * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
1265 * @clk: clock source
1266 *
1267 * Returns true if clk_prepare() implicitly enables the clock, effectively
1268 * making clk_enable()/clk_disable() no-ops, false otherwise.
1269 *
1270 * This is of interest mainly to power management code where actually
1271 * disabling the clock also requires unpreparing it to have any material
1272 * effect.
1273 *
1274 * Regardless of the value returned here, the caller must always invoke
1275 * clk_enable() or clk_prepare_enable() and counterparts for usage counts
1276 * to be right.
1277 */
1278bool clk_is_enabled_when_prepared(struct clk *clk)
1279{
1280 return clk && !(clk->core->ops->enable && clk->core->ops->disable);
1281}
1282EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
1283
1284static int clk_core_prepare_enable(struct clk_core *core)
1285{
1286 int ret;
1287
1288 ret = clk_core_prepare_lock(core);
1289 if (ret)
1290 return ret;
1291
1292 ret = clk_core_enable_lock(core);
1293 if (ret)
1294 clk_core_unprepare_lock(core);
1295
1296 return ret;
1297}
1298
1299static void clk_core_disable_unprepare(struct clk_core *core)
1300{
1301 clk_core_disable_lock(core);
1302 clk_core_unprepare_lock(core);
1303}
1304
1305static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1306{
1307 struct clk_core *child;
1308
1309 lockdep_assert_held(&prepare_lock);
1310
1311 hlist_for_each_entry(child, &core->children, child_node)
1312 clk_unprepare_unused_subtree(child);
1313
1314 if (core->prepare_count)
1315 return;
1316
1317 if (core->flags & CLK_IGNORE_UNUSED)
1318 return;
1319
1320 if (clk_pm_runtime_get(core))
1321 return;
1322
1323 if (clk_core_is_prepared(core)) {
1324 trace_clk_unprepare(core);
1325 if (core->ops->unprepare_unused)
1326 core->ops->unprepare_unused(core->hw);
1327 else if (core->ops->unprepare)
1328 core->ops->unprepare(core->hw);
1329 trace_clk_unprepare_complete(core);
1330 }
1331
1332 clk_pm_runtime_put(core);
1333}
1334
1335static void __init clk_disable_unused_subtree(struct clk_core *core)
1336{
1337 struct clk_core *child;
1338 unsigned long flags;
1339
1340 lockdep_assert_held(&prepare_lock);
1341
1342 hlist_for_each_entry(child, &core->children, child_node)
1343 clk_disable_unused_subtree(child);
1344
1345 if (core->flags & CLK_OPS_PARENT_ENABLE)
1346 clk_core_prepare_enable(core->parent);
1347
1348 if (clk_pm_runtime_get(core))
1349 goto unprepare_out;
1350
1351 flags = clk_enable_lock();
1352
1353 if (core->enable_count)
1354 goto unlock_out;
1355
1356 if (core->flags & CLK_IGNORE_UNUSED)
1357 goto unlock_out;
1358
1359 /*
1360 * some gate clocks have special needs during the disable-unused
1361 * sequence. call .disable_unused if available, otherwise fall
1362 * back to .disable
1363 */
1364 if (clk_core_is_enabled(core)) {
1365 trace_clk_disable(core);
1366 if (core->ops->disable_unused)
1367 core->ops->disable_unused(core->hw);
1368 else if (core->ops->disable)
1369 core->ops->disable(core->hw);
1370 trace_clk_disable_complete(core);
1371 }
1372
1373unlock_out:
1374 clk_enable_unlock(flags);
1375 clk_pm_runtime_put(core);
1376unprepare_out:
1377 if (core->flags & CLK_OPS_PARENT_ENABLE)
1378 clk_core_disable_unprepare(core->parent);
1379}
1380
1381static bool clk_ignore_unused __initdata;
1382static int __init clk_ignore_unused_setup(char *__unused)
1383{
1384 clk_ignore_unused = true;
1385 return 1;
1386}
1387__setup("clk_ignore_unused", clk_ignore_unused_setup);
1388
1389static int __init clk_disable_unused(void)
1390{
1391 struct clk_core *core;
1392
1393 if (clk_ignore_unused) {
1394 pr_warn("clk: Not disabling unused clocks\n");
1395 return 0;
1396 }
1397
1398 clk_prepare_lock();
1399
1400 hlist_for_each_entry(core, &clk_root_list, child_node)
1401 clk_disable_unused_subtree(core);
1402
1403 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1404 clk_disable_unused_subtree(core);
1405
1406 hlist_for_each_entry(core, &clk_root_list, child_node)
1407 clk_unprepare_unused_subtree(core);
1408
1409 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1410 clk_unprepare_unused_subtree(core);
1411
1412 clk_prepare_unlock();
1413
1414 return 0;
1415}
1416late_initcall_sync(clk_disable_unused);
1417
1418static int clk_core_determine_round_nolock(struct clk_core *core,
1419 struct clk_rate_request *req)
1420{
1421 long rate;
1422
1423 lockdep_assert_held(&prepare_lock);
1424
1425 if (!core)
1426 return 0;
1427
1428 /*
1429 * Some clock providers hand-craft their clk_rate_requests and
1430 * might not fill min_rate and max_rate.
1431 *
1432 * If it's the case, clamping the rate is equivalent to setting
1433 * the rate to 0 which is bad. Skip the clamping but complain so
1434 * that it gets fixed, hopefully.
1435 */
1436 if (!req->min_rate && !req->max_rate)
1437 pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n",
1438 __func__, core->name);
1439 else
1440 req->rate = clamp(req->rate, req->min_rate, req->max_rate);
1441
1442 /*
1443 * At this point, core protection will be disabled
1444 * - if the provider is not protected at all
1445 * - if the calling consumer is the only one which has exclusivity
1446 * over the provider
1447 */
1448 if (clk_core_rate_is_protected(core)) {
1449 req->rate = core->rate;
1450 } else if (core->ops->determine_rate) {
1451 return core->ops->determine_rate(core->hw, req);
1452 } else if (core->ops->round_rate) {
1453 rate = core->ops->round_rate(core->hw, req->rate,
1454 &req->best_parent_rate);
1455 if (rate < 0)
1456 return rate;
1457
1458 req->rate = rate;
1459 } else {
1460 return -EINVAL;
1461 }
1462
1463 return 0;
1464}
1465
1466static void clk_core_init_rate_req(struct clk_core * const core,
1467 struct clk_rate_request *req,
1468 unsigned long rate)
1469{
1470 struct clk_core *parent;
1471
1472 if (WARN_ON(!req))
1473 return;
1474
1475 memset(req, 0, sizeof(*req));
1476 req->max_rate = ULONG_MAX;
1477
1478 if (!core)
1479 return;
1480
1481 req->core = core;
1482 req->rate = rate;
1483 clk_core_get_boundaries(core, &req->min_rate, &req->max_rate);
1484
1485 parent = core->parent;
1486 if (parent) {
1487 req->best_parent_hw = parent->hw;
1488 req->best_parent_rate = parent->rate;
1489 } else {
1490 req->best_parent_hw = NULL;
1491 req->best_parent_rate = 0;
1492 }
1493}
1494
1495/**
1496 * clk_hw_init_rate_request - Initializes a clk_rate_request
1497 * @hw: the clk for which we want to submit a rate request
1498 * @req: the clk_rate_request structure we want to initialise
1499 * @rate: the rate which is to be requested
1500 *
1501 * Initializes a clk_rate_request structure to submit to
1502 * __clk_determine_rate() or similar functions.
1503 */
1504void clk_hw_init_rate_request(const struct clk_hw *hw,
1505 struct clk_rate_request *req,
1506 unsigned long rate)
1507{
1508 if (WARN_ON(!hw || !req))
1509 return;
1510
1511 clk_core_init_rate_req(hw->core, req, rate);
1512}
1513EXPORT_SYMBOL_GPL(clk_hw_init_rate_request);
1514
1515/**
1516 * clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent
1517 * @hw: the original clock that got the rate request
1518 * @old_req: the original clk_rate_request structure we want to forward
1519 * @parent: the clk we want to forward @old_req to
1520 * @req: the clk_rate_request structure we want to initialise
1521 * @parent_rate: The rate which is to be requested to @parent
1522 *
1523 * Initializes a clk_rate_request structure to submit to a clock parent
1524 * in __clk_determine_rate() or similar functions.
1525 */
1526void clk_hw_forward_rate_request(const struct clk_hw *hw,
1527 const struct clk_rate_request *old_req,
1528 const struct clk_hw *parent,
1529 struct clk_rate_request *req,
1530 unsigned long parent_rate)
1531{
1532 if (WARN_ON(!hw || !old_req || !parent || !req))
1533 return;
1534
1535 clk_core_forward_rate_req(hw->core, old_req,
1536 parent->core, req,
1537 parent_rate);
1538}
1539
1540static bool clk_core_can_round(struct clk_core * const core)
1541{
1542 return core->ops->determine_rate || core->ops->round_rate;
1543}
1544
1545static int clk_core_round_rate_nolock(struct clk_core *core,
1546 struct clk_rate_request *req)
1547{
1548 int ret;
1549
1550 lockdep_assert_held(&prepare_lock);
1551
1552 if (!core) {
1553 req->rate = 0;
1554 return 0;
1555 }
1556
1557 if (clk_core_can_round(core))
1558 return clk_core_determine_round_nolock(core, req);
1559
1560 if (core->flags & CLK_SET_RATE_PARENT) {
1561 struct clk_rate_request parent_req;
1562
1563 clk_core_forward_rate_req(core, req, core->parent, &parent_req, req->rate);
1564
1565 trace_clk_rate_request_start(&parent_req);
1566
1567 ret = clk_core_round_rate_nolock(core->parent, &parent_req);
1568 if (ret)
1569 return ret;
1570
1571 trace_clk_rate_request_done(&parent_req);
1572
1573 req->best_parent_rate = parent_req.rate;
1574 req->rate = parent_req.rate;
1575
1576 return 0;
1577 }
1578
1579 req->rate = core->rate;
1580 return 0;
1581}
1582
1583/**
1584 * __clk_determine_rate - get the closest rate actually supported by a clock
1585 * @hw: determine the rate of this clock
1586 * @req: target rate request
1587 *
1588 * Useful for clk_ops such as .set_rate and .determine_rate.
1589 */
1590int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1591{
1592 if (!hw) {
1593 req->rate = 0;
1594 return 0;
1595 }
1596
1597 return clk_core_round_rate_nolock(hw->core, req);
1598}
1599EXPORT_SYMBOL_GPL(__clk_determine_rate);
1600
1601/**
1602 * clk_hw_round_rate() - round the given rate for a hw clk
1603 * @hw: the hw clk for which we are rounding a rate
1604 * @rate: the rate which is to be rounded
1605 *
1606 * Takes in a rate as input and rounds it to a rate that the clk can actually
1607 * use.
1608 *
1609 * Context: prepare_lock must be held.
1610 * For clk providers to call from within clk_ops such as .round_rate,
1611 * .determine_rate.
1612 *
1613 * Return: returns rounded rate of hw clk if clk supports round_rate operation
1614 * else returns the parent rate.
1615 */
1616unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1617{
1618 int ret;
1619 struct clk_rate_request req;
1620
1621 clk_core_init_rate_req(hw->core, &req, rate);
1622
1623 trace_clk_rate_request_start(&req);
1624
1625 ret = clk_core_round_rate_nolock(hw->core, &req);
1626 if (ret)
1627 return 0;
1628
1629 trace_clk_rate_request_done(&req);
1630
1631 return req.rate;
1632}
1633EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1634
1635/**
1636 * clk_round_rate - round the given rate for a clk
1637 * @clk: the clk for which we are rounding a rate
1638 * @rate: the rate which is to be rounded
1639 *
1640 * Takes in a rate as input and rounds it to a rate that the clk can actually
1641 * use which is then returned. If clk doesn't support round_rate operation
1642 * then the parent rate is returned.
1643 */
1644long clk_round_rate(struct clk *clk, unsigned long rate)
1645{
1646 struct clk_rate_request req;
1647 int ret;
1648
1649 if (!clk)
1650 return 0;
1651
1652 clk_prepare_lock();
1653
1654 if (clk->exclusive_count)
1655 clk_core_rate_unprotect(clk->core);
1656
1657 clk_core_init_rate_req(clk->core, &req, rate);
1658
1659 trace_clk_rate_request_start(&req);
1660
1661 ret = clk_core_round_rate_nolock(clk->core, &req);
1662
1663 trace_clk_rate_request_done(&req);
1664
1665 if (clk->exclusive_count)
1666 clk_core_rate_protect(clk->core);
1667
1668 clk_prepare_unlock();
1669
1670 if (ret)
1671 return ret;
1672
1673 return req.rate;
1674}
1675EXPORT_SYMBOL_GPL(clk_round_rate);
1676
1677/**
1678 * __clk_notify - call clk notifier chain
1679 * @core: clk that is changing rate
1680 * @msg: clk notifier type (see include/linux/clk.h)
1681 * @old_rate: old clk rate
1682 * @new_rate: new clk rate
1683 *
1684 * Triggers a notifier call chain on the clk rate-change notification
1685 * for 'clk'. Passes a pointer to the struct clk and the previous
1686 * and current rates to the notifier callback. Intended to be called by
1687 * internal clock code only. Returns NOTIFY_DONE from the last driver
1688 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1689 * a driver returns that.
1690 */
1691static int __clk_notify(struct clk_core *core, unsigned long msg,
1692 unsigned long old_rate, unsigned long new_rate)
1693{
1694 struct clk_notifier *cn;
1695 struct clk_notifier_data cnd;
1696 int ret = NOTIFY_DONE;
1697
1698 cnd.old_rate = old_rate;
1699 cnd.new_rate = new_rate;
1700
1701 list_for_each_entry(cn, &clk_notifier_list, node) {
1702 if (cn->clk->core == core) {
1703 cnd.clk = cn->clk;
1704 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1705 &cnd);
1706 if (ret & NOTIFY_STOP_MASK)
1707 return ret;
1708 }
1709 }
1710
1711 return ret;
1712}
1713
1714/**
1715 * __clk_recalc_accuracies
1716 * @core: first clk in the subtree
1717 *
1718 * Walks the subtree of clks starting with clk and recalculates accuracies as
1719 * it goes. Note that if a clk does not implement the .recalc_accuracy
1720 * callback then it is assumed that the clock will take on the accuracy of its
1721 * parent.
1722 */
1723static void __clk_recalc_accuracies(struct clk_core *core)
1724{
1725 unsigned long parent_accuracy = 0;
1726 struct clk_core *child;
1727
1728 lockdep_assert_held(&prepare_lock);
1729
1730 if (core->parent)
1731 parent_accuracy = core->parent->accuracy;
1732
1733 if (core->ops->recalc_accuracy)
1734 core->accuracy = core->ops->recalc_accuracy(core->hw,
1735 parent_accuracy);
1736 else
1737 core->accuracy = parent_accuracy;
1738
1739 hlist_for_each_entry(child, &core->children, child_node)
1740 __clk_recalc_accuracies(child);
1741}
1742
1743static long clk_core_get_accuracy_recalc(struct clk_core *core)
1744{
1745 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1746 __clk_recalc_accuracies(core);
1747
1748 return clk_core_get_accuracy_no_lock(core);
1749}
1750
1751/**
1752 * clk_get_accuracy - return the accuracy of clk
1753 * @clk: the clk whose accuracy is being returned
1754 *
1755 * Simply returns the cached accuracy of the clk, unless
1756 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1757 * issued.
1758 * If clk is NULL then returns 0.
1759 */
1760long clk_get_accuracy(struct clk *clk)
1761{
1762 long accuracy;
1763
1764 if (!clk)
1765 return 0;
1766
1767 clk_prepare_lock();
1768 accuracy = clk_core_get_accuracy_recalc(clk->core);
1769 clk_prepare_unlock();
1770
1771 return accuracy;
1772}
1773EXPORT_SYMBOL_GPL(clk_get_accuracy);
1774
1775static unsigned long clk_recalc(struct clk_core *core,
1776 unsigned long parent_rate)
1777{
1778 unsigned long rate = parent_rate;
1779
1780 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1781 rate = core->ops->recalc_rate(core->hw, parent_rate);
1782 clk_pm_runtime_put(core);
1783 }
1784 return rate;
1785}
1786
1787/**
1788 * __clk_recalc_rates
1789 * @core: first clk in the subtree
1790 * @update_req: Whether req_rate should be updated with the new rate
1791 * @msg: notification type (see include/linux/clk.h)
1792 *
1793 * Walks the subtree of clks starting with clk and recalculates rates as it
1794 * goes. Note that if a clk does not implement the .recalc_rate callback then
1795 * it is assumed that the clock will take on the rate of its parent.
1796 *
1797 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1798 * if necessary.
1799 */
1800static void __clk_recalc_rates(struct clk_core *core, bool update_req,
1801 unsigned long msg)
1802{
1803 unsigned long old_rate;
1804 unsigned long parent_rate = 0;
1805 struct clk_core *child;
1806
1807 lockdep_assert_held(&prepare_lock);
1808
1809 old_rate = core->rate;
1810
1811 if (core->parent)
1812 parent_rate = core->parent->rate;
1813
1814 core->rate = clk_recalc(core, parent_rate);
1815 if (update_req)
1816 core->req_rate = core->rate;
1817
1818 /*
1819 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1820 * & ABORT_RATE_CHANGE notifiers
1821 */
1822 if (core->notifier_count && msg)
1823 __clk_notify(core, msg, old_rate, core->rate);
1824
1825 hlist_for_each_entry(child, &core->children, child_node)
1826 __clk_recalc_rates(child, update_req, msg);
1827}
1828
1829static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1830{
1831 if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1832 __clk_recalc_rates(core, false, 0);
1833
1834 return clk_core_get_rate_nolock(core);
1835}
1836
1837/**
1838 * clk_get_rate - return the rate of clk
1839 * @clk: the clk whose rate is being returned
1840 *
1841 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1842 * is set, which means a recalc_rate will be issued. Can be called regardless of
1843 * the clock enabledness. If clk is NULL, or if an error occurred, then returns
1844 * 0.
1845 */
1846unsigned long clk_get_rate(struct clk *clk)
1847{
1848 unsigned long rate;
1849
1850 if (!clk)
1851 return 0;
1852
1853 clk_prepare_lock();
1854 rate = clk_core_get_rate_recalc(clk->core);
1855 clk_prepare_unlock();
1856
1857 return rate;
1858}
1859EXPORT_SYMBOL_GPL(clk_get_rate);
1860
1861static int clk_fetch_parent_index(struct clk_core *core,
1862 struct clk_core *parent)
1863{
1864 int i;
1865
1866 if (!parent)
1867 return -EINVAL;
1868
1869 for (i = 0; i < core->num_parents; i++) {
1870 /* Found it first try! */
1871 if (core->parents[i].core == parent)
1872 return i;
1873
1874 /* Something else is here, so keep looking */
1875 if (core->parents[i].core)
1876 continue;
1877
1878 /* Maybe core hasn't been cached but the hw is all we know? */
1879 if (core->parents[i].hw) {
1880 if (core->parents[i].hw == parent->hw)
1881 break;
1882
1883 /* Didn't match, but we're expecting a clk_hw */
1884 continue;
1885 }
1886
1887 /* Maybe it hasn't been cached (clk_set_parent() path) */
1888 if (parent == clk_core_get(core, i))
1889 break;
1890
1891 /* Fallback to comparing globally unique names */
1892 if (core->parents[i].name &&
1893 !strcmp(parent->name, core->parents[i].name))
1894 break;
1895 }
1896
1897 if (i == core->num_parents)
1898 return -EINVAL;
1899
1900 core->parents[i].core = parent;
1901 return i;
1902}
1903
1904/**
1905 * clk_hw_get_parent_index - return the index of the parent clock
1906 * @hw: clk_hw associated with the clk being consumed
1907 *
1908 * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1909 * clock does not have a current parent.
1910 */
1911int clk_hw_get_parent_index(struct clk_hw *hw)
1912{
1913 struct clk_hw *parent = clk_hw_get_parent(hw);
1914
1915 if (WARN_ON(parent == NULL))
1916 return -EINVAL;
1917
1918 return clk_fetch_parent_index(hw->core, parent->core);
1919}
1920EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1921
1922/*
1923 * Update the orphan status of @core and all its children.
1924 */
1925static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1926{
1927 struct clk_core *child;
1928
1929 core->orphan = is_orphan;
1930
1931 hlist_for_each_entry(child, &core->children, child_node)
1932 clk_core_update_orphan_status(child, is_orphan);
1933}
1934
1935static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1936{
1937 bool was_orphan = core->orphan;
1938
1939 hlist_del(&core->child_node);
1940
1941 if (new_parent) {
1942 bool becomes_orphan = new_parent->orphan;
1943
1944 /* avoid duplicate POST_RATE_CHANGE notifications */
1945 if (new_parent->new_child == core)
1946 new_parent->new_child = NULL;
1947
1948 hlist_add_head(&core->child_node, &new_parent->children);
1949
1950 if (was_orphan != becomes_orphan)
1951 clk_core_update_orphan_status(core, becomes_orphan);
1952 } else {
1953 hlist_add_head(&core->child_node, &clk_orphan_list);
1954 if (!was_orphan)
1955 clk_core_update_orphan_status(core, true);
1956 }
1957
1958 core->parent = new_parent;
1959}
1960
1961static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1962 struct clk_core *parent)
1963{
1964 unsigned long flags;
1965 struct clk_core *old_parent = core->parent;
1966
1967 /*
1968 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1969 *
1970 * 2. Migrate prepare state between parents and prevent race with
1971 * clk_enable().
1972 *
1973 * If the clock is not prepared, then a race with
1974 * clk_enable/disable() is impossible since we already have the
1975 * prepare lock (future calls to clk_enable() need to be preceded by
1976 * a clk_prepare()).
1977 *
1978 * If the clock is prepared, migrate the prepared state to the new
1979 * parent and also protect against a race with clk_enable() by
1980 * forcing the clock and the new parent on. This ensures that all
1981 * future calls to clk_enable() are practically NOPs with respect to
1982 * hardware and software states.
1983 *
1984 * See also: Comment for clk_set_parent() below.
1985 */
1986
1987 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1988 if (core->flags & CLK_OPS_PARENT_ENABLE) {
1989 clk_core_prepare_enable(old_parent);
1990 clk_core_prepare_enable(parent);
1991 }
1992
1993 /* migrate prepare count if > 0 */
1994 if (core->prepare_count) {
1995 clk_core_prepare_enable(parent);
1996 clk_core_enable_lock(core);
1997 }
1998
1999 /* update the clk tree topology */
2000 flags = clk_enable_lock();
2001 clk_reparent(core, parent);
2002 clk_enable_unlock(flags);
2003
2004 return old_parent;
2005}
2006
2007static void __clk_set_parent_after(struct clk_core *core,
2008 struct clk_core *parent,
2009 struct clk_core *old_parent)
2010{
2011 /*
2012 * Finish the migration of prepare state and undo the changes done
2013 * for preventing a race with clk_enable().
2014 */
2015 if (core->prepare_count) {
2016 clk_core_disable_lock(core);
2017 clk_core_disable_unprepare(old_parent);
2018 }
2019
2020 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
2021 if (core->flags & CLK_OPS_PARENT_ENABLE) {
2022 clk_core_disable_unprepare(parent);
2023 clk_core_disable_unprepare(old_parent);
2024 }
2025}
2026
2027static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
2028 u8 p_index)
2029{
2030 unsigned long flags;
2031 int ret = 0;
2032 struct clk_core *old_parent;
2033
2034 old_parent = __clk_set_parent_before(core, parent);
2035
2036 trace_clk_set_parent(core, parent);
2037
2038 /* change clock input source */
2039 if (parent && core->ops->set_parent)
2040 ret = core->ops->set_parent(core->hw, p_index);
2041
2042 trace_clk_set_parent_complete(core, parent);
2043
2044 if (ret) {
2045 flags = clk_enable_lock();
2046 clk_reparent(core, old_parent);
2047 clk_enable_unlock(flags);
2048
2049 __clk_set_parent_after(core, old_parent, parent);
2050
2051 return ret;
2052 }
2053
2054 __clk_set_parent_after(core, parent, old_parent);
2055
2056 return 0;
2057}
2058
2059/**
2060 * __clk_speculate_rates
2061 * @core: first clk in the subtree
2062 * @parent_rate: the "future" rate of clk's parent
2063 *
2064 * Walks the subtree of clks starting with clk, speculating rates as it
2065 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
2066 *
2067 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
2068 * pre-rate change notifications and returns early if no clks in the
2069 * subtree have subscribed to the notifications. Note that if a clk does not
2070 * implement the .recalc_rate callback then it is assumed that the clock will
2071 * take on the rate of its parent.
2072 */
2073static int __clk_speculate_rates(struct clk_core *core,
2074 unsigned long parent_rate)
2075{
2076 struct clk_core *child;
2077 unsigned long new_rate;
2078 int ret = NOTIFY_DONE;
2079
2080 lockdep_assert_held(&prepare_lock);
2081
2082 new_rate = clk_recalc(core, parent_rate);
2083
2084 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
2085 if (core->notifier_count)
2086 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
2087
2088 if (ret & NOTIFY_STOP_MASK) {
2089 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
2090 __func__, core->name, ret);
2091 goto out;
2092 }
2093
2094 hlist_for_each_entry(child, &core->children, child_node) {
2095 ret = __clk_speculate_rates(child, new_rate);
2096 if (ret & NOTIFY_STOP_MASK)
2097 break;
2098 }
2099
2100out:
2101 return ret;
2102}
2103
2104static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
2105 struct clk_core *new_parent, u8 p_index)
2106{
2107 struct clk_core *child;
2108
2109 core->new_rate = new_rate;
2110 core->new_parent = new_parent;
2111 core->new_parent_index = p_index;
2112 /* include clk in new parent's PRE_RATE_CHANGE notifications */
2113 core->new_child = NULL;
2114 if (new_parent && new_parent != core->parent)
2115 new_parent->new_child = core;
2116
2117 hlist_for_each_entry(child, &core->children, child_node) {
2118 child->new_rate = clk_recalc(child, new_rate);
2119 clk_calc_subtree(child, child->new_rate, NULL, 0);
2120 }
2121}
2122
2123/*
2124 * calculate the new rates returning the topmost clock that has to be
2125 * changed.
2126 */
2127static struct clk_core *clk_calc_new_rates(struct clk_core *core,
2128 unsigned long rate)
2129{
2130 struct clk_core *top = core;
2131 struct clk_core *old_parent, *parent;
2132 unsigned long best_parent_rate = 0;
2133 unsigned long new_rate;
2134 unsigned long min_rate;
2135 unsigned long max_rate;
2136 int p_index = 0;
2137 long ret;
2138
2139 /* sanity */
2140 if (IS_ERR_OR_NULL(core))
2141 return NULL;
2142
2143 /* save parent rate, if it exists */
2144 parent = old_parent = core->parent;
2145 if (parent)
2146 best_parent_rate = parent->rate;
2147
2148 clk_core_get_boundaries(core, &min_rate, &max_rate);
2149
2150 /* find the closest rate and parent clk/rate */
2151 if (clk_core_can_round(core)) {
2152 struct clk_rate_request req;
2153
2154 clk_core_init_rate_req(core, &req, rate);
2155
2156 trace_clk_rate_request_start(&req);
2157
2158 ret = clk_core_determine_round_nolock(core, &req);
2159 if (ret < 0)
2160 return NULL;
2161
2162 trace_clk_rate_request_done(&req);
2163
2164 best_parent_rate = req.best_parent_rate;
2165 new_rate = req.rate;
2166 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
2167
2168 if (new_rate < min_rate || new_rate > max_rate)
2169 return NULL;
2170 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
2171 /* pass-through clock without adjustable parent */
2172 core->new_rate = core->rate;
2173 return NULL;
2174 } else {
2175 /* pass-through clock with adjustable parent */
2176 top = clk_calc_new_rates(parent, rate);
2177 new_rate = parent->new_rate;
2178 goto out;
2179 }
2180
2181 /* some clocks must be gated to change parent */
2182 if (parent != old_parent &&
2183 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2184 pr_debug("%s: %s not gated but wants to reparent\n",
2185 __func__, core->name);
2186 return NULL;
2187 }
2188
2189 /* try finding the new parent index */
2190 if (parent && core->num_parents > 1) {
2191 p_index = clk_fetch_parent_index(core, parent);
2192 if (p_index < 0) {
2193 pr_debug("%s: clk %s can not be parent of clk %s\n",
2194 __func__, parent->name, core->name);
2195 return NULL;
2196 }
2197 }
2198
2199 if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2200 best_parent_rate != parent->rate)
2201 top = clk_calc_new_rates(parent, best_parent_rate);
2202
2203out:
2204 clk_calc_subtree(core, new_rate, parent, p_index);
2205
2206 return top;
2207}
2208
2209/*
2210 * Notify about rate changes in a subtree. Always walk down the whole tree
2211 * so that in case of an error we can walk down the whole tree again and
2212 * abort the change.
2213 */
2214static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2215 unsigned long event)
2216{
2217 struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2218 int ret = NOTIFY_DONE;
2219
2220 if (core->rate == core->new_rate)
2221 return NULL;
2222
2223 if (core->notifier_count) {
2224 ret = __clk_notify(core, event, core->rate, core->new_rate);
2225 if (ret & NOTIFY_STOP_MASK)
2226 fail_clk = core;
2227 }
2228
2229 hlist_for_each_entry(child, &core->children, child_node) {
2230 /* Skip children who will be reparented to another clock */
2231 if (child->new_parent && child->new_parent != core)
2232 continue;
2233 tmp_clk = clk_propagate_rate_change(child, event);
2234 if (tmp_clk)
2235 fail_clk = tmp_clk;
2236 }
2237
2238 /* handle the new child who might not be in core->children yet */
2239 if (core->new_child) {
2240 tmp_clk = clk_propagate_rate_change(core->new_child, event);
2241 if (tmp_clk)
2242 fail_clk = tmp_clk;
2243 }
2244
2245 return fail_clk;
2246}
2247
2248/*
2249 * walk down a subtree and set the new rates notifying the rate
2250 * change on the way
2251 */
2252static void clk_change_rate(struct clk_core *core)
2253{
2254 struct clk_core *child;
2255 struct hlist_node *tmp;
2256 unsigned long old_rate;
2257 unsigned long best_parent_rate = 0;
2258 bool skip_set_rate = false;
2259 struct clk_core *old_parent;
2260 struct clk_core *parent = NULL;
2261
2262 old_rate = core->rate;
2263
2264 if (core->new_parent) {
2265 parent = core->new_parent;
2266 best_parent_rate = core->new_parent->rate;
2267 } else if (core->parent) {
2268 parent = core->parent;
2269 best_parent_rate = core->parent->rate;
2270 }
2271
2272 if (clk_pm_runtime_get(core))
2273 return;
2274
2275 if (core->flags & CLK_SET_RATE_UNGATE) {
2276 clk_core_prepare(core);
2277 clk_core_enable_lock(core);
2278 }
2279
2280 if (core->new_parent && core->new_parent != core->parent) {
2281 old_parent = __clk_set_parent_before(core, core->new_parent);
2282 trace_clk_set_parent(core, core->new_parent);
2283
2284 if (core->ops->set_rate_and_parent) {
2285 skip_set_rate = true;
2286 core->ops->set_rate_and_parent(core->hw, core->new_rate,
2287 best_parent_rate,
2288 core->new_parent_index);
2289 } else if (core->ops->set_parent) {
2290 core->ops->set_parent(core->hw, core->new_parent_index);
2291 }
2292
2293 trace_clk_set_parent_complete(core, core->new_parent);
2294 __clk_set_parent_after(core, core->new_parent, old_parent);
2295 }
2296
2297 if (core->flags & CLK_OPS_PARENT_ENABLE)
2298 clk_core_prepare_enable(parent);
2299
2300 trace_clk_set_rate(core, core->new_rate);
2301
2302 if (!skip_set_rate && core->ops->set_rate)
2303 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2304
2305 trace_clk_set_rate_complete(core, core->new_rate);
2306
2307 core->rate = clk_recalc(core, best_parent_rate);
2308
2309 if (core->flags & CLK_SET_RATE_UNGATE) {
2310 clk_core_disable_lock(core);
2311 clk_core_unprepare(core);
2312 }
2313
2314 if (core->flags & CLK_OPS_PARENT_ENABLE)
2315 clk_core_disable_unprepare(parent);
2316
2317 if (core->notifier_count && old_rate != core->rate)
2318 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2319
2320 if (core->flags & CLK_RECALC_NEW_RATES)
2321 (void)clk_calc_new_rates(core, core->new_rate);
2322
2323 /*
2324 * Use safe iteration, as change_rate can actually swap parents
2325 * for certain clock types.
2326 */
2327 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2328 /* Skip children who will be reparented to another clock */
2329 if (child->new_parent && child->new_parent != core)
2330 continue;
2331 clk_change_rate(child);
2332 }
2333
2334 /* handle the new child who might not be in core->children yet */
2335 if (core->new_child)
2336 clk_change_rate(core->new_child);
2337
2338 clk_pm_runtime_put(core);
2339}
2340
2341static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2342 unsigned long req_rate)
2343{
2344 int ret, cnt;
2345 struct clk_rate_request req;
2346
2347 lockdep_assert_held(&prepare_lock);
2348
2349 if (!core)
2350 return 0;
2351
2352 /* simulate what the rate would be if it could be freely set */
2353 cnt = clk_core_rate_nuke_protect(core);
2354 if (cnt < 0)
2355 return cnt;
2356
2357 clk_core_init_rate_req(core, &req, req_rate);
2358
2359 trace_clk_rate_request_start(&req);
2360
2361 ret = clk_core_round_rate_nolock(core, &req);
2362
2363 trace_clk_rate_request_done(&req);
2364
2365 /* restore the protection */
2366 clk_core_rate_restore_protect(core, cnt);
2367
2368 return ret ? 0 : req.rate;
2369}
2370
2371static int clk_core_set_rate_nolock(struct clk_core *core,
2372 unsigned long req_rate)
2373{
2374 struct clk_core *top, *fail_clk;
2375 unsigned long rate;
2376 int ret;
2377
2378 if (!core)
2379 return 0;
2380
2381 rate = clk_core_req_round_rate_nolock(core, req_rate);
2382
2383 /* bail early if nothing to do */
2384 if (rate == clk_core_get_rate_nolock(core))
2385 return 0;
2386
2387 /* fail on a direct rate set of a protected provider */
2388 if (clk_core_rate_is_protected(core))
2389 return -EBUSY;
2390
2391 /* calculate new rates and get the topmost changed clock */
2392 top = clk_calc_new_rates(core, req_rate);
2393 if (!top)
2394 return -EINVAL;
2395
2396 ret = clk_pm_runtime_get(core);
2397 if (ret)
2398 return ret;
2399
2400 /* notify that we are about to change rates */
2401 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2402 if (fail_clk) {
2403 pr_debug("%s: failed to set %s rate\n", __func__,
2404 fail_clk->name);
2405 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2406 ret = -EBUSY;
2407 goto err;
2408 }
2409
2410 /* change the rates */
2411 clk_change_rate(top);
2412
2413 core->req_rate = req_rate;
2414err:
2415 clk_pm_runtime_put(core);
2416
2417 return ret;
2418}
2419
2420/**
2421 * clk_set_rate - specify a new rate for clk
2422 * @clk: the clk whose rate is being changed
2423 * @rate: the new rate for clk
2424 *
2425 * In the simplest case clk_set_rate will only adjust the rate of clk.
2426 *
2427 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2428 * propagate up to clk's parent; whether or not this happens depends on the
2429 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
2430 * after calling .round_rate then upstream parent propagation is ignored. If
2431 * *parent_rate comes back with a new rate for clk's parent then we propagate
2432 * up to clk's parent and set its rate. Upward propagation will continue
2433 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2434 * .round_rate stops requesting changes to clk's parent_rate.
2435 *
2436 * Rate changes are accomplished via tree traversal that also recalculates the
2437 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2438 *
2439 * Returns 0 on success, -EERROR otherwise.
2440 */
2441int clk_set_rate(struct clk *clk, unsigned long rate)
2442{
2443 int ret;
2444
2445 if (!clk)
2446 return 0;
2447
2448 /* prevent racing with updates to the clock topology */
2449 clk_prepare_lock();
2450
2451 if (clk->exclusive_count)
2452 clk_core_rate_unprotect(clk->core);
2453
2454 ret = clk_core_set_rate_nolock(clk->core, rate);
2455
2456 if (clk->exclusive_count)
2457 clk_core_rate_protect(clk->core);
2458
2459 clk_prepare_unlock();
2460
2461 return ret;
2462}
2463EXPORT_SYMBOL_GPL(clk_set_rate);
2464
2465/**
2466 * clk_set_rate_exclusive - specify a new rate and get exclusive control
2467 * @clk: the clk whose rate is being changed
2468 * @rate: the new rate for clk
2469 *
2470 * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2471 * within a critical section
2472 *
2473 * This can be used initially to ensure that at least 1 consumer is
2474 * satisfied when several consumers are competing for exclusivity over the
2475 * same clock provider.
2476 *
2477 * The exclusivity is not applied if setting the rate failed.
2478 *
2479 * Calls to clk_rate_exclusive_get() should be balanced with calls to
2480 * clk_rate_exclusive_put().
2481 *
2482 * Returns 0 on success, -EERROR otherwise.
2483 */
2484int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2485{
2486 int ret;
2487
2488 if (!clk)
2489 return 0;
2490
2491 /* prevent racing with updates to the clock topology */
2492 clk_prepare_lock();
2493
2494 /*
2495 * The temporary protection removal is not here, on purpose
2496 * This function is meant to be used instead of clk_rate_protect,
2497 * so before the consumer code path protect the clock provider
2498 */
2499
2500 ret = clk_core_set_rate_nolock(clk->core, rate);
2501 if (!ret) {
2502 clk_core_rate_protect(clk->core);
2503 clk->exclusive_count++;
2504 }
2505
2506 clk_prepare_unlock();
2507
2508 return ret;
2509}
2510EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2511
2512static int clk_set_rate_range_nolock(struct clk *clk,
2513 unsigned long min,
2514 unsigned long max)
2515{
2516 int ret = 0;
2517 unsigned long old_min, old_max, rate;
2518
2519 lockdep_assert_held(&prepare_lock);
2520
2521 if (!clk)
2522 return 0;
2523
2524 trace_clk_set_rate_range(clk->core, min, max);
2525
2526 if (min > max) {
2527 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2528 __func__, clk->core->name, clk->dev_id, clk->con_id,
2529 min, max);
2530 return -EINVAL;
2531 }
2532
2533 if (clk->exclusive_count)
2534 clk_core_rate_unprotect(clk->core);
2535
2536 /* Save the current values in case we need to rollback the change */
2537 old_min = clk->min_rate;
2538 old_max = clk->max_rate;
2539 clk->min_rate = min;
2540 clk->max_rate = max;
2541
2542 if (!clk_core_check_boundaries(clk->core, min, max)) {
2543 ret = -EINVAL;
2544 goto out;
2545 }
2546
2547 rate = clk->core->req_rate;
2548 if (clk->core->flags & CLK_GET_RATE_NOCACHE)
2549 rate = clk_core_get_rate_recalc(clk->core);
2550
2551 /*
2552 * Since the boundaries have been changed, let's give the
2553 * opportunity to the provider to adjust the clock rate based on
2554 * the new boundaries.
2555 *
2556 * We also need to handle the case where the clock is currently
2557 * outside of the boundaries. Clamping the last requested rate
2558 * to the current minimum and maximum will also handle this.
2559 *
2560 * FIXME:
2561 * There is a catch. It may fail for the usual reason (clock
2562 * broken, clock protected, etc) but also because:
2563 * - round_rate() was not favorable and fell on the wrong
2564 * side of the boundary
2565 * - the determine_rate() callback does not really check for
2566 * this corner case when determining the rate
2567 */
2568 rate = clamp(rate, min, max);
2569 ret = clk_core_set_rate_nolock(clk->core, rate);
2570 if (ret) {
2571 /* rollback the changes */
2572 clk->min_rate = old_min;
2573 clk->max_rate = old_max;
2574 }
2575
2576out:
2577 if (clk->exclusive_count)
2578 clk_core_rate_protect(clk->core);
2579
2580 return ret;
2581}
2582
2583/**
2584 * clk_set_rate_range - set a rate range for a clock source
2585 * @clk: clock source
2586 * @min: desired minimum clock rate in Hz, inclusive
2587 * @max: desired maximum clock rate in Hz, inclusive
2588 *
2589 * Return: 0 for success or negative errno on failure.
2590 */
2591int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2592{
2593 int ret;
2594
2595 if (!clk)
2596 return 0;
2597
2598 clk_prepare_lock();
2599
2600 ret = clk_set_rate_range_nolock(clk, min, max);
2601
2602 clk_prepare_unlock();
2603
2604 return ret;
2605}
2606EXPORT_SYMBOL_GPL(clk_set_rate_range);
2607
2608/**
2609 * clk_set_min_rate - set a minimum clock rate for a clock source
2610 * @clk: clock source
2611 * @rate: desired minimum clock rate in Hz, inclusive
2612 *
2613 * Returns success (0) or negative errno.
2614 */
2615int clk_set_min_rate(struct clk *clk, unsigned long rate)
2616{
2617 if (!clk)
2618 return 0;
2619
2620 trace_clk_set_min_rate(clk->core, rate);
2621
2622 return clk_set_rate_range(clk, rate, clk->max_rate);
2623}
2624EXPORT_SYMBOL_GPL(clk_set_min_rate);
2625
2626/**
2627 * clk_set_max_rate - set a maximum clock rate for a clock source
2628 * @clk: clock source
2629 * @rate: desired maximum clock rate in Hz, inclusive
2630 *
2631 * Returns success (0) or negative errno.
2632 */
2633int clk_set_max_rate(struct clk *clk, unsigned long rate)
2634{
2635 if (!clk)
2636 return 0;
2637
2638 trace_clk_set_max_rate(clk->core, rate);
2639
2640 return clk_set_rate_range(clk, clk->min_rate, rate);
2641}
2642EXPORT_SYMBOL_GPL(clk_set_max_rate);
2643
2644/**
2645 * clk_get_parent - return the parent of a clk
2646 * @clk: the clk whose parent gets returned
2647 *
2648 * Simply returns clk->parent. Returns NULL if clk is NULL.
2649 */
2650struct clk *clk_get_parent(struct clk *clk)
2651{
2652 struct clk *parent;
2653
2654 if (!clk)
2655 return NULL;
2656
2657 clk_prepare_lock();
2658 /* TODO: Create a per-user clk and change callers to call clk_put */
2659 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2660 clk_prepare_unlock();
2661
2662 return parent;
2663}
2664EXPORT_SYMBOL_GPL(clk_get_parent);
2665
2666static struct clk_core *__clk_init_parent(struct clk_core *core)
2667{
2668 u8 index = 0;
2669
2670 if (core->num_parents > 1 && core->ops->get_parent)
2671 index = core->ops->get_parent(core->hw);
2672
2673 return clk_core_get_parent_by_index(core, index);
2674}
2675
2676static void clk_core_reparent(struct clk_core *core,
2677 struct clk_core *new_parent)
2678{
2679 clk_reparent(core, new_parent);
2680 __clk_recalc_accuracies(core);
2681 __clk_recalc_rates(core, true, POST_RATE_CHANGE);
2682}
2683
2684void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2685{
2686 if (!hw)
2687 return;
2688
2689 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2690}
2691
2692/**
2693 * clk_has_parent - check if a clock is a possible parent for another
2694 * @clk: clock source
2695 * @parent: parent clock source
2696 *
2697 * This function can be used in drivers that need to check that a clock can be
2698 * the parent of another without actually changing the parent.
2699 *
2700 * Returns true if @parent is a possible parent for @clk, false otherwise.
2701 */
2702bool clk_has_parent(const struct clk *clk, const struct clk *parent)
2703{
2704 /* NULL clocks should be nops, so return success if either is NULL. */
2705 if (!clk || !parent)
2706 return true;
2707
2708 return clk_core_has_parent(clk->core, parent->core);
2709}
2710EXPORT_SYMBOL_GPL(clk_has_parent);
2711
2712static int clk_core_set_parent_nolock(struct clk_core *core,
2713 struct clk_core *parent)
2714{
2715 int ret = 0;
2716 int p_index = 0;
2717 unsigned long p_rate = 0;
2718
2719 lockdep_assert_held(&prepare_lock);
2720
2721 if (!core)
2722 return 0;
2723
2724 if (core->parent == parent)
2725 return 0;
2726
2727 /* verify ops for multi-parent clks */
2728 if (core->num_parents > 1 && !core->ops->set_parent)
2729 return -EPERM;
2730
2731 /* check that we are allowed to re-parent if the clock is in use */
2732 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2733 return -EBUSY;
2734
2735 if (clk_core_rate_is_protected(core))
2736 return -EBUSY;
2737
2738 /* try finding the new parent index */
2739 if (parent) {
2740 p_index = clk_fetch_parent_index(core, parent);
2741 if (p_index < 0) {
2742 pr_debug("%s: clk %s can not be parent of clk %s\n",
2743 __func__, parent->name, core->name);
2744 return p_index;
2745 }
2746 p_rate = parent->rate;
2747 }
2748
2749 ret = clk_pm_runtime_get(core);
2750 if (ret)
2751 return ret;
2752
2753 /* propagate PRE_RATE_CHANGE notifications */
2754 ret = __clk_speculate_rates(core, p_rate);
2755
2756 /* abort if a driver objects */
2757 if (ret & NOTIFY_STOP_MASK)
2758 goto runtime_put;
2759
2760 /* do the re-parent */
2761 ret = __clk_set_parent(core, parent, p_index);
2762
2763 /* propagate rate an accuracy recalculation accordingly */
2764 if (ret) {
2765 __clk_recalc_rates(core, true, ABORT_RATE_CHANGE);
2766 } else {
2767 __clk_recalc_rates(core, true, POST_RATE_CHANGE);
2768 __clk_recalc_accuracies(core);
2769 }
2770
2771runtime_put:
2772 clk_pm_runtime_put(core);
2773
2774 return ret;
2775}
2776
2777int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2778{
2779 return clk_core_set_parent_nolock(hw->core, parent->core);
2780}
2781EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2782
2783/**
2784 * clk_set_parent - switch the parent of a mux clk
2785 * @clk: the mux clk whose input we are switching
2786 * @parent: the new input to clk
2787 *
2788 * Re-parent clk to use parent as its new input source. If clk is in
2789 * prepared state, the clk will get enabled for the duration of this call. If
2790 * that's not acceptable for a specific clk (Eg: the consumer can't handle
2791 * that, the reparenting is glitchy in hardware, etc), use the
2792 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2793 *
2794 * After successfully changing clk's parent clk_set_parent will update the
2795 * clk topology, sysfs topology and propagate rate recalculation via
2796 * __clk_recalc_rates.
2797 *
2798 * Returns 0 on success, -EERROR otherwise.
2799 */
2800int clk_set_parent(struct clk *clk, struct clk *parent)
2801{
2802 int ret;
2803
2804 if (!clk)
2805 return 0;
2806
2807 clk_prepare_lock();
2808
2809 if (clk->exclusive_count)
2810 clk_core_rate_unprotect(clk->core);
2811
2812 ret = clk_core_set_parent_nolock(clk->core,
2813 parent ? parent->core : NULL);
2814
2815 if (clk->exclusive_count)
2816 clk_core_rate_protect(clk->core);
2817
2818 clk_prepare_unlock();
2819
2820 return ret;
2821}
2822EXPORT_SYMBOL_GPL(clk_set_parent);
2823
2824static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2825{
2826 int ret = -EINVAL;
2827
2828 lockdep_assert_held(&prepare_lock);
2829
2830 if (!core)
2831 return 0;
2832
2833 if (clk_core_rate_is_protected(core))
2834 return -EBUSY;
2835
2836 trace_clk_set_phase(core, degrees);
2837
2838 if (core->ops->set_phase) {
2839 ret = core->ops->set_phase(core->hw, degrees);
2840 if (!ret)
2841 core->phase = degrees;
2842 }
2843
2844 trace_clk_set_phase_complete(core, degrees);
2845
2846 return ret;
2847}
2848
2849/**
2850 * clk_set_phase - adjust the phase shift of a clock signal
2851 * @clk: clock signal source
2852 * @degrees: number of degrees the signal is shifted
2853 *
2854 * Shifts the phase of a clock signal by the specified
2855 * degrees. Returns 0 on success, -EERROR otherwise.
2856 *
2857 * This function makes no distinction about the input or reference
2858 * signal that we adjust the clock signal phase against. For example
2859 * phase locked-loop clock signal generators we may shift phase with
2860 * respect to feedback clock signal input, but for other cases the
2861 * clock phase may be shifted with respect to some other, unspecified
2862 * signal.
2863 *
2864 * Additionally the concept of phase shift does not propagate through
2865 * the clock tree hierarchy, which sets it apart from clock rates and
2866 * clock accuracy. A parent clock phase attribute does not have an
2867 * impact on the phase attribute of a child clock.
2868 */
2869int clk_set_phase(struct clk *clk, int degrees)
2870{
2871 int ret;
2872
2873 if (!clk)
2874 return 0;
2875
2876 /* sanity check degrees */
2877 degrees %= 360;
2878 if (degrees < 0)
2879 degrees += 360;
2880
2881 clk_prepare_lock();
2882
2883 if (clk->exclusive_count)
2884 clk_core_rate_unprotect(clk->core);
2885
2886 ret = clk_core_set_phase_nolock(clk->core, degrees);
2887
2888 if (clk->exclusive_count)
2889 clk_core_rate_protect(clk->core);
2890
2891 clk_prepare_unlock();
2892
2893 return ret;
2894}
2895EXPORT_SYMBOL_GPL(clk_set_phase);
2896
2897static int clk_core_get_phase(struct clk_core *core)
2898{
2899 int ret;
2900
2901 lockdep_assert_held(&prepare_lock);
2902 if (!core->ops->get_phase)
2903 return 0;
2904
2905 /* Always try to update cached phase if possible */
2906 ret = core->ops->get_phase(core->hw);
2907 if (ret >= 0)
2908 core->phase = ret;
2909
2910 return ret;
2911}
2912
2913/**
2914 * clk_get_phase - return the phase shift of a clock signal
2915 * @clk: clock signal source
2916 *
2917 * Returns the phase shift of a clock node in degrees, otherwise returns
2918 * -EERROR.
2919 */
2920int clk_get_phase(struct clk *clk)
2921{
2922 int ret;
2923
2924 if (!clk)
2925 return 0;
2926
2927 clk_prepare_lock();
2928 ret = clk_core_get_phase(clk->core);
2929 clk_prepare_unlock();
2930
2931 return ret;
2932}
2933EXPORT_SYMBOL_GPL(clk_get_phase);
2934
2935static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2936{
2937 /* Assume a default value of 50% */
2938 core->duty.num = 1;
2939 core->duty.den = 2;
2940}
2941
2942static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2943
2944static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2945{
2946 struct clk_duty *duty = &core->duty;
2947 int ret = 0;
2948
2949 if (!core->ops->get_duty_cycle)
2950 return clk_core_update_duty_cycle_parent_nolock(core);
2951
2952 ret = core->ops->get_duty_cycle(core->hw, duty);
2953 if (ret)
2954 goto reset;
2955
2956 /* Don't trust the clock provider too much */
2957 if (duty->den == 0 || duty->num > duty->den) {
2958 ret = -EINVAL;
2959 goto reset;
2960 }
2961
2962 return 0;
2963
2964reset:
2965 clk_core_reset_duty_cycle_nolock(core);
2966 return ret;
2967}
2968
2969static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2970{
2971 int ret = 0;
2972
2973 if (core->parent &&
2974 core->flags & CLK_DUTY_CYCLE_PARENT) {
2975 ret = clk_core_update_duty_cycle_nolock(core->parent);
2976 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2977 } else {
2978 clk_core_reset_duty_cycle_nolock(core);
2979 }
2980
2981 return ret;
2982}
2983
2984static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2985 struct clk_duty *duty);
2986
2987static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2988 struct clk_duty *duty)
2989{
2990 int ret;
2991
2992 lockdep_assert_held(&prepare_lock);
2993
2994 if (clk_core_rate_is_protected(core))
2995 return -EBUSY;
2996
2997 trace_clk_set_duty_cycle(core, duty);
2998
2999 if (!core->ops->set_duty_cycle)
3000 return clk_core_set_duty_cycle_parent_nolock(core, duty);
3001
3002 ret = core->ops->set_duty_cycle(core->hw, duty);
3003 if (!ret)
3004 memcpy(&core->duty, duty, sizeof(*duty));
3005
3006 trace_clk_set_duty_cycle_complete(core, duty);
3007
3008 return ret;
3009}
3010
3011static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3012 struct clk_duty *duty)
3013{
3014 int ret = 0;
3015
3016 if (core->parent &&
3017 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
3018 ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
3019 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3020 }
3021
3022 return ret;
3023}
3024
3025/**
3026 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
3027 * @clk: clock signal source
3028 * @num: numerator of the duty cycle ratio to be applied
3029 * @den: denominator of the duty cycle ratio to be applied
3030 *
3031 * Apply the duty cycle ratio if the ratio is valid and the clock can
3032 * perform this operation
3033 *
3034 * Returns (0) on success, a negative errno otherwise.
3035 */
3036int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
3037{
3038 int ret;
3039 struct clk_duty duty;
3040
3041 if (!clk)
3042 return 0;
3043
3044 /* sanity check the ratio */
3045 if (den == 0 || num > den)
3046 return -EINVAL;
3047
3048 duty.num = num;
3049 duty.den = den;
3050
3051 clk_prepare_lock();
3052
3053 if (clk->exclusive_count)
3054 clk_core_rate_unprotect(clk->core);
3055
3056 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
3057
3058 if (clk->exclusive_count)
3059 clk_core_rate_protect(clk->core);
3060
3061 clk_prepare_unlock();
3062
3063 return ret;
3064}
3065EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
3066
3067static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
3068 unsigned int scale)
3069{
3070 struct clk_duty *duty = &core->duty;
3071 int ret;
3072
3073 clk_prepare_lock();
3074
3075 ret = clk_core_update_duty_cycle_nolock(core);
3076 if (!ret)
3077 ret = mult_frac(scale, duty->num, duty->den);
3078
3079 clk_prepare_unlock();
3080
3081 return ret;
3082}
3083
3084/**
3085 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
3086 * @clk: clock signal source
3087 * @scale: scaling factor to be applied to represent the ratio as an integer
3088 *
3089 * Returns the duty cycle ratio of a clock node multiplied by the provided
3090 * scaling factor, or negative errno on error.
3091 */
3092int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
3093{
3094 if (!clk)
3095 return 0;
3096
3097 return clk_core_get_scaled_duty_cycle(clk->core, scale);
3098}
3099EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
3100
3101/**
3102 * clk_is_match - check if two clk's point to the same hardware clock
3103 * @p: clk compared against q
3104 * @q: clk compared against p
3105 *
3106 * Returns true if the two struct clk pointers both point to the same hardware
3107 * clock node. Put differently, returns true if struct clk *p and struct clk *q
3108 * share the same struct clk_core object.
3109 *
3110 * Returns false otherwise. Note that two NULL clks are treated as matching.
3111 */
3112bool clk_is_match(const struct clk *p, const struct clk *q)
3113{
3114 /* trivial case: identical struct clk's or both NULL */
3115 if (p == q)
3116 return true;
3117
3118 /* true if clk->core pointers match. Avoid dereferencing garbage */
3119 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
3120 if (p->core == q->core)
3121 return true;
3122
3123 return false;
3124}
3125EXPORT_SYMBOL_GPL(clk_is_match);
3126
3127/*** debugfs support ***/
3128
3129#ifdef CONFIG_DEBUG_FS
3130#include <linux/debugfs.h>
3131
3132static struct dentry *rootdir;
3133static int inited = 0;
3134static DEFINE_MUTEX(clk_debug_lock);
3135static HLIST_HEAD(clk_debug_list);
3136
3137static struct hlist_head *orphan_list[] = {
3138 &clk_orphan_list,
3139 NULL,
3140};
3141
3142static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
3143 int level)
3144{
3145 int phase;
3146
3147 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
3148 level * 3 + 1, "",
3149 30 - level * 3, c->name,
3150 c->enable_count, c->prepare_count, c->protect_count,
3151 clk_core_get_rate_recalc(c),
3152 clk_core_get_accuracy_recalc(c));
3153
3154 phase = clk_core_get_phase(c);
3155 if (phase >= 0)
3156 seq_printf(s, "%5d", phase);
3157 else
3158 seq_puts(s, "-----");
3159
3160 seq_printf(s, " %6d", clk_core_get_scaled_duty_cycle(c, 100000));
3161
3162 if (c->ops->is_enabled)
3163 seq_printf(s, " %9c\n", clk_core_is_enabled(c) ? 'Y' : 'N');
3164 else if (!c->ops->enable)
3165 seq_printf(s, " %9c\n", 'Y');
3166 else
3167 seq_printf(s, " %9c\n", '?');
3168}
3169
3170static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
3171 int level)
3172{
3173 struct clk_core *child;
3174
3175 clk_pm_runtime_get(c);
3176 clk_summary_show_one(s, c, level);
3177 clk_pm_runtime_put(c);
3178
3179 hlist_for_each_entry(child, &c->children, child_node)
3180 clk_summary_show_subtree(s, child, level + 1);
3181}
3182
3183static int clk_summary_show(struct seq_file *s, void *data)
3184{
3185 struct clk_core *c;
3186 struct hlist_head **lists = (struct hlist_head **)s->private;
3187
3188 seq_puts(s, " enable prepare protect duty hardware\n");
3189 seq_puts(s, " clock count count count rate accuracy phase cycle enable\n");
3190 seq_puts(s, "-------------------------------------------------------------------------------------------------------\n");
3191
3192 clk_prepare_lock();
3193
3194 for (; *lists; lists++)
3195 hlist_for_each_entry(c, *lists, child_node)
3196 clk_summary_show_subtree(s, c, 0);
3197
3198 clk_prepare_unlock();
3199
3200 return 0;
3201}
3202DEFINE_SHOW_ATTRIBUTE(clk_summary);
3203
3204static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3205{
3206 int phase;
3207 unsigned long min_rate, max_rate;
3208
3209 clk_core_get_boundaries(c, &min_rate, &max_rate);
3210
3211 /* This should be JSON format, i.e. elements separated with a comma */
3212 seq_printf(s, "\"%s\": { ", c->name);
3213 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3214 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3215 seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3216 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3217 seq_printf(s, "\"min_rate\": %lu,", min_rate);
3218 seq_printf(s, "\"max_rate\": %lu,", max_rate);
3219 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3220 phase = clk_core_get_phase(c);
3221 if (phase >= 0)
3222 seq_printf(s, "\"phase\": %d,", phase);
3223 seq_printf(s, "\"duty_cycle\": %u",
3224 clk_core_get_scaled_duty_cycle(c, 100000));
3225}
3226
3227static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3228{
3229 struct clk_core *child;
3230
3231 clk_dump_one(s, c, level);
3232
3233 hlist_for_each_entry(child, &c->children, child_node) {
3234 seq_putc(s, ',');
3235 clk_dump_subtree(s, child, level + 1);
3236 }
3237
3238 seq_putc(s, '}');
3239}
3240
3241static int clk_dump_show(struct seq_file *s, void *data)
3242{
3243 struct clk_core *c;
3244 bool first_node = true;
3245 struct hlist_head **lists = (struct hlist_head **)s->private;
3246
3247 seq_putc(s, '{');
3248 clk_prepare_lock();
3249
3250 for (; *lists; lists++) {
3251 hlist_for_each_entry(c, *lists, child_node) {
3252 if (!first_node)
3253 seq_putc(s, ',');
3254 first_node = false;
3255 clk_dump_subtree(s, c, 0);
3256 }
3257 }
3258
3259 clk_prepare_unlock();
3260
3261 seq_puts(s, "}\n");
3262 return 0;
3263}
3264DEFINE_SHOW_ATTRIBUTE(clk_dump);
3265
3266#undef CLOCK_ALLOW_WRITE_DEBUGFS
3267#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3268/*
3269 * This can be dangerous, therefore don't provide any real compile time
3270 * configuration option for this feature.
3271 * People who want to use this will need to modify the source code directly.
3272 */
3273static int clk_rate_set(void *data, u64 val)
3274{
3275 struct clk_core *core = data;
3276 int ret;
3277
3278 clk_prepare_lock();
3279 ret = clk_core_set_rate_nolock(core, val);
3280 clk_prepare_unlock();
3281
3282 return ret;
3283}
3284
3285#define clk_rate_mode 0644
3286
3287static int clk_prepare_enable_set(void *data, u64 val)
3288{
3289 struct clk_core *core = data;
3290 int ret = 0;
3291
3292 if (val)
3293 ret = clk_prepare_enable(core->hw->clk);
3294 else
3295 clk_disable_unprepare(core->hw->clk);
3296
3297 return ret;
3298}
3299
3300static int clk_prepare_enable_get(void *data, u64 *val)
3301{
3302 struct clk_core *core = data;
3303
3304 *val = core->enable_count && core->prepare_count;
3305 return 0;
3306}
3307
3308DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3309 clk_prepare_enable_set, "%llu\n");
3310
3311#else
3312#define clk_rate_set NULL
3313#define clk_rate_mode 0444
3314#endif
3315
3316static int clk_rate_get(void *data, u64 *val)
3317{
3318 struct clk_core *core = data;
3319
3320 clk_prepare_lock();
3321 *val = clk_core_get_rate_recalc(core);
3322 clk_prepare_unlock();
3323
3324 return 0;
3325}
3326
3327DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3328
3329static const struct {
3330 unsigned long flag;
3331 const char *name;
3332} clk_flags[] = {
3333#define ENTRY(f) { f, #f }
3334 ENTRY(CLK_SET_RATE_GATE),
3335 ENTRY(CLK_SET_PARENT_GATE),
3336 ENTRY(CLK_SET_RATE_PARENT),
3337 ENTRY(CLK_IGNORE_UNUSED),
3338 ENTRY(CLK_GET_RATE_NOCACHE),
3339 ENTRY(CLK_SET_RATE_NO_REPARENT),
3340 ENTRY(CLK_GET_ACCURACY_NOCACHE),
3341 ENTRY(CLK_RECALC_NEW_RATES),
3342 ENTRY(CLK_SET_RATE_UNGATE),
3343 ENTRY(CLK_IS_CRITICAL),
3344 ENTRY(CLK_OPS_PARENT_ENABLE),
3345 ENTRY(CLK_DUTY_CYCLE_PARENT),
3346#undef ENTRY
3347};
3348
3349static int clk_flags_show(struct seq_file *s, void *data)
3350{
3351 struct clk_core *core = s->private;
3352 unsigned long flags = core->flags;
3353 unsigned int i;
3354
3355 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3356 if (flags & clk_flags[i].flag) {
3357 seq_printf(s, "%s\n", clk_flags[i].name);
3358 flags &= ~clk_flags[i].flag;
3359 }
3360 }
3361 if (flags) {
3362 /* Unknown flags */
3363 seq_printf(s, "0x%lx\n", flags);
3364 }
3365
3366 return 0;
3367}
3368DEFINE_SHOW_ATTRIBUTE(clk_flags);
3369
3370static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3371 unsigned int i, char terminator)
3372{
3373 struct clk_core *parent;
3374
3375 /*
3376 * Go through the following options to fetch a parent's name.
3377 *
3378 * 1. Fetch the registered parent clock and use its name
3379 * 2. Use the global (fallback) name if specified
3380 * 3. Use the local fw_name if provided
3381 * 4. Fetch parent clock's clock-output-name if DT index was set
3382 *
3383 * This may still fail in some cases, such as when the parent is
3384 * specified directly via a struct clk_hw pointer, but it isn't
3385 * registered (yet).
3386 */
3387 parent = clk_core_get_parent_by_index(core, i);
3388 if (parent)
3389 seq_puts(s, parent->name);
3390 else if (core->parents[i].name)
3391 seq_puts(s, core->parents[i].name);
3392 else if (core->parents[i].fw_name)
3393 seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3394 else if (core->parents[i].index >= 0)
3395 seq_puts(s,
3396 of_clk_get_parent_name(core->of_node,
3397 core->parents[i].index));
3398 else
3399 seq_puts(s, "(missing)");
3400
3401 seq_putc(s, terminator);
3402}
3403
3404static int possible_parents_show(struct seq_file *s, void *data)
3405{
3406 struct clk_core *core = s->private;
3407 int i;
3408
3409 for (i = 0; i < core->num_parents - 1; i++)
3410 possible_parent_show(s, core, i, ' ');
3411
3412 possible_parent_show(s, core, i, '\n');
3413
3414 return 0;
3415}
3416DEFINE_SHOW_ATTRIBUTE(possible_parents);
3417
3418static int current_parent_show(struct seq_file *s, void *data)
3419{
3420 struct clk_core *core = s->private;
3421
3422 if (core->parent)
3423 seq_printf(s, "%s\n", core->parent->name);
3424
3425 return 0;
3426}
3427DEFINE_SHOW_ATTRIBUTE(current_parent);
3428
3429#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3430static ssize_t current_parent_write(struct file *file, const char __user *ubuf,
3431 size_t count, loff_t *ppos)
3432{
3433 struct seq_file *s = file->private_data;
3434 struct clk_core *core = s->private;
3435 struct clk_core *parent;
3436 u8 idx;
3437 int err;
3438
3439 err = kstrtou8_from_user(ubuf, count, 0, &idx);
3440 if (err < 0)
3441 return err;
3442
3443 parent = clk_core_get_parent_by_index(core, idx);
3444 if (!parent)
3445 return -ENOENT;
3446
3447 clk_prepare_lock();
3448 err = clk_core_set_parent_nolock(core, parent);
3449 clk_prepare_unlock();
3450 if (err)
3451 return err;
3452
3453 return count;
3454}
3455
3456static const struct file_operations current_parent_rw_fops = {
3457 .open = current_parent_open,
3458 .write = current_parent_write,
3459 .read = seq_read,
3460 .llseek = seq_lseek,
3461 .release = single_release,
3462};
3463#endif
3464
3465static int clk_duty_cycle_show(struct seq_file *s, void *data)
3466{
3467 struct clk_core *core = s->private;
3468 struct clk_duty *duty = &core->duty;
3469
3470 seq_printf(s, "%u/%u\n", duty->num, duty->den);
3471
3472 return 0;
3473}
3474DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3475
3476static int clk_min_rate_show(struct seq_file *s, void *data)
3477{
3478 struct clk_core *core = s->private;
3479 unsigned long min_rate, max_rate;
3480
3481 clk_prepare_lock();
3482 clk_core_get_boundaries(core, &min_rate, &max_rate);
3483 clk_prepare_unlock();
3484 seq_printf(s, "%lu\n", min_rate);
3485
3486 return 0;
3487}
3488DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3489
3490static int clk_max_rate_show(struct seq_file *s, void *data)
3491{
3492 struct clk_core *core = s->private;
3493 unsigned long min_rate, max_rate;
3494
3495 clk_prepare_lock();
3496 clk_core_get_boundaries(core, &min_rate, &max_rate);
3497 clk_prepare_unlock();
3498 seq_printf(s, "%lu\n", max_rate);
3499
3500 return 0;
3501}
3502DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3503
3504static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3505{
3506 struct dentry *root;
3507
3508 if (!core || !pdentry)
3509 return;
3510
3511 root = debugfs_create_dir(core->name, pdentry);
3512 core->dentry = root;
3513
3514 debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3515 &clk_rate_fops);
3516 debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3517 debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3518 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3519 debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3520 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3521 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3522 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3523 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3524 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3525 debugfs_create_file("clk_duty_cycle", 0444, root, core,
3526 &clk_duty_cycle_fops);
3527#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3528 debugfs_create_file("clk_prepare_enable", 0644, root, core,
3529 &clk_prepare_enable_fops);
3530
3531 if (core->num_parents > 1)
3532 debugfs_create_file("clk_parent", 0644, root, core,
3533 ¤t_parent_rw_fops);
3534 else
3535#endif
3536 if (core->num_parents > 0)
3537 debugfs_create_file("clk_parent", 0444, root, core,
3538 ¤t_parent_fops);
3539
3540 if (core->num_parents > 1)
3541 debugfs_create_file("clk_possible_parents", 0444, root, core,
3542 &possible_parents_fops);
3543
3544 if (core->ops->debug_init)
3545 core->ops->debug_init(core->hw, core->dentry);
3546}
3547
3548/**
3549 * clk_debug_register - add a clk node to the debugfs clk directory
3550 * @core: the clk being added to the debugfs clk directory
3551 *
3552 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3553 * initialized. Otherwise it bails out early since the debugfs clk directory
3554 * will be created lazily by clk_debug_init as part of a late_initcall.
3555 */
3556static void clk_debug_register(struct clk_core *core)
3557{
3558 mutex_lock(&clk_debug_lock);
3559 hlist_add_head(&core->debug_node, &clk_debug_list);
3560 if (inited)
3561 clk_debug_create_one(core, rootdir);
3562 mutex_unlock(&clk_debug_lock);
3563}
3564
3565 /**
3566 * clk_debug_unregister - remove a clk node from the debugfs clk directory
3567 * @core: the clk being removed from the debugfs clk directory
3568 *
3569 * Dynamically removes a clk and all its child nodes from the
3570 * debugfs clk directory if clk->dentry points to debugfs created by
3571 * clk_debug_register in __clk_core_init.
3572 */
3573static void clk_debug_unregister(struct clk_core *core)
3574{
3575 mutex_lock(&clk_debug_lock);
3576 hlist_del_init(&core->debug_node);
3577 debugfs_remove_recursive(core->dentry);
3578 core->dentry = NULL;
3579 mutex_unlock(&clk_debug_lock);
3580}
3581
3582/**
3583 * clk_debug_init - lazily populate the debugfs clk directory
3584 *
3585 * clks are often initialized very early during boot before memory can be
3586 * dynamically allocated and well before debugfs is setup. This function
3587 * populates the debugfs clk directory once at boot-time when we know that
3588 * debugfs is setup. It should only be called once at boot-time, all other clks
3589 * added dynamically will be done so with clk_debug_register.
3590 */
3591static int __init clk_debug_init(void)
3592{
3593 struct clk_core *core;
3594
3595#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3596 pr_warn("\n");
3597 pr_warn("********************************************************************\n");
3598 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n");
3599 pr_warn("** **\n");
3600 pr_warn("** WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
3601 pr_warn("** **\n");
3602 pr_warn("** This means that this kernel is built to expose clk operations **\n");
3603 pr_warn("** such as parent or rate setting, enabling, disabling, etc. **\n");
3604 pr_warn("** to userspace, which may compromise security on your system. **\n");
3605 pr_warn("** **\n");
3606 pr_warn("** If you see this message and you are not debugging the **\n");
3607 pr_warn("** kernel, report this immediately to your vendor! **\n");
3608 pr_warn("** **\n");
3609 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n");
3610 pr_warn("********************************************************************\n");
3611#endif
3612
3613 rootdir = debugfs_create_dir("clk", NULL);
3614
3615 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3616 &clk_summary_fops);
3617 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3618 &clk_dump_fops);
3619 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3620 &clk_summary_fops);
3621 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3622 &clk_dump_fops);
3623
3624 mutex_lock(&clk_debug_lock);
3625 hlist_for_each_entry(core, &clk_debug_list, debug_node)
3626 clk_debug_create_one(core, rootdir);
3627
3628 inited = 1;
3629 mutex_unlock(&clk_debug_lock);
3630
3631 return 0;
3632}
3633late_initcall(clk_debug_init);
3634#else
3635static inline void clk_debug_register(struct clk_core *core) { }
3636static inline void clk_debug_unregister(struct clk_core *core)
3637{
3638}
3639#endif
3640
3641static void clk_core_reparent_orphans_nolock(void)
3642{
3643 struct clk_core *orphan;
3644 struct hlist_node *tmp2;
3645
3646 /*
3647 * walk the list of orphan clocks and reparent any that newly finds a
3648 * parent.
3649 */
3650 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3651 struct clk_core *parent = __clk_init_parent(orphan);
3652
3653 /*
3654 * We need to use __clk_set_parent_before() and _after() to
3655 * properly migrate any prepare/enable count of the orphan
3656 * clock. This is important for CLK_IS_CRITICAL clocks, which
3657 * are enabled during init but might not have a parent yet.
3658 */
3659 if (parent) {
3660 /* update the clk tree topology */
3661 __clk_set_parent_before(orphan, parent);
3662 __clk_set_parent_after(orphan, parent, NULL);
3663 __clk_recalc_accuracies(orphan);
3664 __clk_recalc_rates(orphan, true, 0);
3665
3666 /*
3667 * __clk_init_parent() will set the initial req_rate to
3668 * 0 if the clock doesn't have clk_ops::recalc_rate and
3669 * is an orphan when it's registered.
3670 *
3671 * 'req_rate' is used by clk_set_rate_range() and
3672 * clk_put() to trigger a clk_set_rate() call whenever
3673 * the boundaries are modified. Let's make sure
3674 * 'req_rate' is set to something non-zero so that
3675 * clk_set_rate_range() doesn't drop the frequency.
3676 */
3677 orphan->req_rate = orphan->rate;
3678 }
3679 }
3680}
3681
3682/**
3683 * __clk_core_init - initialize the data structures in a struct clk_core
3684 * @core: clk_core being initialized
3685 *
3686 * Initializes the lists in struct clk_core, queries the hardware for the
3687 * parent and rate and sets them both.
3688 */
3689static int __clk_core_init(struct clk_core *core)
3690{
3691 int ret;
3692 struct clk_core *parent;
3693 unsigned long rate;
3694 int phase;
3695
3696 clk_prepare_lock();
3697
3698 /*
3699 * Set hw->core after grabbing the prepare_lock to synchronize with
3700 * callers of clk_core_fill_parent_index() where we treat hw->core
3701 * being NULL as the clk not being registered yet. This is crucial so
3702 * that clks aren't parented until their parent is fully registered.
3703 */
3704 core->hw->core = core;
3705
3706 ret = clk_pm_runtime_get(core);
3707 if (ret)
3708 goto unlock;
3709
3710 /* check to see if a clock with this name is already registered */
3711 if (clk_core_lookup(core->name)) {
3712 pr_debug("%s: clk %s already initialized\n",
3713 __func__, core->name);
3714 ret = -EEXIST;
3715 goto out;
3716 }
3717
3718 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */
3719 if (core->ops->set_rate &&
3720 !((core->ops->round_rate || core->ops->determine_rate) &&
3721 core->ops->recalc_rate)) {
3722 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3723 __func__, core->name);
3724 ret = -EINVAL;
3725 goto out;
3726 }
3727
3728 if (core->ops->set_parent && !core->ops->get_parent) {
3729 pr_err("%s: %s must implement .get_parent & .set_parent\n",
3730 __func__, core->name);
3731 ret = -EINVAL;
3732 goto out;
3733 }
3734
3735 if (core->num_parents > 1 && !core->ops->get_parent) {
3736 pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3737 __func__, core->name);
3738 ret = -EINVAL;
3739 goto out;
3740 }
3741
3742 if (core->ops->set_rate_and_parent &&
3743 !(core->ops->set_parent && core->ops->set_rate)) {
3744 pr_err("%s: %s must implement .set_parent & .set_rate\n",
3745 __func__, core->name);
3746 ret = -EINVAL;
3747 goto out;
3748 }
3749
3750 /*
3751 * optional platform-specific magic
3752 *
3753 * The .init callback is not used by any of the basic clock types, but
3754 * exists for weird hardware that must perform initialization magic for
3755 * CCF to get an accurate view of clock for any other callbacks. It may
3756 * also be used needs to perform dynamic allocations. Such allocation
3757 * must be freed in the terminate() callback.
3758 * This callback shall not be used to initialize the parameters state,
3759 * such as rate, parent, etc ...
3760 *
3761 * If it exist, this callback should called before any other callback of
3762 * the clock
3763 */
3764 if (core->ops->init) {
3765 ret = core->ops->init(core->hw);
3766 if (ret)
3767 goto out;
3768 }
3769
3770 parent = core->parent = __clk_init_parent(core);
3771
3772 /*
3773 * Populate core->parent if parent has already been clk_core_init'd. If
3774 * parent has not yet been clk_core_init'd then place clk in the orphan
3775 * list. If clk doesn't have any parents then place it in the root
3776 * clk list.
3777 *
3778 * Every time a new clk is clk_init'd then we walk the list of orphan
3779 * clocks and re-parent any that are children of the clock currently
3780 * being clk_init'd.
3781 */
3782 if (parent) {
3783 hlist_add_head(&core->child_node, &parent->children);
3784 core->orphan = parent->orphan;
3785 } else if (!core->num_parents) {
3786 hlist_add_head(&core->child_node, &clk_root_list);
3787 core->orphan = false;
3788 } else {
3789 hlist_add_head(&core->child_node, &clk_orphan_list);
3790 core->orphan = true;
3791 }
3792
3793 /*
3794 * Set clk's accuracy. The preferred method is to use
3795 * .recalc_accuracy. For simple clocks and lazy developers the default
3796 * fallback is to use the parent's accuracy. If a clock doesn't have a
3797 * parent (or is orphaned) then accuracy is set to zero (perfect
3798 * clock).
3799 */
3800 if (core->ops->recalc_accuracy)
3801 core->accuracy = core->ops->recalc_accuracy(core->hw,
3802 clk_core_get_accuracy_no_lock(parent));
3803 else if (parent)
3804 core->accuracy = parent->accuracy;
3805 else
3806 core->accuracy = 0;
3807
3808 /*
3809 * Set clk's phase by clk_core_get_phase() caching the phase.
3810 * Since a phase is by definition relative to its parent, just
3811 * query the current clock phase, or just assume it's in phase.
3812 */
3813 phase = clk_core_get_phase(core);
3814 if (phase < 0) {
3815 ret = phase;
3816 pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3817 core->name);
3818 goto out;
3819 }
3820
3821 /*
3822 * Set clk's duty cycle.
3823 */
3824 clk_core_update_duty_cycle_nolock(core);
3825
3826 /*
3827 * Set clk's rate. The preferred method is to use .recalc_rate. For
3828 * simple clocks and lazy developers the default fallback is to use the
3829 * parent's rate. If a clock doesn't have a parent (or is orphaned)
3830 * then rate is set to zero.
3831 */
3832 if (core->ops->recalc_rate)
3833 rate = core->ops->recalc_rate(core->hw,
3834 clk_core_get_rate_nolock(parent));
3835 else if (parent)
3836 rate = parent->rate;
3837 else
3838 rate = 0;
3839 core->rate = core->req_rate = rate;
3840
3841 /*
3842 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3843 * don't get accidentally disabled when walking the orphan tree and
3844 * reparenting clocks
3845 */
3846 if (core->flags & CLK_IS_CRITICAL) {
3847 ret = clk_core_prepare(core);
3848 if (ret) {
3849 pr_warn("%s: critical clk '%s' failed to prepare\n",
3850 __func__, core->name);
3851 goto out;
3852 }
3853
3854 ret = clk_core_enable_lock(core);
3855 if (ret) {
3856 pr_warn("%s: critical clk '%s' failed to enable\n",
3857 __func__, core->name);
3858 clk_core_unprepare(core);
3859 goto out;
3860 }
3861 }
3862
3863 clk_core_reparent_orphans_nolock();
3864
3865 kref_init(&core->ref);
3866out:
3867 clk_pm_runtime_put(core);
3868unlock:
3869 if (ret) {
3870 hlist_del_init(&core->child_node);
3871 core->hw->core = NULL;
3872 }
3873
3874 clk_prepare_unlock();
3875
3876 if (!ret)
3877 clk_debug_register(core);
3878
3879 return ret;
3880}
3881
3882/**
3883 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3884 * @core: clk to add consumer to
3885 * @clk: consumer to link to a clk
3886 */
3887static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3888{
3889 clk_prepare_lock();
3890 hlist_add_head(&clk->clks_node, &core->clks);
3891 clk_prepare_unlock();
3892}
3893
3894/**
3895 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3896 * @clk: consumer to unlink
3897 */
3898static void clk_core_unlink_consumer(struct clk *clk)
3899{
3900 lockdep_assert_held(&prepare_lock);
3901 hlist_del(&clk->clks_node);
3902}
3903
3904/**
3905 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3906 * @core: clk to allocate a consumer for
3907 * @dev_id: string describing device name
3908 * @con_id: connection ID string on device
3909 *
3910 * Returns: clk consumer left unlinked from the consumer list
3911 */
3912static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3913 const char *con_id)
3914{
3915 struct clk *clk;
3916
3917 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3918 if (!clk)
3919 return ERR_PTR(-ENOMEM);
3920
3921 clk->core = core;
3922 clk->dev_id = dev_id;
3923 clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3924 clk->max_rate = ULONG_MAX;
3925
3926 return clk;
3927}
3928
3929/**
3930 * free_clk - Free a clk consumer
3931 * @clk: clk consumer to free
3932 *
3933 * Note, this assumes the clk has been unlinked from the clk_core consumer
3934 * list.
3935 */
3936static void free_clk(struct clk *clk)
3937{
3938 kfree_const(clk->con_id);
3939 kfree(clk);
3940}
3941
3942/**
3943 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3944 * a clk_hw
3945 * @dev: clk consumer device
3946 * @hw: clk_hw associated with the clk being consumed
3947 * @dev_id: string describing device name
3948 * @con_id: connection ID string on device
3949 *
3950 * This is the main function used to create a clk pointer for use by clk
3951 * consumers. It connects a consumer to the clk_core and clk_hw structures
3952 * used by the framework and clk provider respectively.
3953 */
3954struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3955 const char *dev_id, const char *con_id)
3956{
3957 struct clk *clk;
3958 struct clk_core *core;
3959
3960 /* This is to allow this function to be chained to others */
3961 if (IS_ERR_OR_NULL(hw))
3962 return ERR_CAST(hw);
3963
3964 core = hw->core;
3965 clk = alloc_clk(core, dev_id, con_id);
3966 if (IS_ERR(clk))
3967 return clk;
3968 clk->dev = dev;
3969
3970 if (!try_module_get(core->owner)) {
3971 free_clk(clk);
3972 return ERR_PTR(-ENOENT);
3973 }
3974
3975 kref_get(&core->ref);
3976 clk_core_link_consumer(core, clk);
3977
3978 return clk;
3979}
3980
3981/**
3982 * clk_hw_get_clk - get clk consumer given an clk_hw
3983 * @hw: clk_hw associated with the clk being consumed
3984 * @con_id: connection ID string on device
3985 *
3986 * Returns: new clk consumer
3987 * This is the function to be used by providers which need
3988 * to get a consumer clk and act on the clock element
3989 * Calls to this function must be balanced with calls clk_put()
3990 */
3991struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
3992{
3993 struct device *dev = hw->core->dev;
3994 const char *name = dev ? dev_name(dev) : NULL;
3995
3996 return clk_hw_create_clk(dev, hw, name, con_id);
3997}
3998EXPORT_SYMBOL(clk_hw_get_clk);
3999
4000static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
4001{
4002 const char *dst;
4003
4004 if (!src) {
4005 if (must_exist)
4006 return -EINVAL;
4007 return 0;
4008 }
4009
4010 *dst_p = dst = kstrdup_const(src, GFP_KERNEL);
4011 if (!dst)
4012 return -ENOMEM;
4013
4014 return 0;
4015}
4016
4017static int clk_core_populate_parent_map(struct clk_core *core,
4018 const struct clk_init_data *init)
4019{
4020 u8 num_parents = init->num_parents;
4021 const char * const *parent_names = init->parent_names;
4022 const struct clk_hw **parent_hws = init->parent_hws;
4023 const struct clk_parent_data *parent_data = init->parent_data;
4024 int i, ret = 0;
4025 struct clk_parent_map *parents, *parent;
4026
4027 if (!num_parents)
4028 return 0;
4029
4030 /*
4031 * Avoid unnecessary string look-ups of clk_core's possible parents by
4032 * having a cache of names/clk_hw pointers to clk_core pointers.
4033 */
4034 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
4035 core->parents = parents;
4036 if (!parents)
4037 return -ENOMEM;
4038
4039 /* Copy everything over because it might be __initdata */
4040 for (i = 0, parent = parents; i < num_parents; i++, parent++) {
4041 parent->index = -1;
4042 if (parent_names) {
4043 /* throw a WARN if any entries are NULL */
4044 WARN(!parent_names[i],
4045 "%s: invalid NULL in %s's .parent_names\n",
4046 __func__, core->name);
4047 ret = clk_cpy_name(&parent->name, parent_names[i],
4048 true);
4049 } else if (parent_data) {
4050 parent->hw = parent_data[i].hw;
4051 parent->index = parent_data[i].index;
4052 ret = clk_cpy_name(&parent->fw_name,
4053 parent_data[i].fw_name, false);
4054 if (!ret)
4055 ret = clk_cpy_name(&parent->name,
4056 parent_data[i].name,
4057 false);
4058 } else if (parent_hws) {
4059 parent->hw = parent_hws[i];
4060 } else {
4061 ret = -EINVAL;
4062 WARN(1, "Must specify parents if num_parents > 0\n");
4063 }
4064
4065 if (ret) {
4066 do {
4067 kfree_const(parents[i].name);
4068 kfree_const(parents[i].fw_name);
4069 } while (--i >= 0);
4070 kfree(parents);
4071
4072 return ret;
4073 }
4074 }
4075
4076 return 0;
4077}
4078
4079static void clk_core_free_parent_map(struct clk_core *core)
4080{
4081 int i = core->num_parents;
4082
4083 if (!core->num_parents)
4084 return;
4085
4086 while (--i >= 0) {
4087 kfree_const(core->parents[i].name);
4088 kfree_const(core->parents[i].fw_name);
4089 }
4090
4091 kfree(core->parents);
4092}
4093
4094static struct clk *
4095__clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
4096{
4097 int ret;
4098 struct clk_core *core;
4099 const struct clk_init_data *init = hw->init;
4100
4101 /*
4102 * The init data is not supposed to be used outside of registration path.
4103 * Set it to NULL so that provider drivers can't use it either and so that
4104 * we catch use of hw->init early on in the core.
4105 */
4106 hw->init = NULL;
4107
4108 core = kzalloc(sizeof(*core), GFP_KERNEL);
4109 if (!core) {
4110 ret = -ENOMEM;
4111 goto fail_out;
4112 }
4113
4114 core->name = kstrdup_const(init->name, GFP_KERNEL);
4115 if (!core->name) {
4116 ret = -ENOMEM;
4117 goto fail_name;
4118 }
4119
4120 if (WARN_ON(!init->ops)) {
4121 ret = -EINVAL;
4122 goto fail_ops;
4123 }
4124 core->ops = init->ops;
4125
4126 if (dev && pm_runtime_enabled(dev))
4127 core->rpm_enabled = true;
4128 core->dev = dev;
4129 core->of_node = np;
4130 if (dev && dev->driver)
4131 core->owner = dev->driver->owner;
4132 core->hw = hw;
4133 core->flags = init->flags;
4134 core->num_parents = init->num_parents;
4135 core->min_rate = 0;
4136 core->max_rate = ULONG_MAX;
4137
4138 ret = clk_core_populate_parent_map(core, init);
4139 if (ret)
4140 goto fail_parents;
4141
4142 INIT_HLIST_HEAD(&core->clks);
4143
4144 /*
4145 * Don't call clk_hw_create_clk() here because that would pin the
4146 * provider module to itself and prevent it from ever being removed.
4147 */
4148 hw->clk = alloc_clk(core, NULL, NULL);
4149 if (IS_ERR(hw->clk)) {
4150 ret = PTR_ERR(hw->clk);
4151 goto fail_create_clk;
4152 }
4153
4154 clk_core_link_consumer(core, hw->clk);
4155
4156 ret = __clk_core_init(core);
4157 if (!ret)
4158 return hw->clk;
4159
4160 clk_prepare_lock();
4161 clk_core_unlink_consumer(hw->clk);
4162 clk_prepare_unlock();
4163
4164 free_clk(hw->clk);
4165 hw->clk = NULL;
4166
4167fail_create_clk:
4168 clk_core_free_parent_map(core);
4169fail_parents:
4170fail_ops:
4171 kfree_const(core->name);
4172fail_name:
4173 kfree(core);
4174fail_out:
4175 return ERR_PTR(ret);
4176}
4177
4178/**
4179 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
4180 * @dev: Device to get device node of
4181 *
4182 * Return: device node pointer of @dev, or the device node pointer of
4183 * @dev->parent if dev doesn't have a device node, or NULL if neither
4184 * @dev or @dev->parent have a device node.
4185 */
4186static struct device_node *dev_or_parent_of_node(struct device *dev)
4187{
4188 struct device_node *np;
4189
4190 if (!dev)
4191 return NULL;
4192
4193 np = dev_of_node(dev);
4194 if (!np)
4195 np = dev_of_node(dev->parent);
4196
4197 return np;
4198}
4199
4200/**
4201 * clk_register - allocate a new clock, register it and return an opaque cookie
4202 * @dev: device that is registering this clock
4203 * @hw: link to hardware-specific clock data
4204 *
4205 * clk_register is the *deprecated* interface for populating the clock tree with
4206 * new clock nodes. Use clk_hw_register() instead.
4207 *
4208 * Returns: a pointer to the newly allocated struct clk which
4209 * cannot be dereferenced by driver code but may be used in conjunction with the
4210 * rest of the clock API. In the event of an error clk_register will return an
4211 * error code; drivers must test for an error code after calling clk_register.
4212 */
4213struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4214{
4215 return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4216}
4217EXPORT_SYMBOL_GPL(clk_register);
4218
4219/**
4220 * clk_hw_register - register a clk_hw and return an error code
4221 * @dev: device that is registering this clock
4222 * @hw: link to hardware-specific clock data
4223 *
4224 * clk_hw_register is the primary interface for populating the clock tree with
4225 * new clock nodes. It returns an integer equal to zero indicating success or
4226 * less than zero indicating failure. Drivers must test for an error code after
4227 * calling clk_hw_register().
4228 */
4229int clk_hw_register(struct device *dev, struct clk_hw *hw)
4230{
4231 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4232 hw));
4233}
4234EXPORT_SYMBOL_GPL(clk_hw_register);
4235
4236/*
4237 * of_clk_hw_register - register a clk_hw and return an error code
4238 * @node: device_node of device that is registering this clock
4239 * @hw: link to hardware-specific clock data
4240 *
4241 * of_clk_hw_register() is the primary interface for populating the clock tree
4242 * with new clock nodes when a struct device is not available, but a struct
4243 * device_node is. It returns an integer equal to zero indicating success or
4244 * less than zero indicating failure. Drivers must test for an error code after
4245 * calling of_clk_hw_register().
4246 */
4247int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4248{
4249 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4250}
4251EXPORT_SYMBOL_GPL(of_clk_hw_register);
4252
4253/* Free memory allocated for a clock. */
4254static void __clk_release(struct kref *ref)
4255{
4256 struct clk_core *core = container_of(ref, struct clk_core, ref);
4257
4258 lockdep_assert_held(&prepare_lock);
4259
4260 clk_core_free_parent_map(core);
4261 kfree_const(core->name);
4262 kfree(core);
4263}
4264
4265/*
4266 * Empty clk_ops for unregistered clocks. These are used temporarily
4267 * after clk_unregister() was called on a clock and until last clock
4268 * consumer calls clk_put() and the struct clk object is freed.
4269 */
4270static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4271{
4272 return -ENXIO;
4273}
4274
4275static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4276{
4277 WARN_ON_ONCE(1);
4278}
4279
4280static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4281 unsigned long parent_rate)
4282{
4283 return -ENXIO;
4284}
4285
4286static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4287{
4288 return -ENXIO;
4289}
4290
4291static const struct clk_ops clk_nodrv_ops = {
4292 .enable = clk_nodrv_prepare_enable,
4293 .disable = clk_nodrv_disable_unprepare,
4294 .prepare = clk_nodrv_prepare_enable,
4295 .unprepare = clk_nodrv_disable_unprepare,
4296 .set_rate = clk_nodrv_set_rate,
4297 .set_parent = clk_nodrv_set_parent,
4298};
4299
4300static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4301 const struct clk_core *target)
4302{
4303 int i;
4304 struct clk_core *child;
4305
4306 for (i = 0; i < root->num_parents; i++)
4307 if (root->parents[i].core == target)
4308 root->parents[i].core = NULL;
4309
4310 hlist_for_each_entry(child, &root->children, child_node)
4311 clk_core_evict_parent_cache_subtree(child, target);
4312}
4313
4314/* Remove this clk from all parent caches */
4315static void clk_core_evict_parent_cache(struct clk_core *core)
4316{
4317 const struct hlist_head **lists;
4318 struct clk_core *root;
4319
4320 lockdep_assert_held(&prepare_lock);
4321
4322 for (lists = all_lists; *lists; lists++)
4323 hlist_for_each_entry(root, *lists, child_node)
4324 clk_core_evict_parent_cache_subtree(root, core);
4325
4326}
4327
4328/**
4329 * clk_unregister - unregister a currently registered clock
4330 * @clk: clock to unregister
4331 */
4332void clk_unregister(struct clk *clk)
4333{
4334 unsigned long flags;
4335 const struct clk_ops *ops;
4336
4337 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4338 return;
4339
4340 clk_debug_unregister(clk->core);
4341
4342 clk_prepare_lock();
4343
4344 ops = clk->core->ops;
4345 if (ops == &clk_nodrv_ops) {
4346 pr_err("%s: unregistered clock: %s\n", __func__,
4347 clk->core->name);
4348 goto unlock;
4349 }
4350 /*
4351 * Assign empty clock ops for consumers that might still hold
4352 * a reference to this clock.
4353 */
4354 flags = clk_enable_lock();
4355 clk->core->ops = &clk_nodrv_ops;
4356 clk_enable_unlock(flags);
4357
4358 if (ops->terminate)
4359 ops->terminate(clk->core->hw);
4360
4361 if (!hlist_empty(&clk->core->children)) {
4362 struct clk_core *child;
4363 struct hlist_node *t;
4364
4365 /* Reparent all children to the orphan list. */
4366 hlist_for_each_entry_safe(child, t, &clk->core->children,
4367 child_node)
4368 clk_core_set_parent_nolock(child, NULL);
4369 }
4370
4371 clk_core_evict_parent_cache(clk->core);
4372
4373 hlist_del_init(&clk->core->child_node);
4374
4375 if (clk->core->prepare_count)
4376 pr_warn("%s: unregistering prepared clock: %s\n",
4377 __func__, clk->core->name);
4378
4379 if (clk->core->protect_count)
4380 pr_warn("%s: unregistering protected clock: %s\n",
4381 __func__, clk->core->name);
4382
4383 kref_put(&clk->core->ref, __clk_release);
4384 free_clk(clk);
4385unlock:
4386 clk_prepare_unlock();
4387}
4388EXPORT_SYMBOL_GPL(clk_unregister);
4389
4390/**
4391 * clk_hw_unregister - unregister a currently registered clk_hw
4392 * @hw: hardware-specific clock data to unregister
4393 */
4394void clk_hw_unregister(struct clk_hw *hw)
4395{
4396 clk_unregister(hw->clk);
4397}
4398EXPORT_SYMBOL_GPL(clk_hw_unregister);
4399
4400static void devm_clk_unregister_cb(struct device *dev, void *res)
4401{
4402 clk_unregister(*(struct clk **)res);
4403}
4404
4405static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4406{
4407 clk_hw_unregister(*(struct clk_hw **)res);
4408}
4409
4410/**
4411 * devm_clk_register - resource managed clk_register()
4412 * @dev: device that is registering this clock
4413 * @hw: link to hardware-specific clock data
4414 *
4415 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4416 *
4417 * Clocks returned from this function are automatically clk_unregister()ed on
4418 * driver detach. See clk_register() for more information.
4419 */
4420struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4421{
4422 struct clk *clk;
4423 struct clk **clkp;
4424
4425 clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4426 if (!clkp)
4427 return ERR_PTR(-ENOMEM);
4428
4429 clk = clk_register(dev, hw);
4430 if (!IS_ERR(clk)) {
4431 *clkp = clk;
4432 devres_add(dev, clkp);
4433 } else {
4434 devres_free(clkp);
4435 }
4436
4437 return clk;
4438}
4439EXPORT_SYMBOL_GPL(devm_clk_register);
4440
4441/**
4442 * devm_clk_hw_register - resource managed clk_hw_register()
4443 * @dev: device that is registering this clock
4444 * @hw: link to hardware-specific clock data
4445 *
4446 * Managed clk_hw_register(). Clocks registered by this function are
4447 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4448 * for more information.
4449 */
4450int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4451{
4452 struct clk_hw **hwp;
4453 int ret;
4454
4455 hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4456 if (!hwp)
4457 return -ENOMEM;
4458
4459 ret = clk_hw_register(dev, hw);
4460 if (!ret) {
4461 *hwp = hw;
4462 devres_add(dev, hwp);
4463 } else {
4464 devres_free(hwp);
4465 }
4466
4467 return ret;
4468}
4469EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4470
4471static void devm_clk_release(struct device *dev, void *res)
4472{
4473 clk_put(*(struct clk **)res);
4474}
4475
4476/**
4477 * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4478 * @dev: device that is registering this clock
4479 * @hw: clk_hw associated with the clk being consumed
4480 * @con_id: connection ID string on device
4481 *
4482 * Managed clk_hw_get_clk(). Clocks got with this function are
4483 * automatically clk_put() on driver detach. See clk_put()
4484 * for more information.
4485 */
4486struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4487 const char *con_id)
4488{
4489 struct clk *clk;
4490 struct clk **clkp;
4491
4492 /* This should not happen because it would mean we have drivers
4493 * passing around clk_hw pointers instead of having the caller use
4494 * proper clk_get() style APIs
4495 */
4496 WARN_ON_ONCE(dev != hw->core->dev);
4497
4498 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4499 if (!clkp)
4500 return ERR_PTR(-ENOMEM);
4501
4502 clk = clk_hw_get_clk(hw, con_id);
4503 if (!IS_ERR(clk)) {
4504 *clkp = clk;
4505 devres_add(dev, clkp);
4506 } else {
4507 devres_free(clkp);
4508 }
4509
4510 return clk;
4511}
4512EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4513
4514/*
4515 * clkdev helpers
4516 */
4517
4518void __clk_put(struct clk *clk)
4519{
4520 struct module *owner;
4521
4522 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4523 return;
4524
4525 clk_prepare_lock();
4526
4527 /*
4528 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4529 * given user should be balanced with calls to clk_rate_exclusive_put()
4530 * and by that same consumer
4531 */
4532 if (WARN_ON(clk->exclusive_count)) {
4533 /* We voiced our concern, let's sanitize the situation */
4534 clk->core->protect_count -= (clk->exclusive_count - 1);
4535 clk_core_rate_unprotect(clk->core);
4536 clk->exclusive_count = 0;
4537 }
4538
4539 hlist_del(&clk->clks_node);
4540
4541 /* If we had any boundaries on that clock, let's drop them. */
4542 if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX)
4543 clk_set_rate_range_nolock(clk, 0, ULONG_MAX);
4544
4545 owner = clk->core->owner;
4546 kref_put(&clk->core->ref, __clk_release);
4547
4548 clk_prepare_unlock();
4549
4550 module_put(owner);
4551
4552 free_clk(clk);
4553}
4554
4555/*** clk rate change notifiers ***/
4556
4557/**
4558 * clk_notifier_register - add a clk rate change notifier
4559 * @clk: struct clk * to watch
4560 * @nb: struct notifier_block * with callback info
4561 *
4562 * Request notification when clk's rate changes. This uses an SRCU
4563 * notifier because we want it to block and notifier unregistrations are
4564 * uncommon. The callbacks associated with the notifier must not
4565 * re-enter into the clk framework by calling any top-level clk APIs;
4566 * this will cause a nested prepare_lock mutex.
4567 *
4568 * In all notification cases (pre, post and abort rate change) the original
4569 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4570 * and the new frequency is passed via struct clk_notifier_data.new_rate.
4571 *
4572 * clk_notifier_register() must be called from non-atomic context.
4573 * Returns -EINVAL if called with null arguments, -ENOMEM upon
4574 * allocation failure; otherwise, passes along the return value of
4575 * srcu_notifier_chain_register().
4576 */
4577int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4578{
4579 struct clk_notifier *cn;
4580 int ret = -ENOMEM;
4581
4582 if (!clk || !nb)
4583 return -EINVAL;
4584
4585 clk_prepare_lock();
4586
4587 /* search the list of notifiers for this clk */
4588 list_for_each_entry(cn, &clk_notifier_list, node)
4589 if (cn->clk == clk)
4590 goto found;
4591
4592 /* if clk wasn't in the notifier list, allocate new clk_notifier */
4593 cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4594 if (!cn)
4595 goto out;
4596
4597 cn->clk = clk;
4598 srcu_init_notifier_head(&cn->notifier_head);
4599
4600 list_add(&cn->node, &clk_notifier_list);
4601
4602found:
4603 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4604
4605 clk->core->notifier_count++;
4606
4607out:
4608 clk_prepare_unlock();
4609
4610 return ret;
4611}
4612EXPORT_SYMBOL_GPL(clk_notifier_register);
4613
4614/**
4615 * clk_notifier_unregister - remove a clk rate change notifier
4616 * @clk: struct clk *
4617 * @nb: struct notifier_block * with callback info
4618 *
4619 * Request no further notification for changes to 'clk' and frees memory
4620 * allocated in clk_notifier_register.
4621 *
4622 * Returns -EINVAL if called with null arguments; otherwise, passes
4623 * along the return value of srcu_notifier_chain_unregister().
4624 */
4625int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4626{
4627 struct clk_notifier *cn;
4628 int ret = -ENOENT;
4629
4630 if (!clk || !nb)
4631 return -EINVAL;
4632
4633 clk_prepare_lock();
4634
4635 list_for_each_entry(cn, &clk_notifier_list, node) {
4636 if (cn->clk == clk) {
4637 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4638
4639 clk->core->notifier_count--;
4640
4641 /* XXX the notifier code should handle this better */
4642 if (!cn->notifier_head.head) {
4643 srcu_cleanup_notifier_head(&cn->notifier_head);
4644 list_del(&cn->node);
4645 kfree(cn);
4646 }
4647 break;
4648 }
4649 }
4650
4651 clk_prepare_unlock();
4652
4653 return ret;
4654}
4655EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4656
4657struct clk_notifier_devres {
4658 struct clk *clk;
4659 struct notifier_block *nb;
4660};
4661
4662static void devm_clk_notifier_release(struct device *dev, void *res)
4663{
4664 struct clk_notifier_devres *devres = res;
4665
4666 clk_notifier_unregister(devres->clk, devres->nb);
4667}
4668
4669int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4670 struct notifier_block *nb)
4671{
4672 struct clk_notifier_devres *devres;
4673 int ret;
4674
4675 devres = devres_alloc(devm_clk_notifier_release,
4676 sizeof(*devres), GFP_KERNEL);
4677
4678 if (!devres)
4679 return -ENOMEM;
4680
4681 ret = clk_notifier_register(clk, nb);
4682 if (!ret) {
4683 devres->clk = clk;
4684 devres->nb = nb;
4685 } else {
4686 devres_free(devres);
4687 }
4688
4689 return ret;
4690}
4691EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4692
4693#ifdef CONFIG_OF
4694static void clk_core_reparent_orphans(void)
4695{
4696 clk_prepare_lock();
4697 clk_core_reparent_orphans_nolock();
4698 clk_prepare_unlock();
4699}
4700
4701/**
4702 * struct of_clk_provider - Clock provider registration structure
4703 * @link: Entry in global list of clock providers
4704 * @node: Pointer to device tree node of clock provider
4705 * @get: Get clock callback. Returns NULL or a struct clk for the
4706 * given clock specifier
4707 * @get_hw: Get clk_hw callback. Returns NULL, ERR_PTR or a
4708 * struct clk_hw for the given clock specifier
4709 * @data: context pointer to be passed into @get callback
4710 */
4711struct of_clk_provider {
4712 struct list_head link;
4713
4714 struct device_node *node;
4715 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4716 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4717 void *data;
4718};
4719
4720extern struct of_device_id __clk_of_table;
4721static const struct of_device_id __clk_of_table_sentinel
4722 __used __section("__clk_of_table_end");
4723
4724static LIST_HEAD(of_clk_providers);
4725static DEFINE_MUTEX(of_clk_mutex);
4726
4727struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4728 void *data)
4729{
4730 return data;
4731}
4732EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4733
4734struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4735{
4736 return data;
4737}
4738EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4739
4740struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4741{
4742 struct clk_onecell_data *clk_data = data;
4743 unsigned int idx = clkspec->args[0];
4744
4745 if (idx >= clk_data->clk_num) {
4746 pr_err("%s: invalid clock index %u\n", __func__, idx);
4747 return ERR_PTR(-EINVAL);
4748 }
4749
4750 return clk_data->clks[idx];
4751}
4752EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4753
4754struct clk_hw *
4755of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4756{
4757 struct clk_hw_onecell_data *hw_data = data;
4758 unsigned int idx = clkspec->args[0];
4759
4760 if (idx >= hw_data->num) {
4761 pr_err("%s: invalid index %u\n", __func__, idx);
4762 return ERR_PTR(-EINVAL);
4763 }
4764
4765 return hw_data->hws[idx];
4766}
4767EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4768
4769/**
4770 * of_clk_add_provider() - Register a clock provider for a node
4771 * @np: Device node pointer associated with clock provider
4772 * @clk_src_get: callback for decoding clock
4773 * @data: context pointer for @clk_src_get callback.
4774 *
4775 * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4776 */
4777int of_clk_add_provider(struct device_node *np,
4778 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4779 void *data),
4780 void *data)
4781{
4782 struct of_clk_provider *cp;
4783 int ret;
4784
4785 if (!np)
4786 return 0;
4787
4788 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4789 if (!cp)
4790 return -ENOMEM;
4791
4792 cp->node = of_node_get(np);
4793 cp->data = data;
4794 cp->get = clk_src_get;
4795
4796 mutex_lock(&of_clk_mutex);
4797 list_add(&cp->link, &of_clk_providers);
4798 mutex_unlock(&of_clk_mutex);
4799 pr_debug("Added clock from %pOF\n", np);
4800
4801 clk_core_reparent_orphans();
4802
4803 ret = of_clk_set_defaults(np, true);
4804 if (ret < 0)
4805 of_clk_del_provider(np);
4806
4807 fwnode_dev_initialized(&np->fwnode, true);
4808
4809 return ret;
4810}
4811EXPORT_SYMBOL_GPL(of_clk_add_provider);
4812
4813/**
4814 * of_clk_add_hw_provider() - Register a clock provider for a node
4815 * @np: Device node pointer associated with clock provider
4816 * @get: callback for decoding clk_hw
4817 * @data: context pointer for @get callback.
4818 */
4819int of_clk_add_hw_provider(struct device_node *np,
4820 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4821 void *data),
4822 void *data)
4823{
4824 struct of_clk_provider *cp;
4825 int ret;
4826
4827 if (!np)
4828 return 0;
4829
4830 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4831 if (!cp)
4832 return -ENOMEM;
4833
4834 cp->node = of_node_get(np);
4835 cp->data = data;
4836 cp->get_hw = get;
4837
4838 mutex_lock(&of_clk_mutex);
4839 list_add(&cp->link, &of_clk_providers);
4840 mutex_unlock(&of_clk_mutex);
4841 pr_debug("Added clk_hw provider from %pOF\n", np);
4842
4843 clk_core_reparent_orphans();
4844
4845 ret = of_clk_set_defaults(np, true);
4846 if (ret < 0)
4847 of_clk_del_provider(np);
4848
4849 fwnode_dev_initialized(&np->fwnode, true);
4850
4851 return ret;
4852}
4853EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4854
4855static void devm_of_clk_release_provider(struct device *dev, void *res)
4856{
4857 of_clk_del_provider(*(struct device_node **)res);
4858}
4859
4860/*
4861 * We allow a child device to use its parent device as the clock provider node
4862 * for cases like MFD sub-devices where the child device driver wants to use
4863 * devm_*() APIs but not list the device in DT as a sub-node.
4864 */
4865static struct device_node *get_clk_provider_node(struct device *dev)
4866{
4867 struct device_node *np, *parent_np;
4868
4869 np = dev->of_node;
4870 parent_np = dev->parent ? dev->parent->of_node : NULL;
4871
4872 if (!of_find_property(np, "#clock-cells", NULL))
4873 if (of_find_property(parent_np, "#clock-cells", NULL))
4874 np = parent_np;
4875
4876 return np;
4877}
4878
4879/**
4880 * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4881 * @dev: Device acting as the clock provider (used for DT node and lifetime)
4882 * @get: callback for decoding clk_hw
4883 * @data: context pointer for @get callback
4884 *
4885 * Registers clock provider for given device's node. If the device has no DT
4886 * node or if the device node lacks of clock provider information (#clock-cells)
4887 * then the parent device's node is scanned for this information. If parent node
4888 * has the #clock-cells then it is used in registration. Provider is
4889 * automatically released at device exit.
4890 *
4891 * Return: 0 on success or an errno on failure.
4892 */
4893int devm_of_clk_add_hw_provider(struct device *dev,
4894 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4895 void *data),
4896 void *data)
4897{
4898 struct device_node **ptr, *np;
4899 int ret;
4900
4901 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4902 GFP_KERNEL);
4903 if (!ptr)
4904 return -ENOMEM;
4905
4906 np = get_clk_provider_node(dev);
4907 ret = of_clk_add_hw_provider(np, get, data);
4908 if (!ret) {
4909 *ptr = np;
4910 devres_add(dev, ptr);
4911 } else {
4912 devres_free(ptr);
4913 }
4914
4915 return ret;
4916}
4917EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4918
4919/**
4920 * of_clk_del_provider() - Remove a previously registered clock provider
4921 * @np: Device node pointer associated with clock provider
4922 */
4923void of_clk_del_provider(struct device_node *np)
4924{
4925 struct of_clk_provider *cp;
4926
4927 if (!np)
4928 return;
4929
4930 mutex_lock(&of_clk_mutex);
4931 list_for_each_entry(cp, &of_clk_providers, link) {
4932 if (cp->node == np) {
4933 list_del(&cp->link);
4934 fwnode_dev_initialized(&np->fwnode, false);
4935 of_node_put(cp->node);
4936 kfree(cp);
4937 break;
4938 }
4939 }
4940 mutex_unlock(&of_clk_mutex);
4941}
4942EXPORT_SYMBOL_GPL(of_clk_del_provider);
4943
4944/**
4945 * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4946 * @np: device node to parse clock specifier from
4947 * @index: index of phandle to parse clock out of. If index < 0, @name is used
4948 * @name: clock name to find and parse. If name is NULL, the index is used
4949 * @out_args: Result of parsing the clock specifier
4950 *
4951 * Parses a device node's "clocks" and "clock-names" properties to find the
4952 * phandle and cells for the index or name that is desired. The resulting clock
4953 * specifier is placed into @out_args, or an errno is returned when there's a
4954 * parsing error. The @index argument is ignored if @name is non-NULL.
4955 *
4956 * Example:
4957 *
4958 * phandle1: clock-controller@1 {
4959 * #clock-cells = <2>;
4960 * }
4961 *
4962 * phandle2: clock-controller@2 {
4963 * #clock-cells = <1>;
4964 * }
4965 *
4966 * clock-consumer@3 {
4967 * clocks = <&phandle1 1 2 &phandle2 3>;
4968 * clock-names = "name1", "name2";
4969 * }
4970 *
4971 * To get a device_node for `clock-controller@2' node you may call this
4972 * function a few different ways:
4973 *
4974 * of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4975 * of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4976 * of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4977 *
4978 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4979 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4980 * the "clock-names" property of @np.
4981 */
4982static int of_parse_clkspec(const struct device_node *np, int index,
4983 const char *name, struct of_phandle_args *out_args)
4984{
4985 int ret = -ENOENT;
4986
4987 /* Walk up the tree of devices looking for a clock property that matches */
4988 while (np) {
4989 /*
4990 * For named clocks, first look up the name in the
4991 * "clock-names" property. If it cannot be found, then index
4992 * will be an error code and of_parse_phandle_with_args() will
4993 * return -EINVAL.
4994 */
4995 if (name)
4996 index = of_property_match_string(np, "clock-names", name);
4997 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4998 index, out_args);
4999 if (!ret)
5000 break;
5001 if (name && index >= 0)
5002 break;
5003
5004 /*
5005 * No matching clock found on this node. If the parent node
5006 * has a "clock-ranges" property, then we can try one of its
5007 * clocks.
5008 */
5009 np = np->parent;
5010 if (np && !of_get_property(np, "clock-ranges", NULL))
5011 break;
5012 index = 0;
5013 }
5014
5015 return ret;
5016}
5017
5018static struct clk_hw *
5019__of_clk_get_hw_from_provider(struct of_clk_provider *provider,
5020 struct of_phandle_args *clkspec)
5021{
5022 struct clk *clk;
5023
5024 if (provider->get_hw)
5025 return provider->get_hw(clkspec, provider->data);
5026
5027 clk = provider->get(clkspec, provider->data);
5028 if (IS_ERR(clk))
5029 return ERR_CAST(clk);
5030 return __clk_get_hw(clk);
5031}
5032
5033static struct clk_hw *
5034of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
5035{
5036 struct of_clk_provider *provider;
5037 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
5038
5039 if (!clkspec)
5040 return ERR_PTR(-EINVAL);
5041
5042 mutex_lock(&of_clk_mutex);
5043 list_for_each_entry(provider, &of_clk_providers, link) {
5044 if (provider->node == clkspec->np) {
5045 hw = __of_clk_get_hw_from_provider(provider, clkspec);
5046 if (!IS_ERR(hw))
5047 break;
5048 }
5049 }
5050 mutex_unlock(&of_clk_mutex);
5051
5052 return hw;
5053}
5054
5055/**
5056 * of_clk_get_from_provider() - Lookup a clock from a clock provider
5057 * @clkspec: pointer to a clock specifier data structure
5058 *
5059 * This function looks up a struct clk from the registered list of clock
5060 * providers, an input is a clock specifier data structure as returned
5061 * from the of_parse_phandle_with_args() function call.
5062 */
5063struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
5064{
5065 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
5066
5067 return clk_hw_create_clk(NULL, hw, NULL, __func__);
5068}
5069EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
5070
5071struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
5072 const char *con_id)
5073{
5074 int ret;
5075 struct clk_hw *hw;
5076 struct of_phandle_args clkspec;
5077
5078 ret = of_parse_clkspec(np, index, con_id, &clkspec);
5079 if (ret)
5080 return ERR_PTR(ret);
5081
5082 hw = of_clk_get_hw_from_clkspec(&clkspec);
5083 of_node_put(clkspec.np);
5084
5085 return hw;
5086}
5087
5088static struct clk *__of_clk_get(struct device_node *np,
5089 int index, const char *dev_id,
5090 const char *con_id)
5091{
5092 struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
5093
5094 return clk_hw_create_clk(NULL, hw, dev_id, con_id);
5095}
5096
5097struct clk *of_clk_get(struct device_node *np, int index)
5098{
5099 return __of_clk_get(np, index, np->full_name, NULL);
5100}
5101EXPORT_SYMBOL(of_clk_get);
5102
5103/**
5104 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
5105 * @np: pointer to clock consumer node
5106 * @name: name of consumer's clock input, or NULL for the first clock reference
5107 *
5108 * This function parses the clocks and clock-names properties,
5109 * and uses them to look up the struct clk from the registered list of clock
5110 * providers.
5111 */
5112struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
5113{
5114 if (!np)
5115 return ERR_PTR(-ENOENT);
5116
5117 return __of_clk_get(np, 0, np->full_name, name);
5118}
5119EXPORT_SYMBOL(of_clk_get_by_name);
5120
5121/**
5122 * of_clk_get_parent_count() - Count the number of clocks a device node has
5123 * @np: device node to count
5124 *
5125 * Returns: The number of clocks that are possible parents of this node
5126 */
5127unsigned int of_clk_get_parent_count(const struct device_node *np)
5128{
5129 int count;
5130
5131 count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
5132 if (count < 0)
5133 return 0;
5134
5135 return count;
5136}
5137EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
5138
5139const char *of_clk_get_parent_name(const struct device_node *np, int index)
5140{
5141 struct of_phandle_args clkspec;
5142 struct property *prop;
5143 const char *clk_name;
5144 const __be32 *vp;
5145 u32 pv;
5146 int rc;
5147 int count;
5148 struct clk *clk;
5149
5150 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
5151 &clkspec);
5152 if (rc)
5153 return NULL;
5154
5155 index = clkspec.args_count ? clkspec.args[0] : 0;
5156 count = 0;
5157
5158 /* if there is an indices property, use it to transfer the index
5159 * specified into an array offset for the clock-output-names property.
5160 */
5161 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
5162 if (index == pv) {
5163 index = count;
5164 break;
5165 }
5166 count++;
5167 }
5168 /* We went off the end of 'clock-indices' without finding it */
5169 if (prop && !vp)
5170 return NULL;
5171
5172 if (of_property_read_string_index(clkspec.np, "clock-output-names",
5173 index,
5174 &clk_name) < 0) {
5175 /*
5176 * Best effort to get the name if the clock has been
5177 * registered with the framework. If the clock isn't
5178 * registered, we return the node name as the name of
5179 * the clock as long as #clock-cells = 0.
5180 */
5181 clk = of_clk_get_from_provider(&clkspec);
5182 if (IS_ERR(clk)) {
5183 if (clkspec.args_count == 0)
5184 clk_name = clkspec.np->name;
5185 else
5186 clk_name = NULL;
5187 } else {
5188 clk_name = __clk_get_name(clk);
5189 clk_put(clk);
5190 }
5191 }
5192
5193
5194 of_node_put(clkspec.np);
5195 return clk_name;
5196}
5197EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5198
5199/**
5200 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5201 * number of parents
5202 * @np: Device node pointer associated with clock provider
5203 * @parents: pointer to char array that hold the parents' names
5204 * @size: size of the @parents array
5205 *
5206 * Return: number of parents for the clock node.
5207 */
5208int of_clk_parent_fill(struct device_node *np, const char **parents,
5209 unsigned int size)
5210{
5211 unsigned int i = 0;
5212
5213 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5214 i++;
5215
5216 return i;
5217}
5218EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5219
5220struct clock_provider {
5221 void (*clk_init_cb)(struct device_node *);
5222 struct device_node *np;
5223 struct list_head node;
5224};
5225
5226/*
5227 * This function looks for a parent clock. If there is one, then it
5228 * checks that the provider for this parent clock was initialized, in
5229 * this case the parent clock will be ready.
5230 */
5231static int parent_ready(struct device_node *np)
5232{
5233 int i = 0;
5234
5235 while (true) {
5236 struct clk *clk = of_clk_get(np, i);
5237
5238 /* this parent is ready we can check the next one */
5239 if (!IS_ERR(clk)) {
5240 clk_put(clk);
5241 i++;
5242 continue;
5243 }
5244
5245 /* at least one parent is not ready, we exit now */
5246 if (PTR_ERR(clk) == -EPROBE_DEFER)
5247 return 0;
5248
5249 /*
5250 * Here we make assumption that the device tree is
5251 * written correctly. So an error means that there is
5252 * no more parent. As we didn't exit yet, then the
5253 * previous parent are ready. If there is no clock
5254 * parent, no need to wait for them, then we can
5255 * consider their absence as being ready
5256 */
5257 return 1;
5258 }
5259}
5260
5261/**
5262 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5263 * @np: Device node pointer associated with clock provider
5264 * @index: clock index
5265 * @flags: pointer to top-level framework flags
5266 *
5267 * Detects if the clock-critical property exists and, if so, sets the
5268 * corresponding CLK_IS_CRITICAL flag.
5269 *
5270 * Do not use this function. It exists only for legacy Device Tree
5271 * bindings, such as the one-clock-per-node style that are outdated.
5272 * Those bindings typically put all clock data into .dts and the Linux
5273 * driver has no clock data, thus making it impossible to set this flag
5274 * correctly from the driver. Only those drivers may call
5275 * of_clk_detect_critical from their setup functions.
5276 *
5277 * Return: error code or zero on success
5278 */
5279int of_clk_detect_critical(struct device_node *np, int index,
5280 unsigned long *flags)
5281{
5282 struct property *prop;
5283 const __be32 *cur;
5284 uint32_t idx;
5285
5286 if (!np || !flags)
5287 return -EINVAL;
5288
5289 of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5290 if (index == idx)
5291 *flags |= CLK_IS_CRITICAL;
5292
5293 return 0;
5294}
5295
5296/**
5297 * of_clk_init() - Scan and init clock providers from the DT
5298 * @matches: array of compatible values and init functions for providers.
5299 *
5300 * This function scans the device tree for matching clock providers
5301 * and calls their initialization functions. It also does it by trying
5302 * to follow the dependencies.
5303 */
5304void __init of_clk_init(const struct of_device_id *matches)
5305{
5306 const struct of_device_id *match;
5307 struct device_node *np;
5308 struct clock_provider *clk_provider, *next;
5309 bool is_init_done;
5310 bool force = false;
5311 LIST_HEAD(clk_provider_list);
5312
5313 if (!matches)
5314 matches = &__clk_of_table;
5315
5316 /* First prepare the list of the clocks providers */
5317 for_each_matching_node_and_match(np, matches, &match) {
5318 struct clock_provider *parent;
5319
5320 if (!of_device_is_available(np))
5321 continue;
5322
5323 parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5324 if (!parent) {
5325 list_for_each_entry_safe(clk_provider, next,
5326 &clk_provider_list, node) {
5327 list_del(&clk_provider->node);
5328 of_node_put(clk_provider->np);
5329 kfree(clk_provider);
5330 }
5331 of_node_put(np);
5332 return;
5333 }
5334
5335 parent->clk_init_cb = match->data;
5336 parent->np = of_node_get(np);
5337 list_add_tail(&parent->node, &clk_provider_list);
5338 }
5339
5340 while (!list_empty(&clk_provider_list)) {
5341 is_init_done = false;
5342 list_for_each_entry_safe(clk_provider, next,
5343 &clk_provider_list, node) {
5344 if (force || parent_ready(clk_provider->np)) {
5345
5346 /* Don't populate platform devices */
5347 of_node_set_flag(clk_provider->np,
5348 OF_POPULATED);
5349
5350 clk_provider->clk_init_cb(clk_provider->np);
5351 of_clk_set_defaults(clk_provider->np, true);
5352
5353 list_del(&clk_provider->node);
5354 of_node_put(clk_provider->np);
5355 kfree(clk_provider);
5356 is_init_done = true;
5357 }
5358 }
5359
5360 /*
5361 * We didn't manage to initialize any of the
5362 * remaining providers during the last loop, so now we
5363 * initialize all the remaining ones unconditionally
5364 * in case the clock parent was not mandatory
5365 */
5366 if (!is_init_done)
5367 force = true;
5368 }
5369}
5370#endif