Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright(c) 2014 Intel Mobile Communications GmbH
  4 * Copyright(c) 2015 Intel Deutschland GmbH
  5 *
  6 * Author: Johannes Berg <johannes@sipsolutions.net>
  7 */
  8#include <linux/module.h>
  9#include <linux/device.h>
 10#include <linux/devcoredump.h>
 11#include <linux/list.h>
 12#include <linux/slab.h>
 13#include <linux/fs.h>
 14#include <linux/workqueue.h>
 15
 16static struct class devcd_class;
 17
 18/* global disable flag, for security purposes */
 19static bool devcd_disabled;
 20
 21/* if data isn't read by userspace after 5 minutes then delete it */
 22#define DEVCD_TIMEOUT	(HZ * 60 * 5)
 23
 24struct devcd_entry {
 25	struct device devcd_dev;
 26	void *data;
 27	size_t datalen;
 28	/*
 29	 * Here, mutex is required to serialize the calls to del_wk work between
 30	 * user/kernel space which happens when devcd is added with device_add()
 31	 * and that sends uevent to user space. User space reads the uevents,
 32	 * and calls to devcd_data_write() which try to modify the work which is
 33	 * not even initialized/queued from devcoredump.
 34	 *
 35	 *
 36	 *
 37	 *        cpu0(X)                                 cpu1(Y)
 38	 *
 39	 *        dev_coredump() uevent sent to user space
 40	 *        device_add()  ======================> user space process Y reads the
 41	 *                                              uevents writes to devcd fd
 42	 *                                              which results into writes to
 43	 *
 44	 *                                             devcd_data_write()
 45	 *                                               mod_delayed_work()
 46	 *                                                 try_to_grab_pending()
 47	 *                                                   del_timer()
 48	 *                                                     debug_assert_init()
 49	 *       INIT_DELAYED_WORK()
 50	 *       schedule_delayed_work()
 51	 *
 52	 *
 53	 * Also, mutex alone would not be enough to avoid scheduling of
 54	 * del_wk work after it get flush from a call to devcd_free()
 55	 * mentioned as below.
 56	 *
 57	 *	disabled_store()
 58	 *        devcd_free()
 59	 *          mutex_lock()             devcd_data_write()
 60	 *          flush_delayed_work()
 61	 *          mutex_unlock()
 62	 *                                   mutex_lock()
 63	 *                                   mod_delayed_work()
 64	 *                                   mutex_unlock()
 65	 * So, delete_work flag is required.
 66	 */
 67	struct mutex mutex;
 68	bool delete_work;
 69	struct module *owner;
 70	ssize_t (*read)(char *buffer, loff_t offset, size_t count,
 71			void *data, size_t datalen);
 72	void (*free)(void *data);
 73	struct delayed_work del_wk;
 74	struct device *failing_dev;
 75};
 76
 77static struct devcd_entry *dev_to_devcd(struct device *dev)
 78{
 79	return container_of(dev, struct devcd_entry, devcd_dev);
 80}
 81
 82static void devcd_dev_release(struct device *dev)
 83{
 84	struct devcd_entry *devcd = dev_to_devcd(dev);
 85
 86	devcd->free(devcd->data);
 87	module_put(devcd->owner);
 88
 89	/*
 90	 * this seems racy, but I don't see a notifier or such on
 91	 * a struct device to know when it goes away?
 92	 */
 93	if (devcd->failing_dev->kobj.sd)
 94		sysfs_delete_link(&devcd->failing_dev->kobj, &dev->kobj,
 95				  "devcoredump");
 96
 97	put_device(devcd->failing_dev);
 98	kfree(devcd);
 99}
100
101static void devcd_del(struct work_struct *wk)
102{
103	struct devcd_entry *devcd;
104
105	devcd = container_of(wk, struct devcd_entry, del_wk.work);
106
107	device_del(&devcd->devcd_dev);
108	put_device(&devcd->devcd_dev);
109}
110
111static ssize_t devcd_data_read(struct file *filp, struct kobject *kobj,
112			       struct bin_attribute *bin_attr,
113			       char *buffer, loff_t offset, size_t count)
114{
115	struct device *dev = kobj_to_dev(kobj);
116	struct devcd_entry *devcd = dev_to_devcd(dev);
117
118	return devcd->read(buffer, offset, count, devcd->data, devcd->datalen);
119}
120
121static ssize_t devcd_data_write(struct file *filp, struct kobject *kobj,
122				struct bin_attribute *bin_attr,
123				char *buffer, loff_t offset, size_t count)
124{
125	struct device *dev = kobj_to_dev(kobj);
126	struct devcd_entry *devcd = dev_to_devcd(dev);
127
128	mutex_lock(&devcd->mutex);
129	if (!devcd->delete_work) {
130		devcd->delete_work = true;
131		mod_delayed_work(system_wq, &devcd->del_wk, 0);
132	}
133	mutex_unlock(&devcd->mutex);
134
135	return count;
136}
137
138static struct bin_attribute devcd_attr_data = {
139	.attr = { .name = "data", .mode = S_IRUSR | S_IWUSR, },
140	.size = 0,
141	.read = devcd_data_read,
142	.write = devcd_data_write,
143};
144
145static struct bin_attribute *devcd_dev_bin_attrs[] = {
146	&devcd_attr_data, NULL,
147};
148
149static const struct attribute_group devcd_dev_group = {
150	.bin_attrs = devcd_dev_bin_attrs,
151};
152
153static const struct attribute_group *devcd_dev_groups[] = {
154	&devcd_dev_group, NULL,
155};
156
157static int devcd_free(struct device *dev, void *data)
158{
159	struct devcd_entry *devcd = dev_to_devcd(dev);
160
161	mutex_lock(&devcd->mutex);
162	if (!devcd->delete_work)
163		devcd->delete_work = true;
164
165	flush_delayed_work(&devcd->del_wk);
166	mutex_unlock(&devcd->mutex);
167	return 0;
168}
169
170static ssize_t disabled_show(struct class *class, struct class_attribute *attr,
171			     char *buf)
172{
173	return sysfs_emit(buf, "%d\n", devcd_disabled);
174}
175
176/*
177 *
178 *	disabled_store()                                	worker()
179 *	 class_for_each_device(&devcd_class,
180 *		NULL, NULL, devcd_free)
181 *         ...
182 *         ...
183 *	   while ((dev = class_dev_iter_next(&iter))
184 *                                                             devcd_del()
185 *                                                               device_del()
186 *                                                                 put_device() <- last reference
187 *             error = fn(dev, data)                           devcd_dev_release()
188 *             devcd_free(dev, data)                           kfree(devcd)
189 *             mutex_lock(&devcd->mutex);
190 *
191 *
192 * In the above diagram, It looks like disabled_store() would be racing with parallely
193 * running devcd_del() and result in memory abort while acquiring devcd->mutex which
194 * is called after kfree of devcd memory  after dropping its last reference with
195 * put_device(). However, this will not happens as fn(dev, data) runs
196 * with its own reference to device via klist_node so it is not its last reference.
197 * so, above situation would not occur.
198 */
199
200static ssize_t disabled_store(struct class *class, struct class_attribute *attr,
201			      const char *buf, size_t count)
202{
203	long tmp = simple_strtol(buf, NULL, 10);
204
205	/*
206	 * This essentially makes the attribute write-once, since you can't
207	 * go back to not having it disabled. This is intentional, it serves
208	 * as a system lockdown feature.
209	 */
210	if (tmp != 1)
211		return -EINVAL;
212
213	devcd_disabled = true;
214
215	class_for_each_device(&devcd_class, NULL, NULL, devcd_free);
216
217	return count;
218}
219static CLASS_ATTR_RW(disabled);
220
221static struct attribute *devcd_class_attrs[] = {
222	&class_attr_disabled.attr,
223	NULL,
224};
225ATTRIBUTE_GROUPS(devcd_class);
226
227static struct class devcd_class = {
228	.name		= "devcoredump",
229	.owner		= THIS_MODULE,
230	.dev_release	= devcd_dev_release,
231	.dev_groups	= devcd_dev_groups,
232	.class_groups	= devcd_class_groups,
233};
234
235static ssize_t devcd_readv(char *buffer, loff_t offset, size_t count,
236			   void *data, size_t datalen)
237{
238	return memory_read_from_buffer(buffer, count, &offset, data, datalen);
239}
240
241static void devcd_freev(void *data)
242{
243	vfree(data);
244}
245
246/**
247 * dev_coredumpv - create device coredump with vmalloc data
248 * @dev: the struct device for the crashed device
249 * @data: vmalloc data containing the device coredump
250 * @datalen: length of the data
251 * @gfp: allocation flags
252 *
253 * This function takes ownership of the vmalloc'ed data and will free
254 * it when it is no longer used. See dev_coredumpm() for more information.
255 */
256void dev_coredumpv(struct device *dev, void *data, size_t datalen,
257		   gfp_t gfp)
258{
259	dev_coredumpm(dev, NULL, data, datalen, gfp, devcd_readv, devcd_freev);
260}
261EXPORT_SYMBOL_GPL(dev_coredumpv);
262
263static int devcd_match_failing(struct device *dev, const void *failing)
264{
265	struct devcd_entry *devcd = dev_to_devcd(dev);
266
267	return devcd->failing_dev == failing;
268}
269
270/**
271 * devcd_free_sgtable - free all the memory of the given scatterlist table
272 * (i.e. both pages and scatterlist instances)
273 * NOTE: if two tables allocated with devcd_alloc_sgtable and then chained
274 * using the sg_chain function then that function should be called only once
275 * on the chained table
276 * @data: pointer to sg_table to free
277 */
278static void devcd_free_sgtable(void *data)
279{
280	_devcd_free_sgtable(data);
281}
282
283/**
284 * devcd_read_from_sgtable - copy data from sg_table to a given buffer
285 * and return the number of bytes read
286 * @buffer: the buffer to copy the data to it
287 * @buf_len: the length of the buffer
288 * @data: the scatterlist table to copy from
289 * @offset: start copy from @offset@ bytes from the head of the data
290 *	in the given scatterlist
291 * @data_len: the length of the data in the sg_table
292 */
293static ssize_t devcd_read_from_sgtable(char *buffer, loff_t offset,
294				       size_t buf_len, void *data,
295				       size_t data_len)
296{
297	struct scatterlist *table = data;
298
299	if (offset > data_len)
300		return -EINVAL;
301
302	if (offset + buf_len > data_len)
303		buf_len = data_len - offset;
304	return sg_pcopy_to_buffer(table, sg_nents(table), buffer, buf_len,
305				  offset);
306}
307
308/**
309 * dev_coredumpm - create device coredump with read/free methods
310 * @dev: the struct device for the crashed device
311 * @owner: the module that contains the read/free functions, use %THIS_MODULE
312 * @data: data cookie for the @read/@free functions
313 * @datalen: length of the data
314 * @gfp: allocation flags
315 * @read: function to read from the given buffer
316 * @free: function to free the given buffer
317 *
318 * Creates a new device coredump for the given device. If a previous one hasn't
319 * been read yet, the new coredump is discarded. The data lifetime is determined
320 * by the device coredump framework and when it is no longer needed the @free
321 * function will be called to free the data.
322 */
323void dev_coredumpm(struct device *dev, struct module *owner,
324		   void *data, size_t datalen, gfp_t gfp,
325		   ssize_t (*read)(char *buffer, loff_t offset, size_t count,
326				   void *data, size_t datalen),
327		   void (*free)(void *data))
328{
329	static atomic_t devcd_count = ATOMIC_INIT(0);
330	struct devcd_entry *devcd;
331	struct device *existing;
332
333	if (devcd_disabled)
334		goto free;
335
336	existing = class_find_device(&devcd_class, NULL, dev,
337				     devcd_match_failing);
338	if (existing) {
339		put_device(existing);
340		goto free;
341	}
342
343	if (!try_module_get(owner))
344		goto free;
345
346	devcd = kzalloc(sizeof(*devcd), gfp);
347	if (!devcd)
348		goto put_module;
349
350	devcd->owner = owner;
351	devcd->data = data;
352	devcd->datalen = datalen;
353	devcd->read = read;
354	devcd->free = free;
355	devcd->failing_dev = get_device(dev);
356	devcd->delete_work = false;
357
358	mutex_init(&devcd->mutex);
359	device_initialize(&devcd->devcd_dev);
360
361	dev_set_name(&devcd->devcd_dev, "devcd%d",
362		     atomic_inc_return(&devcd_count));
363	devcd->devcd_dev.class = &devcd_class;
364
365	mutex_lock(&devcd->mutex);
366	if (device_add(&devcd->devcd_dev))
367		goto put_device;
368
369	/*
370	 * These should normally not fail, but there is no problem
371	 * continuing without the links, so just warn instead of
372	 * failing.
373	 */
374	if (sysfs_create_link(&devcd->devcd_dev.kobj, &dev->kobj,
375			      "failing_device") ||
376	    sysfs_create_link(&dev->kobj, &devcd->devcd_dev.kobj,
377		              "devcoredump"))
378		dev_warn(dev, "devcoredump create_link failed\n");
379
380	INIT_DELAYED_WORK(&devcd->del_wk, devcd_del);
381	schedule_delayed_work(&devcd->del_wk, DEVCD_TIMEOUT);
382	mutex_unlock(&devcd->mutex);
383	return;
384 put_device:
385	put_device(&devcd->devcd_dev);
386	mutex_unlock(&devcd->mutex);
387 put_module:
388	module_put(owner);
389 free:
390	free(data);
391}
392EXPORT_SYMBOL_GPL(dev_coredumpm);
393
394/**
395 * dev_coredumpsg - create device coredump that uses scatterlist as data
396 * parameter
397 * @dev: the struct device for the crashed device
398 * @table: the dump data
399 * @datalen: length of the data
400 * @gfp: allocation flags
401 *
402 * Creates a new device coredump for the given device. If a previous one hasn't
403 * been read yet, the new coredump is discarded. The data lifetime is determined
404 * by the device coredump framework and when it is no longer needed
405 * it will free the data.
406 */
407void dev_coredumpsg(struct device *dev, struct scatterlist *table,
408		    size_t datalen, gfp_t gfp)
409{
410	dev_coredumpm(dev, NULL, table, datalen, gfp, devcd_read_from_sgtable,
411		      devcd_free_sgtable);
412}
413EXPORT_SYMBOL_GPL(dev_coredumpsg);
414
415static int __init devcoredump_init(void)
416{
417	return class_register(&devcd_class);
418}
419__initcall(devcoredump_init);
420
421static void __exit devcoredump_exit(void)
422{
423	class_for_each_device(&devcd_class, NULL, NULL, devcd_free);
424	class_unregister(&devcd_class);
425}
426__exitcall(devcoredump_exit);