Linux Audio

Check our new training course

Loading...
v3.1
   1/* -*- mode: asm -*-
   2**
   3** head.S -- This file contains the initial boot code for the
   4**	     Linux/68k kernel.
   5**
   6** Copyright 1993 by Hamish Macdonald
   7**
   8** 68040 fixes by Michael Rausch
   9** 68060 fixes by Roman Hodek
  10** MMU cleanup by Randy Thelen
  11** Final MMU cleanup by Roman Zippel
  12**
  13** Atari support by Andreas Schwab, using ideas of Robert de Vries
  14** and Bjoern Brauel
  15** VME Support by Richard Hirst
  16**
  17** 94/11/14 Andreas Schwab: put kernel at PAGESIZE
  18** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari
  19** ++ Bjoern & Roman: ATARI-68040 support for the Medusa
  20** 95/11/18 Richard Hirst: Added MVME166 support
  21** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with
  22**			      Magnum- and FX-alternate ram
  23** 98/04/25 Phil Blundell: added HP300 support
  24** 1998/08/30 David Kilzer: Added support for font_desc structures
  25**            for linux-2.1.115
  26** 9/02/11  Richard Zidlicky: added Q40 support (initial vesion 99/01/01)
  27** 2004/05/13 Kars de Jong: Finalised HP300 support
  28**
  29** This file is subject to the terms and conditions of the GNU General Public
  30** License. See the file README.legal in the main directory of this archive
  31** for more details.
  32**
  33*/
  34
  35/*
  36 * Linux startup code.
  37 *
  38 * At this point, the boot loader has:
  39 * Disabled interrupts
  40 * Disabled caches
  41 * Put us in supervisor state.
  42 *
  43 * The kernel setup code takes the following steps:
  44 * .  Raise interrupt level
  45 * .  Set up initial kernel memory mapping.
  46 *    .  This sets up a mapping of the 4M of memory the kernel is located in.
  47 *    .  It also does a mapping of any initial machine specific areas.
  48 * .  Enable the MMU
  49 * .  Enable cache memories
  50 * .  Jump to kernel startup
  51 *
  52 * Much of the file restructuring was to accomplish:
  53 * 1) Remove register dependency through-out the file.
  54 * 2) Increase use of subroutines to perform functions
  55 * 3) Increase readability of the code
  56 *
  57 * Of course, readability is a subjective issue, so it will never be
  58 * argued that that goal was accomplished.  It was merely a goal.
  59 * A key way to help make code more readable is to give good
  60 * documentation.  So, the first thing you will find is exaustive
  61 * write-ups on the structure of the file, and the features of the
  62 * functional subroutines.
  63 *
  64 * General Structure:
  65 * ------------------
  66 *	Without a doubt the single largest chunk of head.S is spent
  67 * mapping the kernel and I/O physical space into the logical range
  68 * for the kernel.
  69 *	There are new subroutines and data structures to make MMU
  70 * support cleaner and easier to understand.
  71 *	First, you will find a routine call "mmu_map" which maps
  72 * a logical to a physical region for some length given a cache
  73 * type on behalf of the caller.  This routine makes writing the
  74 * actual per-machine specific code very simple.
  75 *	A central part of the code, but not a subroutine in itself,
  76 * is the mmu_init code which is broken down into mapping the kernel
  77 * (the same for all machines) and mapping machine-specific I/O
  78 * regions.
  79 *	Also, there will be a description of engaging the MMU and
  80 * caches.
  81 *	You will notice that there is a chunk of code which
  82 * can emit the entire MMU mapping of the machine.  This is present
  83 * only in debug modes and can be very helpful.
  84 *	Further, there is a new console driver in head.S that is
  85 * also only engaged in debug mode.  Currently, it's only supported
  86 * on the Macintosh class of machines.  However, it is hoped that
  87 * others will plug-in support for specific machines.
  88 *
  89 * ######################################################################
  90 *
  91 * mmu_map
  92 * -------
  93 *	mmu_map was written for two key reasons.  First, it was clear
  94 * that it was very difficult to read the previous code for mapping
  95 * regions of memory.  Second, the Macintosh required such extensive
  96 * memory allocations that it didn't make sense to propagate the
  97 * existing code any further.
  98 *	mmu_map requires some parameters:
  99 *
 100 *	mmu_map (logical, physical, length, cache_type)
 101 *
 102 *	While this essentially describes the function in the abstract, you'll
 103 * find more indepth description of other parameters at the implementation site.
 104 *
 105 * mmu_get_root_table_entry
 106 * ------------------------
 107 * mmu_get_ptr_table_entry
 108 * -----------------------
 109 * mmu_get_page_table_entry
 110 * ------------------------
 111 *
 112 *	These routines are used by other mmu routines to get a pointer into
 113 * a table, if necessary a new table is allocated. These routines are working
 114 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root
 115 * table needs of course only to be allocated once in mmu_get_root_table_entry,
 116 * so that here also some mmu specific initialization is done. The second page
 117 * at the start of the kernel (the first page is unmapped later) is used for
 118 * the kernel_pg_dir. It must be at a position known at link time (as it's used
 119 * to initialize the init task struct) and since it needs special cache
 120 * settings, it's the easiest to use this page, the rest of the page is used
 121 * for further pointer tables.
 122 * mmu_get_page_table_entry allocates always a whole page for page tables, this
 123 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense
 124 * to manage page tables in smaller pieces as nearly all mappings have that
 125 * size.
 126 *
 127 * ######################################################################
 128 *
 129 *
 130 * ######################################################################
 131 *
 132 * mmu_engage
 133 * ----------
 134 *	Thanks to a small helping routine enabling the mmu got quite simple
 135 * and there is only one way left. mmu_engage makes a complete a new mapping
 136 * that only includes the absolute necessary to be able to jump to the final
 137 * position and to restore the original mapping.
 138 * As this code doesn't need a transparent translation register anymore this
 139 * means all registers are free to be used by machines that needs them for
 140 * other purposes.
 141 *
 142 * ######################################################################
 143 *
 144 * mmu_print
 145 * ---------
 146 *	This algorithm will print out the page tables of the system as
 147 * appropriate for an 030 or an 040.  This is useful for debugging purposes
 148 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses.
 149 *
 150 * ######################################################################
 151 *
 152 * console_init
 153 * ------------
 154 *	The console is also able to be turned off.  The console in head.S
 155 * is specifically for debugging and can be very useful.  It is surrounded by
 156 * #ifdef CONSOLE/#endif clauses so it doesn't have to ship in known-good
 157 * kernels.  It's basic algorithm is to determine the size of the screen
 158 * (in height/width and bit depth) and then use that information for
 159 * displaying an 8x8 font or an 8x16 (widthxheight).  I prefer the 8x8 for
 160 * debugging so I can see more good data.  But it was trivial to add support
 161 * for both fonts, so I included it.
 162 *	Also, the algorithm for plotting pixels is abstracted so that in
 163 * theory other platforms could add support for different kinds of frame
 164 * buffers.  This could be very useful.
 165 *
 166 * console_put_penguin
 167 * -------------------
 168 *	An important part of any Linux bring up is the penguin and there's
 169 * nothing like getting the Penguin on the screen!  This algorithm will work
 170 * on any machine for which there is a console_plot_pixel.
 171 *
 172 * console_scroll
 173 * --------------
 174 *	My hope is that the scroll algorithm does the right thing on the
 175 * various platforms, but it wouldn't be hard to add the test conditions
 176 * and new code if it doesn't.
 177 *
 178 * console_putc
 179 * -------------
 180 *
 181 * ######################################################################
 182 *
 183 *	Register usage has greatly simplified within head.S. Every subroutine
 184 * saves and restores all registers that it modifies (except it returns a
 185 * value in there of course). So the only register that needs to be initialized
 186 * is the stack pointer.
 187 * All other init code and data is now placed in the init section, so it will
 188 * be automatically freed at the end of the kernel initialization.
 189 *
 190 * ######################################################################
 191 *
 192 * options
 193 * -------
 194 *	There are many options available in a build of this file.  I've
 195 * taken the time to describe them here to save you the time of searching
 196 * for them and trying to understand what they mean.
 197 *
 198 * CONFIG_xxx:	These are the obvious machine configuration defines created
 199 * during configuration.  These are defined in autoconf.h.
 200 *
 201 * CONSOLE:	There is support for head.S console in this file.  This
 202 * console can talk to a Mac frame buffer, but could easily be extrapolated
 203 * to extend it to support other platforms.
 204 *
 205 * TEST_MMU:	This is a test harness for running on any given machine but
 206 * getting an MMU dump for another class of machine.  The classes of machines
 207 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.)
 208 * and any of the models (030, 040, 060, etc.).
 209 *
 210 *	NOTE:	TEST_MMU is NOT permanent!  It is scheduled to be removed
 211 *		When head.S boots on Atari, Amiga, Macintosh, and VME
 212 *		machines.  At that point the underlying logic will be
 213 *		believed to be solid enough to be trusted, and TEST_MMU
 214 *		can be dropped.  Do note that that will clean up the
 215 *		head.S code significantly as large blocks of #if/#else
 216 *		clauses can be removed.
 217 *
 218 * MMU_NOCACHE_KERNEL:	On the Macintosh platform there was an inquiry into
 219 * determing why devices don't appear to work.  A test case was to remove
 220 * the cacheability of the kernel bits.
 221 *
 222 * MMU_PRINT:	There is a routine built into head.S that can display the
 223 * MMU data structures.  It outputs its result through the serial_putc
 224 * interface.  So where ever that winds up driving data, that's where the
 225 * mmu struct will appear.  On the Macintosh that's typically the console.
 226 *
 227 * SERIAL_DEBUG:	There are a series of putc() macro statements
 228 * scattered through out the code to give progress of status to the
 229 * person sitting at the console.  This constant determines whether those
 230 * are used.
 231 *
 232 * DEBUG:	This is the standard DEBUG flag that can be set for building
 233 *		the kernel.  It has the effect adding additional tests into
 234 *		the code.
 235 *
 236 * FONT_6x11:
 237 * FONT_8x8:
 238 * FONT_8x16:
 239 *		In theory these could be determined at run time or handed
 240 *		over by the booter.  But, let's be real, it's a fine hard
 241 *		coded value.  (But, you will notice the code is run-time
 242 *		flexible!)  A pointer to the font's struct font_desc
 243 *		is kept locally in Lconsole_font.  It is used to determine
 244 *		font size information dynamically.
 245 *
 246 * Atari constants:
 247 * USE_PRINTER:	Use the printer port for serial debug.
 248 * USE_SCC_B:	Use the SCC port A (Serial2) for serial debug.
 249 * USE_SCC_A:	Use the SCC port B (Modem2) for serial debug.
 250 * USE_MFP:	Use the ST-MFP port (Modem1) for serial debug.
 251 *
 252 * Macintosh constants:
 253 * MAC_SERIAL_DEBUG:	Turns on serial debug output for the Macintosh.
 254 * MAC_USE_SCC_A:	Use the SCC port A (modem) for serial debug.
 255 * MAC_USE_SCC_B:	Use the SCC port B (printer) for serial debug (default).
 256 */
 257
 258#include <linux/linkage.h>
 259#include <linux/init.h>
 
 260#include <asm/bootinfo.h>
 
 
 
 
 
 
 
 261#include <asm/setup.h>
 262#include <asm/entry.h>
 263#include <asm/pgtable.h>
 264#include <asm/page.h>
 265#include <asm/asm-offsets.h>
 266
 267#ifdef CONFIG_MAC
 268
 269#include <asm/machw.h>
 270
 271/*
 272 * Macintosh console support
 273 */
 274
 275#ifdef CONFIG_FRAMEBUFFER_CONSOLE
 276#define CONSOLE
 277#define CONSOLE_PENGUIN
 278#endif
 279
 280/*
 281 * Macintosh serial debug support; outputs boot info to the printer
 282 *   and/or modem serial ports
 283 */
 284#undef MAC_SERIAL_DEBUG
 285
 286/*
 287 * Macintosh serial debug port selection; define one or both;
 288 *   requires MAC_SERIAL_DEBUG to be defined
 289 */
 290#define MAC_USE_SCC_A		/* Macintosh modem serial port */
 291#define MAC_USE_SCC_B		/* Macintosh printer serial port */
 292
 293#endif	/* CONFIG_MAC */
 294
 295#undef MMU_PRINT
 296#undef MMU_NOCACHE_KERNEL
 297#define SERIAL_DEBUG
 298#undef DEBUG
 299
 300/*
 301 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8.
 302 * The 8x8 font is harder to read but fits more on the screen.
 303 */
 304#define FONT_8x8	/* default */
 305/* #define FONT_8x16 */	/* 2nd choice */
 306/* #define FONT_6x11 */	/* 3rd choice */
 307
 308.globl kernel_pg_dir
 309.globl availmem
 
 310.globl m68k_pgtable_cachemode
 311.globl m68k_supervisor_cachemode
 312#ifdef CONFIG_MVME16x
 313.globl mvme_bdid
 314#endif
 315#ifdef CONFIG_Q40
 316.globl q40_mem_cptr
 317#endif
 318
 319CPUTYPE_040	= 1	/* indicates an 040 */
 320CPUTYPE_060	= 2	/* indicates an 060 */
 321CPUTYPE_0460	= 3	/* if either above are set, this is set */
 322CPUTYPE_020	= 4	/* indicates an 020 */
 323
 324/* Translation control register */
 325TC_ENABLE = 0x8000
 326TC_PAGE8K = 0x4000
 327TC_PAGE4K = 0x0000
 328
 329/* Transparent translation registers */
 330TTR_ENABLE	= 0x8000	/* enable transparent translation */
 331TTR_ANYMODE	= 0x4000	/* user and kernel mode access */
 332TTR_KERNELMODE	= 0x2000	/* only kernel mode access */
 333TTR_USERMODE	= 0x0000	/* only user mode access */
 334TTR_CI		= 0x0400	/* inhibit cache */
 335TTR_RW		= 0x0200	/* read/write mode */
 336TTR_RWM		= 0x0100	/* read/write mask */
 337TTR_FCB2	= 0x0040	/* function code base bit 2 */
 338TTR_FCB1	= 0x0020	/* function code base bit 1 */
 339TTR_FCB0	= 0x0010	/* function code base bit 0 */
 340TTR_FCM2	= 0x0004	/* function code mask bit 2 */
 341TTR_FCM1	= 0x0002	/* function code mask bit 1 */
 342TTR_FCM0	= 0x0001	/* function code mask bit 0 */
 343
 344/* Cache Control registers */
 345CC6_ENABLE_D	= 0x80000000	/* enable data cache (680[46]0) */
 346CC6_FREEZE_D	= 0x40000000	/* freeze data cache (68060) */
 347CC6_ENABLE_SB	= 0x20000000	/* enable store buffer (68060) */
 348CC6_PUSH_DPI	= 0x10000000	/* disable CPUSH invalidation (68060) */
 349CC6_HALF_D	= 0x08000000	/* half-cache mode for data cache (68060) */
 350CC6_ENABLE_B	= 0x00800000	/* enable branch cache (68060) */
 351CC6_CLRA_B	= 0x00400000	/* clear all entries in branch cache (68060) */
 352CC6_CLRU_B	= 0x00200000	/* clear user entries in branch cache (68060) */
 353CC6_ENABLE_I	= 0x00008000	/* enable instruction cache (680[46]0) */
 354CC6_FREEZE_I	= 0x00004000	/* freeze instruction cache (68060) */
 355CC6_HALF_I	= 0x00002000	/* half-cache mode for instruction cache (68060) */
 356CC3_ALLOC_WRITE	= 0x00002000	/* write allocate mode(68030) */
 357CC3_ENABLE_DB	= 0x00001000	/* enable data burst (68030) */
 358CC3_CLR_D	= 0x00000800	/* clear data cache (68030) */
 359CC3_CLRE_D	= 0x00000400	/* clear entry in data cache (68030) */
 360CC3_FREEZE_D	= 0x00000200	/* freeze data cache (68030) */
 361CC3_ENABLE_D	= 0x00000100	/* enable data cache (68030) */
 362CC3_ENABLE_IB	= 0x00000010	/* enable instruction burst (68030) */
 363CC3_CLR_I	= 0x00000008	/* clear instruction cache (68030) */
 364CC3_CLRE_I	= 0x00000004	/* clear entry in instruction cache (68030) */
 365CC3_FREEZE_I	= 0x00000002	/* freeze instruction cache (68030) */
 366CC3_ENABLE_I	= 0x00000001	/* enable instruction cache (68030) */
 367
 368/* Miscellaneous definitions */
 369PAGESIZE	= 4096
 370PAGESHIFT	= 12
 371
 372ROOT_TABLE_SIZE	= 128
 373PTR_TABLE_SIZE	= 128
 374PAGE_TABLE_SIZE	= 64
 375ROOT_INDEX_SHIFT = 25
 376PTR_INDEX_SHIFT  = 18
 377PAGE_INDEX_SHIFT = 12
 378
 379#ifdef DEBUG
 380/* When debugging use readable names for labels */
 381#ifdef __STDC__
 382#define L(name) .head.S.##name
 383#else
 384#define L(name) .head.S./**/name
 385#endif
 386#else
 387#ifdef __STDC__
 388#define L(name) .L##name
 389#else
 390#define L(name) .L/**/name
 391#endif
 392#endif
 393
 394/* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */
 395#ifndef __INITDATA
 396#define __INITDATA	.data
 397#define __FINIT		.previous
 398#endif
 399
 400/* Several macros to make the writing of subroutines easier:
 401 * - func_start marks the beginning of the routine which setups the frame
 402 *   register and saves the registers, it also defines another macro
 403 *   to automatically restore the registers again.
 404 * - func_return marks the end of the routine and simply calls the prepared
 405 *   macro to restore registers and jump back to the caller.
 406 * - func_define generates another macro to automatically put arguments
 407 *   onto the stack call the subroutine and cleanup the stack again.
 408 */
 409
 410/* Within subroutines these macros can be used to access the arguments
 411 * on the stack. With STACK some allocated memory on the stack can be
 412 * accessed and ARG0 points to the return address (used by mmu_engage).
 413 */
 414#define	STACK	%a6@(stackstart)
 415#define ARG0	%a6@(4)
 416#define ARG1	%a6@(8)
 417#define ARG2	%a6@(12)
 418#define ARG3	%a6@(16)
 419#define ARG4	%a6@(20)
 420
 421.macro	func_start	name,saveregs,stack=0
 422L(\name):
 423	linkw	%a6,#-\stack
 424	moveml	\saveregs,%sp@-
 425.set	stackstart,-\stack
 426
 427.macro	func_return_\name
 428	moveml	%sp@+,\saveregs
 429	unlk	%a6
 430	rts
 431.endm
 432.endm
 433
 434.macro	func_return	name
 435	func_return_\name
 436.endm
 437
 438.macro	func_call	name
 439	jbsr	L(\name)
 440.endm
 441
 442.macro	move_stack	nr,arg1,arg2,arg3,arg4
 443.if	\nr
 444	move_stack	"(\nr-1)",\arg2,\arg3,\arg4
 445	movel	\arg1,%sp@-
 446.endif
 447.endm
 448
 449.macro	func_define	name,nr=0
 450.macro	\name	arg1,arg2,arg3,arg4
 451	move_stack	\nr,\arg1,\arg2,\arg3,\arg4
 452	func_call	\name
 453.if	\nr
 454	lea	%sp@(\nr*4),%sp
 455.endif
 456.endm
 457.endm
 458
 459func_define	mmu_map,4
 460func_define	mmu_map_tt,4
 461func_define	mmu_fixup_page_mmu_cache,1
 462func_define	mmu_temp_map,2
 463func_define	mmu_engage
 464func_define	mmu_get_root_table_entry,1
 465func_define	mmu_get_ptr_table_entry,2
 466func_define	mmu_get_page_table_entry,2
 467func_define	mmu_print
 468func_define	get_new_page
 469#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
 470func_define	set_leds
 471#endif
 472
 473.macro	mmu_map_eq	arg1,arg2,arg3
 474	mmu_map	\arg1,\arg1,\arg2,\arg3
 475.endm
 476
 477.macro	get_bi_record	record
 478	pea	\record
 479	func_call	get_bi_record
 480	addql	#4,%sp
 481.endm
 482
 483func_define	serial_putc,1
 484func_define	console_putc,1
 485
 486func_define	console_init
 487func_define	console_put_stats
 488func_define	console_put_penguin
 489func_define	console_plot_pixel,3
 490func_define	console_scroll
 491
 492.macro	putc	ch
 493#if defined(CONSOLE) || defined(SERIAL_DEBUG)
 494	pea	\ch
 495#endif
 496#ifdef CONSOLE
 497	func_call	console_putc
 498#endif
 499#ifdef SERIAL_DEBUG
 500	func_call	serial_putc
 501#endif
 502#if defined(CONSOLE) || defined(SERIAL_DEBUG)
 503	addql	#4,%sp
 504#endif
 505.endm
 506
 507.macro	dputc	ch
 508#ifdef DEBUG
 509	putc	\ch
 510#endif
 511.endm
 512
 513func_define	putn,1
 514
 515.macro	dputn	nr
 516#ifdef DEBUG
 517	putn	\nr
 518#endif
 519.endm
 520
 521.macro	puts		string
 522#if defined(CONSOLE) || defined(SERIAL_DEBUG)
 523	__INITDATA
 524.Lstr\@:
 525	.string	"\string"
 526	__FINIT
 527	pea	%pc@(.Lstr\@)
 528	func_call	puts
 529	addql	#4,%sp
 530#endif
 531.endm
 532
 533.macro	dputs	string
 534#ifdef DEBUG
 535	puts	"\string"
 536#endif
 537.endm
 538
 539#define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab
 540#define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab
 541#define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab
 542#define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab
 543#define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab
 544#define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab
 545#define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab
 546#define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab
 547#define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab
 548#define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab
 549#define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab
 550#define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab
 551#define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab
 
 552
 553#define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \
 554			jeq 42f; \
 555			cmpl &MACH_APOLLO,%pc@(m68k_machtype); \
 556			jne lab ;\
 557		42:\
 558
 559#define is_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab
 560#define is_not_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab
 561#define is_040(lab)		btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab
 562#define is_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab
 563#define is_not_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab
 564#define is_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab
 565#define is_not_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab
 566
 567/* On the HP300 we use the on-board LEDs for debug output before
 568   the console is running.  Writing a 1 bit turns the corresponding LED
 569   _off_ - on the 340 bit 7 is towards the back panel of the machine.  */
 570.macro	leds	mask
 571#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
 572	hasnt_leds(.Lled\@)
 573	pea	\mask
 574	func_call	set_leds
 575	addql	#4,%sp
 576.Lled\@:
 577#endif
 578.endm
 579
 580__HEAD
 581ENTRY(_stext)
 582/*
 583 * Version numbers of the bootinfo interface
 584 * The area from _stext to _start will later be used as kernel pointer table
 585 */
 586	bras	1f	/* Jump over bootinfo version numbers */
 587
 588	.long	BOOTINFOV_MAGIC
 589	.long	MACH_AMIGA, AMIGA_BOOTI_VERSION
 590	.long	MACH_ATARI, ATARI_BOOTI_VERSION
 591	.long	MACH_MVME147, MVME147_BOOTI_VERSION
 592	.long	MACH_MVME16x, MVME16x_BOOTI_VERSION
 593	.long	MACH_BVME6000, BVME6000_BOOTI_VERSION
 594	.long	MACH_MAC, MAC_BOOTI_VERSION
 595	.long	MACH_Q40, Q40_BOOTI_VERSION
 596	.long	MACH_HP300, HP300_BOOTI_VERSION
 597	.long	0
 5981:	jra	__start
 599
 600.equ	kernel_pg_dir,_stext
 601
 602.equ	.,_stext+PAGESIZE
 603
 604ENTRY(_start)
 605	jra	__start
 606__INIT
 607ENTRY(__start)
 608/*
 609 * Setup initial stack pointer
 610 */
 611	lea	%pc@(_stext),%sp
 612
 613/*
 614 * Record the CPU and machine type.
 615 */
 616	get_bi_record	BI_MACHTYPE
 617	lea	%pc@(m68k_machtype),%a1
 618	movel	%a0@,%a1@
 619
 620	get_bi_record	BI_FPUTYPE
 621	lea	%pc@(m68k_fputype),%a1
 622	movel	%a0@,%a1@
 623
 624	get_bi_record	BI_MMUTYPE
 625	lea	%pc@(m68k_mmutype),%a1
 626	movel	%a0@,%a1@
 627
 628	get_bi_record	BI_CPUTYPE
 629	lea	%pc@(m68k_cputype),%a1
 630	movel	%a0@,%a1@
 631
 632	leds	0x1
 633
 634#ifdef CONFIG_MAC
 635/*
 636 * For Macintosh, we need to determine the display parameters early (at least
 637 * while debugging it).
 638 */
 639
 640	is_not_mac(L(test_notmac))
 641
 642	get_bi_record	BI_MAC_VADDR
 643	lea	%pc@(L(mac_videobase)),%a1
 644	movel	%a0@,%a1@
 645
 646	get_bi_record	BI_MAC_VDEPTH
 647	lea	%pc@(L(mac_videodepth)),%a1
 648	movel	%a0@,%a1@
 649
 650	get_bi_record	BI_MAC_VDIM
 651	lea	%pc@(L(mac_dimensions)),%a1
 652	movel	%a0@,%a1@
 653
 654	get_bi_record	BI_MAC_VROW
 655	lea	%pc@(L(mac_rowbytes)),%a1
 656	movel	%a0@,%a1@
 657
 658#ifdef MAC_SERIAL_DEBUG
 659	get_bi_record	BI_MAC_SCCBASE
 660	lea	%pc@(L(mac_sccbase)),%a1
 661	movel	%a0@,%a1@
 662#endif /* MAC_SERIAL_DEBUG */
 663
 664#if 0
 665	/*
 666	 * Clear the screen
 667	 */
 668	lea	%pc@(L(mac_videobase)),%a0
 669	movel	%a0@,%a1
 670	lea	%pc@(L(mac_dimensions)),%a0
 671	movel	%a0@,%d1
 672	swap	%d1		/* #rows is high bytes */
 673	andl	#0xFFFF,%d1	/* rows */
 674	subl	#10,%d1
 675	lea	%pc@(L(mac_rowbytes)),%a0
 676loopy2:
 677	movel	%a0@,%d0
 678	subql	#1,%d0
 679loopx2:
 680	moveb	#0x55, %a1@+
 681	dbra	%d0,loopx2
 682	dbra	%d1,loopy2
 683#endif
 684
 685L(test_notmac):
 686#endif /* CONFIG_MAC */
 687
 
 
 
 
 
 
 
 
 688
 689/*
 690 * There are ultimately two pieces of information we want for all kinds of
 691 * processors CpuType and CacheBits.  The CPUTYPE was passed in from booter
 692 * and is converted here from a booter type definition to a separate bit
 693 * number which allows for the standard is_0x0 macro tests.
 694 */
 695	movel	%pc@(m68k_cputype),%d0
 696	/*
 697	 * Assume it's an 030
 698	 */
 699	clrl	%d1
 700
 701	/*
 702	 * Test the BootInfo cputype for 060
 703	 */
 704	btst	#CPUB_68060,%d0
 705	jeq	1f
 706	bset	#CPUTYPE_060,%d1
 707	bset	#CPUTYPE_0460,%d1
 708	jra	3f
 7091:
 710	/*
 711	 * Test the BootInfo cputype for 040
 712	 */
 713	btst	#CPUB_68040,%d0
 714	jeq	2f
 715	bset	#CPUTYPE_040,%d1
 716	bset	#CPUTYPE_0460,%d1
 717	jra	3f
 7182:
 719	/*
 720	 * Test the BootInfo cputype for 020
 721	 */
 722	btst	#CPUB_68020,%d0
 723	jeq	3f
 724	bset	#CPUTYPE_020,%d1
 725	jra	3f
 7263:
 727	/*
 728	 * Record the cpu type
 729	 */
 730	lea	%pc@(L(cputype)),%a0
 731	movel	%d1,%a0@
 732
 733	/*
 734	 * NOTE:
 735	 *
 736	 * Now the macros are valid:
 737	 *	is_040_or_060
 738	 *	is_not_040_or_060
 739	 *	is_040
 740	 *	is_060
 741	 *	is_not_060
 742	 */
 743
 744	/*
 745	 * Determine the cache mode for pages holding MMU tables
 746	 * and for supervisor mode, unused for '020 and '030
 747	 */
 748	clrl	%d0
 749	clrl	%d1
 750
 751	is_not_040_or_060(L(save_cachetype))
 752
 753	/*
 754	 * '040 or '060
 755	 * d1 := cacheable write-through
 756	 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables,
 757	 * but we have been using write-through since at least 2.0.29 so I
 758	 * guess it is OK.
 759	 */
 760#ifdef CONFIG_060_WRITETHROUGH
 761	/*
 762	 * If this is a 68060 board using drivers with cache coherency
 763	 * problems, then supervisor memory accesses need to be write-through
 764	 * also; otherwise, we want copyback.
 765	 */
 766
 767	is_not_060(1f)
 768	movel	#_PAGE_CACHE040W,%d0
 769	jra	L(save_cachetype)
 770#endif /* CONFIG_060_WRITETHROUGH */
 7711:
 772	movew	#_PAGE_CACHE040,%d0
 773
 774	movel	#_PAGE_CACHE040W,%d1
 775
 776L(save_cachetype):
 777	/* Save cache mode for supervisor mode and page tables
 778	 */
 779	lea	%pc@(m68k_supervisor_cachemode),%a0
 780	movel	%d0,%a0@
 781	lea	%pc@(m68k_pgtable_cachemode),%a0
 782	movel	%d1,%a0@
 783
 784/*
 785 * raise interrupt level
 786 */
 787	movew	#0x2700,%sr
 788
 789/*
 790   If running on an Atari, determine the I/O base of the
 791   serial port and test if we are running on a Medusa or Hades.
 792   This test is necessary here, because on the Hades the serial
 793   port is only accessible in the high I/O memory area.
 794
 795   The test whether it is a Medusa is done by writing to the byte at
 796   phys. 0x0. This should result in a bus error on all other machines.
 797
 798   ...should, but doesn't. The Afterburner040 for the Falcon has the
 799   same behaviour (0x0..0x7 are no ROM shadow). So we have to do
 800   another test to distinguish Medusa and AB040. This is a
 801   read attempt for 0x00ff82fe phys. that should bus error on a Falcon
 802   (+AB040), but is in the range where the Medusa always asserts DTACK.
 803
 804   The test for the Hades is done by reading address 0xb0000000. This
 805   should give a bus error on the Medusa.
 806 */
 807
 808#ifdef CONFIG_ATARI
 809	is_not_atari(L(notypetest))
 810
 811	/* get special machine type (Medusa/Hades/AB40) */
 812	moveq	#0,%d3 /* default if tag doesn't exist */
 813	get_bi_record	BI_ATARI_MCH_TYPE
 814	tstl	%d0
 815	jbmi	1f
 816	movel	%a0@,%d3
 817	lea	%pc@(atari_mch_type),%a0
 818	movel	%d3,%a0@
 8191:
 820	/* On the Hades, the iobase must be set up before opening the
 821	 * serial port. There are no I/O regs at 0x00ffxxxx at all. */
 822	moveq	#0,%d0
 823	cmpl	#ATARI_MACH_HADES,%d3
 824	jbne	1f
 825	movel	#0xff000000,%d0		/* Hades I/O base addr: 0xff000000 */
 8261:	lea     %pc@(L(iobase)),%a0
 827	movel   %d0,%a0@
 828
 829L(notypetest):
 830#endif
 831
 832#ifdef CONFIG_VME
 833	is_mvme147(L(getvmetype))
 834	is_bvme6000(L(getvmetype))
 835	is_not_mvme16x(L(gvtdone))
 836
 837	/* See if the loader has specified the BI_VME_TYPE tag.  Recent
 838	 * versions of VMELILO and TFTPLILO do this.  We have to do this
 839	 * early so we know how to handle console output.  If the tag
 840	 * doesn't exist then we use the Bug for output on MVME16x.
 841	 */
 842L(getvmetype):
 843	get_bi_record	BI_VME_TYPE
 844	tstl	%d0
 845	jbmi	1f
 846	movel	%a0@,%d3
 847	lea	%pc@(vme_brdtype),%a0
 848	movel	%d3,%a0@
 8491:
 850#ifdef CONFIG_MVME16x
 851	is_not_mvme16x(L(gvtdone))
 852
 853	/* Need to get the BRD_ID info to differentiate between 162, 167,
 854	 * etc.  This is available as a BI_VME_BRDINFO tag with later
 855	 * versions of VMELILO and TFTPLILO, otherwise we call the Bug.
 856	 */
 857	get_bi_record	BI_VME_BRDINFO
 858	tstl	%d0
 859	jpl	1f
 860
 861	/* Get pointer to board ID data from Bug */
 862	movel	%d2,%sp@-
 863	trap	#15
 864	.word	0x70		/* trap 0x70 - .BRD_ID */
 865	movel	%sp@+,%a0
 8661:
 867	lea	%pc@(mvme_bdid),%a1
 868	/* Structure is 32 bytes long */
 869	movel	%a0@+,%a1@+
 870	movel	%a0@+,%a1@+
 871	movel	%a0@+,%a1@+
 872	movel	%a0@+,%a1@+
 873	movel	%a0@+,%a1@+
 874	movel	%a0@+,%a1@+
 875	movel	%a0@+,%a1@+
 876	movel	%a0@+,%a1@+
 877#endif
 878
 879L(gvtdone):
 880
 881#endif
 882
 883#ifdef CONFIG_HP300
 884	is_not_hp300(L(nothp))
 885
 886	/* Get the address of the UART for serial debugging */
 887	get_bi_record	BI_HP300_UART_ADDR
 888	tstl	%d0
 889	jbmi	1f
 890	movel	%a0@,%d3
 891	lea	%pc@(L(uartbase)),%a0
 892	movel	%d3,%a0@
 893	get_bi_record	BI_HP300_UART_SCODE
 894	tstl	%d0
 895	jbmi	1f
 896	movel	%a0@,%d3
 897	lea	%pc@(L(uart_scode)),%a0
 898	movel	%d3,%a0@
 8991:
 900L(nothp):
 901#endif
 902
 903/*
 904 * Initialize serial port
 905 */
 906	jbsr	L(serial_init)
 907
 908/*
 909 * Initialize console
 910 */
 911#ifdef CONFIG_MAC
 912	is_not_mac(L(nocon))
 913#ifdef CONSOLE
 914	console_init
 915#ifdef CONSOLE_PENGUIN
 916	console_put_penguin
 917#endif	/* CONSOLE_PENGUIN */
 918	console_put_stats
 919#endif	/* CONSOLE */
 920L(nocon):
 921#endif	/* CONFIG_MAC */
 922
 923
 924	putc	'\n'
 925	putc	'A'
 926	leds	0x2
 927	dputn	%pc@(L(cputype))
 928	dputn	%pc@(m68k_supervisor_cachemode)
 929	dputn	%pc@(m68k_pgtable_cachemode)
 930	dputc	'\n'
 931
 932/*
 933 * Save physical start address of kernel
 934 */
 935	lea	%pc@(L(phys_kernel_start)),%a0
 936	lea	%pc@(_stext),%a1
 937	subl	#_stext,%a1
 938	addl	#PAGE_OFFSET,%a1
 939	movel	%a1,%a0@
 940
 941	putc	'B'
 942
 943	leds	0x4
 944
 945/*
 946 *	mmu_init
 947 *
 948 *	This block of code does what's necessary to map in the various kinds
 949 *	of machines for execution of Linux.
 950 *	First map the first 4 MB of kernel code & data
 951 */
 952
 953	mmu_map	#PAGE_OFFSET,%pc@(L(phys_kernel_start)),#4*1024*1024,\
 
 
 
 
 
 
 
 
 
 
 
 
 954		%pc@(m68k_supervisor_cachemode)
 955
 956	putc	'C'
 957
 958#ifdef CONFIG_AMIGA
 959
 960L(mmu_init_amiga):
 961
 962	is_not_amiga(L(mmu_init_not_amiga))
 963/*
 964 * mmu_init_amiga
 965 */
 966
 967	putc	'D'
 968
 969	is_not_040_or_060(1f)
 970
 971	/*
 972	 * 040: Map the 16Meg range physical 0x0 up to logical 0x8000.0000
 973	 */
 974	mmu_map		#0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S
 975	/*
 976	 * Map the Zorro III I/O space with transparent translation
 977	 * for frame buffer memory etc.
 978	 */
 979	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S
 980
 981	jbra	L(mmu_init_done)
 982
 9831:
 984	/*
 985	 * 030:	Map the 32Meg range physical 0x0 up to logical 0x8000.0000
 986	 */
 987	mmu_map		#0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
 988	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030
 989
 990	jbra	L(mmu_init_done)
 991
 992L(mmu_init_not_amiga):
 993#endif
 994
 995#ifdef CONFIG_ATARI
 996
 997L(mmu_init_atari):
 998
 999	is_not_atari(L(mmu_init_not_atari))
1000
1001	putc	'E'
1002
1003/* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping
1004   the last 16 MB of virtual address space to the first 16 MB (i.e.
1005   0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is
1006   needed. I/O ranges are marked non-cachable.
1007
1008   For the Medusa it is better to map the I/O region transparently
1009   (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are
1010   accessible only in the high area.
1011
1012   On the Hades all I/O registers are only accessible in the high
1013   area.
1014*/
1015
1016	/* I/O base addr for non-Medusa, non-Hades: 0x00000000 */
1017	moveq	#0,%d0
1018	movel	%pc@(atari_mch_type),%d3
1019	cmpl	#ATARI_MACH_MEDUSA,%d3
1020	jbeq	2f
1021	cmpl	#ATARI_MACH_HADES,%d3
1022	jbne	1f
10232:	movel	#0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */
10241:	movel	%d0,%d3
1025
1026	is_040_or_060(L(spata68040))
1027
1028	/* Map everything non-cacheable, though not all parts really
1029	 * need to disable caches (crucial only for 0xff8000..0xffffff
1030	 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder
1031	 * isn't really used, except for sometimes peeking into the
1032	 * ROMs (mirror at phys. 0x0), so caching isn't necessary for
1033	 * this. */
1034	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030
1035
1036	jbra	L(mmu_init_done)
1037
1038L(spata68040):
1039
1040	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S
1041
1042	jbra	L(mmu_init_done)
1043
1044L(mmu_init_not_atari):
1045#endif
1046
1047#ifdef CONFIG_Q40
1048	is_not_q40(L(notq40))
1049	/*
1050	 * add transparent mapping for 0xff00 0000 - 0xffff ffff
1051	 * non-cached serialized etc..
1052	 * this includes master chip, DAC, RTC and ISA ports
1053	 * 0xfe000000-0xfeffffff is for screen and ROM
1054	 */
1055
1056	putc    'Q'
1057
1058	mmu_map_tt	#0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W
1059	mmu_map_tt	#1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S
1060
1061	jbra	L(mmu_init_done)
1062
1063L(notq40):
1064#endif
1065
1066#ifdef CONFIG_HP300
1067	is_not_hp300(L(nothp300))
1068
1069	/* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx)
1070	 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx).
1071	 * The ROM mapping is needed because the LEDs are mapped there too.
1072	 */
1073
1074	is_040(1f)
1075
1076	/*
1077	 * 030: Map the 32Meg range physical 0x0 up to logical 0xf000.0000
1078	 */
1079	mmu_map	#0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030
1080
1081	jbra	L(mmu_init_done)
1082
10831:
1084	/*
1085	 * 040: Map the 16Meg range physical 0x0 up to logical 0xf000.0000
1086	 */
1087	mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S
1088
1089	jbra	L(mmu_init_done)
1090
1091L(nothp300):
1092#endif /* CONFIG_HP300 */
1093
1094#ifdef CONFIG_MVME147
1095
1096	is_not_mvme147(L(not147))
1097
1098	/*
1099	 * On MVME147 we have already created kernel page tables for
1100	 * 4MB of RAM at address 0, so now need to do a transparent
1101	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1102	 * so we can access on-board i/o areas.
1103	 */
1104
1105	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030
1106
1107	jbra	L(mmu_init_done)
1108
1109L(not147):
1110#endif /* CONFIG_MVME147 */
1111
1112#ifdef CONFIG_MVME16x
1113
1114	is_not_mvme16x(L(not16x))
1115
1116	/*
1117	 * On MVME16x we have already created kernel page tables for
1118	 * 4MB of RAM at address 0, so now need to do a transparent
1119	 * mapping of the top of memory space.  Make it 0.5GByte for now.
1120	 * Supervisor only access, so transparent mapping doesn't
1121	 * clash with User code virtual address space.
1122	 * this covers IO devices, PROM and SRAM.  The PROM and SRAM
1123	 * mapping is needed to allow 167Bug to run.
1124	 * IO is in the range 0xfff00000 to 0xfffeffff.
1125	 * PROM is 0xff800000->0xffbfffff and SRAM is
1126	 * 0xffe00000->0xffe1ffff.
1127	 */
1128
1129	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1130
1131	jbra	L(mmu_init_done)
1132
1133L(not16x):
1134#endif	/* CONFIG_MVME162 | CONFIG_MVME167 */
1135
1136#ifdef CONFIG_BVME6000
1137
1138	is_not_bvme6000(L(not6000))
1139
1140	/*
1141	 * On BVME6000 we have already created kernel page tables for
1142	 * 4MB of RAM at address 0, so now need to do a transparent
1143	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1144	 * so we can access on-board i/o areas.
1145	 * Supervisor only access, so transparent mapping doesn't
1146	 * clash with User code virtual address space.
1147	 */
1148
1149	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1150
1151	jbra	L(mmu_init_done)
1152
1153L(not6000):
1154#endif /* CONFIG_BVME6000 */
1155
1156/*
1157 * mmu_init_mac
1158 *
1159 * The Macintosh mappings are less clear.
1160 *
1161 * Even as of this writing, it is unclear how the
1162 * Macintosh mappings will be done.  However, as
1163 * the first author of this code I'm proposing the
1164 * following model:
1165 *
1166 * Map the kernel (that's already done),
1167 * Map the I/O (on most machines that's the
1168 * 0x5000.0000 ... 0x5300.0000 range,
1169 * Map the video frame buffer using as few pages
1170 * as absolutely (this requirement mostly stems from
1171 * the fact that when the frame buffer is at
1172 * 0x0000.0000 then we know there is valid RAM just
1173 * above the screen that we don't want to waste!).
1174 *
1175 * By the way, if the frame buffer is at 0x0000.0000
1176 * then the Macintosh is known as an RBV based Mac.
1177 *
1178 * By the way 2, the code currently maps in a bunch of
1179 * regions.  But I'd like to cut that out.  (And move most
1180 * of the mappings up into the kernel proper ... or only
1181 * map what's necessary.)
1182 */
1183
1184#ifdef CONFIG_MAC
1185
1186L(mmu_init_mac):
1187
1188	is_not_mac(L(mmu_init_not_mac))
1189
1190	putc	'F'
1191
1192	is_not_040_or_060(1f)
1193
1194	moveq	#_PAGE_NOCACHE_S,%d3
1195	jbra	2f
11961:
1197	moveq	#_PAGE_NOCACHE030,%d3
11982:
1199	/*
1200	 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical>
1201	 *	     we simply map the 4MB that contains the videomem
1202	 */
1203
1204	movel	#VIDEOMEMMASK,%d0
1205	andl	%pc@(L(mac_videobase)),%d0
1206
1207	mmu_map		#VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3
1208	/* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */
1209	mmu_map_eq	#0x40000000,#0x02000000,%d3
1210	/* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */
1211	mmu_map_eq	#0x50000000,#0x03000000,%d3
1212	/* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */
1213	mmu_map_tt	#1,#0xf8000000,#0x08000000,%d3
1214
1215	jbra	L(mmu_init_done)
1216
1217L(mmu_init_not_mac):
1218#endif
1219
1220#ifdef CONFIG_SUN3X
1221	is_not_sun3x(L(notsun3x))
1222
1223	/* oh, the pain..  We're gonna want the prom code after
1224	 * starting the MMU, so we copy the mappings, translating
1225	 * from 8k -> 4k pages as we go.
1226	 */
1227
1228	/* copy maps from 0xfee00000 to 0xff000000 */
1229	movel	#0xfee00000, %d0
1230	moveq	#ROOT_INDEX_SHIFT, %d1
1231	lsrl	%d1,%d0
1232	mmu_get_root_table_entry	%d0
1233
1234	movel	#0xfee00000, %d0
1235	moveq	#PTR_INDEX_SHIFT, %d1
1236	lsrl	%d1,%d0
1237	andl	#PTR_TABLE_SIZE-1, %d0
1238	mmu_get_ptr_table_entry		%a0,%d0
1239
1240	movel	#0xfee00000, %d0
1241	moveq	#PAGE_INDEX_SHIFT, %d1
1242	lsrl	%d1,%d0
1243	andl	#PAGE_TABLE_SIZE-1, %d0
1244	mmu_get_page_table_entry	%a0,%d0
1245
1246	/* this is where the prom page table lives */
1247	movel	0xfefe00d4, %a1
1248	movel	%a1@, %a1
1249
1250	movel	#((0x200000 >> 13)-1), %d1
1251
12521:
1253	movel	%a1@+, %d3
1254	movel	%d3,%a0@+
1255	addl	#0x1000,%d3
1256	movel	%d3,%a0@+
1257
1258	dbra	%d1,1b
1259
1260	/* setup tt1 for I/O */
1261	mmu_map_tt	#1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S
1262	jbra	L(mmu_init_done)
1263
1264L(notsun3x):
1265#endif
1266
 
 
 
 
 
 
 
1267#ifdef CONFIG_APOLLO
1268	is_not_apollo(L(notapollo))
1269
1270	putc	'P'
1271	mmu_map         #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
1272
1273L(notapollo):
1274	jbra	L(mmu_init_done)
1275#endif
1276
1277L(mmu_init_done):
1278
1279	putc	'G'
1280	leds	0x8
1281
1282/*
1283 * mmu_fixup
1284 *
1285 * On the 040 class machines, all pages that are used for the
1286 * mmu have to be fixed up. According to Motorola, pages holding mmu
1287 * tables should be non-cacheable on a '040 and write-through on a
1288 * '060. But analysis of the reasons for this, and practical
1289 * experience, showed that write-through also works on a '040.
1290 *
1291 * Allocated memory so far goes from kernel_end to memory_start that
1292 * is used for all kind of tables, for that the cache attributes
1293 * are now fixed.
1294 */
1295L(mmu_fixup):
1296
1297	is_not_040_or_060(L(mmu_fixup_done))
1298
1299#ifdef MMU_NOCACHE_KERNEL
1300	jbra	L(mmu_fixup_done)
1301#endif
1302
1303	/* first fix the page at the start of the kernel, that
1304	 * contains also kernel_pg_dir.
1305	 */
1306	movel	%pc@(L(phys_kernel_start)),%d0
1307	subl	#PAGE_OFFSET,%d0
1308	lea	%pc@(_stext),%a0
1309	subl	%d0,%a0
1310	mmu_fixup_page_mmu_cache	%a0
1311
1312	movel	%pc@(L(kernel_end)),%a0
1313	subl	%d0,%a0
1314	movel	%pc@(L(memory_start)),%a1
1315	subl	%d0,%a1
1316	bra	2f
13171:
1318	mmu_fixup_page_mmu_cache	%a0
1319	addw	#PAGESIZE,%a0
13202:
1321	cmpl	%a0,%a1
1322	jgt	1b
1323
1324L(mmu_fixup_done):
1325
1326#ifdef MMU_PRINT
1327	mmu_print
1328#endif
1329
1330/*
1331 * mmu_engage
1332 *
1333 * This chunk of code performs the gruesome task of engaging the MMU.
1334 * The reason its gruesome is because when the MMU becomes engaged it
1335 * maps logical addresses to physical addresses.  The Program Counter
1336 * register is then passed through the MMU before the next instruction
1337 * is fetched (the instruction following the engage MMU instruction).
1338 * This may mean one of two things:
1339 * 1. The Program Counter falls within the logical address space of
1340 *    the kernel of which there are two sub-possibilities:
1341 *    A. The PC maps to the correct instruction (logical PC == physical
1342 *       code location), or
1343 *    B. The PC does not map through and the processor will read some
1344 *       data (or instruction) which is not the logically next instr.
1345 *    As you can imagine, A is good and B is bad.
1346 * Alternatively,
1347 * 2. The Program Counter does not map through the MMU.  The processor
1348 *    will take a Bus Error.
1349 * Clearly, 2 is bad.
1350 * It doesn't take a wiz kid to figure you want 1.A.
1351 * This code creates that possibility.
1352 * There are two possible 1.A. states (we now ignore the other above states):
1353 * A. The kernel is located at physical memory addressed the same as
1354 *    the logical memory for the kernel, i.e., 0x01000.
1355 * B. The kernel is located some where else.  e.g., 0x0400.0000
1356 *
1357 *    Under some conditions the Macintosh can look like A or B.
1358 * [A friend and I once noted that Apple hardware engineers should be
1359 * wacked twice each day: once when they show up at work (as in, Whack!,
1360 * "This is for the screwy hardware we know you're going to design today."),
1361 * and also at the end of the day (as in, Whack! "I don't know what
1362 * you designed today, but I'm sure it wasn't good."). -- rst]
1363 *
1364 * This code works on the following premise:
1365 * If the kernel start (%d5) is within the first 16 Meg of RAM,
1366 * then create a mapping for the kernel at logical 0x8000.0000 to
1367 * the physical location of the pc.  And, create a transparent
1368 * translation register for the first 16 Meg.  Then, after the MMU
1369 * is engaged, the PC can be moved up into the 0x8000.0000 range
1370 * and then the transparent translation can be turned off and then
1371 * the PC can jump to the correct logical location and it will be
1372 * home (finally).  This is essentially the code that the Amiga used
1373 * to use.  Now, it's generalized for all processors.  Which means
1374 * that a fresh (but temporary) mapping has to be created.  The mapping
1375 * is made in page 0 (an as of yet unused location -- except for the
1376 * stack!).  This temporary mapping will only require 1 pointer table
1377 * and a single page table (it can map 256K).
1378 *
1379 * OK, alternatively, imagine that the Program Counter is not within
1380 * the first 16 Meg.  Then, just use Transparent Translation registers
1381 * to do the right thing.
1382 *
1383 * Last, if _start is already at 0x01000, then there's nothing special
1384 * to do (in other words, in a degenerate case of the first case above,
1385 * do nothing).
1386 *
1387 * Let's do it.
1388 *
1389 *
1390 */
1391
1392	putc	'H'
1393
1394	mmu_engage
1395
1396/*
1397 * After this point no new memory is allocated and
1398 * the start of available memory is stored in availmem.
1399 * (The bootmem allocator requires now the physicall address.)
1400 */
1401
1402	movel	L(memory_start),availmem
1403
1404#ifdef CONFIG_AMIGA
1405	is_not_amiga(1f)
1406	/* fixup the Amiga custom register location before printing */
1407	clrl	L(custom)
14081:
1409#endif
1410
1411#ifdef CONFIG_ATARI
1412	is_not_atari(1f)
1413	/* fixup the Atari iobase register location before printing */
1414	movel	#0xff000000,L(iobase)
14151:
1416#endif
1417
1418#ifdef CONFIG_MAC
1419	is_not_mac(1f)
1420	movel	#~VIDEOMEMMASK,%d0
1421	andl	L(mac_videobase),%d0
1422	addl	#VIDEOMEMBASE,%d0
1423	movel	%d0,L(mac_videobase)
1424#if defined(CONSOLE)
1425	movel	%pc@(L(phys_kernel_start)),%d0
1426	subl	#PAGE_OFFSET,%d0
1427	subl	%d0,L(console_font)
1428	subl	%d0,L(console_font_data)
1429#endif
1430#ifdef MAC_SERIAL_DEBUG
1431	orl	#0x50000000,L(mac_sccbase)
1432#endif
14331:
1434#endif
1435
1436#ifdef CONFIG_HP300
1437	is_not_hp300(2f)
1438	/*
1439	 * Fix up the iobase register to point to the new location of the LEDs.
1440	 */
1441	movel	#0xf0000000,L(iobase)
1442
1443	/*
1444	 * Energise the FPU and caches.
1445	 */
1446	is_040(1f)
1447	movel	#0x60,0xf05f400c
1448	jbra	2f
1449
1450	/*
1451	 * 040: slightly different, apparently.
1452	 */
14531:	movew	#0,0xf05f400e
1454	movew	#0x64,0xf05f400e
14552:
1456#endif
1457
1458#ifdef CONFIG_SUN3X
1459	is_not_sun3x(1f)
1460
1461	/* enable copro */
1462	oriw	#0x4000,0x61000000
14631:
1464#endif
1465
1466#ifdef CONFIG_APOLLO
1467	is_not_apollo(1f)
1468
1469	/*
1470	 * Fix up the iobase before printing
1471	 */
1472	movel	#0x80000000,L(iobase)
14731:
1474#endif
1475
1476	putc	'I'
1477	leds	0x10
1478
1479/*
1480 * Enable caches
1481 */
1482
1483	is_not_040_or_060(L(cache_not_680460))
1484
1485L(cache680460):
1486	.chip	68040
1487	nop
1488	cpusha	%bc
1489	nop
1490
1491	is_060(L(cache68060))
1492
1493	movel	#CC6_ENABLE_D+CC6_ENABLE_I,%d0
1494	/* MMU stuff works in copyback mode now, so enable the cache */
1495	movec	%d0,%cacr
1496	jra	L(cache_done)
1497
1498L(cache68060):
1499	movel	#CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0
1500	/* MMU stuff works in copyback mode now, so enable the cache */
1501	movec	%d0,%cacr
1502	/* enable superscalar dispatch in PCR */
1503	moveq	#1,%d0
1504	.chip	68060
1505	movec	%d0,%pcr
1506
1507	jbra	L(cache_done)
1508L(cache_not_680460):
1509L(cache68030):
1510	.chip	68030
1511	movel	#CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0
1512	movec	%d0,%cacr
1513
1514	jra	L(cache_done)
1515	.chip	68k
1516L(cache_done):
1517
1518	putc	'J'
1519
1520/*
1521 * Setup initial stack pointer
1522 */
1523	lea	init_task,%curptr
1524	lea	init_thread_union+THREAD_SIZE,%sp
1525
1526	putc	'K'
1527
1528	subl	%a6,%a6		/* clear a6 for gdb */
1529
1530/*
1531 * The new 64bit printf support requires an early exception initialization.
1532 */
1533	jbsr	base_trap_init
1534
1535/* jump to the kernel start */
1536
1537	putc	'\n'
1538	leds	0x55
1539
1540	jbsr	start_kernel
1541
1542/*
1543 * Find a tag record in the bootinfo structure
1544 * The bootinfo structure is located right after the kernel bss
1545 * Returns: d0: size (-1 if not found)
1546 *          a0: data pointer (end-of-records if not found)
1547 */
1548func_start	get_bi_record,%d1
1549
1550	movel	ARG1,%d0
1551	lea	%pc@(_end),%a0
15521:	tstw	%a0@(BIR_TAG)
1553	jeq	3f
1554	cmpw	%a0@(BIR_TAG),%d0
1555	jeq	2f
1556	addw	%a0@(BIR_SIZE),%a0
1557	jra	1b
15582:	moveq	#0,%d0
1559	movew	%a0@(BIR_SIZE),%d0
1560	lea	%a0@(BIR_DATA),%a0
1561	jra	4f
15623:	moveq	#-1,%d0
1563	lea	%a0@(BIR_SIZE),%a0
15644:
1565func_return	get_bi_record
1566
1567
1568/*
1569 *	MMU Initialization Begins Here
1570 *
1571 *	The structure of the MMU tables on the 68k machines
1572 *	is thus:
1573 *	Root Table
1574 *		Logical addresses are translated through
1575 *	a hierarchical translation mechanism where the high-order
1576 *	seven bits of the logical address (LA) are used as an
1577 *	index into the "root table."  Each entry in the root
1578 *	table has a bit which specifies if it's a valid pointer to a
1579 *	pointer table.  Each entry defines a 32KMeg range of memory.
1580 *	If an entry is invalid then that logical range of 32M is
1581 *	invalid and references to that range of memory (when the MMU
1582 *	is enabled) will fault.  If the entry is valid, then it does
1583 *	one of two things.  On 040/060 class machines, it points to
1584 *	a pointer table which then describes more finely the memory
1585 *	within that 32M range.  On 020/030 class machines, a technique
1586 *	called "early terminating descriptors" are used.  This technique
1587 *	allows an entire 32Meg to be described by a single entry in the
1588 *	root table.  Thus, this entry in the root table, contains the
1589 *	physical address of the memory or I/O at the logical address
1590 *	which the entry represents and it also contains the necessary
1591 *	cache bits for this region.
1592 *
1593 *	Pointer Tables
1594 *		Per the Root Table, there will be one or more
1595 *	pointer tables.  Each pointer table defines a 32M range.
1596 *	Not all of the 32M range need be defined.  Again, the next
1597 *	seven bits of the logical address are used an index into
1598 *	the pointer table to point to page tables (if the pointer
1599 *	is valid).  There will undoubtedly be more than one
1600 *	pointer table for the kernel because each pointer table
1601 *	defines a range of only 32M.  Valid pointer table entries
1602 *	point to page tables, or are early terminating entries
1603 *	themselves.
1604 *
1605 *	Page Tables
1606 *		Per the Pointer Tables, each page table entry points
1607 *	to the physical page in memory that supports the logical
1608 *	address that translates to the particular index.
1609 *
1610 *	In short, the Logical Address gets translated as follows:
1611 *		bits 31..26 - index into the Root Table
1612 *		bits 25..18 - index into the Pointer Table
1613 *		bits 17..12 - index into the Page Table
1614 *		bits 11..0  - offset into a particular 4K page
1615 *
1616 *	The algorithms which follows do one thing: they abstract
1617 *	the MMU hardware.  For example, there are three kinds of
1618 *	cache settings that are relevant.  Either, memory is
1619 *	being mapped in which case it is either Kernel Code (or
1620 *	the RamDisk) or it is MMU data.  On the 030, the MMU data
1621 *	option also describes the kernel.  Or, I/O is being mapped
1622 *	in which case it has its own kind of cache bits.  There
1623 *	are constants which abstract these notions from the code that
1624 *	actually makes the call to map some range of memory.
1625 *
1626 *
1627 *
1628 */
1629
1630#ifdef MMU_PRINT
1631/*
1632 *	mmu_print
1633 *
1634 *	This algorithm will print out the current MMU mappings.
1635 *
1636 *	Input:
1637 *		%a5 points to the root table.  Everything else is calculated
1638 *			from this.
1639 */
1640
1641#define mmu_next_valid		0
1642#define mmu_start_logical	4
1643#define mmu_next_logical	8
1644#define mmu_start_physical	12
1645#define mmu_next_physical	16
1646
1647#define MMU_PRINT_INVALID		-1
1648#define MMU_PRINT_VALID			1
1649#define MMU_PRINT_UNINITED		0
1650
1651#define putZc(z,n)		jbne 1f; putc z; jbra 2f; 1: putc n; 2:
1652
1653func_start	mmu_print,%a0-%a6/%d0-%d7
1654
1655	movel	%pc@(L(kernel_pgdir_ptr)),%a5
1656	lea	%pc@(L(mmu_print_data)),%a0
1657	movel	#MMU_PRINT_UNINITED,%a0@(mmu_next_valid)
1658
1659	is_not_040_or_060(mmu_030_print)
1660
1661mmu_040_print:
1662	puts	"\nMMU040\n"
1663	puts	"rp:"
1664	putn	%a5
1665	putc	'\n'
1666#if 0
1667	/*
1668	 * The following #if/#endif block is a tight algorithm for dumping the 040
1669	 * MMU Map in gory detail.  It really isn't that practical unless the
1670	 * MMU Map algorithm appears to go awry and you need to debug it at the
1671	 * entry per entry level.
1672	 */
1673	movel	#ROOT_TABLE_SIZE,%d5
1674#if 0
1675	movel	%a5@+,%d7		| Burn an entry to skip the kernel mappings,
1676	subql	#1,%d5			| they (might) work
1677#endif
16781:	tstl	%d5
1679	jbeq	mmu_print_done
1680	subq	#1,%d5
1681	movel	%a5@+,%d7
1682	btst	#1,%d7
1683	jbeq	1b
1684
16852:	putn	%d7
1686	andil	#0xFFFFFE00,%d7
1687	movel	%d7,%a4
1688	movel	#PTR_TABLE_SIZE,%d4
1689	putc	' '
16903:	tstl	%d4
1691	jbeq	11f
1692	subq	#1,%d4
1693	movel	%a4@+,%d7
1694	btst	#1,%d7
1695	jbeq	3b
1696
16974:	putn	%d7
1698	andil	#0xFFFFFF00,%d7
1699	movel	%d7,%a3
1700	movel	#PAGE_TABLE_SIZE,%d3
17015:	movel	#8,%d2
17026:	tstl	%d3
1703	jbeq	31f
1704	subq	#1,%d3
1705	movel	%a3@+,%d6
1706	btst	#0,%d6
1707	jbeq	6b
17087:	tstl	%d2
1709	jbeq	8f
1710	subq	#1,%d2
1711	putc	' '
1712	jbra	91f
17138:	putc	'\n'
1714	movel	#8+1+8+1+1,%d2
17159:	putc	' '
1716	dbra	%d2,9b
1717	movel	#7,%d2
171891:	putn	%d6
1719	jbra	6b
1720
172131:	putc	'\n'
1722	movel	#8+1,%d2
172332:	putc	' '
1724	dbra	%d2,32b
1725	jbra	3b
1726
172711:	putc	'\n'
1728	jbra	1b
1729#endif /* MMU 040 Dumping code that's gory and detailed */
1730
1731	lea	%pc@(kernel_pg_dir),%a5
1732	movel	%a5,%a0			/* a0 has the address of the root table ptr */
1733	movel	#0x00000000,%a4		/* logical address */
1734	moveql	#0,%d0
173540:
1736	/* Increment the logical address and preserve in d5 */
1737	movel	%a4,%d5
1738	addil	#PAGESIZE<<13,%d5
1739	movel	%a0@+,%d6
1740	btst	#1,%d6
1741	jbne	41f
1742	jbsr	mmu_print_tuple_invalidate
1743	jbra	48f
174441:
1745	movel	#0,%d1
1746	andil	#0xfffffe00,%d6
1747	movel	%d6,%a1
174842:
1749	movel	%a4,%d5
1750	addil	#PAGESIZE<<6,%d5
1751	movel	%a1@+,%d6
1752	btst	#1,%d6
1753	jbne	43f
1754	jbsr	mmu_print_tuple_invalidate
1755	jbra	47f
175643:
1757	movel	#0,%d2
1758	andil	#0xffffff00,%d6
1759	movel	%d6,%a2
176044:
1761	movel	%a4,%d5
1762	addil	#PAGESIZE,%d5
1763	movel	%a2@+,%d6
1764	btst	#0,%d6
1765	jbne	45f
1766	jbsr	mmu_print_tuple_invalidate
1767	jbra	46f
176845:
1769	moveml	%d0-%d1,%sp@-
1770	movel	%a4,%d0
1771	movel	%d6,%d1
1772	andil	#0xfffff4e0,%d1
1773	lea	%pc@(mmu_040_print_flags),%a6
1774	jbsr	mmu_print_tuple
1775	moveml	%sp@+,%d0-%d1
177646:
1777	movel	%d5,%a4
1778	addq	#1,%d2
1779	cmpib	#64,%d2
1780	jbne	44b
178147:
1782	movel	%d5,%a4
1783	addq	#1,%d1
1784	cmpib	#128,%d1
1785	jbne	42b
178648:
1787	movel	%d5,%a4			/* move to the next logical address */
1788	addq	#1,%d0
1789	cmpib	#128,%d0
1790	jbne	40b
1791
1792	.chip	68040
1793	movec	%dtt1,%d0
1794	movel	%d0,%d1
1795	andiw	#0x8000,%d1		/* is it valid ? */
1796	jbeq	1f			/* No, bail out */
1797
1798	movel	%d0,%d1
1799	andil	#0xff000000,%d1		/* Get the address */
1800	putn	%d1
1801	puts	"=="
1802	putn	%d1
1803
1804	movel	%d0,%d6
1805	jbsr	mmu_040_print_flags_tt
18061:
1807	movec	%dtt0,%d0
1808	movel	%d0,%d1
1809	andiw	#0x8000,%d1		/* is it valid ? */
1810	jbeq	1f			/* No, bail out */
1811
1812	movel	%d0,%d1
1813	andil	#0xff000000,%d1		/* Get the address */
1814	putn	%d1
1815	puts	"=="
1816	putn	%d1
1817
1818	movel	%d0,%d6
1819	jbsr	mmu_040_print_flags_tt
18201:
1821	.chip	68k
1822
1823	jbra	mmu_print_done
1824
1825mmu_040_print_flags:
1826	btstl	#10,%d6
1827	putZc(' ','G')	/* global bit */
1828	btstl	#7,%d6
1829	putZc(' ','S')	/* supervisor bit */
1830mmu_040_print_flags_tt:
1831	btstl	#6,%d6
1832	jbne	3f
1833	putc	'C'
1834	btstl	#5,%d6
1835	putZc('w','c')	/* write through or copy-back */
1836	jbra	4f
18373:
1838	putc	'N'
1839	btstl	#5,%d6
1840	putZc('s',' ')	/* serialized non-cacheable, or non-cacheable */
18414:
1842	rts
1843
1844mmu_030_print_flags:
1845	btstl	#6,%d6
1846	putZc('C','I')	/* write through or copy-back */
1847	rts
1848
1849mmu_030_print:
1850	puts	"\nMMU030\n"
1851	puts	"\nrp:"
1852	putn	%a5
1853	putc	'\n'
1854	movel	%a5,%d0
1855	andil	#0xfffffff0,%d0
1856	movel	%d0,%a0
1857	movel	#0x00000000,%a4		/* logical address */
1858	movel	#0,%d0
185930:
1860	movel	%a4,%d5
1861	addil	#PAGESIZE<<13,%d5
1862	movel	%a0@+,%d6
1863	btst	#1,%d6			/* is it a table ptr? */
1864	jbne	31f			/* yes */
1865	btst	#0,%d6			/* is it early terminating? */
1866	jbeq	1f			/* no */
1867	jbsr	mmu_030_print_helper
1868	jbra	38f
18691:
1870	jbsr	mmu_print_tuple_invalidate
1871	jbra	38f
187231:
1873	movel	#0,%d1
1874	andil	#0xfffffff0,%d6
1875	movel	%d6,%a1
187632:
1877	movel	%a4,%d5
1878	addil	#PAGESIZE<<6,%d5
1879	movel	%a1@+,%d6
1880	btst	#1,%d6			/* is it a table ptr? */
1881	jbne	33f			/* yes */
1882	btst	#0,%d6			/* is it a page descriptor? */
1883	jbeq	1f			/* no */
1884	jbsr	mmu_030_print_helper
1885	jbra	37f
18861:
1887	jbsr	mmu_print_tuple_invalidate
1888	jbra	37f
188933:
1890	movel	#0,%d2
1891	andil	#0xfffffff0,%d6
1892	movel	%d6,%a2
189334:
1894	movel	%a4,%d5
1895	addil	#PAGESIZE,%d5
1896	movel	%a2@+,%d6
1897	btst	#0,%d6
1898	jbne	35f
1899	jbsr	mmu_print_tuple_invalidate
1900	jbra	36f
190135:
1902	jbsr	mmu_030_print_helper
190336:
1904	movel	%d5,%a4
1905	addq	#1,%d2
1906	cmpib	#64,%d2
1907	jbne	34b
190837:
1909	movel	%d5,%a4
1910	addq	#1,%d1
1911	cmpib	#128,%d1
1912	jbne	32b
191338:
1914	movel	%d5,%a4			/* move to the next logical address */
1915	addq	#1,%d0
1916	cmpib	#128,%d0
1917	jbne	30b
1918
1919mmu_print_done:
1920	puts	"\n\n"
1921
1922func_return	mmu_print
1923
1924
1925mmu_030_print_helper:
1926	moveml	%d0-%d1,%sp@-
1927	movel	%a4,%d0
1928	movel	%d6,%d1
1929	lea	%pc@(mmu_030_print_flags),%a6
1930	jbsr	mmu_print_tuple
1931	moveml	%sp@+,%d0-%d1
1932	rts
1933
1934mmu_print_tuple_invalidate:
1935	moveml	%a0/%d7,%sp@-
1936
1937	lea	%pc@(L(mmu_print_data)),%a0
1938	tstl	%a0@(mmu_next_valid)
1939	jbmi	mmu_print_tuple_invalidate_exit
1940
1941	movel	#MMU_PRINT_INVALID,%a0@(mmu_next_valid)
1942
1943	putn	%a4
1944
1945	puts	"##\n"
1946
1947mmu_print_tuple_invalidate_exit:
1948	moveml	%sp@+,%a0/%d7
1949	rts
1950
1951
1952mmu_print_tuple:
1953	moveml	%d0-%d7/%a0,%sp@-
1954
1955	lea	%pc@(L(mmu_print_data)),%a0
1956
1957	tstl	%a0@(mmu_next_valid)
1958	jble	mmu_print_tuple_print
1959
1960	cmpl	%a0@(mmu_next_physical),%d1
1961	jbeq	mmu_print_tuple_increment
1962
1963mmu_print_tuple_print:
1964	putn	%d0
1965	puts	"->"
1966	putn	%d1
1967
1968	movel	%d1,%d6
1969	jbsr	%a6@
1970
1971mmu_print_tuple_record:
1972	movel	#MMU_PRINT_VALID,%a0@(mmu_next_valid)
1973
1974	movel	%d1,%a0@(mmu_next_physical)
1975
1976mmu_print_tuple_increment:
1977	movel	%d5,%d7
1978	subl	%a4,%d7
1979	addl	%d7,%a0@(mmu_next_physical)
1980
1981mmu_print_tuple_exit:
1982	moveml	%sp@+,%d0-%d7/%a0
1983	rts
1984
1985mmu_print_machine_cpu_types:
1986	puts	"machine: "
1987
1988	is_not_amiga(1f)
1989	puts	"amiga"
1990	jbra	9f
19911:
1992	is_not_atari(2f)
1993	puts	"atari"
1994	jbra	9f
19952:
1996	is_not_mac(3f)
1997	puts	"macintosh"
1998	jbra	9f
19993:	puts	"unknown"
20009:	putc	'\n'
2001
2002	puts	"cputype: 0"
2003	is_not_060(1f)
2004	putc	'6'
2005	jbra	9f
20061:
2007	is_not_040_or_060(2f)
2008	putc	'4'
2009	jbra	9f
20102:	putc	'3'
20119:	putc	'0'
2012	putc	'\n'
2013
2014	rts
2015#endif /* MMU_PRINT */
2016
2017/*
2018 * mmu_map_tt
2019 *
2020 * This is a specific function which works on all 680x0 machines.
2021 * On 030, 040 & 060 it will attempt to use Transparent Translation
2022 * registers (tt1).
2023 * On 020 it will call the standard mmu_map which will use early
2024 * terminating descriptors.
2025 */
2026func_start	mmu_map_tt,%d0/%d1/%a0,4
2027
2028	dputs	"mmu_map_tt:"
2029	dputn	ARG1
2030	dputn	ARG2
2031	dputn	ARG3
2032	dputn	ARG4
2033	dputc	'\n'
2034
2035	is_020(L(do_map))
2036
2037	/* Extract the highest bit set
2038	 */
2039	bfffo	ARG3{#0,#32},%d1
2040	cmpw	#8,%d1
2041	jcc	L(do_map)
2042
2043	/* And get the mask
2044	 */
2045	moveq	#-1,%d0
2046	lsrl	%d1,%d0
2047	lsrl	#1,%d0
2048
2049	/* Mask the address
2050	 */
2051	movel	%d0,%d1
2052	notl	%d1
2053	andl	ARG2,%d1
2054
2055	/* Generate the upper 16bit of the tt register
2056	 */
2057	lsrl	#8,%d0
2058	orl	%d0,%d1
2059	clrw	%d1
2060
2061	is_040_or_060(L(mmu_map_tt_040))
2062
2063	/* set 030 specific bits (read/write access for supervisor mode
2064	 * (highest function code set, lower two bits masked))
2065	 */
2066	orw	#TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1
2067	movel	ARG4,%d0
2068	btst	#6,%d0
2069	jeq	1f
2070	orw	#TTR_CI,%d1
2071
20721:	lea	STACK,%a0
2073	dputn	%d1
2074	movel	%d1,%a0@
2075	.chip	68030
2076	tstl	ARG1
2077	jne	1f
2078	pmove	%a0@,%tt0
2079	jra	2f
20801:	pmove	%a0@,%tt1
20812:	.chip	68k
2082	jra	L(mmu_map_tt_done)
2083
2084	/* set 040 specific bits
2085	 */
2086L(mmu_map_tt_040):
2087	orw	#TTR_ENABLE+TTR_KERNELMODE,%d1
2088	orl	ARG4,%d1
2089	dputn	%d1
2090
2091	.chip	68040
2092	tstl	ARG1
2093	jne	1f
2094	movec	%d1,%itt0
2095	movec	%d1,%dtt0
2096	jra	2f
20971:	movec	%d1,%itt1
2098	movec	%d1,%dtt1
20992:	.chip	68k
2100
2101	jra	L(mmu_map_tt_done)
2102
2103L(do_map):
2104	mmu_map_eq	ARG2,ARG3,ARG4
2105
2106L(mmu_map_tt_done):
2107
2108func_return	mmu_map_tt
2109
2110/*
2111 *	mmu_map
2112 *
2113 *	This routine will map a range of memory using a pointer
2114 *	table and allocating the pages on the fly from the kernel.
2115 *	The pointer table does not have to be already linked into
2116 *	the root table, this routine will do that if necessary.
2117 *
2118 *	NOTE
2119 *	This routine will assert failure and use the serial_putc
2120 *	routines in the case of a run-time error.  For example,
2121 *	if the address is already mapped.
2122 *
2123 *	NOTE-2
2124 *	This routine will use early terminating descriptors
2125 *	where possible for the 68020+68851 and 68030 type
2126 *	processors.
2127 */
2128func_start	mmu_map,%d0-%d4/%a0-%a4
2129
2130	dputs	"\nmmu_map:"
2131	dputn	ARG1
2132	dputn	ARG2
2133	dputn	ARG3
2134	dputn	ARG4
2135	dputc	'\n'
2136
2137	/* Get logical address and round it down to 256KB
2138	 */
2139	movel	ARG1,%d0
2140	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2141	movel	%d0,%a3
2142
2143	/* Get the end address
2144	 */
2145	movel	ARG1,%a4
2146	addl	ARG3,%a4
2147	subql	#1,%a4
2148
2149	/* Get physical address and round it down to 256KB
2150	 */
2151	movel	ARG2,%d0
2152	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2153	movel	%d0,%a2
2154
2155	/* Add page attributes to the physical address
2156	 */
2157	movel	ARG4,%d0
2158	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2159	addw	%d0,%a2
2160
2161	dputn	%a2
2162	dputn	%a3
2163	dputn	%a4
2164
2165	is_not_040_or_060(L(mmu_map_030))
2166
2167	addw	#_PAGE_GLOBAL040,%a2
2168/*
2169 *	MMU 040 & 060 Support
2170 *
2171 *	The MMU usage for the 040 and 060 is different enough from
2172 *	the 030 and 68851 that there is separate code.  This comment
2173 *	block describes the data structures and algorithms built by
2174 *	this code.
2175 *
2176 *	The 040 does not support early terminating descriptors, as
2177 *	the 030 does.  Therefore, a third level of table is needed
2178 *	for the 040, and that would be the page table.  In Linux,
2179 *	page tables are allocated directly from the memory above the
2180 *	kernel.
2181 *
2182 */
2183
2184L(mmu_map_040):
2185	/* Calculate the offset into the root table
2186	 */
2187	movel	%a3,%d0
2188	moveq	#ROOT_INDEX_SHIFT,%d1
2189	lsrl	%d1,%d0
2190	mmu_get_root_table_entry	%d0
2191
2192	/* Calculate the offset into the pointer table
2193	 */
2194	movel	%a3,%d0
2195	moveq	#PTR_INDEX_SHIFT,%d1
2196	lsrl	%d1,%d0
2197	andl	#PTR_TABLE_SIZE-1,%d0
2198	mmu_get_ptr_table_entry		%a0,%d0
2199
2200	/* Calculate the offset into the page table
2201	 */
2202	movel	%a3,%d0
2203	moveq	#PAGE_INDEX_SHIFT,%d1
2204	lsrl	%d1,%d0
2205	andl	#PAGE_TABLE_SIZE-1,%d0
2206	mmu_get_page_table_entry	%a0,%d0
2207
2208	/* The page table entry must not no be busy
2209	 */
2210	tstl	%a0@
2211	jne	L(mmu_map_error)
2212
2213	/* Do the mapping and advance the pointers
2214	 */
2215	movel	%a2,%a0@
22162:
2217	addw	#PAGESIZE,%a2
2218	addw	#PAGESIZE,%a3
2219
2220	/* Ready with mapping?
2221	 */
2222	lea	%a3@(-1),%a0
2223	cmpl	%a0,%a4
2224	jhi	L(mmu_map_040)
2225	jra	L(mmu_map_done)
2226
2227L(mmu_map_030):
2228	/* Calculate the offset into the root table
2229	 */
2230	movel	%a3,%d0
2231	moveq	#ROOT_INDEX_SHIFT,%d1
2232	lsrl	%d1,%d0
2233	mmu_get_root_table_entry	%d0
2234
2235	/* Check if logical address 32MB aligned,
2236	 * so we can try to map it once
2237	 */
2238	movel	%a3,%d0
2239	andl	#(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0
2240	jne	1f
2241
2242	/* Is there enough to map for 32MB at once
2243	 */
2244	lea	%a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1
2245	cmpl	%a1,%a4
2246	jcs	1f
2247
2248	addql	#1,%a1
2249
2250	/* The root table entry must not no be busy
2251	 */
2252	tstl	%a0@
2253	jne	L(mmu_map_error)
2254
2255	/* Do the mapping and advance the pointers
2256	 */
2257	dputs	"early term1"
2258	dputn	%a2
2259	dputn	%a3
2260	dputn	%a1
2261	dputc	'\n'
2262	movel	%a2,%a0@
2263
2264	movel	%a1,%a3
2265	lea	%a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2
2266	jra	L(mmu_mapnext_030)
22671:
2268	/* Calculate the offset into the pointer table
2269	 */
2270	movel	%a3,%d0
2271	moveq	#PTR_INDEX_SHIFT,%d1
2272	lsrl	%d1,%d0
2273	andl	#PTR_TABLE_SIZE-1,%d0
2274	mmu_get_ptr_table_entry		%a0,%d0
2275
2276	/* The pointer table entry must not no be busy
2277	 */
2278	tstl	%a0@
2279	jne	L(mmu_map_error)
2280
2281	/* Do the mapping and advance the pointers
2282	 */
2283	dputs	"early term2"
2284	dputn	%a2
2285	dputn	%a3
2286	dputc	'\n'
2287	movel	%a2,%a0@
2288
2289	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a2
2290	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a3
2291
2292L(mmu_mapnext_030):
2293	/* Ready with mapping?
2294	 */
2295	lea	%a3@(-1),%a0
2296	cmpl	%a0,%a4
2297	jhi	L(mmu_map_030)
2298	jra	L(mmu_map_done)
2299
2300L(mmu_map_error):
2301
2302	dputs	"mmu_map error:"
2303	dputn	%a2
2304	dputn	%a3
2305	dputc	'\n'
2306
2307L(mmu_map_done):
2308
2309func_return	mmu_map
2310
2311/*
2312 *	mmu_fixup
2313 *
2314 *	On the 040 class machines, all pages that are used for the
2315 *	mmu have to be fixed up.
2316 */
2317
2318func_start	mmu_fixup_page_mmu_cache,%d0/%a0
2319
2320	dputs	"mmu_fixup_page_mmu_cache"
2321	dputn	ARG1
2322
2323	/* Calculate the offset into the root table
2324	 */
2325	movel	ARG1,%d0
2326	moveq	#ROOT_INDEX_SHIFT,%d1
2327	lsrl	%d1,%d0
2328	mmu_get_root_table_entry	%d0
2329
2330	/* Calculate the offset into the pointer table
2331	 */
2332	movel	ARG1,%d0
2333	moveq	#PTR_INDEX_SHIFT,%d1
2334	lsrl	%d1,%d0
2335	andl	#PTR_TABLE_SIZE-1,%d0
2336	mmu_get_ptr_table_entry		%a0,%d0
2337
2338	/* Calculate the offset into the page table
2339	 */
2340	movel	ARG1,%d0
2341	moveq	#PAGE_INDEX_SHIFT,%d1
2342	lsrl	%d1,%d0
2343	andl	#PAGE_TABLE_SIZE-1,%d0
2344	mmu_get_page_table_entry	%a0,%d0
2345
2346	movel	%a0@,%d0
2347	andil	#_CACHEMASK040,%d0
2348	orl	%pc@(m68k_pgtable_cachemode),%d0
2349	movel	%d0,%a0@
2350
2351	dputc	'\n'
2352
2353func_return	mmu_fixup_page_mmu_cache
2354
2355/*
2356 *	mmu_temp_map
2357 *
2358 *	create a temporary mapping to enable the mmu,
2359 *	this we don't need any transparation translation tricks.
2360 */
2361
2362func_start	mmu_temp_map,%d0/%d1/%a0/%a1
2363
2364	dputs	"mmu_temp_map"
2365	dputn	ARG1
2366	dputn	ARG2
2367	dputc	'\n'
2368
2369	lea	%pc@(L(temp_mmap_mem)),%a1
2370
2371	/* Calculate the offset in the root table
2372	 */
2373	movel	ARG2,%d0
2374	moveq	#ROOT_INDEX_SHIFT,%d1
2375	lsrl	%d1,%d0
2376	mmu_get_root_table_entry	%d0
2377
2378	/* Check if the table is temporary allocated, so we have to reuse it
2379	 */
2380	movel	%a0@,%d0
2381	cmpl	%pc@(L(memory_start)),%d0
2382	jcc	1f
2383
2384	/* Temporary allocate a ptr table and insert it into the root table
2385	 */
2386	movel	%a1@,%d0
2387	addl	#PTR_TABLE_SIZE*4,%a1@
2388	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2389	movel	%d0,%a0@
2390	dputs	" (new)"
23911:
2392	dputn	%d0
2393	/* Mask the root table entry for the ptr table
2394	 */
2395	andw	#-ROOT_TABLE_SIZE,%d0
2396	movel	%d0,%a0
2397
2398	/* Calculate the offset into the pointer table
2399	 */
2400	movel	ARG2,%d0
2401	moveq	#PTR_INDEX_SHIFT,%d1
2402	lsrl	%d1,%d0
2403	andl	#PTR_TABLE_SIZE-1,%d0
2404	lea	%a0@(%d0*4),%a0
2405	dputn	%a0
2406
2407	/* Check if a temporary page table is already allocated
2408	 */
2409	movel	%a0@,%d0
2410	jne	1f
2411
2412	/* Temporary allocate a page table and insert it into the ptr table
2413	 */
2414	movel	%a1@,%d0
2415	/* The 512 should be PAGE_TABLE_SIZE*4, but that violates the
2416	   alignment restriction for pointer tables on the '0[46]0.  */
2417	addl	#512,%a1@
2418	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2419	movel	%d0,%a0@
2420	dputs	" (new)"
24211:
2422	dputn	%d0
2423	/* Mask the ptr table entry for the page table
2424	 */
2425	andw	#-PTR_TABLE_SIZE,%d0
2426	movel	%d0,%a0
2427
2428	/* Calculate the offset into the page table
2429	 */
2430	movel	ARG2,%d0
2431	moveq	#PAGE_INDEX_SHIFT,%d1
2432	lsrl	%d1,%d0
2433	andl	#PAGE_TABLE_SIZE-1,%d0
2434	lea	%a0@(%d0*4),%a0
2435	dputn	%a0
2436
2437	/* Insert the address into the page table
2438	 */
2439	movel	ARG1,%d0
2440	andw	#-PAGESIZE,%d0
2441	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2442	movel	%d0,%a0@
2443	dputn	%d0
2444
2445	dputc	'\n'
2446
2447func_return	mmu_temp_map
2448
2449func_start	mmu_engage,%d0-%d2/%a0-%a3
2450
2451	moveq	#ROOT_TABLE_SIZE-1,%d0
2452	/* Temporarily use a different root table.  */
2453	lea	%pc@(L(kernel_pgdir_ptr)),%a0
2454	movel	%a0@,%a2
2455	movel	%pc@(L(memory_start)),%a1
2456	movel	%a1,%a0@
2457	movel	%a2,%a0
24581:
2459	movel	%a0@+,%a1@+
2460	dbra	%d0,1b
2461
2462	lea	%pc@(L(temp_mmap_mem)),%a0
2463	movel	%a1,%a0@
2464
2465	movew	#PAGESIZE-1,%d0
24661:
2467	clrl	%a1@+
2468	dbra	%d0,1b
2469
2470	lea	%pc@(1b),%a0
2471	movel	#1b,%a1
2472	/* Skip temp mappings if phys == virt */
2473	cmpl	%a0,%a1
2474	jeq	1f
2475
2476	mmu_temp_map	%a0,%a0
2477	mmu_temp_map	%a0,%a1
2478
2479	addw	#PAGESIZE,%a0
2480	addw	#PAGESIZE,%a1
2481	mmu_temp_map	%a0,%a0
2482	mmu_temp_map	%a0,%a1
24831:
2484	movel	%pc@(L(memory_start)),%a3
2485	movel	%pc@(L(phys_kernel_start)),%d2
2486
2487	is_not_040_or_060(L(mmu_engage_030))
2488
2489L(mmu_engage_040):
2490	.chip	68040
2491	nop
2492	cinva	%bc
2493	nop
2494	pflusha
2495	nop
2496	movec	%a3,%srp
2497	movel	#TC_ENABLE+TC_PAGE4K,%d0
2498	movec	%d0,%tc		/* enable the MMU */
2499	jmp	1f:l
25001:	nop
2501	movec	%a2,%srp
2502	nop
2503	cinva	%bc
2504	nop
2505	pflusha
2506	.chip	68k
2507	jra	L(mmu_engage_cleanup)
2508
2509L(mmu_engage_030_temp):
2510	.space	12
2511L(mmu_engage_030):
2512	.chip	68030
2513	lea	%pc@(L(mmu_engage_030_temp)),%a0
2514	movel	#0x80000002,%a0@
2515	movel	%a3,%a0@(4)
2516	movel	#0x0808,%d0
2517	movec	%d0,%cacr
2518	pmove	%a0@,%srp
2519	pflusha
2520	/*
2521	 * enable,super root enable,4096 byte pages,7 bit root index,
2522	 * 7 bit pointer index, 6 bit page table index.
2523	 */
2524	movel	#0x82c07760,%a0@(8)
2525	pmove	%a0@(8),%tc	/* enable the MMU */
2526	jmp	1f:l
25271:	movel	%a2,%a0@(4)
2528	movel	#0x0808,%d0
2529	movec	%d0,%cacr
2530	pmove	%a0@,%srp
2531	pflusha
2532	.chip	68k
2533
2534L(mmu_engage_cleanup):
2535	subl	#PAGE_OFFSET,%d2
2536	subl	%d2,%a2
2537	movel	%a2,L(kernel_pgdir_ptr)
2538	subl	%d2,%fp
2539	subl	%d2,%sp
2540	subl	%d2,ARG0
2541
2542func_return	mmu_engage
2543
2544func_start	mmu_get_root_table_entry,%d0/%a1
2545
2546#if 0
2547	dputs	"mmu_get_root_table_entry:"
2548	dputn	ARG1
2549	dputs	" ="
2550#endif
2551
2552	movel	%pc@(L(kernel_pgdir_ptr)),%a0
2553	tstl	%a0
2554	jne	2f
2555
2556	dputs	"\nmmu_init:"
2557
2558	/* Find the start of free memory, get_bi_record does this for us,
2559	 * as the bootinfo structure is located directly behind the kernel
2560	 * and and we simply search for the last entry.
2561	 */
2562	get_bi_record	BI_LAST
2563	addw	#PAGESIZE-1,%a0
2564	movel	%a0,%d0
2565	andw	#-PAGESIZE,%d0
2566
2567	dputn	%d0
2568
2569	lea	%pc@(L(memory_start)),%a0
2570	movel	%d0,%a0@
2571	lea	%pc@(L(kernel_end)),%a0
2572	movel	%d0,%a0@
2573
2574	/* we have to return the first page at _stext since the init code
2575	 * in mm/init.c simply expects kernel_pg_dir there, the rest of
2576	 * page is used for further ptr tables in get_ptr_table.
2577	 */
2578	lea	%pc@(_stext),%a0
2579	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2580	movel	%a0,%a1@
2581	addl	#ROOT_TABLE_SIZE*4,%a1@
2582
2583	lea	%pc@(L(mmu_num_pointer_tables)),%a1
2584	addql	#1,%a1@
2585
2586	/* clear the page
2587	 */
2588	movel	%a0,%a1
2589	movew	#PAGESIZE/4-1,%d0
25901:
2591	clrl	%a1@+
2592	dbra	%d0,1b
2593
2594	lea	%pc@(L(kernel_pgdir_ptr)),%a1
2595	movel	%a0,%a1@
2596
2597	dputn	%a0
2598	dputc	'\n'
25992:
2600	movel	ARG1,%d0
2601	lea	%a0@(%d0*4),%a0
2602
2603#if 0
2604	dputn	%a0
2605	dputc	'\n'
2606#endif
2607
2608func_return	mmu_get_root_table_entry
2609
2610
2611
2612func_start	mmu_get_ptr_table_entry,%d0/%a1
2613
2614#if 0
2615	dputs	"mmu_get_ptr_table_entry:"
2616	dputn	ARG1
2617	dputn	ARG2
2618	dputs	" ="
2619#endif
2620
2621	movel	ARG1,%a0
2622	movel	%a0@,%d0
2623	jne	2f
2624
2625	/* Keep track of the number of pointer tables we use
2626	 */
2627	dputs	"\nmmu_get_new_ptr_table:"
2628	lea	%pc@(L(mmu_num_pointer_tables)),%a0
2629	movel	%a0@,%d0
2630	addql	#1,%a0@
2631
2632	/* See if there is a free pointer table in our cache of pointer tables
2633	 */
2634	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2635	andw	#7,%d0
2636	jne	1f
2637
2638	/* Get a new pointer table page from above the kernel memory
2639	 */
2640	get_new_page
2641	movel	%a0,%a1@
26421:
2643	/* There is an unused pointer table in our cache... use it
2644	 */
2645	movel	%a1@,%d0
2646	addl	#PTR_TABLE_SIZE*4,%a1@
2647
2648	dputn	%d0
2649	dputc	'\n'
2650
2651	/* Insert the new pointer table into the root table
2652	 */
2653	movel	ARG1,%a0
2654	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2655	movel	%d0,%a0@
26562:
2657	/* Extract the pointer table entry
2658	 */
2659	andw	#-PTR_TABLE_SIZE,%d0
2660	movel	%d0,%a0
2661	movel	ARG2,%d0
2662	lea	%a0@(%d0*4),%a0
2663
2664#if 0
2665	dputn	%a0
2666	dputc	'\n'
2667#endif
2668
2669func_return	mmu_get_ptr_table_entry
2670
2671
2672func_start	mmu_get_page_table_entry,%d0/%a1
2673
2674#if 0
2675	dputs	"mmu_get_page_table_entry:"
2676	dputn	ARG1
2677	dputn	ARG2
2678	dputs	" ="
2679#endif
2680
2681	movel	ARG1,%a0
2682	movel	%a0@,%d0
2683	jne	2f
2684
2685	/* If the page table entry doesn't exist, we allocate a complete new
2686	 * page and use it as one continues big page table which can cover
2687	 * 4MB of memory, nearly almost all mappings have that alignment.
2688	 */
2689	get_new_page
2690	addw	#_PAGE_TABLE+_PAGE_ACCESSED,%a0
2691
2692	/* align pointer table entry for a page of page tables
2693	 */
2694	movel	ARG1,%d0
2695	andw	#-(PAGESIZE/PAGE_TABLE_SIZE),%d0
2696	movel	%d0,%a1
2697
2698	/* Insert the page tables into the pointer entries
2699	 */
2700	moveq	#PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0
27011:
2702	movel	%a0,%a1@+
2703	lea	%a0@(PAGE_TABLE_SIZE*4),%a0
2704	dbra	%d0,1b
2705
2706	/* Now we can get the initialized pointer table entry
2707	 */
2708	movel	ARG1,%a0
2709	movel	%a0@,%d0
27102:
2711	/* Extract the page table entry
2712	 */
2713	andw	#-PAGE_TABLE_SIZE,%d0
2714	movel	%d0,%a0
2715	movel	ARG2,%d0
2716	lea	%a0@(%d0*4),%a0
2717
2718#if 0
2719	dputn	%a0
2720	dputc	'\n'
2721#endif
2722
2723func_return	mmu_get_page_table_entry
2724
2725/*
2726 *	get_new_page
2727 *
2728 *	Return a new page from the memory start and clear it.
2729 */
2730func_start	get_new_page,%d0/%a1
2731
2732	dputs	"\nget_new_page:"
2733
2734	/* allocate the page and adjust memory_start
2735	 */
2736	lea	%pc@(L(memory_start)),%a0
2737	movel	%a0@,%a1
2738	addl	#PAGESIZE,%a0@
2739
2740	/* clear the new page
2741	 */
2742	movel	%a1,%a0
2743	movew	#PAGESIZE/4-1,%d0
27441:
2745	clrl	%a1@+
2746	dbra	%d0,1b
2747
2748	dputn	%a0
2749	dputc	'\n'
2750
2751func_return	get_new_page
2752
2753
2754
2755/*
2756 * Debug output support
2757 * Atarians have a choice between the parallel port, the serial port
2758 * from the MFP or a serial port of the SCC
2759 */
2760
2761#ifdef CONFIG_MAC
 
 
 
2762
 
 
2763L(scc_initable_mac):
2764	.byte	9,12		/* Reset */
2765	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2766	.byte	3,0xc0		/* receiver: 8 bpc */
2767	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
2768	.byte	9,0		/* no interrupts */
2769	.byte	10,0		/* NRZ */
2770	.byte	11,0x50		/* use baud rate generator */
2771	.byte	12,10,13,0	/* 9600 baud */
2772	.byte	14,1		/* Baud rate generator enable */
2773	.byte	3,0xc1		/* enable receiver */
2774	.byte	5,0xea		/* enable transmitter */
2775	.byte	-1
2776	.even
2777#endif
 
2778
2779#ifdef CONFIG_ATARI
2780/* #define USE_PRINTER */
2781/* #define USE_SCC_B */
2782/* #define USE_SCC_A */
2783#define USE_MFP
2784
2785#if defined(USE_SCC_A) || defined(USE_SCC_B)
2786#define USE_SCC
2787/* Initialisation table for SCC */
2788L(scc_initable):
2789	.byte	9,12		/* Reset */
2790	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2791	.byte	3,0xc0		/* receiver: 8 bpc */
2792	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
2793	.byte	9,0		/* no interrupts */
2794	.byte	10,0		/* NRZ */
2795	.byte	11,0x50		/* use baud rate generator */
2796	.byte	12,24,13,0	/* 9600 baud */
2797	.byte	14,2,14,3	/* use master clock for BRG, enable */
2798	.byte	3,0xc1		/* enable receiver */
2799	.byte	5,0xea		/* enable transmitter */
2800	.byte	-1
2801	.even
2802#endif
2803
2804#ifdef USE_PRINTER
2805
2806LPSG_SELECT	= 0xff8800
2807LPSG_READ	= 0xff8800
2808LPSG_WRITE	= 0xff8802
2809LPSG_IO_A	= 14
2810LPSG_IO_B	= 15
2811LPSG_CONTROL	= 7
2812LSTMFP_GPIP	= 0xfffa01
2813LSTMFP_DDR	= 0xfffa05
2814LSTMFP_IERB	= 0xfffa09
2815
2816#elif defined(USE_SCC_B)
2817
2818LSCC_CTRL	= 0xff8c85
2819LSCC_DATA	= 0xff8c87
2820
2821#elif defined(USE_SCC_A)
2822
2823LSCC_CTRL	= 0xff8c81
2824LSCC_DATA	= 0xff8c83
2825
2826#elif defined(USE_MFP)
2827
2828LMFP_UCR     = 0xfffa29
2829LMFP_TDCDR   = 0xfffa1d
2830LMFP_TDDR    = 0xfffa25
2831LMFP_TSR     = 0xfffa2d
2832LMFP_UDR     = 0xfffa2f
2833
2834#endif
2835#endif	/* CONFIG_ATARI */
2836
2837/*
2838 * Serial port output support.
2839 */
2840
2841/*
2842 * Initialize serial port hardware for 9600/8/1
2843 */
2844func_start	serial_init,%d0/%d1/%a0/%a1
2845	/*
2846	 *	Some of the register usage that follows
2847	 *	CONFIG_AMIGA
2848	 *		a0 = pointer to boot info record
2849	 *		d0 = boot info offset
2850	 *	CONFIG_ATARI
2851	 *		a0 = address of SCC
2852	 *		a1 = Liobase address/address of scc_initable
2853	 *		d0 = init data for serial port
2854	 *	CONFIG_MAC
2855	 *		a0 = address of SCC
2856	 *		a1 = address of scc_initable_mac
2857	 *		d0 = init data for serial port
2858	 */
2859
2860#ifdef CONFIG_AMIGA
2861#define SERIAL_DTR	7
2862#define SERIAL_CNTRL	CIABBASE+C_PRA
2863
2864	is_not_amiga(1f)
2865	lea	%pc@(L(custom)),%a0
2866	movel	#-ZTWOBASE,%a0@
2867	bclr	#SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE
2868	get_bi_record	BI_AMIGA_SERPER
2869	movew	%a0@,CUSTOMBASE+C_SERPER-ZTWOBASE
2870|	movew	#61,CUSTOMBASE+C_SERPER-ZTWOBASE
28711:
2872#endif
 
2873#ifdef CONFIG_ATARI
2874	is_not_atari(4f)
2875	movel	%pc@(L(iobase)),%a1
2876#if defined(USE_PRINTER)
2877	bclr	#0,%a1@(LSTMFP_IERB)
2878	bclr	#0,%a1@(LSTMFP_DDR)
2879	moveb	#LPSG_CONTROL,%a1@(LPSG_SELECT)
2880	moveb	#0xff,%a1@(LPSG_WRITE)
2881	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
2882	clrb	%a1@(LPSG_WRITE)
2883	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
2884	moveb	%a1@(LPSG_READ),%d0
2885	bset	#5,%d0
2886	moveb	%d0,%a1@(LPSG_WRITE)
2887#elif defined(USE_SCC)
2888	lea	%a1@(LSCC_CTRL),%a0
2889	lea	%pc@(L(scc_initable)),%a1
 
 
 
 
 
 
 
 
 
 
 
 
28902:	moveb	%a1@+,%d0
2891	jmi	3f
2892	moveb	%d0,%a0@
2893	moveb	%a1@+,%a0@
2894	jra	2b
28953:	clrb	%a0@
2896#elif defined(USE_MFP)
2897	bclr	#1,%a1@(LMFP_TSR)
2898	moveb   #0x88,%a1@(LMFP_UCR)
2899	andb	#0x70,%a1@(LMFP_TDCDR)
2900	moveb   #2,%a1@(LMFP_TDDR)
2901	orb	#1,%a1@(LMFP_TDCDR)
2902	bset	#1,%a1@(LMFP_TSR)
2903#endif
2904	jra	L(serial_init_done)
29054:
2906#endif
 
2907#ifdef CONFIG_MAC
2908	is_not_mac(L(serial_init_not_mac))
2909#ifdef MAC_SERIAL_DEBUG
2910#if !defined(MAC_USE_SCC_A) && !defined(MAC_USE_SCC_B)
2911#define MAC_USE_SCC_B
2912#endif
2913#define mac_scc_cha_b_ctrl_offset	0x0
2914#define mac_scc_cha_a_ctrl_offset	0x2
2915#define mac_scc_cha_b_data_offset	0x4
2916#define mac_scc_cha_a_data_offset	0x6
2917
 
 
 
 
 
 
 
 
 
 
 
 
2918#ifdef MAC_USE_SCC_A
2919	/* Initialize channel A */
2920	movel	%pc@(L(mac_sccbase)),%a0
2921	lea	%pc@(L(scc_initable_mac)),%a1
29225:	moveb	%a1@+,%d0
2923	jmi	6f
2924	moveb	%d0,%a0@(mac_scc_cha_a_ctrl_offset)
2925	moveb	%a1@+,%a0@(mac_scc_cha_a_ctrl_offset)
2926	jra	5b
29276:
2928#endif	/* MAC_USE_SCC_A */
2929
2930#ifdef MAC_USE_SCC_B
2931	/* Initialize channel B */
2932#ifndef MAC_USE_SCC_A	/* Load mac_sccbase only if needed */
2933	movel	%pc@(L(mac_sccbase)),%a0
2934#endif	/* MAC_USE_SCC_A */
2935	lea	%pc@(L(scc_initable_mac)),%a1
29367:	moveb	%a1@+,%d0
2937	jmi	8f
2938	moveb	%d0,%a0@(mac_scc_cha_b_ctrl_offset)
2939	moveb	%a1@+,%a0@(mac_scc_cha_b_ctrl_offset)
2940	jra	7b
29418:
2942#endif	/* MAC_USE_SCC_B */
2943#endif	/* MAC_SERIAL_DEBUG */
2944
2945	jra	L(serial_init_done)
2946L(serial_init_not_mac):
2947#endif	/* CONFIG_MAC */
2948
2949#ifdef CONFIG_Q40
2950	is_not_q40(2f)
2951/* debug output goes into SRAM, so we don't do it unless requested
2952   - check for '%LX$' signature in SRAM   */
2953	lea	%pc@(q40_mem_cptr),%a1
2954	move.l	#0xff020010,%a1@  /* must be inited - also used by debug=mem */
2955	move.l	#0xff020000,%a1
2956	cmp.b	#'%',%a1@
2957	bne	2f	/*nodbg*/
2958	addq.w	#4,%a1
2959	cmp.b	#'L',%a1@
2960	bne	2f	/*nodbg*/
2961	addq.w	#4,%a1
2962	cmp.b	#'X',%a1@
2963	bne	2f	/*nodbg*/
2964	addq.w	#4,%a1
2965	cmp.b	#'$',%a1@
2966	bne	2f	/*nodbg*/
2967	/* signature OK */
2968	lea	%pc@(L(q40_do_debug)),%a1
2969	tas	%a1@
2970/*nodbg: q40_do_debug is 0 by default*/
29712:
2972#endif
2973
 
 
 
 
 
 
 
 
 
2974#ifdef CONFIG_APOLLO
2975/* We count on the PROM initializing SIO1 */
2976#endif
2977
2978#ifdef CONFIG_HP300
2979/* We count on the boot loader initialising the UART */
2980#endif
2981
2982L(serial_init_done):
2983func_return	serial_init
2984
2985/*
2986 * Output character on serial port.
2987 */
2988func_start	serial_putc,%d0/%d1/%a0/%a1
2989
2990	movel	ARG1,%d0
2991	cmpib	#'\n',%d0
2992	jbne	1f
2993
2994	/* A little safe recursion is good for the soul */
2995	serial_putc	#'\r'
29961:
2997
2998#ifdef CONFIG_AMIGA
2999	is_not_amiga(2f)
3000	andw	#0x00ff,%d0
3001	oriw	#0x0100,%d0
3002	movel	%pc@(L(custom)),%a0
3003	movew	%d0,%a0@(CUSTOMBASE+C_SERDAT)
30041:	movew	%a0@(CUSTOMBASE+C_SERDATR),%d0
3005	andw	#0x2000,%d0
3006	jeq	1b
3007	jra	L(serial_putc_done)
30082:
3009#endif
3010
3011#ifdef CONFIG_MAC
3012	is_not_mac(5f)
3013
3014#ifdef MAC_SERIAL_DEBUG
3015
3016#ifdef MAC_USE_SCC_A
3017	movel	%pc@(L(mac_sccbase)),%a1
 
 
30183:	btst	#2,%a1@(mac_scc_cha_a_ctrl_offset)
3019	jeq	3b
3020	moveb	%d0,%a1@(mac_scc_cha_a_data_offset)
3021#endif	/* MAC_USE_SCC_A */
3022
3023#ifdef MAC_USE_SCC_B
3024#ifndef MAC_USE_SCC_A	/* Load mac_sccbase only if needed */
3025	movel	%pc@(L(mac_sccbase)),%a1
3026#endif	/* MAC_USE_SCC_A */
30274:	btst	#2,%a1@(mac_scc_cha_b_ctrl_offset)
3028	jeq	4b
3029	moveb	%d0,%a1@(mac_scc_cha_b_data_offset)
3030#endif	/* MAC_USE_SCC_B */
3031
3032#endif	/* MAC_SERIAL_DEBUG */
3033
3034	jra	L(serial_putc_done)
30355:
3036#endif	/* CONFIG_MAC */
3037
3038#ifdef CONFIG_ATARI
3039	is_not_atari(4f)
3040	movel	%pc@(L(iobase)),%a1
3041#if defined(USE_PRINTER)
30423:	btst	#0,%a1@(LSTMFP_GPIP)
3043	jne	3b
3044	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
3045	moveb	%d0,%a1@(LPSG_WRITE)
3046	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
3047	moveb	%a1@(LPSG_READ),%d0
3048	bclr	#5,%d0
3049	moveb	%d0,%a1@(LPSG_WRITE)
3050	nop
3051	nop
3052	bset	#5,%d0
3053	moveb	%d0,%a1@(LPSG_WRITE)
3054#elif defined(USE_SCC)
30553:	btst	#2,%a1@(LSCC_CTRL)
3056	jeq	3b
3057	moveb	%d0,%a1@(LSCC_DATA)
3058#elif defined(USE_MFP)
30593:	btst	#7,%a1@(LMFP_TSR)
3060	jeq	3b
3061	moveb	%d0,%a1@(LMFP_UDR)
3062#endif
3063	jra	L(serial_putc_done)
30644:
3065#endif	/* CONFIG_ATARI */
3066
3067#ifdef CONFIG_MVME147
3068	is_not_mvme147(2f)
30691:	btst	#2,M147_SCC_CTRL_A
3070	jeq	1b
3071	moveb	%d0,M147_SCC_DATA_A
3072	jbra	L(serial_putc_done)
30732:
3074#endif
3075
3076#ifdef CONFIG_MVME16x
3077	is_not_mvme16x(2f)
3078	/*
3079	 * If the loader gave us a board type then we can use that to
3080	 * select an appropriate output routine; otherwise we just use
3081	 * the Bug code.  If we have to use the Bug that means the Bug
3082	 * workspace has to be valid, which means the Bug has to use
3083	 * the SRAM, which is non-standard.
3084	 */
3085	moveml	%d0-%d7/%a2-%a6,%sp@-
3086	movel	vme_brdtype,%d1
3087	jeq	1f			| No tag - use the Bug
3088	cmpi	#VME_TYPE_MVME162,%d1
3089	jeq	6f
3090	cmpi	#VME_TYPE_MVME172,%d1
3091	jne	5f
3092	/* 162/172; it's an SCC */
30936:	btst	#2,M162_SCC_CTRL_A
3094	nop
3095	nop
3096	nop
3097	jeq	6b
3098	moveb	#8,M162_SCC_CTRL_A
3099	nop
3100	nop
3101	nop
3102	moveb	%d0,M162_SCC_CTRL_A
3103	jra	3f
31045:
3105	/* 166/167/177; it's a CD2401 */
3106	moveb	#0,M167_CYCAR
3107	moveb	M167_CYIER,%d2
3108	moveb	#0x02,M167_CYIER
31097:
3110	btst	#5,M167_PCSCCTICR
3111	jeq	7b
3112	moveb	M167_PCTPIACKR,%d1
3113	moveb	M167_CYLICR,%d1
3114	jeq	8f
3115	moveb	#0x08,M167_CYTEOIR
3116	jra	7b
31178:
3118	moveb	%d0,M167_CYTDR
3119	moveb	#0,M167_CYTEOIR
3120	moveb	%d2,M167_CYIER
3121	jra	3f
31221:
3123	moveb	%d0,%sp@-
3124	trap	#15
3125	.word	0x0020	/* TRAP 0x020 */
31263:
3127	moveml	%sp@+,%d0-%d7/%a2-%a6
3128	jbra	L(serial_putc_done)
31292:
3130#endif /* CONFIG_MVME16x */
3131
3132#ifdef CONFIG_BVME6000
3133	is_not_bvme6000(2f)
3134	/*
3135	 * The BVME6000 machine has a serial port ...
3136	 */
31371:	btst	#2,BVME_SCC_CTRL_A
3138	jeq	1b
3139	moveb	%d0,BVME_SCC_DATA_A
3140	jbra	L(serial_putc_done)
31412:
3142#endif
3143
3144#ifdef CONFIG_SUN3X
3145	is_not_sun3x(2f)
3146	movel	%d0,-(%sp)
3147	movel	0xFEFE0018,%a1
3148	jbsr	(%a1)
3149	addq	#4,%sp
3150	jbra	L(serial_putc_done)
31512:
3152#endif
3153
3154#ifdef CONFIG_Q40
3155	is_not_q40(2f)
3156	tst.l	%pc@(L(q40_do_debug))	/* only debug if requested */
3157	beq	2f
3158	lea	%pc@(q40_mem_cptr),%a1
3159	move.l	%a1@,%a0
3160	move.b	%d0,%a0@
3161	addq.l	#4,%a0
3162	move.l	%a0,%a1@
3163	jbra    L(serial_putc_done)
31642:
3165#endif
3166
3167#ifdef CONFIG_APOLLO
3168	is_not_apollo(2f)
3169	movl    %pc@(L(iobase)),%a1
3170	moveb	%d0,%a1@(LTHRB0)
31711:      moveb   %a1@(LSRB0),%d0
3172	andb	#0x4,%d0
3173	beq	1b
3174	jbra	L(serial_putc_done)
31752:
3176#endif
3177
3178#ifdef CONFIG_HP300
3179	is_not_hp300(3f)
3180	movl    %pc@(L(iobase)),%a1
3181	addl	%pc@(L(uartbase)),%a1
3182	movel	%pc@(L(uart_scode)),%d1	/* Check the scode */
3183	jmi	3f			/* Unset? Exit */
3184	cmpi	#256,%d1		/* APCI scode? */
3185	jeq	2f
31861:      moveb   %a1@(DCALSR),%d1	/* Output to DCA */
3187	andb	#0x20,%d1
3188	beq	1b
3189	moveb	%d0,%a1@(DCADATA)
3190	jbra	L(serial_putc_done)
31912:	moveb	%a1@(APCILSR),%d1	/* Output to APCI */
3192	andb	#0x20,%d1
3193	beq	2b
3194	moveb	%d0,%a1@(APCIDATA)
3195	jbra	L(serial_putc_done)
31963:
3197#endif
3198
 
 
 
 
 
 
 
 
3199L(serial_putc_done):
3200func_return	serial_putc
3201
3202/*
3203 * Output a string.
3204 */
3205func_start	puts,%d0/%a0
3206
3207	movel	ARG1,%a0
3208	jra	2f
32091:
3210#ifdef CONSOLE
3211	console_putc	%d0
3212#endif
3213#ifdef SERIAL_DEBUG
3214	serial_putc	%d0
3215#endif
32162:	moveb	%a0@+,%d0
3217	jne	1b
3218
3219func_return	puts
3220
3221/*
3222 * Output number in hex notation.
3223 */
3224
3225func_start	putn,%d0-%d2
3226
3227	putc	' '
3228
3229	movel	ARG1,%d0
3230	moveq	#7,%d1
32311:	roll	#4,%d0
3232	move	%d0,%d2
3233	andb	#0x0f,%d2
3234	addb	#'0',%d2
3235	cmpb	#'9',%d2
3236	jls	2f
3237	addb	#'A'-('9'+1),%d2
32382:
3239#ifdef CONSOLE
3240	console_putc	%d2
3241#endif
3242#ifdef SERIAL_DEBUG
3243	serial_putc	%d2
3244#endif
3245	dbra	%d1,1b
3246
3247func_return	putn
3248
3249#ifdef CONFIG_MAC
3250/*
3251 *	mac_serial_print
3252 *
3253 *	This routine takes its parameters on the stack.  It then
3254 *	turns around and calls the internal routine.  This routine
3255 *	is used until the Linux console driver initializes itself.
3256 *
3257 *	The calling parameters are:
3258 *		void mac_serial_print(const char *str);
3259 *
3260 *	This routine does NOT understand variable arguments only
3261 *	simple strings!
3262 */
3263ENTRY(mac_serial_print)
3264	moveml	%d0/%a0,%sp@-
3265#if 1
3266	move	%sr,%sp@-
3267	ori	#0x0700,%sr
3268#endif
3269	movel	%sp@(10),%a0		/* fetch parameter */
3270	jra	2f
32711:	serial_putc	%d0
32722:	moveb	%a0@+,%d0
3273	jne	1b
3274#if 1
3275	move	%sp@+,%sr
 
3276#endif
3277	moveml	%sp@+,%d0/%a0
 
 
 
 
 
 
3278	rts
3279#endif /* CONFIG_MAC */
3280
3281#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3282func_start	set_leds,%d0/%a0
3283	movel	ARG1,%d0
3284#ifdef CONFIG_HP300
3285	is_not_hp300(1f)
3286	movel	%pc@(L(iobase)),%a0
3287	moveb	%d0,%a0@(0x1ffff)
3288	jra	2f
3289#endif
32901:
3291#ifdef CONFIG_APOLLO
3292	movel   %pc@(L(iobase)),%a0
3293	lsll    #8,%d0
3294	eorw    #0xff00,%d0
3295	moveb	%d0,%a0@(LCPUCTRL)
3296#endif
32972:
3298func_return	set_leds
3299#endif
3300
3301#ifdef CONSOLE
3302/*
3303 *	For continuity, see the data alignment
3304 *	to which this structure is tied.
3305 */
3306#define Lconsole_struct_cur_column	0
3307#define Lconsole_struct_cur_row		4
3308#define Lconsole_struct_num_columns	8
3309#define Lconsole_struct_num_rows	12
3310#define Lconsole_struct_left_edge	16
3311#define Lconsole_struct_penguin_putc	20
3312
3313func_start	console_init,%a0-%a4/%d0-%d7
3314	/*
3315	 *	Some of the register usage that follows
3316	 *		a0 = pointer to boot_info
3317	 *		a1 = pointer to screen
3318	 *		a2 = pointer to Lconsole_globals
3319	 *		d3 = pixel width of screen
3320	 *		d4 = pixel height of screen
3321	 *		(d3,d4) ~= (x,y) of a point just below
3322	 *			and to the right of the screen
3323	 *			NOT on the screen!
3324	 *		d5 = number of bytes per scan line
3325	 *		d6 = number of bytes on the entire screen
3326	 */
3327
3328	lea	%pc@(L(console_globals)),%a2
3329	movel	%pc@(L(mac_videobase)),%a1
3330	movel	%pc@(L(mac_rowbytes)),%d5
3331	movel	%pc@(L(mac_dimensions)),%d3	/* -> low byte */
3332	movel	%d3,%d4
3333	swap	%d4		/* -> high byte */
3334	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3335	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3336
3337	movel	%d5,%d6
3338|	subl	#20,%d6
3339	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3340	divul	#8,%d6		/* we'll clear 8 bytes at a time */
3341	moveq	#-1,%d0		/* Mac_black */
3342	subq	#1,%d6
3343
3344L(console_clear_loop):
3345	movel	%d0,%a1@+
3346	movel	%d0,%a1@+
3347	dbra	%d6,L(console_clear_loop)
3348
3349	/* Calculate font size */
3350
3351#if   defined(FONT_8x8) && defined(CONFIG_FONT_8x8)
3352	lea	%pc@(font_vga_8x8),%a0
3353#elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16)
3354	lea	%pc@(font_vga_8x16),%a0
3355#elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11)
3356	lea	%pc@(font_vga_6x11),%a0
3357#elif defined(CONFIG_FONT_8x8) /* default */
3358	lea	%pc@(font_vga_8x8),%a0
3359#else /* no compiled-in font */
3360	lea	0,%a0
3361#endif
3362
3363	/*
3364	 *	At this point we make a shift in register usage
3365	 *	a1 = address of console_font pointer
3366	 */
3367	lea	%pc@(L(console_font)),%a1
3368	movel	%a0,%a1@	/* store pointer to struct fbcon_font_desc in console_font */
3369	tstl	%a0
3370	jeq	1f
3371	lea	%pc@(L(console_font_data)),%a4
3372	movel	%a0@(FONT_DESC_DATA),%d0
3373	subl	#L(console_font),%a1
3374	addl	%a1,%d0
3375	movel	%d0,%a4@
3376
3377	/*
3378	 *	Calculate global maxs
3379	 *	Note - we can use either an
3380	 *	8 x 16 or 8 x 8 character font
3381	 *	6 x 11 also supported
3382	 */
3383		/* ASSERT: a0 = contents of Lconsole_font */
3384	movel	%d3,%d0				/* screen width in pixels */
3385	divul	%a0@(FONT_DESC_WIDTH),%d0	/* d0 = max num chars per row */
3386
3387	movel	%d4,%d1				/* screen height in pixels */
3388	divul	%a0@(FONT_DESC_HEIGHT),%d1	/* d1 = max num rows */
3389
3390	movel	%d0,%a2@(Lconsole_struct_num_columns)
3391	movel	%d1,%a2@(Lconsole_struct_num_rows)
3392
3393	/*
3394	 *	Clear the current row and column
3395	 */
3396	clrl	%a2@(Lconsole_struct_cur_column)
3397	clrl	%a2@(Lconsole_struct_cur_row)
3398	clrl	%a2@(Lconsole_struct_left_edge)
3399
3400	/*
3401	 * Initialization is complete
3402	 */
34031:
3404func_return	console_init
3405
3406func_start	console_put_stats,%a0/%d7
3407	/*
3408	 *	Some of the register usage that follows
3409	 *		a0 = pointer to boot_info
3410	 *		d7 = value of boot_info fields
3411	 */
3412	puts	"\nMacLinux\n\n"
3413
3414#ifdef SERIAL_DEBUG
3415	puts	" vidaddr:"
3416	putn	%pc@(L(mac_videobase))		/* video addr. */
3417
3418	puts	"\n  _stext:"
3419	lea	%pc@(_stext),%a0
3420	putn	%a0
3421
3422	puts	"\nbootinfo:"
3423	lea	%pc@(_end),%a0
3424	putn	%a0
3425
3426	puts	"\ncpuid:"
3427	putn	%pc@(L(cputype))
3428	putc	'\n'
3429
3430#ifdef MAC_SERIAL_DEBUG
3431	putn	%pc@(L(mac_sccbase))
3432	putc	'\n'
3433#endif
3434#  if defined(MMU_PRINT)
3435	jbsr	mmu_print_machine_cpu_types
3436#  endif /* MMU_PRINT */
3437#endif /* SERIAL_DEBUG */
3438
3439func_return	console_put_stats
3440
3441#ifdef CONSOLE_PENGUIN
3442func_start	console_put_penguin,%a0-%a1/%d0-%d7
3443	/*
3444	 *	Get 'that_penguin' onto the screen in the upper right corner
3445	 *	penguin is 64 x 74 pixels, align against right edge of screen
3446	 */
3447	lea	%pc@(L(mac_dimensions)),%a0
3448	movel	%a0@,%d0
3449	andil	#0xffff,%d0
3450	subil	#64,%d0		/* snug up against the right edge */
3451	clrl	%d1		/* start at the top */
3452	movel	#73,%d7
3453	lea	%pc@(L(that_penguin)),%a1
3454L(console_penguin_row):
3455	movel	#31,%d6
3456L(console_penguin_pixel_pair):
3457	moveb	%a1@,%d2
3458	lsrb	#4,%d2
3459	console_plot_pixel %d0,%d1,%d2
3460	addq	#1,%d0
3461	moveb	%a1@+,%d2
3462	console_plot_pixel %d0,%d1,%d2
3463	addq	#1,%d0
3464	dbra	%d6,L(console_penguin_pixel_pair)
3465
3466	subil	#64,%d0
3467	addq	#1,%d1
3468	dbra	%d7,L(console_penguin_row)
3469
3470func_return	console_put_penguin
3471
3472/* include penguin bitmap */
3473L(that_penguin):
3474#include "../mac/mac_penguin.S"
3475#endif
3476
3477	/*
3478	 * Calculate source and destination addresses
3479	 *	output	a1 = dest
3480	 *		a2 = source
3481	 */
3482
3483func_start	console_scroll,%a0-%a4/%d0-%d7
3484	lea	%pc@(L(mac_videobase)),%a0
3485	movel	%a0@,%a1
3486	movel	%a1,%a2
3487	lea	%pc@(L(mac_rowbytes)),%a0
3488	movel	%a0@,%d5
3489	movel	%pc@(L(console_font)),%a0
3490	tstl	%a0
3491	jeq	1f
3492	mulul	%a0@(FONT_DESC_HEIGHT),%d5	/* account for # scan lines per character */
3493	addal	%d5,%a2
3494
3495	/*
3496	 * Get dimensions
3497	 */
3498	lea	%pc@(L(mac_dimensions)),%a0
3499	movel	%a0@,%d3
3500	movel	%d3,%d4
3501	swap	%d4
3502	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3503	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3504
3505	/*
3506	 * Calculate number of bytes to move
3507	 */
3508	lea	%pc@(L(mac_rowbytes)),%a0
3509	movel	%a0@,%d6
3510	movel	%pc@(L(console_font)),%a0
3511	subl	%a0@(FONT_DESC_HEIGHT),%d4	/* we're not scrolling the top row! */
3512	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3513	divul	#32,%d6		/* we'll move 8 longs at a time */
3514	subq	#1,%d6
3515
3516L(console_scroll_loop):
3517	movel	%a2@+,%a1@+
3518	movel	%a2@+,%a1@+
3519	movel	%a2@+,%a1@+
3520	movel	%a2@+,%a1@+
3521	movel	%a2@+,%a1@+
3522	movel	%a2@+,%a1@+
3523	movel	%a2@+,%a1@+
3524	movel	%a2@+,%a1@+
3525	dbra	%d6,L(console_scroll_loop)
3526
3527	lea	%pc@(L(mac_rowbytes)),%a0
3528	movel	%a0@,%d6
3529	movel	%pc@(L(console_font)),%a0
3530	mulul	%a0@(FONT_DESC_HEIGHT),%d6	/* scan line bytes x font height */
3531	divul	#32,%d6			/* we'll move 8 words at a time */
3532	subq	#1,%d6
3533
3534	moveq	#-1,%d0
3535L(console_scroll_clear_loop):
3536	movel	%d0,%a1@+
3537	movel	%d0,%a1@+
3538	movel	%d0,%a1@+
3539	movel	%d0,%a1@+
3540	movel	%d0,%a1@+
3541	movel	%d0,%a1@+
3542	movel	%d0,%a1@+
3543	movel	%d0,%a1@+
3544	dbra	%d6,L(console_scroll_clear_loop)
3545
35461:
3547func_return	console_scroll
3548
3549
3550func_start	console_putc,%a0/%a1/%d0-%d7
3551
3552	is_not_mac(L(console_exit))
3553	tstl	%pc@(L(console_font))
3554	jeq	L(console_exit)
3555
3556	/* Output character in d7 on console.
3557	 */
3558	movel	ARG1,%d7
3559	cmpib	#'\n',%d7
3560	jbne	1f
3561
3562	/* A little safe recursion is good for the soul */
3563	console_putc	#'\r'
35641:
3565	lea	%pc@(L(console_globals)),%a0
3566
3567	cmpib	#10,%d7
3568	jne	L(console_not_lf)
3569	movel	%a0@(Lconsole_struct_cur_row),%d0
3570	addil	#1,%d0
3571	movel	%d0,%a0@(Lconsole_struct_cur_row)
3572	movel	%a0@(Lconsole_struct_num_rows),%d1
3573	cmpl	%d1,%d0
3574	jcs	1f
3575	subil	#1,%d0
3576	movel	%d0,%a0@(Lconsole_struct_cur_row)
3577	console_scroll
35781:
3579	jra	L(console_exit)
3580
3581L(console_not_lf):
3582	cmpib	#13,%d7
3583	jne	L(console_not_cr)
3584	clrl	%a0@(Lconsole_struct_cur_column)
3585	jra	L(console_exit)
3586
3587L(console_not_cr):
3588	cmpib	#1,%d7
3589	jne	L(console_not_home)
3590	clrl	%a0@(Lconsole_struct_cur_row)
3591	clrl	%a0@(Lconsole_struct_cur_column)
3592	jra	L(console_exit)
3593
3594/*
3595 *	At this point we know that the %d7 character is going to be
3596 *	rendered on the screen.  Register usage is -
3597 *		a0 = pointer to console globals
3598 *		a1 = font data
3599 *		d0 = cursor column
3600 *		d1 = cursor row to draw the character
3601 *		d7 = character number
3602 */
3603L(console_not_home):
3604	movel	%a0@(Lconsole_struct_cur_column),%d0
3605	addql	#1,%a0@(Lconsole_struct_cur_column)
3606	movel	%a0@(Lconsole_struct_num_columns),%d1
3607	cmpl	%d1,%d0
3608	jcs	1f
3609	console_putc	#'\n'	/* recursion is OK! */
36101:
3611	movel	%a0@(Lconsole_struct_cur_row),%d1
3612
3613	/*
3614	 *	At this point we make a shift in register usage
3615	 *	a0 = address of pointer to font data (fbcon_font_desc)
3616	 */
3617	movel	%pc@(L(console_font)),%a0
3618	movel	%pc@(L(console_font_data)),%a1	/* Load fbcon_font_desc.data into a1 */
3619	andl	#0x000000ff,%d7
3620		/* ASSERT: a0 = contents of Lconsole_font */
3621	mulul	%a0@(FONT_DESC_HEIGHT),%d7	/* d7 = index into font data */
3622	addl	%d7,%a1			/* a1 = points to char image */
3623
3624	/*
3625	 *	At this point we make a shift in register usage
3626	 *	d0 = pixel coordinate, x
3627	 *	d1 = pixel coordinate, y
3628	 *	d2 = (bit 0) 1/0 for white/black (!) pixel on screen
3629	 *	d3 = font scan line data (8 pixels)
3630	 *	d6 = count down for the font's pixel width (8)
3631	 *	d7 = count down for the font's pixel count in height
3632	 */
3633		/* ASSERT: a0 = contents of Lconsole_font */
3634	mulul	%a0@(FONT_DESC_WIDTH),%d0
3635	mulul	%a0@(FONT_DESC_HEIGHT),%d1
3636	movel	%a0@(FONT_DESC_HEIGHT),%d7	/* Load fbcon_font_desc.height into d7 */
3637	subq	#1,%d7
3638L(console_read_char_scanline):
3639	moveb	%a1@+,%d3
3640
3641		/* ASSERT: a0 = contents of Lconsole_font */
3642	movel	%a0@(FONT_DESC_WIDTH),%d6	/* Load fbcon_font_desc.width into d6 */
3643	subql	#1,%d6
3644
3645L(console_do_font_scanline):
3646	lslb	#1,%d3
3647	scsb	%d2		/* convert 1 bit into a byte */
3648	console_plot_pixel %d0,%d1,%d2
3649	addq	#1,%d0
3650	dbra	%d6,L(console_do_font_scanline)
3651
3652		/* ASSERT: a0 = contents of Lconsole_font */
3653	subl	%a0@(FONT_DESC_WIDTH),%d0
3654	addq	#1,%d1
3655	dbra	%d7,L(console_read_char_scanline)
3656
3657L(console_exit):
3658func_return	console_putc
3659
3660	/*
3661	 *	Input:
3662	 *		d0 = x coordinate
3663	 *		d1 = y coordinate
3664	 *		d2 = (bit 0) 1/0 for white/black (!)
3665	 *	All registers are preserved
3666	 */
3667func_start	console_plot_pixel,%a0-%a1/%d0-%d4
3668
3669	movel	%pc@(L(mac_videobase)),%a1
3670	movel	%pc@(L(mac_videodepth)),%d3
3671	movel	ARG1,%d0
3672	movel	ARG2,%d1
3673	mulul	%pc@(L(mac_rowbytes)),%d1
3674	movel	ARG3,%d2
3675
3676	/*
3677	 *	Register usage:
3678	 *		d0 = x coord becomes byte offset into frame buffer
3679	 *		d1 = y coord
3680	 *		d2 = black or white (0/1)
3681	 *		d3 = video depth
3682	 *		d4 = temp of x (d0) for many bit depths
3683	 */
3684L(test_1bit):
3685	cmpb	#1,%d3
3686	jbne	L(test_2bit)
3687	movel	%d0,%d4		/* we need the low order 3 bits! */
3688	divul	#8,%d0
3689	addal	%d0,%a1
3690	addal	%d1,%a1
3691	andb	#7,%d4
3692	eorb	#7,%d4		/* reverse the x-coordinate w/ screen-bit # */
3693	andb	#1,%d2
3694	jbne	L(white_1)
3695	bsetb	%d4,%a1@
3696	jbra	L(console_plot_pixel_exit)
3697L(white_1):
3698	bclrb	%d4,%a1@
3699	jbra	L(console_plot_pixel_exit)
3700
3701L(test_2bit):
3702	cmpb	#2,%d3
3703	jbne	L(test_4bit)
3704	movel	%d0,%d4		/* we need the low order 2 bits! */
3705	divul	#4,%d0
3706	addal	%d0,%a1
3707	addal	%d1,%a1
3708	andb	#3,%d4
3709	eorb	#3,%d4		/* reverse the x-coordinate w/ screen-bit # */
3710	lsll	#1,%d4		/* ! */
3711	andb	#1,%d2
3712	jbne	L(white_2)
3713	bsetb	%d4,%a1@
3714	addq	#1,%d4
3715	bsetb	%d4,%a1@
3716	jbra	L(console_plot_pixel_exit)
3717L(white_2):
3718	bclrb	%d4,%a1@
3719	addq	#1,%d4
3720	bclrb	%d4,%a1@
3721	jbra	L(console_plot_pixel_exit)
3722
3723L(test_4bit):
3724	cmpb	#4,%d3
3725	jbne	L(test_8bit)
3726	movel	%d0,%d4		/* we need the low order bit! */
3727	divul	#2,%d0
3728	addal	%d0,%a1
3729	addal	%d1,%a1
3730	andb	#1,%d4
3731	eorb	#1,%d4
3732	lsll	#2,%d4		/* ! */
3733	andb	#1,%d2
3734	jbne	L(white_4)
3735	bsetb	%d4,%a1@
3736	addq	#1,%d4
3737	bsetb	%d4,%a1@
3738	addq	#1,%d4
3739	bsetb	%d4,%a1@
3740	addq	#1,%d4
3741	bsetb	%d4,%a1@
3742	jbra	L(console_plot_pixel_exit)
3743L(white_4):
3744	bclrb	%d4,%a1@
3745	addq	#1,%d4
3746	bclrb	%d4,%a1@
3747	addq	#1,%d4
3748	bclrb	%d4,%a1@
3749	addq	#1,%d4
3750	bclrb	%d4,%a1@
3751	jbra	L(console_plot_pixel_exit)
3752
3753L(test_8bit):
3754	cmpb	#8,%d3
3755	jbne	L(test_16bit)
3756	addal	%d0,%a1
3757	addal	%d1,%a1
3758	andb	#1,%d2
3759	jbne	L(white_8)
3760	moveb	#0xff,%a1@
3761	jbra	L(console_plot_pixel_exit)
3762L(white_8):
3763	clrb	%a1@
3764	jbra	L(console_plot_pixel_exit)
3765
3766L(test_16bit):
3767	cmpb	#16,%d3
3768	jbne	L(console_plot_pixel_exit)
3769	addal	%d0,%a1
3770	addal	%d0,%a1
3771	addal	%d1,%a1
3772	andb	#1,%d2
3773	jbne	L(white_16)
3774	clrw	%a1@
3775	jbra	L(console_plot_pixel_exit)
3776L(white_16):
3777	movew	#0x0fff,%a1@
3778	jbra	L(console_plot_pixel_exit)
3779
3780L(console_plot_pixel_exit):
3781func_return	console_plot_pixel
3782#endif /* CONSOLE */
3783
3784#if 0
3785/*
3786 * This is some old code lying around.  I don't believe
3787 * it's used or important anymore.  My guess is it contributed
3788 * to getting to this point, but it's done for now.
3789 * It was still in the 2.1.77 head.S, so it's still here.
3790 * (And still not used!)
3791 */
3792L(showtest):
3793	moveml	%a0/%d7,%sp@-
3794	puts	"A="
3795	putn	%a1
3796
3797	.long	0xf0119f15		| ptestr	#5,%a1@,#7,%a0
3798
3799	puts	"DA="
3800	putn	%a0
3801
3802	puts	"D="
3803	putn	%a0@
3804
3805	puts	"S="
3806	lea	%pc@(L(mmu)),%a0
3807	.long	0xf0106200		| pmove		%psr,%a0@
3808	clrl	%d7
3809	movew	%a0@,%d7
3810	putn	%d7
3811
3812	putc	'\n'
3813	moveml	%sp@+,%a0/%d7
3814	rts
3815#endif	/* 0 */
3816
3817__INITDATA
3818	.align	4
3819
 
 
 
3820#if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \
3821    defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3822L(custom):
3823L(iobase):
3824	.long 0
3825#endif
3826
3827#if defined(CONSOLE)
3828L(console_globals):
3829	.long	0		/* cursor column */
3830	.long	0		/* cursor row */
3831	.long	0		/* max num columns */
3832	.long	0		/* max num rows */
3833	.long	0		/* left edge */
3834	.long	0		/* mac putc */
3835L(console_font):
3836	.long	0		/* pointer to console font (struct font_desc) */
3837L(console_font_data):
3838	.long	0		/* pointer to console font data */
3839#endif /* CONSOLE */
3840
3841#if defined(MMU_PRINT)
3842L(mmu_print_data):
3843	.long	0		/* valid flag */
3844	.long	0		/* start logical */
3845	.long	0		/* next logical */
3846	.long	0		/* start physical */
3847	.long	0		/* next physical */
3848#endif /* MMU_PRINT */
3849
3850L(cputype):
3851	.long	0
3852L(mmu_cached_pointer_tables):
3853	.long	0
3854L(mmu_num_pointer_tables):
3855	.long	0
3856L(phys_kernel_start):
3857	.long	0
3858L(kernel_end):
3859	.long	0
3860L(memory_start):
3861	.long	0
3862L(kernel_pgdir_ptr):
3863	.long	0
3864L(temp_mmap_mem):
3865	.long	0
3866
3867#if defined (CONFIG_MVME147)
3868M147_SCC_CTRL_A = 0xfffe3002
3869M147_SCC_DATA_A = 0xfffe3003
3870#endif
3871
3872#if defined (CONFIG_MVME16x)
3873M162_SCC_CTRL_A = 0xfff45005
3874M167_CYCAR = 0xfff450ee
3875M167_CYIER = 0xfff45011
3876M167_CYLICR = 0xfff45026
3877M167_CYTEOIR = 0xfff45085
3878M167_CYTDR = 0xfff450f8
 
3879M167_PCSCCTICR = 0xfff4201e
 
3880M167_PCTPIACKR = 0xfff42025
3881#endif
3882
3883#if defined (CONFIG_BVME6000)
3884BVME_SCC_CTRL_A	= 0xffb0000b
3885BVME_SCC_DATA_A	= 0xffb0000f
3886#endif
3887
3888#if defined(CONFIG_MAC)
3889L(mac_booter_data):
3890	.long	0
3891L(mac_videobase):
3892	.long	0
3893L(mac_videodepth):
3894	.long	0
3895L(mac_dimensions):
3896	.long	0
3897L(mac_rowbytes):
3898	.long	0
3899#ifdef MAC_SERIAL_DEBUG
3900L(mac_sccbase):
3901	.long	0
3902#endif /* MAC_SERIAL_DEBUG */
3903#endif
3904
3905#if defined (CONFIG_APOLLO)
3906LSRB0        = 0x10412
3907LTHRB0       = 0x10416
3908LCPUCTRL     = 0x10100
3909#endif
3910
3911#if defined(CONFIG_HP300)
3912DCADATA	     = 0x11
3913DCALSR	     = 0x1b
3914APCIDATA     = 0x00
3915APCILSR      = 0x14
3916L(uartbase):
3917	.long	0
3918L(uart_scode):
3919	.long	-1
3920#endif
3921
3922__FINIT
3923	.data
3924	.align	4
3925
3926availmem:
3927	.long	0
3928m68k_pgtable_cachemode:
3929	.long	0
3930m68k_supervisor_cachemode:
3931	.long	0
3932#if defined(CONFIG_MVME16x)
3933mvme_bdid:
3934	.long	0,0,0,0,0,0,0,0
3935#endif
3936#if defined(CONFIG_Q40)
3937q40_mem_cptr:
3938	.long	0
3939L(q40_do_debug):
3940	.long	0
3941#endif
v6.2
   1/* -*- mode: asm -*-
   2**
   3** head.S -- This file contains the initial boot code for the
   4**	     Linux/68k kernel.
   5**
   6** Copyright 1993 by Hamish Macdonald
   7**
   8** 68040 fixes by Michael Rausch
   9** 68060 fixes by Roman Hodek
  10** MMU cleanup by Randy Thelen
  11** Final MMU cleanup by Roman Zippel
  12**
  13** Atari support by Andreas Schwab, using ideas of Robert de Vries
  14** and Bjoern Brauel
  15** VME Support by Richard Hirst
  16**
  17** 94/11/14 Andreas Schwab: put kernel at PAGESIZE
  18** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari
  19** ++ Bjoern & Roman: ATARI-68040 support for the Medusa
  20** 95/11/18 Richard Hirst: Added MVME166 support
  21** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with
  22**			      Magnum- and FX-alternate ram
  23** 98/04/25 Phil Blundell: added HP300 support
  24** 1998/08/30 David Kilzer: Added support for font_desc structures
  25**            for linux-2.1.115
  26** 1999/02/11  Richard Zidlicky: added Q40 support (initial version 99/01/01)
  27** 2004/05/13 Kars de Jong: Finalised HP300 support
  28**
  29** This file is subject to the terms and conditions of the GNU General Public
  30** License. See the file README.legal in the main directory of this archive
  31** for more details.
  32**
  33*/
  34
  35/*
  36 * Linux startup code.
  37 *
  38 * At this point, the boot loader has:
  39 * Disabled interrupts
  40 * Disabled caches
  41 * Put us in supervisor state.
  42 *
  43 * The kernel setup code takes the following steps:
  44 * .  Raise interrupt level
  45 * .  Set up initial kernel memory mapping.
  46 *    .  This sets up a mapping of the 4M of memory the kernel is located in.
  47 *    .  It also does a mapping of any initial machine specific areas.
  48 * .  Enable the MMU
  49 * .  Enable cache memories
  50 * .  Jump to kernel startup
  51 *
  52 * Much of the file restructuring was to accomplish:
  53 * 1) Remove register dependency through-out the file.
  54 * 2) Increase use of subroutines to perform functions
  55 * 3) Increase readability of the code
  56 *
  57 * Of course, readability is a subjective issue, so it will never be
  58 * argued that that goal was accomplished.  It was merely a goal.
  59 * A key way to help make code more readable is to give good
  60 * documentation.  So, the first thing you will find is exhaustive
  61 * write-ups on the structure of the file, and the features of the
  62 * functional subroutines.
  63 *
  64 * General Structure:
  65 * ------------------
  66 *	Without a doubt the single largest chunk of head.S is spent
  67 * mapping the kernel and I/O physical space into the logical range
  68 * for the kernel.
  69 *	There are new subroutines and data structures to make MMU
  70 * support cleaner and easier to understand.
  71 *	First, you will find a routine call "mmu_map" which maps
  72 * a logical to a physical region for some length given a cache
  73 * type on behalf of the caller.  This routine makes writing the
  74 * actual per-machine specific code very simple.
  75 *	A central part of the code, but not a subroutine in itself,
  76 * is the mmu_init code which is broken down into mapping the kernel
  77 * (the same for all machines) and mapping machine-specific I/O
  78 * regions.
  79 *	Also, there will be a description of engaging the MMU and
  80 * caches.
  81 *	You will notice that there is a chunk of code which
  82 * can emit the entire MMU mapping of the machine.  This is present
  83 * only in debug modes and can be very helpful.
  84 *	Further, there is a new console driver in head.S that is
  85 * also only engaged in debug mode.  Currently, it's only supported
  86 * on the Macintosh class of machines.  However, it is hoped that
  87 * others will plug-in support for specific machines.
  88 *
  89 * ######################################################################
  90 *
  91 * mmu_map
  92 * -------
  93 *	mmu_map was written for two key reasons.  First, it was clear
  94 * that it was very difficult to read the previous code for mapping
  95 * regions of memory.  Second, the Macintosh required such extensive
  96 * memory allocations that it didn't make sense to propagate the
  97 * existing code any further.
  98 *	mmu_map requires some parameters:
  99 *
 100 *	mmu_map (logical, physical, length, cache_type)
 101 *
 102 *	While this essentially describes the function in the abstract, you'll
 103 * find more indepth description of other parameters at the implementation site.
 104 *
 105 * mmu_get_root_table_entry
 106 * ------------------------
 107 * mmu_get_ptr_table_entry
 108 * -----------------------
 109 * mmu_get_page_table_entry
 110 * ------------------------
 111 *
 112 *	These routines are used by other mmu routines to get a pointer into
 113 * a table, if necessary a new table is allocated. These routines are working
 114 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root
 115 * table needs of course only to be allocated once in mmu_get_root_table_entry,
 116 * so that here also some mmu specific initialization is done. The second page
 117 * at the start of the kernel (the first page is unmapped later) is used for
 118 * the kernel_pg_dir. It must be at a position known at link time (as it's used
 119 * to initialize the init task struct) and since it needs special cache
 120 * settings, it's the easiest to use this page, the rest of the page is used
 121 * for further pointer tables.
 122 * mmu_get_page_table_entry allocates always a whole page for page tables, this
 123 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense
 124 * to manage page tables in smaller pieces as nearly all mappings have that
 125 * size.
 126 *
 127 * ######################################################################
 128 *
 129 *
 130 * ######################################################################
 131 *
 132 * mmu_engage
 133 * ----------
 134 *	Thanks to a small helping routine enabling the mmu got quite simple
 135 * and there is only one way left. mmu_engage makes a complete a new mapping
 136 * that only includes the absolute necessary to be able to jump to the final
 137 * position and to restore the original mapping.
 138 * As this code doesn't need a transparent translation register anymore this
 139 * means all registers are free to be used by machines that needs them for
 140 * other purposes.
 141 *
 142 * ######################################################################
 143 *
 144 * mmu_print
 145 * ---------
 146 *	This algorithm will print out the page tables of the system as
 147 * appropriate for an 030 or an 040.  This is useful for debugging purposes
 148 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses.
 149 *
 150 * ######################################################################
 151 *
 152 * console_init
 153 * ------------
 154 *	The console is also able to be turned off.  The console in head.S
 155 * is specifically for debugging and can be very useful.  It is surrounded by
 156 * #ifdef / #endif clauses so it doesn't have to ship in known-good
 157 * kernels.  It's basic algorithm is to determine the size of the screen
 158 * (in height/width and bit depth) and then use that information for
 159 * displaying an 8x8 font or an 8x16 (widthxheight).  I prefer the 8x8 for
 160 * debugging so I can see more good data.  But it was trivial to add support
 161 * for both fonts, so I included it.
 162 *	Also, the algorithm for plotting pixels is abstracted so that in
 163 * theory other platforms could add support for different kinds of frame
 164 * buffers.  This could be very useful.
 165 *
 166 * console_put_penguin
 167 * -------------------
 168 *	An important part of any Linux bring up is the penguin and there's
 169 * nothing like getting the Penguin on the screen!  This algorithm will work
 170 * on any machine for which there is a console_plot_pixel.
 171 *
 172 * console_scroll
 173 * --------------
 174 *	My hope is that the scroll algorithm does the right thing on the
 175 * various platforms, but it wouldn't be hard to add the test conditions
 176 * and new code if it doesn't.
 177 *
 178 * console_putc
 179 * -------------
 180 *
 181 * ######################################################################
 182 *
 183 *	Register usage has greatly simplified within head.S. Every subroutine
 184 * saves and restores all registers that it modifies (except it returns a
 185 * value in there of course). So the only register that needs to be initialized
 186 * is the stack pointer.
 187 * All other init code and data is now placed in the init section, so it will
 188 * be automatically freed at the end of the kernel initialization.
 189 *
 190 * ######################################################################
 191 *
 192 * options
 193 * -------
 194 *	There are many options available in a build of this file.  I've
 195 * taken the time to describe them here to save you the time of searching
 196 * for them and trying to understand what they mean.
 197 *
 198 * CONFIG_xxx:	These are the obvious machine configuration defines created
 199 * during configuration.  These are defined in autoconf.h.
 200 *
 201 * CONSOLE_DEBUG:  Only supports a Mac frame buffer but could easily be
 202 * extended to support other platforms.
 
 203 *
 204 * TEST_MMU:	This is a test harness for running on any given machine but
 205 * getting an MMU dump for another class of machine.  The classes of machines
 206 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.)
 207 * and any of the models (030, 040, 060, etc.).
 208 *
 209 *	NOTE:	TEST_MMU is NOT permanent!  It is scheduled to be removed
 210 *		When head.S boots on Atari, Amiga, Macintosh, and VME
 211 *		machines.  At that point the underlying logic will be
 212 *		believed to be solid enough to be trusted, and TEST_MMU
 213 *		can be dropped.  Do note that that will clean up the
 214 *		head.S code significantly as large blocks of #if/#else
 215 *		clauses can be removed.
 216 *
 217 * MMU_NOCACHE_KERNEL:	On the Macintosh platform there was an inquiry into
 218 * determing why devices don't appear to work.  A test case was to remove
 219 * the cacheability of the kernel bits.
 220 *
 221 * MMU_PRINT:	There is a routine built into head.S that can display the
 222 * MMU data structures.  It outputs its result through the serial_putc
 223 * interface.  So where ever that winds up driving data, that's where the
 224 * mmu struct will appear.
 225 *
 226 * SERIAL_DEBUG:	There are a series of putc() macro statements
 227 * scattered through out the code to give progress of status to the
 228 * person sitting at the console.  This constant determines whether those
 229 * are used.
 230 *
 231 * DEBUG:	This is the standard DEBUG flag that can be set for building
 232 *		the kernel.  It has the effect adding additional tests into
 233 *		the code.
 234 *
 235 * FONT_6x11:
 236 * FONT_8x8:
 237 * FONT_8x16:
 238 *		In theory these could be determined at run time or handed
 239 *		over by the booter.  But, let's be real, it's a fine hard
 240 *		coded value.  (But, you will notice the code is run-time
 241 *		flexible!)  A pointer to the font's struct font_desc
 242 *		is kept locally in Lconsole_font.  It is used to determine
 243 *		font size information dynamically.
 244 *
 245 * Atari constants:
 246 * USE_PRINTER:	Use the printer port for serial debug.
 247 * USE_SCC_B:	Use the SCC port A (Serial2) for serial debug.
 248 * USE_SCC_A:	Use the SCC port B (Modem2) for serial debug.
 249 * USE_MFP:	Use the ST-MFP port (Modem1) for serial debug.
 250 *
 251 * Macintosh constants:
 252 * MAC_USE_SCC_A: Use SCC port A (modem) for serial debug.
 253 * MAC_USE_SCC_B: Use SCC port B (printer) for serial debug.
 
 254 */
 255
 256#include <linux/linkage.h>
 257#include <linux/init.h>
 258#include <linux/pgtable.h>
 259#include <asm/bootinfo.h>
 260#include <asm/bootinfo-amiga.h>
 261#include <asm/bootinfo-atari.h>
 262#include <asm/bootinfo-hp300.h>
 263#include <asm/bootinfo-mac.h>
 264#include <asm/bootinfo-q40.h>
 265#include <asm/bootinfo-virt.h>
 266#include <asm/bootinfo-vme.h>
 267#include <asm/setup.h>
 268#include <asm/entry.h>
 
 269#include <asm/page.h>
 270#include <asm/asm-offsets.h>
 
 271#ifdef CONFIG_MAC
 272#  include <asm/machw.h>
 
 
 
 
 
 
 
 
 
 273#endif
 274
 275#ifdef CONFIG_EARLY_PRINTK
 276#  define SERIAL_DEBUG
 277#  if defined(CONFIG_MAC) && defined(CONFIG_FONT_SUPPORT)
 278#    define CONSOLE_DEBUG
 279#  endif
 280#endif
 
 
 
 
 
 
 
 
 281
 282#undef MMU_PRINT
 283#undef MMU_NOCACHE_KERNEL
 
 284#undef DEBUG
 285
 286/*
 287 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8.
 288 * The 8x8 font is harder to read but fits more on the screen.
 289 */
 290#define FONT_8x8	/* default */
 291/* #define FONT_8x16 */	/* 2nd choice */
 292/* #define FONT_6x11 */	/* 3rd choice */
 293
 294.globl kernel_pg_dir
 295.globl availmem
 296.globl m68k_init_mapped_size
 297.globl m68k_pgtable_cachemode
 298.globl m68k_supervisor_cachemode
 299#ifdef CONFIG_MVME16x
 300.globl mvme_bdid
 301#endif
 302#ifdef CONFIG_Q40
 303.globl q40_mem_cptr
 304#endif
 305
 306CPUTYPE_040	= 1	/* indicates an 040 */
 307CPUTYPE_060	= 2	/* indicates an 060 */
 308CPUTYPE_0460	= 3	/* if either above are set, this is set */
 309CPUTYPE_020	= 4	/* indicates an 020 */
 310
 311/* Translation control register */
 312TC_ENABLE = 0x8000
 313TC_PAGE8K = 0x4000
 314TC_PAGE4K = 0x0000
 315
 316/* Transparent translation registers */
 317TTR_ENABLE	= 0x8000	/* enable transparent translation */
 318TTR_ANYMODE	= 0x4000	/* user and kernel mode access */
 319TTR_KERNELMODE	= 0x2000	/* only kernel mode access */
 320TTR_USERMODE	= 0x0000	/* only user mode access */
 321TTR_CI		= 0x0400	/* inhibit cache */
 322TTR_RW		= 0x0200	/* read/write mode */
 323TTR_RWM		= 0x0100	/* read/write mask */
 324TTR_FCB2	= 0x0040	/* function code base bit 2 */
 325TTR_FCB1	= 0x0020	/* function code base bit 1 */
 326TTR_FCB0	= 0x0010	/* function code base bit 0 */
 327TTR_FCM2	= 0x0004	/* function code mask bit 2 */
 328TTR_FCM1	= 0x0002	/* function code mask bit 1 */
 329TTR_FCM0	= 0x0001	/* function code mask bit 0 */
 330
 331/* Cache Control registers */
 332CC6_ENABLE_D	= 0x80000000	/* enable data cache (680[46]0) */
 333CC6_FREEZE_D	= 0x40000000	/* freeze data cache (68060) */
 334CC6_ENABLE_SB	= 0x20000000	/* enable store buffer (68060) */
 335CC6_PUSH_DPI	= 0x10000000	/* disable CPUSH invalidation (68060) */
 336CC6_HALF_D	= 0x08000000	/* half-cache mode for data cache (68060) */
 337CC6_ENABLE_B	= 0x00800000	/* enable branch cache (68060) */
 338CC6_CLRA_B	= 0x00400000	/* clear all entries in branch cache (68060) */
 339CC6_CLRU_B	= 0x00200000	/* clear user entries in branch cache (68060) */
 340CC6_ENABLE_I	= 0x00008000	/* enable instruction cache (680[46]0) */
 341CC6_FREEZE_I	= 0x00004000	/* freeze instruction cache (68060) */
 342CC6_HALF_I	= 0x00002000	/* half-cache mode for instruction cache (68060) */
 343CC3_ALLOC_WRITE	= 0x00002000	/* write allocate mode(68030) */
 344CC3_ENABLE_DB	= 0x00001000	/* enable data burst (68030) */
 345CC3_CLR_D	= 0x00000800	/* clear data cache (68030) */
 346CC3_CLRE_D	= 0x00000400	/* clear entry in data cache (68030) */
 347CC3_FREEZE_D	= 0x00000200	/* freeze data cache (68030) */
 348CC3_ENABLE_D	= 0x00000100	/* enable data cache (68030) */
 349CC3_ENABLE_IB	= 0x00000010	/* enable instruction burst (68030) */
 350CC3_CLR_I	= 0x00000008	/* clear instruction cache (68030) */
 351CC3_CLRE_I	= 0x00000004	/* clear entry in instruction cache (68030) */
 352CC3_FREEZE_I	= 0x00000002	/* freeze instruction cache (68030) */
 353CC3_ENABLE_I	= 0x00000001	/* enable instruction cache (68030) */
 354
 355/* Miscellaneous definitions */
 356PAGESIZE	= 4096
 357PAGESHIFT	= 12
 358
 359ROOT_TABLE_SIZE	= 128
 360PTR_TABLE_SIZE	= 128
 361PAGE_TABLE_SIZE	= 64
 362ROOT_INDEX_SHIFT = 25
 363PTR_INDEX_SHIFT  = 18
 364PAGE_INDEX_SHIFT = 12
 365
 366#ifdef DEBUG
 367/* When debugging use readable names for labels */
 368#ifdef __STDC__
 369#define L(name) .head.S.##name
 370#else
 371#define L(name) .head.S./**/name
 372#endif
 373#else
 374#ifdef __STDC__
 375#define L(name) .L##name
 376#else
 377#define L(name) .L/**/name
 378#endif
 379#endif
 380
 381/* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */
 382#ifndef __INITDATA
 383#define __INITDATA	.data
 384#define __FINIT		.previous
 385#endif
 386
 387/* Several macros to make the writing of subroutines easier:
 388 * - func_start marks the beginning of the routine which setups the frame
 389 *   register and saves the registers, it also defines another macro
 390 *   to automatically restore the registers again.
 391 * - func_return marks the end of the routine and simply calls the prepared
 392 *   macro to restore registers and jump back to the caller.
 393 * - func_define generates another macro to automatically put arguments
 394 *   onto the stack call the subroutine and cleanup the stack again.
 395 */
 396
 397/* Within subroutines these macros can be used to access the arguments
 398 * on the stack. With STACK some allocated memory on the stack can be
 399 * accessed and ARG0 points to the return address (used by mmu_engage).
 400 */
 401#define	STACK	%a6@(stackstart)
 402#define ARG0	%a6@(4)
 403#define ARG1	%a6@(8)
 404#define ARG2	%a6@(12)
 405#define ARG3	%a6@(16)
 406#define ARG4	%a6@(20)
 407
 408.macro	func_start	name,saveregs,stack=0
 409L(\name):
 410	linkw	%a6,#-\stack
 411	moveml	\saveregs,%sp@-
 412.set	stackstart,-\stack
 413
 414.macro	func_return_\name
 415	moveml	%sp@+,\saveregs
 416	unlk	%a6
 417	rts
 418.endm
 419.endm
 420
 421.macro	func_return	name
 422	func_return_\name
 423.endm
 424
 425.macro	func_call	name
 426	jbsr	L(\name)
 427.endm
 428
 429.macro	move_stack	nr,arg1,arg2,arg3,arg4
 430.if	\nr
 431	move_stack	"(\nr-1)",\arg2,\arg3,\arg4
 432	movel	\arg1,%sp@-
 433.endif
 434.endm
 435
 436.macro	func_define	name,nr=0
 437.macro	\name	arg1,arg2,arg3,arg4
 438	move_stack	\nr,\arg1,\arg2,\arg3,\arg4
 439	func_call	\name
 440.if	\nr
 441	lea	%sp@(\nr*4),%sp
 442.endif
 443.endm
 444.endm
 445
 446func_define	mmu_map,4
 447func_define	mmu_map_tt,4
 448func_define	mmu_fixup_page_mmu_cache,1
 449func_define	mmu_temp_map,2
 450func_define	mmu_engage
 451func_define	mmu_get_root_table_entry,1
 452func_define	mmu_get_ptr_table_entry,2
 453func_define	mmu_get_page_table_entry,2
 454func_define	mmu_print
 455func_define	get_new_page
 456#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
 457func_define	set_leds
 458#endif
 459
 460.macro	mmu_map_eq	arg1,arg2,arg3
 461	mmu_map	\arg1,\arg1,\arg2,\arg3
 462.endm
 463
 464.macro	get_bi_record	record
 465	pea	\record
 466	func_call	get_bi_record
 467	addql	#4,%sp
 468.endm
 469
 470func_define	serial_putc,1
 471func_define	console_putc,1
 472
 473func_define	console_init
 
 474func_define	console_put_penguin
 475func_define	console_plot_pixel,3
 476func_define	console_scroll
 477
 478.macro	putc	ch
 479#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
 480	pea	\ch
 481#endif
 482#ifdef CONSOLE_DEBUG
 483	func_call	console_putc
 484#endif
 485#ifdef SERIAL_DEBUG
 486	func_call	serial_putc
 487#endif
 488#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
 489	addql	#4,%sp
 490#endif
 491.endm
 492
 493.macro	dputc	ch
 494#ifdef DEBUG
 495	putc	\ch
 496#endif
 497.endm
 498
 499func_define	putn,1
 500
 501.macro	dputn	nr
 502#ifdef DEBUG
 503	putn	\nr
 504#endif
 505.endm
 506
 507.macro	puts		string
 508#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
 509	__INITDATA
 510.Lstr\@:
 511	.string	"\string"
 512	__FINIT
 513	pea	%pc@(.Lstr\@)
 514	func_call	puts
 515	addql	#4,%sp
 516#endif
 517.endm
 518
 519.macro	dputs	string
 520#ifdef DEBUG
 521	puts	"\string"
 522#endif
 523.endm
 524
 525#define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab
 526#define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab
 527#define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab
 528#define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab
 529#define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab
 530#define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab
 531#define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab
 532#define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab
 533#define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab
 534#define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab
 535#define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab
 536#define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab
 537#define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab
 538#define is_not_virt(lab) cmpl &MACH_VIRT,%pc@(m68k_machtype); jne lab
 539
 540#define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \
 541			jeq 42f; \
 542			cmpl &MACH_APOLLO,%pc@(m68k_machtype); \
 543			jne lab ;\
 544		42:\
 545
 546#define is_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab
 547#define is_not_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab
 548#define is_040(lab)		btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab
 549#define is_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab
 550#define is_not_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab
 551#define is_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab
 552#define is_not_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab
 553
 554/* On the HP300 we use the on-board LEDs for debug output before
 555   the console is running.  Writing a 1 bit turns the corresponding LED
 556   _off_ - on the 340 bit 7 is towards the back panel of the machine.  */
 557.macro	leds	mask
 558#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
 559	hasnt_leds(.Lled\@)
 560	pea	\mask
 561	func_call	set_leds
 562	addql	#4,%sp
 563.Lled\@:
 564#endif
 565.endm
 566
 567__HEAD
 568ENTRY(_stext)
 569/*
 570 * Version numbers of the bootinfo interface
 571 * The area from _stext to _start will later be used as kernel pointer table
 572 */
 573	bras	1f	/* Jump over bootinfo version numbers */
 574
 575	.long	BOOTINFOV_MAGIC
 576	.long	MACH_AMIGA, AMIGA_BOOTI_VERSION
 577	.long	MACH_ATARI, ATARI_BOOTI_VERSION
 578	.long	MACH_MVME147, MVME147_BOOTI_VERSION
 579	.long	MACH_MVME16x, MVME16x_BOOTI_VERSION
 580	.long	MACH_BVME6000, BVME6000_BOOTI_VERSION
 581	.long	MACH_MAC, MAC_BOOTI_VERSION
 582	.long	MACH_Q40, Q40_BOOTI_VERSION
 583	.long	MACH_HP300, HP300_BOOTI_VERSION
 584	.long	0
 5851:	jra	__start
 586
 587.equ	kernel_pg_dir,_stext
 588
 589.equ	.,_stext+PAGESIZE
 590
 591ENTRY(_start)
 592	jra	__start
 593__INIT
 594ENTRY(__start)
 595/*
 596 * Setup initial stack pointer
 597 */
 598	lea	%pc@(_stext),%sp
 599
 600/*
 601 * Record the CPU and machine type.
 602 */
 603	get_bi_record	BI_MACHTYPE
 604	lea	%pc@(m68k_machtype),%a1
 605	movel	%a0@,%a1@
 606
 607	get_bi_record	BI_FPUTYPE
 608	lea	%pc@(m68k_fputype),%a1
 609	movel	%a0@,%a1@
 610
 611	get_bi_record	BI_MMUTYPE
 612	lea	%pc@(m68k_mmutype),%a1
 613	movel	%a0@,%a1@
 614
 615	get_bi_record	BI_CPUTYPE
 616	lea	%pc@(m68k_cputype),%a1
 617	movel	%a0@,%a1@
 618
 619	leds	0x1
 620
 621#ifdef CONFIG_MAC
 622/*
 623 * For Macintosh, we need to determine the display parameters early (at least
 624 * while debugging it).
 625 */
 626
 627	is_not_mac(L(test_notmac))
 628
 629	get_bi_record	BI_MAC_VADDR
 630	lea	%pc@(L(mac_videobase)),%a1
 631	movel	%a0@,%a1@
 632
 633	get_bi_record	BI_MAC_VDEPTH
 634	lea	%pc@(L(mac_videodepth)),%a1
 635	movel	%a0@,%a1@
 636
 637	get_bi_record	BI_MAC_VDIM
 638	lea	%pc@(L(mac_dimensions)),%a1
 639	movel	%a0@,%a1@
 640
 641	get_bi_record	BI_MAC_VROW
 642	lea	%pc@(L(mac_rowbytes)),%a1
 643	movel	%a0@,%a1@
 644
 
 645	get_bi_record	BI_MAC_SCCBASE
 646	lea	%pc@(L(mac_sccbase)),%a1
 647	movel	%a0@,%a1@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 648
 649L(test_notmac):
 650#endif /* CONFIG_MAC */
 651
 652#ifdef CONFIG_VIRT
 653	is_not_virt(L(test_notvirt))
 654
 655	get_bi_record BI_VIRT_GF_TTY_BASE
 656	lea	%pc@(L(virt_gf_tty_base)),%a1
 657	movel	%a0@,%a1@
 658L(test_notvirt):
 659#endif /* CONFIG_VIRT */
 660
 661/*
 662 * There are ultimately two pieces of information we want for all kinds of
 663 * processors CpuType and CacheBits.  The CPUTYPE was passed in from booter
 664 * and is converted here from a booter type definition to a separate bit
 665 * number which allows for the standard is_0x0 macro tests.
 666 */
 667	movel	%pc@(m68k_cputype),%d0
 668	/*
 669	 * Assume it's an 030
 670	 */
 671	clrl	%d1
 672
 673	/*
 674	 * Test the BootInfo cputype for 060
 675	 */
 676	btst	#CPUB_68060,%d0
 677	jeq	1f
 678	bset	#CPUTYPE_060,%d1
 679	bset	#CPUTYPE_0460,%d1
 680	jra	3f
 6811:
 682	/*
 683	 * Test the BootInfo cputype for 040
 684	 */
 685	btst	#CPUB_68040,%d0
 686	jeq	2f
 687	bset	#CPUTYPE_040,%d1
 688	bset	#CPUTYPE_0460,%d1
 689	jra	3f
 6902:
 691	/*
 692	 * Test the BootInfo cputype for 020
 693	 */
 694	btst	#CPUB_68020,%d0
 695	jeq	3f
 696	bset	#CPUTYPE_020,%d1
 697	jra	3f
 6983:
 699	/*
 700	 * Record the cpu type
 701	 */
 702	lea	%pc@(L(cputype)),%a0
 703	movel	%d1,%a0@
 704
 705	/*
 706	 * NOTE:
 707	 *
 708	 * Now the macros are valid:
 709	 *	is_040_or_060
 710	 *	is_not_040_or_060
 711	 *	is_040
 712	 *	is_060
 713	 *	is_not_060
 714	 */
 715
 716	/*
 717	 * Determine the cache mode for pages holding MMU tables
 718	 * and for supervisor mode, unused for '020 and '030
 719	 */
 720	clrl	%d0
 721	clrl	%d1
 722
 723	is_not_040_or_060(L(save_cachetype))
 724
 725	/*
 726	 * '040 or '060
 727	 * d1 := cacheable write-through
 728	 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables,
 729	 * but we have been using write-through since at least 2.0.29 so I
 730	 * guess it is OK.
 731	 */
 732#ifdef CONFIG_060_WRITETHROUGH
 733	/*
 734	 * If this is a 68060 board using drivers with cache coherency
 735	 * problems, then supervisor memory accesses need to be write-through
 736	 * also; otherwise, we want copyback.
 737	 */
 738
 739	is_not_060(1f)
 740	movel	#_PAGE_CACHE040W,%d0
 741	jra	L(save_cachetype)
 742#endif /* CONFIG_060_WRITETHROUGH */
 7431:
 744	movew	#_PAGE_CACHE040,%d0
 745
 746	movel	#_PAGE_CACHE040W,%d1
 747
 748L(save_cachetype):
 749	/* Save cache mode for supervisor mode and page tables
 750	 */
 751	lea	%pc@(m68k_supervisor_cachemode),%a0
 752	movel	%d0,%a0@
 753	lea	%pc@(m68k_pgtable_cachemode),%a0
 754	movel	%d1,%a0@
 755
 756/*
 757 * raise interrupt level
 758 */
 759	movew	#0x2700,%sr
 760
 761/*
 762   If running on an Atari, determine the I/O base of the
 763   serial port and test if we are running on a Medusa or Hades.
 764   This test is necessary here, because on the Hades the serial
 765   port is only accessible in the high I/O memory area.
 766
 767   The test whether it is a Medusa is done by writing to the byte at
 768   phys. 0x0. This should result in a bus error on all other machines.
 769
 770   ...should, but doesn't. The Afterburner040 for the Falcon has the
 771   same behaviour (0x0..0x7 are no ROM shadow). So we have to do
 772   another test to distinguish Medusa and AB040. This is a
 773   read attempt for 0x00ff82fe phys. that should bus error on a Falcon
 774   (+AB040), but is in the range where the Medusa always asserts DTACK.
 775
 776   The test for the Hades is done by reading address 0xb0000000. This
 777   should give a bus error on the Medusa.
 778 */
 779
 780#ifdef CONFIG_ATARI
 781	is_not_atari(L(notypetest))
 782
 783	/* get special machine type (Medusa/Hades/AB40) */
 784	moveq	#0,%d3 /* default if tag doesn't exist */
 785	get_bi_record	BI_ATARI_MCH_TYPE
 786	tstl	%d0
 787	jbmi	1f
 788	movel	%a0@,%d3
 789	lea	%pc@(atari_mch_type),%a0
 790	movel	%d3,%a0@
 7911:
 792	/* On the Hades, the iobase must be set up before opening the
 793	 * serial port. There are no I/O regs at 0x00ffxxxx at all. */
 794	moveq	#0,%d0
 795	cmpl	#ATARI_MACH_HADES,%d3
 796	jbne	1f
 797	movel	#0xff000000,%d0		/* Hades I/O base addr: 0xff000000 */
 7981:	lea     %pc@(L(iobase)),%a0
 799	movel   %d0,%a0@
 800
 801L(notypetest):
 802#endif
 803
 804#ifdef CONFIG_VME
 805	is_mvme147(L(getvmetype))
 806	is_bvme6000(L(getvmetype))
 807	is_not_mvme16x(L(gvtdone))
 808
 809	/* See if the loader has specified the BI_VME_TYPE tag.  Recent
 810	 * versions of VMELILO and TFTPLILO do this.  We have to do this
 811	 * early so we know how to handle console output.  If the tag
 812	 * doesn't exist then we use the Bug for output on MVME16x.
 813	 */
 814L(getvmetype):
 815	get_bi_record	BI_VME_TYPE
 816	tstl	%d0
 817	jbmi	1f
 818	movel	%a0@,%d3
 819	lea	%pc@(vme_brdtype),%a0
 820	movel	%d3,%a0@
 8211:
 822#ifdef CONFIG_MVME16x
 823	is_not_mvme16x(L(gvtdone))
 824
 825	/* Need to get the BRD_ID info to differentiate between 162, 167,
 826	 * etc.  This is available as a BI_VME_BRDINFO tag with later
 827	 * versions of VMELILO and TFTPLILO, otherwise we call the Bug.
 828	 */
 829	get_bi_record	BI_VME_BRDINFO
 830	tstl	%d0
 831	jpl	1f
 832
 833	/* Get pointer to board ID data from Bug */
 834	movel	%d2,%sp@-
 835	trap	#15
 836	.word	0x70		/* trap 0x70 - .BRD_ID */
 837	movel	%sp@+,%a0
 8381:
 839	lea	%pc@(mvme_bdid),%a1
 840	/* Structure is 32 bytes long */
 841	movel	%a0@+,%a1@+
 842	movel	%a0@+,%a1@+
 843	movel	%a0@+,%a1@+
 844	movel	%a0@+,%a1@+
 845	movel	%a0@+,%a1@+
 846	movel	%a0@+,%a1@+
 847	movel	%a0@+,%a1@+
 848	movel	%a0@+,%a1@+
 849#endif
 850
 851L(gvtdone):
 852
 853#endif
 854
 855#ifdef CONFIG_HP300
 856	is_not_hp300(L(nothp))
 857
 858	/* Get the address of the UART for serial debugging */
 859	get_bi_record	BI_HP300_UART_ADDR
 860	tstl	%d0
 861	jbmi	1f
 862	movel	%a0@,%d3
 863	lea	%pc@(L(uartbase)),%a0
 864	movel	%d3,%a0@
 865	get_bi_record	BI_HP300_UART_SCODE
 866	tstl	%d0
 867	jbmi	1f
 868	movel	%a0@,%d3
 869	lea	%pc@(L(uart_scode)),%a0
 870	movel	%d3,%a0@
 8711:
 872L(nothp):
 873#endif
 874
 875/*
 876 * Initialize serial port
 877 */
 878	jbsr	L(serial_init)
 879
 880/*
 881 * Initialize console
 882 */
 883#ifdef CONFIG_MAC
 884	is_not_mac(L(nocon))
 885#  ifdef CONSOLE_DEBUG
 886	console_init
 887#    ifdef CONFIG_LOGO
 888	console_put_penguin
 889#    endif /* CONFIG_LOGO */
 890#  endif /* CONSOLE_DEBUG */
 
 891L(nocon):
 892#endif /* CONFIG_MAC */
 893
 894
 895	putc	'\n'
 896	putc	'A'
 897	leds	0x2
 898	dputn	%pc@(L(cputype))
 899	dputn	%pc@(m68k_supervisor_cachemode)
 900	dputn	%pc@(m68k_pgtable_cachemode)
 901	dputc	'\n'
 902
 903/*
 904 * Save physical start address of kernel
 905 */
 906	lea	%pc@(L(phys_kernel_start)),%a0
 907	lea	%pc@(_stext),%a1
 908	subl	#_stext,%a1
 909	addl	#PAGE_OFFSET,%a1
 910	movel	%a1,%a0@
 911
 912	putc	'B'
 913
 914	leds	0x4
 915
 916/*
 917 *	mmu_init
 918 *
 919 *	This block of code does what's necessary to map in the various kinds
 920 *	of machines for execution of Linux.
 921 *	First map the first 4, 8, or 16 MB of kernel code & data
 922 */
 923
 924	get_bi_record BI_MEMCHUNK
 925	movel	%a0@(4),%d0
 926	movel	#16*1024*1024,%d1
 927	cmpl	%d0,%d1
 928	jls	1f
 929	lsrl	#1,%d1
 930	cmpl	%d0,%d1
 931	jls	1f
 932	lsrl	#1,%d1
 9331:
 934	lea	%pc@(m68k_init_mapped_size),%a0
 935	movel	%d1,%a0@
 936	mmu_map	#PAGE_OFFSET,%pc@(L(phys_kernel_start)),%d1,\
 937		%pc@(m68k_supervisor_cachemode)
 938
 939	putc	'C'
 940
 941#ifdef CONFIG_AMIGA
 942
 943L(mmu_init_amiga):
 944
 945	is_not_amiga(L(mmu_init_not_amiga))
 946/*
 947 * mmu_init_amiga
 948 */
 949
 950	putc	'D'
 951
 952	is_not_040_or_060(1f)
 953
 954	/*
 955	 * 040: Map the 16Meg range physical 0x0 up to logical 0x8000.0000
 956	 */
 957	mmu_map		#0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S
 958	/*
 959	 * Map the Zorro III I/O space with transparent translation
 960	 * for frame buffer memory etc.
 961	 */
 962	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S
 963
 964	jbra	L(mmu_init_done)
 965
 9661:
 967	/*
 968	 * 030:	Map the 32Meg range physical 0x0 up to logical 0x8000.0000
 969	 */
 970	mmu_map		#0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
 971	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030
 972
 973	jbra	L(mmu_init_done)
 974
 975L(mmu_init_not_amiga):
 976#endif
 977
 978#ifdef CONFIG_ATARI
 979
 980L(mmu_init_atari):
 981
 982	is_not_atari(L(mmu_init_not_atari))
 983
 984	putc	'E'
 985
 986/* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping
 987   the last 16 MB of virtual address space to the first 16 MB (i.e.
 988   0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is
 989   needed. I/O ranges are marked non-cachable.
 990
 991   For the Medusa it is better to map the I/O region transparently
 992   (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are
 993   accessible only in the high area.
 994
 995   On the Hades all I/O registers are only accessible in the high
 996   area.
 997*/
 998
 999	/* I/O base addr for non-Medusa, non-Hades: 0x00000000 */
1000	moveq	#0,%d0
1001	movel	%pc@(atari_mch_type),%d3
1002	cmpl	#ATARI_MACH_MEDUSA,%d3
1003	jbeq	2f
1004	cmpl	#ATARI_MACH_HADES,%d3
1005	jbne	1f
10062:	movel	#0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */
10071:	movel	%d0,%d3
1008
1009	is_040_or_060(L(spata68040))
1010
1011	/* Map everything non-cacheable, though not all parts really
1012	 * need to disable caches (crucial only for 0xff8000..0xffffff
1013	 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder
1014	 * isn't really used, except for sometimes peeking into the
1015	 * ROMs (mirror at phys. 0x0), so caching isn't necessary for
1016	 * this. */
1017	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030
1018
1019	jbra	L(mmu_init_done)
1020
1021L(spata68040):
1022
1023	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S
1024
1025	jbra	L(mmu_init_done)
1026
1027L(mmu_init_not_atari):
1028#endif
1029
1030#ifdef CONFIG_Q40
1031	is_not_q40(L(notq40))
1032	/*
1033	 * add transparent mapping for 0xff00 0000 - 0xffff ffff
1034	 * non-cached serialized etc..
1035	 * this includes master chip, DAC, RTC and ISA ports
1036	 * 0xfe000000-0xfeffffff is for screen and ROM
1037	 */
1038
1039	putc    'Q'
1040
1041	mmu_map_tt	#0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W
1042	mmu_map_tt	#1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S
1043
1044	jbra	L(mmu_init_done)
1045
1046L(notq40):
1047#endif
1048
1049#ifdef CONFIG_HP300
1050	is_not_hp300(L(nothp300))
1051
1052	/* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx)
1053	 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx).
1054	 * The ROM mapping is needed because the LEDs are mapped there too.
1055	 */
1056
1057	is_040(1f)
1058
1059	/*
1060	 * 030: Map the 32Meg range physical 0x0 up to logical 0xf000.0000
1061	 */
1062	mmu_map	#0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030
1063
1064	jbra	L(mmu_init_done)
1065
10661:
1067	/*
1068	 * 040: Map the 16Meg range physical 0x0 up to logical 0xf000.0000
1069	 */
1070	mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S
1071
1072	jbra	L(mmu_init_done)
1073
1074L(nothp300):
1075#endif /* CONFIG_HP300 */
1076
1077#ifdef CONFIG_MVME147
1078
1079	is_not_mvme147(L(not147))
1080
1081	/*
1082	 * On MVME147 we have already created kernel page tables for
1083	 * 4MB of RAM at address 0, so now need to do a transparent
1084	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1085	 * so we can access on-board i/o areas.
1086	 */
1087
1088	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030
1089
1090	jbra	L(mmu_init_done)
1091
1092L(not147):
1093#endif /* CONFIG_MVME147 */
1094
1095#ifdef CONFIG_MVME16x
1096
1097	is_not_mvme16x(L(not16x))
1098
1099	/*
1100	 * On MVME16x we have already created kernel page tables for
1101	 * 4MB of RAM at address 0, so now need to do a transparent
1102	 * mapping of the top of memory space.  Make it 0.5GByte for now.
1103	 * Supervisor only access, so transparent mapping doesn't
1104	 * clash with User code virtual address space.
1105	 * this covers IO devices, PROM and SRAM.  The PROM and SRAM
1106	 * mapping is needed to allow 167Bug to run.
1107	 * IO is in the range 0xfff00000 to 0xfffeffff.
1108	 * PROM is 0xff800000->0xffbfffff and SRAM is
1109	 * 0xffe00000->0xffe1ffff.
1110	 */
1111
1112	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1113
1114	jbra	L(mmu_init_done)
1115
1116L(not16x):
1117#endif	/* CONFIG_MVME162 | CONFIG_MVME167 */
1118
1119#ifdef CONFIG_BVME6000
1120
1121	is_not_bvme6000(L(not6000))
1122
1123	/*
1124	 * On BVME6000 we have already created kernel page tables for
1125	 * 4MB of RAM at address 0, so now need to do a transparent
1126	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1127	 * so we can access on-board i/o areas.
1128	 * Supervisor only access, so transparent mapping doesn't
1129	 * clash with User code virtual address space.
1130	 */
1131
1132	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1133
1134	jbra	L(mmu_init_done)
1135
1136L(not6000):
1137#endif /* CONFIG_BVME6000 */
1138
1139/*
1140 * mmu_init_mac
1141 *
1142 * The Macintosh mappings are less clear.
1143 *
1144 * Even as of this writing, it is unclear how the
1145 * Macintosh mappings will be done.  However, as
1146 * the first author of this code I'm proposing the
1147 * following model:
1148 *
1149 * Map the kernel (that's already done),
1150 * Map the I/O (on most machines that's the
1151 * 0x5000.0000 ... 0x5300.0000 range,
1152 * Map the video frame buffer using as few pages
1153 * as absolutely (this requirement mostly stems from
1154 * the fact that when the frame buffer is at
1155 * 0x0000.0000 then we know there is valid RAM just
1156 * above the screen that we don't want to waste!).
1157 *
1158 * By the way, if the frame buffer is at 0x0000.0000
1159 * then the Macintosh is known as an RBV based Mac.
1160 *
1161 * By the way 2, the code currently maps in a bunch of
1162 * regions.  But I'd like to cut that out.  (And move most
1163 * of the mappings up into the kernel proper ... or only
1164 * map what's necessary.)
1165 */
1166
1167#ifdef CONFIG_MAC
1168
1169L(mmu_init_mac):
1170
1171	is_not_mac(L(mmu_init_not_mac))
1172
1173	putc	'F'
1174
1175	is_not_040_or_060(1f)
1176
1177	moveq	#_PAGE_NOCACHE_S,%d3
1178	jbra	2f
11791:
1180	moveq	#_PAGE_NOCACHE030,%d3
11812:
1182	/*
1183	 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical>
1184	 *	     we simply map the 4MB that contains the videomem
1185	 */
1186
1187	movel	#VIDEOMEMMASK,%d0
1188	andl	%pc@(L(mac_videobase)),%d0
1189
1190	mmu_map		#VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3
1191	/* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */
1192	mmu_map_eq	#0x40000000,#0x02000000,%d3
1193	/* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */
1194	mmu_map_eq	#0x50000000,#0x03000000,%d3
1195	/* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */
1196	mmu_map_tt	#1,#0xf8000000,#0x08000000,%d3
1197
1198	jbra	L(mmu_init_done)
1199
1200L(mmu_init_not_mac):
1201#endif
1202
1203#ifdef CONFIG_SUN3X
1204	is_not_sun3x(L(notsun3x))
1205
1206	/* oh, the pain..  We're gonna want the prom code after
1207	 * starting the MMU, so we copy the mappings, translating
1208	 * from 8k -> 4k pages as we go.
1209	 */
1210
1211	/* copy maps from 0xfee00000 to 0xff000000 */
1212	movel	#0xfee00000, %d0
1213	moveq	#ROOT_INDEX_SHIFT, %d1
1214	lsrl	%d1,%d0
1215	mmu_get_root_table_entry	%d0
1216
1217	movel	#0xfee00000, %d0
1218	moveq	#PTR_INDEX_SHIFT, %d1
1219	lsrl	%d1,%d0
1220	andl	#PTR_TABLE_SIZE-1, %d0
1221	mmu_get_ptr_table_entry		%a0,%d0
1222
1223	movel	#0xfee00000, %d0
1224	moveq	#PAGE_INDEX_SHIFT, %d1
1225	lsrl	%d1,%d0
1226	andl	#PAGE_TABLE_SIZE-1, %d0
1227	mmu_get_page_table_entry	%a0,%d0
1228
1229	/* this is where the prom page table lives */
1230	movel	0xfefe00d4, %a1
1231	movel	%a1@, %a1
1232
1233	movel	#((0x200000 >> 13)-1), %d1
1234
12351:
1236	movel	%a1@+, %d3
1237	movel	%d3,%a0@+
1238	addl	#0x1000,%d3
1239	movel	%d3,%a0@+
1240
1241	dbra	%d1,1b
1242
1243	/* setup tt1 for I/O */
1244	mmu_map_tt	#1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S
1245	jbra	L(mmu_init_done)
1246
1247L(notsun3x):
1248#endif
1249
1250#ifdef CONFIG_VIRT
1251	is_not_virt(L(novirt))
1252	mmu_map_tt	#1,#0xFF000000,#0x01000000,#_PAGE_NOCACHE_S
1253	jbra    L(mmu_init_done)
1254L(novirt):
1255#endif
1256
1257#ifdef CONFIG_APOLLO
1258	is_not_apollo(L(notapollo))
1259
1260	putc	'P'
1261	mmu_map         #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
1262
1263L(notapollo):
1264	jbra	L(mmu_init_done)
1265#endif
1266
1267L(mmu_init_done):
1268
1269	putc	'G'
1270	leds	0x8
1271
1272/*
1273 * mmu_fixup
1274 *
1275 * On the 040 class machines, all pages that are used for the
1276 * mmu have to be fixed up. According to Motorola, pages holding mmu
1277 * tables should be non-cacheable on a '040 and write-through on a
1278 * '060. But analysis of the reasons for this, and practical
1279 * experience, showed that write-through also works on a '040.
1280 *
1281 * Allocated memory so far goes from kernel_end to memory_start that
1282 * is used for all kind of tables, for that the cache attributes
1283 * are now fixed.
1284 */
1285L(mmu_fixup):
1286
1287	is_not_040_or_060(L(mmu_fixup_done))
1288
1289#ifdef MMU_NOCACHE_KERNEL
1290	jbra	L(mmu_fixup_done)
1291#endif
1292
1293	/* first fix the page at the start of the kernel, that
1294	 * contains also kernel_pg_dir.
1295	 */
1296	movel	%pc@(L(phys_kernel_start)),%d0
1297	subl	#PAGE_OFFSET,%d0
1298	lea	%pc@(_stext),%a0
1299	subl	%d0,%a0
1300	mmu_fixup_page_mmu_cache	%a0
1301
1302	movel	%pc@(L(kernel_end)),%a0
1303	subl	%d0,%a0
1304	movel	%pc@(L(memory_start)),%a1
1305	subl	%d0,%a1
1306	bra	2f
13071:
1308	mmu_fixup_page_mmu_cache	%a0
1309	addw	#PAGESIZE,%a0
13102:
1311	cmpl	%a0,%a1
1312	jgt	1b
1313
1314L(mmu_fixup_done):
1315
1316#ifdef MMU_PRINT
1317	mmu_print
1318#endif
1319
1320/*
1321 * mmu_engage
1322 *
1323 * This chunk of code performs the gruesome task of engaging the MMU.
1324 * The reason it's gruesome is because when the MMU becomes engaged it
1325 * maps logical addresses to physical addresses.  The Program Counter
1326 * register is then passed through the MMU before the next instruction
1327 * is fetched (the instruction following the engage MMU instruction).
1328 * This may mean one of two things:
1329 * 1. The Program Counter falls within the logical address space of
1330 *    the kernel of which there are two sub-possibilities:
1331 *    A. The PC maps to the correct instruction (logical PC == physical
1332 *       code location), or
1333 *    B. The PC does not map through and the processor will read some
1334 *       data (or instruction) which is not the logically next instr.
1335 *    As you can imagine, A is good and B is bad.
1336 * Alternatively,
1337 * 2. The Program Counter does not map through the MMU.  The processor
1338 *    will take a Bus Error.
1339 * Clearly, 2 is bad.
1340 * It doesn't take a wiz kid to figure you want 1.A.
1341 * This code creates that possibility.
1342 * There are two possible 1.A. states (we now ignore the other above states):
1343 * A. The kernel is located at physical memory addressed the same as
1344 *    the logical memory for the kernel, i.e., 0x01000.
1345 * B. The kernel is located some where else.  e.g., 0x0400.0000
1346 *
1347 *    Under some conditions the Macintosh can look like A or B.
1348 * [A friend and I once noted that Apple hardware engineers should be
1349 * wacked twice each day: once when they show up at work (as in, Whack!,
1350 * "This is for the screwy hardware we know you're going to design today."),
1351 * and also at the end of the day (as in, Whack! "I don't know what
1352 * you designed today, but I'm sure it wasn't good."). -- rst]
1353 *
1354 * This code works on the following premise:
1355 * If the kernel start (%d5) is within the first 16 Meg of RAM,
1356 * then create a mapping for the kernel at logical 0x8000.0000 to
1357 * the physical location of the pc.  And, create a transparent
1358 * translation register for the first 16 Meg.  Then, after the MMU
1359 * is engaged, the PC can be moved up into the 0x8000.0000 range
1360 * and then the transparent translation can be turned off and then
1361 * the PC can jump to the correct logical location and it will be
1362 * home (finally).  This is essentially the code that the Amiga used
1363 * to use.  Now, it's generalized for all processors.  Which means
1364 * that a fresh (but temporary) mapping has to be created.  The mapping
1365 * is made in page 0 (an as of yet unused location -- except for the
1366 * stack!).  This temporary mapping will only require 1 pointer table
1367 * and a single page table (it can map 256K).
1368 *
1369 * OK, alternatively, imagine that the Program Counter is not within
1370 * the first 16 Meg.  Then, just use Transparent Translation registers
1371 * to do the right thing.
1372 *
1373 * Last, if _start is already at 0x01000, then there's nothing special
1374 * to do (in other words, in a degenerate case of the first case above,
1375 * do nothing).
1376 *
1377 * Let's do it.
1378 *
1379 *
1380 */
1381
1382	putc	'H'
1383
1384	mmu_engage
1385
1386/*
1387 * After this point no new memory is allocated and
1388 * the start of available memory is stored in availmem.
1389 * (The bootmem allocator requires now the physical address.)
1390 */
1391
1392	movel	L(memory_start),availmem
1393
1394#ifdef CONFIG_AMIGA
1395	is_not_amiga(1f)
1396	/* fixup the Amiga custom register location before printing */
1397	clrl	L(custom)
13981:
1399#endif
1400
1401#ifdef CONFIG_ATARI
1402	is_not_atari(1f)
1403	/* fixup the Atari iobase register location before printing */
1404	movel	#0xff000000,L(iobase)
14051:
1406#endif
1407
1408#ifdef CONFIG_MAC
1409	is_not_mac(1f)
1410	movel	#~VIDEOMEMMASK,%d0
1411	andl	L(mac_videobase),%d0
1412	addl	#VIDEOMEMBASE,%d0
1413	movel	%d0,L(mac_videobase)
1414#ifdef CONSOLE_DEBUG
1415	movel	%pc@(L(phys_kernel_start)),%d0
1416	subl	#PAGE_OFFSET,%d0
1417	subl	%d0,L(console_font)
1418	subl	%d0,L(console_font_data)
1419#endif
 
1420	orl	#0x50000000,L(mac_sccbase)
 
14211:
1422#endif
1423
1424#ifdef CONFIG_HP300
1425	is_not_hp300(2f)
1426	/*
1427	 * Fix up the iobase register to point to the new location of the LEDs.
1428	 */
1429	movel	#0xf0000000,L(iobase)
1430
1431	/*
1432	 * Energise the FPU and caches.
1433	 */
1434	is_040(1f)
1435	movel	#0x60,0xf05f400c
1436	jbra	2f
1437
1438	/*
1439	 * 040: slightly different, apparently.
1440	 */
14411:	movew	#0,0xf05f400e
1442	movew	#0x64,0xf05f400e
14432:
1444#endif
1445
1446#ifdef CONFIG_SUN3X
1447	is_not_sun3x(1f)
1448
1449	/* enable copro */
1450	oriw	#0x4000,0x61000000
14511:
1452#endif
1453
1454#ifdef CONFIG_APOLLO
1455	is_not_apollo(1f)
1456
1457	/*
1458	 * Fix up the iobase before printing
1459	 */
1460	movel	#0x80000000,L(iobase)
14611:
1462#endif
1463
1464	putc	'I'
1465	leds	0x10
1466
1467/*
1468 * Enable caches
1469 */
1470
1471	is_not_040_or_060(L(cache_not_680460))
1472
1473L(cache680460):
1474	.chip	68040
1475	nop
1476	cpusha	%bc
1477	nop
1478
1479	is_060(L(cache68060))
1480
1481	movel	#CC6_ENABLE_D+CC6_ENABLE_I,%d0
1482	/* MMU stuff works in copyback mode now, so enable the cache */
1483	movec	%d0,%cacr
1484	jra	L(cache_done)
1485
1486L(cache68060):
1487	movel	#CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0
1488	/* MMU stuff works in copyback mode now, so enable the cache */
1489	movec	%d0,%cacr
1490	/* enable superscalar dispatch in PCR */
1491	moveq	#1,%d0
1492	.chip	68060
1493	movec	%d0,%pcr
1494
1495	jbra	L(cache_done)
1496L(cache_not_680460):
1497L(cache68030):
1498	.chip	68030
1499	movel	#CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0
1500	movec	%d0,%cacr
1501
1502	jra	L(cache_done)
1503	.chip	68k
1504L(cache_done):
1505
1506	putc	'J'
1507
1508/*
1509 * Setup initial stack pointer
1510 */
1511	lea	init_task,%curptr
1512	lea	init_thread_union+THREAD_SIZE,%sp
1513
1514	putc	'K'
1515
1516	subl	%a6,%a6		/* clear a6 for gdb */
1517
1518/*
1519 * The new 64bit printf support requires an early exception initialization.
1520 */
1521	jbsr	base_trap_init
1522
1523/* jump to the kernel start */
1524
1525	putc	'\n'
1526	leds	0x55
1527
1528	jbsr	start_kernel
1529
1530/*
1531 * Find a tag record in the bootinfo structure
1532 * The bootinfo structure is located right after the kernel
1533 * Returns: d0: size (-1 if not found)
1534 *          a0: data pointer (end-of-records if not found)
1535 */
1536func_start	get_bi_record,%d1
1537
1538	movel	ARG1,%d0
1539	lea	%pc@(_end),%a0
15401:	tstw	%a0@(BIR_TAG)
1541	jeq	3f
1542	cmpw	%a0@(BIR_TAG),%d0
1543	jeq	2f
1544	addw	%a0@(BIR_SIZE),%a0
1545	jra	1b
15462:	moveq	#0,%d0
1547	movew	%a0@(BIR_SIZE),%d0
1548	lea	%a0@(BIR_DATA),%a0
1549	jra	4f
15503:	moveq	#-1,%d0
1551	lea	%a0@(BIR_SIZE),%a0
15524:
1553func_return	get_bi_record
1554
1555
1556/*
1557 *	MMU Initialization Begins Here
1558 *
1559 *	The structure of the MMU tables on the 68k machines
1560 *	is thus:
1561 *	Root Table
1562 *		Logical addresses are translated through
1563 *	a hierarchical translation mechanism where the high-order
1564 *	seven bits of the logical address (LA) are used as an
1565 *	index into the "root table."  Each entry in the root
1566 *	table has a bit which specifies if it's a valid pointer to a
1567 *	pointer table.  Each entry defines a 32Meg range of memory.
1568 *	If an entry is invalid then that logical range of 32M is
1569 *	invalid and references to that range of memory (when the MMU
1570 *	is enabled) will fault.  If the entry is valid, then it does
1571 *	one of two things.  On 040/060 class machines, it points to
1572 *	a pointer table which then describes more finely the memory
1573 *	within that 32M range.  On 020/030 class machines, a technique
1574 *	called "early terminating descriptors" are used.  This technique
1575 *	allows an entire 32Meg to be described by a single entry in the
1576 *	root table.  Thus, this entry in the root table, contains the
1577 *	physical address of the memory or I/O at the logical address
1578 *	which the entry represents and it also contains the necessary
1579 *	cache bits for this region.
1580 *
1581 *	Pointer Tables
1582 *		Per the Root Table, there will be one or more
1583 *	pointer tables.  Each pointer table defines a 32M range.
1584 *	Not all of the 32M range need be defined.  Again, the next
1585 *	seven bits of the logical address are used an index into
1586 *	the pointer table to point to page tables (if the pointer
1587 *	is valid).  There will undoubtedly be more than one
1588 *	pointer table for the kernel because each pointer table
1589 *	defines a range of only 32M.  Valid pointer table entries
1590 *	point to page tables, or are early terminating entries
1591 *	themselves.
1592 *
1593 *	Page Tables
1594 *		Per the Pointer Tables, each page table entry points
1595 *	to the physical page in memory that supports the logical
1596 *	address that translates to the particular index.
1597 *
1598 *	In short, the Logical Address gets translated as follows:
1599 *		bits 31..26 - index into the Root Table
1600 *		bits 25..18 - index into the Pointer Table
1601 *		bits 17..12 - index into the Page Table
1602 *		bits 11..0  - offset into a particular 4K page
1603 *
1604 *	The algorithms which follow do one thing: they abstract
1605 *	the MMU hardware.  For example, there are three kinds of
1606 *	cache settings that are relevant.  Either, memory is
1607 *	being mapped in which case it is either Kernel Code (or
1608 *	the RamDisk) or it is MMU data.  On the 030, the MMU data
1609 *	option also describes the kernel.  Or, I/O is being mapped
1610 *	in which case it has its own kind of cache bits.  There
1611 *	are constants which abstract these notions from the code that
1612 *	actually makes the call to map some range of memory.
1613 *
1614 *
1615 *
1616 */
1617
1618#ifdef MMU_PRINT
1619/*
1620 *	mmu_print
1621 *
1622 *	This algorithm will print out the current MMU mappings.
1623 *
1624 *	Input:
1625 *		%a5 points to the root table.  Everything else is calculated
1626 *			from this.
1627 */
1628
1629#define mmu_next_valid		0
1630#define mmu_start_logical	4
1631#define mmu_next_logical	8
1632#define mmu_start_physical	12
1633#define mmu_next_physical	16
1634
1635#define MMU_PRINT_INVALID		-1
1636#define MMU_PRINT_VALID			1
1637#define MMU_PRINT_UNINITED		0
1638
1639#define putZc(z,n)		jbne 1f; putc z; jbra 2f; 1: putc n; 2:
1640
1641func_start	mmu_print,%a0-%a6/%d0-%d7
1642
1643	movel	%pc@(L(kernel_pgdir_ptr)),%a5
1644	lea	%pc@(L(mmu_print_data)),%a0
1645	movel	#MMU_PRINT_UNINITED,%a0@(mmu_next_valid)
1646
1647	is_not_040_or_060(mmu_030_print)
1648
1649mmu_040_print:
1650	puts	"\nMMU040\n"
1651	puts	"rp:"
1652	putn	%a5
1653	putc	'\n'
1654#if 0
1655	/*
1656	 * The following #if/#endif block is a tight algorithm for dumping the 040
1657	 * MMU Map in gory detail.  It really isn't that practical unless the
1658	 * MMU Map algorithm appears to go awry and you need to debug it at the
1659	 * entry per entry level.
1660	 */
1661	movel	#ROOT_TABLE_SIZE,%d5
1662#if 0
1663	movel	%a5@+,%d7		| Burn an entry to skip the kernel mappings,
1664	subql	#1,%d5			| they (might) work
1665#endif
16661:	tstl	%d5
1667	jbeq	mmu_print_done
1668	subq	#1,%d5
1669	movel	%a5@+,%d7
1670	btst	#1,%d7
1671	jbeq	1b
1672
16732:	putn	%d7
1674	andil	#0xFFFFFE00,%d7
1675	movel	%d7,%a4
1676	movel	#PTR_TABLE_SIZE,%d4
1677	putc	' '
16783:	tstl	%d4
1679	jbeq	11f
1680	subq	#1,%d4
1681	movel	%a4@+,%d7
1682	btst	#1,%d7
1683	jbeq	3b
1684
16854:	putn	%d7
1686	andil	#0xFFFFFF00,%d7
1687	movel	%d7,%a3
1688	movel	#PAGE_TABLE_SIZE,%d3
16895:	movel	#8,%d2
16906:	tstl	%d3
1691	jbeq	31f
1692	subq	#1,%d3
1693	movel	%a3@+,%d6
1694	btst	#0,%d6
1695	jbeq	6b
16967:	tstl	%d2
1697	jbeq	8f
1698	subq	#1,%d2
1699	putc	' '
1700	jbra	91f
17018:	putc	'\n'
1702	movel	#8+1+8+1+1,%d2
17039:	putc	' '
1704	dbra	%d2,9b
1705	movel	#7,%d2
170691:	putn	%d6
1707	jbra	6b
1708
170931:	putc	'\n'
1710	movel	#8+1,%d2
171132:	putc	' '
1712	dbra	%d2,32b
1713	jbra	3b
1714
171511:	putc	'\n'
1716	jbra	1b
1717#endif /* MMU 040 Dumping code that's gory and detailed */
1718
1719	lea	%pc@(kernel_pg_dir),%a5
1720	movel	%a5,%a0			/* a0 has the address of the root table ptr */
1721	movel	#0x00000000,%a4		/* logical address */
1722	moveql	#0,%d0
172340:
1724	/* Increment the logical address and preserve in d5 */
1725	movel	%a4,%d5
1726	addil	#PAGESIZE<<13,%d5
1727	movel	%a0@+,%d6
1728	btst	#1,%d6
1729	jbne	41f
1730	jbsr	mmu_print_tuple_invalidate
1731	jbra	48f
173241:
1733	movel	#0,%d1
1734	andil	#0xfffffe00,%d6
1735	movel	%d6,%a1
173642:
1737	movel	%a4,%d5
1738	addil	#PAGESIZE<<6,%d5
1739	movel	%a1@+,%d6
1740	btst	#1,%d6
1741	jbne	43f
1742	jbsr	mmu_print_tuple_invalidate
1743	jbra	47f
174443:
1745	movel	#0,%d2
1746	andil	#0xffffff00,%d6
1747	movel	%d6,%a2
174844:
1749	movel	%a4,%d5
1750	addil	#PAGESIZE,%d5
1751	movel	%a2@+,%d6
1752	btst	#0,%d6
1753	jbne	45f
1754	jbsr	mmu_print_tuple_invalidate
1755	jbra	46f
175645:
1757	moveml	%d0-%d1,%sp@-
1758	movel	%a4,%d0
1759	movel	%d6,%d1
1760	andil	#0xfffff4e0,%d1
1761	lea	%pc@(mmu_040_print_flags),%a6
1762	jbsr	mmu_print_tuple
1763	moveml	%sp@+,%d0-%d1
176446:
1765	movel	%d5,%a4
1766	addq	#1,%d2
1767	cmpib	#64,%d2
1768	jbne	44b
176947:
1770	movel	%d5,%a4
1771	addq	#1,%d1
1772	cmpib	#128,%d1
1773	jbne	42b
177448:
1775	movel	%d5,%a4			/* move to the next logical address */
1776	addq	#1,%d0
1777	cmpib	#128,%d0
1778	jbne	40b
1779
1780	.chip	68040
1781	movec	%dtt1,%d0
1782	movel	%d0,%d1
1783	andiw	#0x8000,%d1		/* is it valid ? */
1784	jbeq	1f			/* No, bail out */
1785
1786	movel	%d0,%d1
1787	andil	#0xff000000,%d1		/* Get the address */
1788	putn	%d1
1789	puts	"=="
1790	putn	%d1
1791
1792	movel	%d0,%d6
1793	jbsr	mmu_040_print_flags_tt
17941:
1795	movec	%dtt0,%d0
1796	movel	%d0,%d1
1797	andiw	#0x8000,%d1		/* is it valid ? */
1798	jbeq	1f			/* No, bail out */
1799
1800	movel	%d0,%d1
1801	andil	#0xff000000,%d1		/* Get the address */
1802	putn	%d1
1803	puts	"=="
1804	putn	%d1
1805
1806	movel	%d0,%d6
1807	jbsr	mmu_040_print_flags_tt
18081:
1809	.chip	68k
1810
1811	jbra	mmu_print_done
1812
1813mmu_040_print_flags:
1814	btstl	#10,%d6
1815	putZc(' ','G')	/* global bit */
1816	btstl	#7,%d6
1817	putZc(' ','S')	/* supervisor bit */
1818mmu_040_print_flags_tt:
1819	btstl	#6,%d6
1820	jbne	3f
1821	putc	'C'
1822	btstl	#5,%d6
1823	putZc('w','c')	/* write through or copy-back */
1824	jbra	4f
18253:
1826	putc	'N'
1827	btstl	#5,%d6
1828	putZc('s',' ')	/* serialized non-cacheable, or non-cacheable */
18294:
1830	rts
1831
1832mmu_030_print_flags:
1833	btstl	#6,%d6
1834	putZc('C','I')	/* write through or copy-back */
1835	rts
1836
1837mmu_030_print:
1838	puts	"\nMMU030\n"
1839	puts	"\nrp:"
1840	putn	%a5
1841	putc	'\n'
1842	movel	%a5,%d0
1843	andil	#0xfffffff0,%d0
1844	movel	%d0,%a0
1845	movel	#0x00000000,%a4		/* logical address */
1846	movel	#0,%d0
184730:
1848	movel	%a4,%d5
1849	addil	#PAGESIZE<<13,%d5
1850	movel	%a0@+,%d6
1851	btst	#1,%d6			/* is it a table ptr? */
1852	jbne	31f			/* yes */
1853	btst	#0,%d6			/* is it early terminating? */
1854	jbeq	1f			/* no */
1855	jbsr	mmu_030_print_helper
1856	jbra	38f
18571:
1858	jbsr	mmu_print_tuple_invalidate
1859	jbra	38f
186031:
1861	movel	#0,%d1
1862	andil	#0xfffffff0,%d6
1863	movel	%d6,%a1
186432:
1865	movel	%a4,%d5
1866	addil	#PAGESIZE<<6,%d5
1867	movel	%a1@+,%d6
1868	btst	#1,%d6			/* is it a table ptr? */
1869	jbne	33f			/* yes */
1870	btst	#0,%d6			/* is it a page descriptor? */
1871	jbeq	1f			/* no */
1872	jbsr	mmu_030_print_helper
1873	jbra	37f
18741:
1875	jbsr	mmu_print_tuple_invalidate
1876	jbra	37f
187733:
1878	movel	#0,%d2
1879	andil	#0xfffffff0,%d6
1880	movel	%d6,%a2
188134:
1882	movel	%a4,%d5
1883	addil	#PAGESIZE,%d5
1884	movel	%a2@+,%d6
1885	btst	#0,%d6
1886	jbne	35f
1887	jbsr	mmu_print_tuple_invalidate
1888	jbra	36f
188935:
1890	jbsr	mmu_030_print_helper
189136:
1892	movel	%d5,%a4
1893	addq	#1,%d2
1894	cmpib	#64,%d2
1895	jbne	34b
189637:
1897	movel	%d5,%a4
1898	addq	#1,%d1
1899	cmpib	#128,%d1
1900	jbne	32b
190138:
1902	movel	%d5,%a4			/* move to the next logical address */
1903	addq	#1,%d0
1904	cmpib	#128,%d0
1905	jbne	30b
1906
1907mmu_print_done:
1908	puts	"\n"
1909
1910func_return	mmu_print
1911
1912
1913mmu_030_print_helper:
1914	moveml	%d0-%d1,%sp@-
1915	movel	%a4,%d0
1916	movel	%d6,%d1
1917	lea	%pc@(mmu_030_print_flags),%a6
1918	jbsr	mmu_print_tuple
1919	moveml	%sp@+,%d0-%d1
1920	rts
1921
1922mmu_print_tuple_invalidate:
1923	moveml	%a0/%d7,%sp@-
1924
1925	lea	%pc@(L(mmu_print_data)),%a0
1926	tstl	%a0@(mmu_next_valid)
1927	jbmi	mmu_print_tuple_invalidate_exit
1928
1929	movel	#MMU_PRINT_INVALID,%a0@(mmu_next_valid)
1930
1931	putn	%a4
1932
1933	puts	"##\n"
1934
1935mmu_print_tuple_invalidate_exit:
1936	moveml	%sp@+,%a0/%d7
1937	rts
1938
1939
1940mmu_print_tuple:
1941	moveml	%d0-%d7/%a0,%sp@-
1942
1943	lea	%pc@(L(mmu_print_data)),%a0
1944
1945	tstl	%a0@(mmu_next_valid)
1946	jble	mmu_print_tuple_print
1947
1948	cmpl	%a0@(mmu_next_physical),%d1
1949	jbeq	mmu_print_tuple_increment
1950
1951mmu_print_tuple_print:
1952	putn	%d0
1953	puts	"->"
1954	putn	%d1
1955
1956	movel	%d1,%d6
1957	jbsr	%a6@
1958
1959mmu_print_tuple_record:
1960	movel	#MMU_PRINT_VALID,%a0@(mmu_next_valid)
1961
1962	movel	%d1,%a0@(mmu_next_physical)
1963
1964mmu_print_tuple_increment:
1965	movel	%d5,%d7
1966	subl	%a4,%d7
1967	addl	%d7,%a0@(mmu_next_physical)
1968
1969mmu_print_tuple_exit:
1970	moveml	%sp@+,%d0-%d7/%a0
1971	rts
1972
1973mmu_print_machine_cpu_types:
1974	puts	"machine: "
1975
1976	is_not_amiga(1f)
1977	puts	"amiga"
1978	jbra	9f
19791:
1980	is_not_atari(2f)
1981	puts	"atari"
1982	jbra	9f
19832:
1984	is_not_mac(3f)
1985	puts	"macintosh"
1986	jbra	9f
19873:	puts	"unknown"
19889:	putc	'\n'
1989
1990	puts	"cputype: 0"
1991	is_not_060(1f)
1992	putc	'6'
1993	jbra	9f
19941:
1995	is_not_040_or_060(2f)
1996	putc	'4'
1997	jbra	9f
19982:	putc	'3'
19999:	putc	'0'
2000	putc	'\n'
2001
2002	rts
2003#endif /* MMU_PRINT */
2004
2005/*
2006 * mmu_map_tt
2007 *
2008 * This is a specific function which works on all 680x0 machines.
2009 * On 030, 040 & 060 it will attempt to use Transparent Translation
2010 * registers (tt1).
2011 * On 020 it will call the standard mmu_map which will use early
2012 * terminating descriptors.
2013 */
2014func_start	mmu_map_tt,%d0/%d1/%a0,4
2015
2016	dputs	"mmu_map_tt:"
2017	dputn	ARG1
2018	dputn	ARG2
2019	dputn	ARG3
2020	dputn	ARG4
2021	dputc	'\n'
2022
2023	is_020(L(do_map))
2024
2025	/* Extract the highest bit set
2026	 */
2027	bfffo	ARG3{#0,#32},%d1
2028	cmpw	#8,%d1
2029	jcc	L(do_map)
2030
2031	/* And get the mask
2032	 */
2033	moveq	#-1,%d0
2034	lsrl	%d1,%d0
2035	lsrl	#1,%d0
2036
2037	/* Mask the address
2038	 */
2039	movel	%d0,%d1
2040	notl	%d1
2041	andl	ARG2,%d1
2042
2043	/* Generate the upper 16bit of the tt register
2044	 */
2045	lsrl	#8,%d0
2046	orl	%d0,%d1
2047	clrw	%d1
2048
2049	is_040_or_060(L(mmu_map_tt_040))
2050
2051	/* set 030 specific bits (read/write access for supervisor mode
2052	 * (highest function code set, lower two bits masked))
2053	 */
2054	orw	#TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1
2055	movel	ARG4,%d0
2056	btst	#6,%d0
2057	jeq	1f
2058	orw	#TTR_CI,%d1
2059
20601:	lea	STACK,%a0
2061	dputn	%d1
2062	movel	%d1,%a0@
2063	.chip	68030
2064	tstl	ARG1
2065	jne	1f
2066	pmove	%a0@,%tt0
2067	jra	2f
20681:	pmove	%a0@,%tt1
20692:	.chip	68k
2070	jra	L(mmu_map_tt_done)
2071
2072	/* set 040 specific bits
2073	 */
2074L(mmu_map_tt_040):
2075	orw	#TTR_ENABLE+TTR_KERNELMODE,%d1
2076	orl	ARG4,%d1
2077	dputn	%d1
2078
2079	.chip	68040
2080	tstl	ARG1
2081	jne	1f
2082	movec	%d1,%itt0
2083	movec	%d1,%dtt0
2084	jra	2f
20851:	movec	%d1,%itt1
2086	movec	%d1,%dtt1
20872:	.chip	68k
2088
2089	jra	L(mmu_map_tt_done)
2090
2091L(do_map):
2092	mmu_map_eq	ARG2,ARG3,ARG4
2093
2094L(mmu_map_tt_done):
2095
2096func_return	mmu_map_tt
2097
2098/*
2099 *	mmu_map
2100 *
2101 *	This routine will map a range of memory using a pointer
2102 *	table and allocate the pages on the fly from the kernel.
2103 *	The pointer table does not have to be already linked into
2104 *	the root table, this routine will do that if necessary.
2105 *
2106 *	NOTE
2107 *	This routine will assert failure and use the serial_putc
2108 *	routines in the case of a run-time error.  For example,
2109 *	if the address is already mapped.
2110 *
2111 *	NOTE-2
2112 *	This routine will use early terminating descriptors
2113 *	where possible for the 68020+68851 and 68030 type
2114 *	processors.
2115 */
2116func_start	mmu_map,%d0-%d4/%a0-%a4
2117
2118	dputs	"\nmmu_map:"
2119	dputn	ARG1
2120	dputn	ARG2
2121	dputn	ARG3
2122	dputn	ARG4
2123	dputc	'\n'
2124
2125	/* Get logical address and round it down to 256KB
2126	 */
2127	movel	ARG1,%d0
2128	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2129	movel	%d0,%a3
2130
2131	/* Get the end address
2132	 */
2133	movel	ARG1,%a4
2134	addl	ARG3,%a4
2135	subql	#1,%a4
2136
2137	/* Get physical address and round it down to 256KB
2138	 */
2139	movel	ARG2,%d0
2140	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2141	movel	%d0,%a2
2142
2143	/* Add page attributes to the physical address
2144	 */
2145	movel	ARG4,%d0
2146	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2147	addw	%d0,%a2
2148
2149	dputn	%a2
2150	dputn	%a3
2151	dputn	%a4
2152
2153	is_not_040_or_060(L(mmu_map_030))
2154
2155	addw	#_PAGE_GLOBAL040,%a2
2156/*
2157 *	MMU 040 & 060 Support
2158 *
2159 *	The MMU usage for the 040 and 060 is different enough from
2160 *	the 030 and 68851 that there is separate code.  This comment
2161 *	block describes the data structures and algorithms built by
2162 *	this code.
2163 *
2164 *	The 040 does not support early terminating descriptors, as
2165 *	the 030 does.  Therefore, a third level of table is needed
2166 *	for the 040, and that would be the page table.  In Linux,
2167 *	page tables are allocated directly from the memory above the
2168 *	kernel.
2169 *
2170 */
2171
2172L(mmu_map_040):
2173	/* Calculate the offset into the root table
2174	 */
2175	movel	%a3,%d0
2176	moveq	#ROOT_INDEX_SHIFT,%d1
2177	lsrl	%d1,%d0
2178	mmu_get_root_table_entry	%d0
2179
2180	/* Calculate the offset into the pointer table
2181	 */
2182	movel	%a3,%d0
2183	moveq	#PTR_INDEX_SHIFT,%d1
2184	lsrl	%d1,%d0
2185	andl	#PTR_TABLE_SIZE-1,%d0
2186	mmu_get_ptr_table_entry		%a0,%d0
2187
2188	/* Calculate the offset into the page table
2189	 */
2190	movel	%a3,%d0
2191	moveq	#PAGE_INDEX_SHIFT,%d1
2192	lsrl	%d1,%d0
2193	andl	#PAGE_TABLE_SIZE-1,%d0
2194	mmu_get_page_table_entry	%a0,%d0
2195
2196	/* The page table entry must not no be busy
2197	 */
2198	tstl	%a0@
2199	jne	L(mmu_map_error)
2200
2201	/* Do the mapping and advance the pointers
2202	 */
2203	movel	%a2,%a0@
22042:
2205	addw	#PAGESIZE,%a2
2206	addw	#PAGESIZE,%a3
2207
2208	/* Ready with mapping?
2209	 */
2210	lea	%a3@(-1),%a0
2211	cmpl	%a0,%a4
2212	jhi	L(mmu_map_040)
2213	jra	L(mmu_map_done)
2214
2215L(mmu_map_030):
2216	/* Calculate the offset into the root table
2217	 */
2218	movel	%a3,%d0
2219	moveq	#ROOT_INDEX_SHIFT,%d1
2220	lsrl	%d1,%d0
2221	mmu_get_root_table_entry	%d0
2222
2223	/* Check if logical address 32MB aligned,
2224	 * so we can try to map it once
2225	 */
2226	movel	%a3,%d0
2227	andl	#(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0
2228	jne	1f
2229
2230	/* Is there enough to map for 32MB at once
2231	 */
2232	lea	%a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1
2233	cmpl	%a1,%a4
2234	jcs	1f
2235
2236	addql	#1,%a1
2237
2238	/* The root table entry must not no be busy
2239	 */
2240	tstl	%a0@
2241	jne	L(mmu_map_error)
2242
2243	/* Do the mapping and advance the pointers
2244	 */
2245	dputs	"early term1"
2246	dputn	%a2
2247	dputn	%a3
2248	dputn	%a1
2249	dputc	'\n'
2250	movel	%a2,%a0@
2251
2252	movel	%a1,%a3
2253	lea	%a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2
2254	jra	L(mmu_mapnext_030)
22551:
2256	/* Calculate the offset into the pointer table
2257	 */
2258	movel	%a3,%d0
2259	moveq	#PTR_INDEX_SHIFT,%d1
2260	lsrl	%d1,%d0
2261	andl	#PTR_TABLE_SIZE-1,%d0
2262	mmu_get_ptr_table_entry		%a0,%d0
2263
2264	/* The pointer table entry must not no be busy
2265	 */
2266	tstl	%a0@
2267	jne	L(mmu_map_error)
2268
2269	/* Do the mapping and advance the pointers
2270	 */
2271	dputs	"early term2"
2272	dputn	%a2
2273	dputn	%a3
2274	dputc	'\n'
2275	movel	%a2,%a0@
2276
2277	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a2
2278	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a3
2279
2280L(mmu_mapnext_030):
2281	/* Ready with mapping?
2282	 */
2283	lea	%a3@(-1),%a0
2284	cmpl	%a0,%a4
2285	jhi	L(mmu_map_030)
2286	jra	L(mmu_map_done)
2287
2288L(mmu_map_error):
2289
2290	dputs	"mmu_map error:"
2291	dputn	%a2
2292	dputn	%a3
2293	dputc	'\n'
2294
2295L(mmu_map_done):
2296
2297func_return	mmu_map
2298
2299/*
2300 *	mmu_fixup
2301 *
2302 *	On the 040 class machines, all pages that are used for the
2303 *	mmu have to be fixed up.
2304 */
2305
2306func_start	mmu_fixup_page_mmu_cache,%d0/%a0
2307
2308	dputs	"mmu_fixup_page_mmu_cache"
2309	dputn	ARG1
2310
2311	/* Calculate the offset into the root table
2312	 */
2313	movel	ARG1,%d0
2314	moveq	#ROOT_INDEX_SHIFT,%d1
2315	lsrl	%d1,%d0
2316	mmu_get_root_table_entry	%d0
2317
2318	/* Calculate the offset into the pointer table
2319	 */
2320	movel	ARG1,%d0
2321	moveq	#PTR_INDEX_SHIFT,%d1
2322	lsrl	%d1,%d0
2323	andl	#PTR_TABLE_SIZE-1,%d0
2324	mmu_get_ptr_table_entry		%a0,%d0
2325
2326	/* Calculate the offset into the page table
2327	 */
2328	movel	ARG1,%d0
2329	moveq	#PAGE_INDEX_SHIFT,%d1
2330	lsrl	%d1,%d0
2331	andl	#PAGE_TABLE_SIZE-1,%d0
2332	mmu_get_page_table_entry	%a0,%d0
2333
2334	movel	%a0@,%d0
2335	andil	#_CACHEMASK040,%d0
2336	orl	%pc@(m68k_pgtable_cachemode),%d0
2337	movel	%d0,%a0@
2338
2339	dputc	'\n'
2340
2341func_return	mmu_fixup_page_mmu_cache
2342
2343/*
2344 *	mmu_temp_map
2345 *
2346 *	create a temporary mapping to enable the mmu,
2347 *	this we don't need any transparation translation tricks.
2348 */
2349
2350func_start	mmu_temp_map,%d0/%d1/%a0/%a1
2351
2352	dputs	"mmu_temp_map"
2353	dputn	ARG1
2354	dputn	ARG2
2355	dputc	'\n'
2356
2357	lea	%pc@(L(temp_mmap_mem)),%a1
2358
2359	/* Calculate the offset in the root table
2360	 */
2361	movel	ARG2,%d0
2362	moveq	#ROOT_INDEX_SHIFT,%d1
2363	lsrl	%d1,%d0
2364	mmu_get_root_table_entry	%d0
2365
2366	/* Check if the table is temporary allocated, so we have to reuse it
2367	 */
2368	movel	%a0@,%d0
2369	cmpl	%pc@(L(memory_start)),%d0
2370	jcc	1f
2371
2372	/* Temporary allocate a ptr table and insert it into the root table
2373	 */
2374	movel	%a1@,%d0
2375	addl	#PTR_TABLE_SIZE*4,%a1@
2376	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2377	movel	%d0,%a0@
2378	dputs	" (new)"
23791:
2380	dputn	%d0
2381	/* Mask the root table entry for the ptr table
2382	 */
2383	andw	#-ROOT_TABLE_SIZE,%d0
2384	movel	%d0,%a0
2385
2386	/* Calculate the offset into the pointer table
2387	 */
2388	movel	ARG2,%d0
2389	moveq	#PTR_INDEX_SHIFT,%d1
2390	lsrl	%d1,%d0
2391	andl	#PTR_TABLE_SIZE-1,%d0
2392	lea	%a0@(%d0*4),%a0
2393	dputn	%a0
2394
2395	/* Check if a temporary page table is already allocated
2396	 */
2397	movel	%a0@,%d0
2398	jne	1f
2399
2400	/* Temporary allocate a page table and insert it into the ptr table
2401	 */
2402	movel	%a1@,%d0
2403	/* The 512 should be PAGE_TABLE_SIZE*4, but that violates the
2404	   alignment restriction for pointer tables on the '0[46]0.  */
2405	addl	#512,%a1@
2406	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2407	movel	%d0,%a0@
2408	dputs	" (new)"
24091:
2410	dputn	%d0
2411	/* Mask the ptr table entry for the page table
2412	 */
2413	andw	#-PTR_TABLE_SIZE,%d0
2414	movel	%d0,%a0
2415
2416	/* Calculate the offset into the page table
2417	 */
2418	movel	ARG2,%d0
2419	moveq	#PAGE_INDEX_SHIFT,%d1
2420	lsrl	%d1,%d0
2421	andl	#PAGE_TABLE_SIZE-1,%d0
2422	lea	%a0@(%d0*4),%a0
2423	dputn	%a0
2424
2425	/* Insert the address into the page table
2426	 */
2427	movel	ARG1,%d0
2428	andw	#-PAGESIZE,%d0
2429	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2430	movel	%d0,%a0@
2431	dputn	%d0
2432
2433	dputc	'\n'
2434
2435func_return	mmu_temp_map
2436
2437func_start	mmu_engage,%d0-%d2/%a0-%a3
2438
2439	moveq	#ROOT_TABLE_SIZE-1,%d0
2440	/* Temporarily use a different root table.  */
2441	lea	%pc@(L(kernel_pgdir_ptr)),%a0
2442	movel	%a0@,%a2
2443	movel	%pc@(L(memory_start)),%a1
2444	movel	%a1,%a0@
2445	movel	%a2,%a0
24461:
2447	movel	%a0@+,%a1@+
2448	dbra	%d0,1b
2449
2450	lea	%pc@(L(temp_mmap_mem)),%a0
2451	movel	%a1,%a0@
2452
2453	movew	#PAGESIZE-1,%d0
24541:
2455	clrl	%a1@+
2456	dbra	%d0,1b
2457
2458	lea	%pc@(1b),%a0
2459	movel	#1b,%a1
2460	/* Skip temp mappings if phys == virt */
2461	cmpl	%a0,%a1
2462	jeq	1f
2463
2464	mmu_temp_map	%a0,%a0
2465	mmu_temp_map	%a0,%a1
2466
2467	addw	#PAGESIZE,%a0
2468	addw	#PAGESIZE,%a1
2469	mmu_temp_map	%a0,%a0
2470	mmu_temp_map	%a0,%a1
24711:
2472	movel	%pc@(L(memory_start)),%a3
2473	movel	%pc@(L(phys_kernel_start)),%d2
2474
2475	is_not_040_or_060(L(mmu_engage_030))
2476
2477L(mmu_engage_040):
2478	.chip	68040
2479	nop
2480	cinva	%bc
2481	nop
2482	pflusha
2483	nop
2484	movec	%a3,%srp
2485	movel	#TC_ENABLE+TC_PAGE4K,%d0
2486	movec	%d0,%tc		/* enable the MMU */
2487	jmp	1f:l
24881:	nop
2489	movec	%a2,%srp
2490	nop
2491	cinva	%bc
2492	nop
2493	pflusha
2494	.chip	68k
2495	jra	L(mmu_engage_cleanup)
2496
2497L(mmu_engage_030_temp):
2498	.space	12
2499L(mmu_engage_030):
2500	.chip	68030
2501	lea	%pc@(L(mmu_engage_030_temp)),%a0
2502	movel	#0x80000002,%a0@
2503	movel	%a3,%a0@(4)
2504	movel	#0x0808,%d0
2505	movec	%d0,%cacr
2506	pmove	%a0@,%srp
2507	pflusha
2508	/*
2509	 * enable,super root enable,4096 byte pages,7 bit root index,
2510	 * 7 bit pointer index, 6 bit page table index.
2511	 */
2512	movel	#0x82c07760,%a0@(8)
2513	pmove	%a0@(8),%tc	/* enable the MMU */
2514	jmp	1f:l
25151:	movel	%a2,%a0@(4)
2516	movel	#0x0808,%d0
2517	movec	%d0,%cacr
2518	pmove	%a0@,%srp
2519	pflusha
2520	.chip	68k
2521
2522L(mmu_engage_cleanup):
2523	subl	#PAGE_OFFSET,%d2
2524	subl	%d2,%a2
2525	movel	%a2,L(kernel_pgdir_ptr)
2526	subl	%d2,%fp
2527	subl	%d2,%sp
2528	subl	%d2,ARG0
2529
2530func_return	mmu_engage
2531
2532func_start	mmu_get_root_table_entry,%d0/%a1
2533
2534#if 0
2535	dputs	"mmu_get_root_table_entry:"
2536	dputn	ARG1
2537	dputs	" ="
2538#endif
2539
2540	movel	%pc@(L(kernel_pgdir_ptr)),%a0
2541	tstl	%a0
2542	jne	2f
2543
2544	dputs	"\nmmu_init:"
2545
2546	/* Find the start of free memory, get_bi_record does this for us,
2547	 * as the bootinfo structure is located directly behind the kernel
2548	 * we simply search for the last entry.
2549	 */
2550	get_bi_record	BI_LAST
2551	addw	#PAGESIZE-1,%a0
2552	movel	%a0,%d0
2553	andw	#-PAGESIZE,%d0
2554
2555	dputn	%d0
2556
2557	lea	%pc@(L(memory_start)),%a0
2558	movel	%d0,%a0@
2559	lea	%pc@(L(kernel_end)),%a0
2560	movel	%d0,%a0@
2561
2562	/* we have to return the first page at _stext since the init code
2563	 * in mm/init.c simply expects kernel_pg_dir there, the rest of
2564	 * page is used for further ptr tables in get_ptr_table.
2565	 */
2566	lea	%pc@(_stext),%a0
2567	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2568	movel	%a0,%a1@
2569	addl	#ROOT_TABLE_SIZE*4,%a1@
2570
2571	lea	%pc@(L(mmu_num_pointer_tables)),%a1
2572	addql	#1,%a1@
2573
2574	/* clear the page
2575	 */
2576	movel	%a0,%a1
2577	movew	#PAGESIZE/4-1,%d0
25781:
2579	clrl	%a1@+
2580	dbra	%d0,1b
2581
2582	lea	%pc@(L(kernel_pgdir_ptr)),%a1
2583	movel	%a0,%a1@
2584
2585	dputn	%a0
2586	dputc	'\n'
25872:
2588	movel	ARG1,%d0
2589	lea	%a0@(%d0*4),%a0
2590
2591#if 0
2592	dputn	%a0
2593	dputc	'\n'
2594#endif
2595
2596func_return	mmu_get_root_table_entry
2597
2598
2599
2600func_start	mmu_get_ptr_table_entry,%d0/%a1
2601
2602#if 0
2603	dputs	"mmu_get_ptr_table_entry:"
2604	dputn	ARG1
2605	dputn	ARG2
2606	dputs	" ="
2607#endif
2608
2609	movel	ARG1,%a0
2610	movel	%a0@,%d0
2611	jne	2f
2612
2613	/* Keep track of the number of pointer tables we use
2614	 */
2615	dputs	"\nmmu_get_new_ptr_table:"
2616	lea	%pc@(L(mmu_num_pointer_tables)),%a0
2617	movel	%a0@,%d0
2618	addql	#1,%a0@
2619
2620	/* See if there is a free pointer table in our cache of pointer tables
2621	 */
2622	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2623	andw	#7,%d0
2624	jne	1f
2625
2626	/* Get a new pointer table page from above the kernel memory
2627	 */
2628	get_new_page
2629	movel	%a0,%a1@
26301:
2631	/* There is an unused pointer table in our cache... use it
2632	 */
2633	movel	%a1@,%d0
2634	addl	#PTR_TABLE_SIZE*4,%a1@
2635
2636	dputn	%d0
2637	dputc	'\n'
2638
2639	/* Insert the new pointer table into the root table
2640	 */
2641	movel	ARG1,%a0
2642	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2643	movel	%d0,%a0@
26442:
2645	/* Extract the pointer table entry
2646	 */
2647	andw	#-PTR_TABLE_SIZE,%d0
2648	movel	%d0,%a0
2649	movel	ARG2,%d0
2650	lea	%a0@(%d0*4),%a0
2651
2652#if 0
2653	dputn	%a0
2654	dputc	'\n'
2655#endif
2656
2657func_return	mmu_get_ptr_table_entry
2658
2659
2660func_start	mmu_get_page_table_entry,%d0/%a1
2661
2662#if 0
2663	dputs	"mmu_get_page_table_entry:"
2664	dputn	ARG1
2665	dputn	ARG2
2666	dputs	" ="
2667#endif
2668
2669	movel	ARG1,%a0
2670	movel	%a0@,%d0
2671	jne	2f
2672
2673	/* If the page table entry doesn't exist, we allocate a complete new
2674	 * page and use it as one continuous big page table which can cover
2675	 * 4MB of memory, nearly almost all mappings have that alignment.
2676	 */
2677	get_new_page
2678	addw	#_PAGE_TABLE+_PAGE_ACCESSED,%a0
2679
2680	/* align pointer table entry for a page of page tables
2681	 */
2682	movel	ARG1,%d0
2683	andw	#-(PAGESIZE/PAGE_TABLE_SIZE),%d0
2684	movel	%d0,%a1
2685
2686	/* Insert the page tables into the pointer entries
2687	 */
2688	moveq	#PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0
26891:
2690	movel	%a0,%a1@+
2691	lea	%a0@(PAGE_TABLE_SIZE*4),%a0
2692	dbra	%d0,1b
2693
2694	/* Now we can get the initialized pointer table entry
2695	 */
2696	movel	ARG1,%a0
2697	movel	%a0@,%d0
26982:
2699	/* Extract the page table entry
2700	 */
2701	andw	#-PAGE_TABLE_SIZE,%d0
2702	movel	%d0,%a0
2703	movel	ARG2,%d0
2704	lea	%a0@(%d0*4),%a0
2705
2706#if 0
2707	dputn	%a0
2708	dputc	'\n'
2709#endif
2710
2711func_return	mmu_get_page_table_entry
2712
2713/*
2714 *	get_new_page
2715 *
2716 *	Return a new page from the memory start and clear it.
2717 */
2718func_start	get_new_page,%d0/%a1
2719
2720	dputs	"\nget_new_page:"
2721
2722	/* allocate the page and adjust memory_start
2723	 */
2724	lea	%pc@(L(memory_start)),%a0
2725	movel	%a0@,%a1
2726	addl	#PAGESIZE,%a0@
2727
2728	/* clear the new page
2729	 */
2730	movel	%a1,%a0
2731	movew	#PAGESIZE/4-1,%d0
27321:
2733	clrl	%a1@+
2734	dbra	%d0,1b
2735
2736	dputn	%a0
2737	dputc	'\n'
2738
2739func_return	get_new_page
2740
2741
2742
2743/*
2744 * Debug output support
2745 * Atarians have a choice between the parallel port, the serial port
2746 * from the MFP or a serial port of the SCC
2747 */
2748
2749#ifdef CONFIG_MAC
2750/* You may define either or both of these. */
2751#define MAC_USE_SCC_A /* Modem port */
2752#define MAC_USE_SCC_B /* Printer port */
2753
2754#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
2755/* Initialisation table for SCC with 3.6864 MHz PCLK */
2756L(scc_initable_mac):
 
2757	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2758	.byte	3,0xc0		/* receiver: 8 bpc */
2759	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
 
2760	.byte	10,0		/* NRZ */
2761	.byte	11,0x50		/* use baud rate generator */
2762	.byte	12,1,13,0	/* 38400 baud */
2763	.byte	14,1		/* Baud rate generator enable */
2764	.byte	3,0xc1		/* enable receiver */
2765	.byte	5,0xea		/* enable transmitter */
2766	.byte	-1
2767	.even
2768#endif
2769#endif /* CONFIG_MAC */
2770
2771#ifdef CONFIG_ATARI
2772/* #define USE_PRINTER */
2773/* #define USE_SCC_B */
2774/* #define USE_SCC_A */
2775#define USE_MFP
2776
2777#if defined(USE_SCC_A) || defined(USE_SCC_B)
2778/* Initialisation table for SCC with 7.9872 MHz PCLK */
2779/* PCLK == 8.0539 gives baud == 9680.1 */
2780L(scc_initable_atari):
 
2781	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2782	.byte	3,0xc0		/* receiver: 8 bpc */
2783	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
 
2784	.byte	10,0		/* NRZ */
2785	.byte	11,0x50		/* use baud rate generator */
2786	.byte	12,24,13,0	/* 9600 baud */
2787	.byte	14,2,14,3	/* use master clock for BRG, enable */
2788	.byte	3,0xc1		/* enable receiver */
2789	.byte	5,0xea		/* enable transmitter */
2790	.byte	-1
2791	.even
2792#endif
2793
2794#ifdef USE_PRINTER
2795
2796LPSG_SELECT	= 0xff8800
2797LPSG_READ	= 0xff8800
2798LPSG_WRITE	= 0xff8802
2799LPSG_IO_A	= 14
2800LPSG_IO_B	= 15
2801LPSG_CONTROL	= 7
2802LSTMFP_GPIP	= 0xfffa01
2803LSTMFP_DDR	= 0xfffa05
2804LSTMFP_IERB	= 0xfffa09
2805
2806#elif defined(USE_SCC_B)
2807
2808LSCC_CTRL	= 0xff8c85
2809LSCC_DATA	= 0xff8c87
2810
2811#elif defined(USE_SCC_A)
2812
2813LSCC_CTRL	= 0xff8c81
2814LSCC_DATA	= 0xff8c83
2815
2816#elif defined(USE_MFP)
2817
2818LMFP_UCR     = 0xfffa29
2819LMFP_TDCDR   = 0xfffa1d
2820LMFP_TDDR    = 0xfffa25
2821LMFP_TSR     = 0xfffa2d
2822LMFP_UDR     = 0xfffa2f
2823
2824#endif
2825#endif	/* CONFIG_ATARI */
2826
2827/*
2828 * Serial port output support.
2829 */
2830
2831/*
2832 * Initialize serial port hardware
2833 */
2834func_start	serial_init,%d0/%d1/%a0/%a1
2835	/*
2836	 *	Some of the register usage that follows
2837	 *	CONFIG_AMIGA
2838	 *		a0 = pointer to boot info record
2839	 *		d0 = boot info offset
2840	 *	CONFIG_ATARI
2841	 *		a0 = address of SCC
2842	 *		a1 = Liobase address/address of scc_initable_atari
2843	 *		d0 = init data for serial port
2844	 *	CONFIG_MAC
2845	 *		a0 = address of SCC
2846	 *		a1 = address of scc_initable_mac
2847	 *		d0 = init data for serial port
2848	 */
2849
2850#ifdef CONFIG_AMIGA
2851#define SERIAL_DTR	7
2852#define SERIAL_CNTRL	CIABBASE+C_PRA
2853
2854	is_not_amiga(1f)
2855	lea	%pc@(L(custom)),%a0
2856	movel	#-ZTWOBASE,%a0@
2857	bclr	#SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE
2858	get_bi_record	BI_AMIGA_SERPER
2859	movew	%a0@,CUSTOMBASE+C_SERPER-ZTWOBASE
2860|	movew	#61,CUSTOMBASE+C_SERPER-ZTWOBASE
28611:
2862#endif
2863
2864#ifdef CONFIG_ATARI
2865	is_not_atari(4f)
2866	movel	%pc@(L(iobase)),%a1
2867#if defined(USE_PRINTER)
2868	bclr	#0,%a1@(LSTMFP_IERB)
2869	bclr	#0,%a1@(LSTMFP_DDR)
2870	moveb	#LPSG_CONTROL,%a1@(LPSG_SELECT)
2871	moveb	#0xff,%a1@(LPSG_WRITE)
2872	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
2873	clrb	%a1@(LPSG_WRITE)
2874	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
2875	moveb	%a1@(LPSG_READ),%d0
2876	bset	#5,%d0
2877	moveb	%d0,%a1@(LPSG_WRITE)
2878#elif defined(USE_SCC_A) || defined(USE_SCC_B)
2879	lea	%a1@(LSCC_CTRL),%a0
2880	/* Reset SCC register pointer */
2881	moveb	%a0@,%d0
2882	/* Reset SCC device: write register pointer then register value */
2883	moveb	#9,%a0@
2884	moveb	#0xc0,%a0@
2885	/* Wait for 5 PCLK cycles, which is about 63 CPU cycles */
2886	/* 5 / 7.9872 MHz = approx. 0.63 us = 63 / 100 MHz */
2887	movel	#32,%d0
28882:
2889	subq	#1,%d0
2890	jne	2b
2891	/* Initialize channel */
2892	lea	%pc@(L(scc_initable_atari)),%a1
28932:	moveb	%a1@+,%d0
2894	jmi	3f
2895	moveb	%d0,%a0@
2896	moveb	%a1@+,%a0@
2897	jra	2b
28983:	clrb	%a0@
2899#elif defined(USE_MFP)
2900	bclr	#1,%a1@(LMFP_TSR)
2901	moveb   #0x88,%a1@(LMFP_UCR)
2902	andb	#0x70,%a1@(LMFP_TDCDR)
2903	moveb   #2,%a1@(LMFP_TDDR)
2904	orb	#1,%a1@(LMFP_TDCDR)
2905	bset	#1,%a1@(LMFP_TSR)
2906#endif
2907	jra	L(serial_init_done)
29084:
2909#endif
2910
2911#ifdef CONFIG_MAC
2912	is_not_mac(L(serial_init_not_mac))
2913#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
 
 
 
2914#define mac_scc_cha_b_ctrl_offset	0x0
2915#define mac_scc_cha_a_ctrl_offset	0x2
2916#define mac_scc_cha_b_data_offset	0x4
2917#define mac_scc_cha_a_data_offset	0x6
2918	movel	%pc@(L(mac_sccbase)),%a0
2919	/* Reset SCC register pointer */
2920	moveb	%a0@(mac_scc_cha_a_ctrl_offset),%d0
2921	/* Reset SCC device: write register pointer then register value */
2922	moveb	#9,%a0@(mac_scc_cha_a_ctrl_offset)
2923	moveb	#0xc0,%a0@(mac_scc_cha_a_ctrl_offset)
2924	/* Wait for 5 PCLK cycles, which is about 68 CPU cycles */
2925	/* 5 / 3.6864 MHz = approx. 1.36 us = 68 / 50 MHz */
2926	movel	#35,%d0
29275:
2928	subq	#1,%d0
2929	jne	5b
2930#endif
2931#ifdef MAC_USE_SCC_A
2932	/* Initialize channel A */
 
2933	lea	%pc@(L(scc_initable_mac)),%a1
29345:	moveb	%a1@+,%d0
2935	jmi	6f
2936	moveb	%d0,%a0@(mac_scc_cha_a_ctrl_offset)
2937	moveb	%a1@+,%a0@(mac_scc_cha_a_ctrl_offset)
2938	jra	5b
29396:
2940#endif	/* MAC_USE_SCC_A */
 
2941#ifdef MAC_USE_SCC_B
2942	/* Initialize channel B */
 
 
 
2943	lea	%pc@(L(scc_initable_mac)),%a1
29447:	moveb	%a1@+,%d0
2945	jmi	8f
2946	moveb	%d0,%a0@(mac_scc_cha_b_ctrl_offset)
2947	moveb	%a1@+,%a0@(mac_scc_cha_b_ctrl_offset)
2948	jra	7b
29498:
2950#endif	/* MAC_USE_SCC_B */
 
 
2951	jra	L(serial_init_done)
2952L(serial_init_not_mac):
2953#endif	/* CONFIG_MAC */
2954
2955#ifdef CONFIG_Q40
2956	is_not_q40(2f)
2957/* debug output goes into SRAM, so we don't do it unless requested
2958   - check for '%LX$' signature in SRAM   */
2959	lea	%pc@(q40_mem_cptr),%a1
2960	move.l	#0xff020010,%a1@  /* must be inited - also used by debug=mem */
2961	move.l	#0xff020000,%a1
2962	cmp.b	#'%',%a1@
2963	bne	2f	/*nodbg*/
2964	addq.w	#4,%a1
2965	cmp.b	#'L',%a1@
2966	bne	2f	/*nodbg*/
2967	addq.w	#4,%a1
2968	cmp.b	#'X',%a1@
2969	bne	2f	/*nodbg*/
2970	addq.w	#4,%a1
2971	cmp.b	#'$',%a1@
2972	bne	2f	/*nodbg*/
2973	/* signature OK */
2974	lea	%pc@(L(q40_do_debug)),%a1
2975	tas	%a1@
2976/*nodbg: q40_do_debug is 0 by default*/
29772:
2978#endif
2979
2980#ifdef CONFIG_MVME16x
2981	is_not_mvme16x(L(serial_init_not_mvme16x))
2982	moveb	#0x10,M167_PCSCCMICR
2983	moveb	#0x10,M167_PCSCCTICR
2984	moveb	#0x10,M167_PCSCCRICR
2985	jra	L(serial_init_done)
2986L(serial_init_not_mvme16x):
2987#endif
2988
2989#ifdef CONFIG_APOLLO
2990/* We count on the PROM initializing SIO1 */
2991#endif
2992
2993#ifdef CONFIG_HP300
2994/* We count on the boot loader initialising the UART */
2995#endif
2996
2997L(serial_init_done):
2998func_return	serial_init
2999
3000/*
3001 * Output character on serial port.
3002 */
3003func_start	serial_putc,%d0/%d1/%a0/%a1
3004
3005	movel	ARG1,%d0
3006	cmpib	#'\n',%d0
3007	jbne	1f
3008
3009	/* A little safe recursion is good for the soul */
3010	serial_putc	#'\r'
30111:
3012
3013#ifdef CONFIG_AMIGA
3014	is_not_amiga(2f)
3015	andw	#0x00ff,%d0
3016	oriw	#0x0100,%d0
3017	movel	%pc@(L(custom)),%a0
3018	movew	%d0,%a0@(CUSTOMBASE+C_SERDAT)
30191:	movew	%a0@(CUSTOMBASE+C_SERDATR),%d0
3020	andw	#0x2000,%d0
3021	jeq	1b
3022	jra	L(serial_putc_done)
30232:
3024#endif
3025
3026#ifdef CONFIG_MAC
3027	is_not_mac(5f)
3028#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
 
 
 
3029	movel	%pc@(L(mac_sccbase)),%a1
3030#endif
3031#ifdef MAC_USE_SCC_A
30323:	btst	#2,%a1@(mac_scc_cha_a_ctrl_offset)
3033	jeq	3b
3034	moveb	%d0,%a1@(mac_scc_cha_a_data_offset)
3035#endif	/* MAC_USE_SCC_A */
 
3036#ifdef MAC_USE_SCC_B
 
 
 
30374:	btst	#2,%a1@(mac_scc_cha_b_ctrl_offset)
3038	jeq	4b
3039	moveb	%d0,%a1@(mac_scc_cha_b_data_offset)
3040#endif	/* MAC_USE_SCC_B */
 
 
 
3041	jra	L(serial_putc_done)
30425:
3043#endif	/* CONFIG_MAC */
3044
3045#ifdef CONFIG_ATARI
3046	is_not_atari(4f)
3047	movel	%pc@(L(iobase)),%a1
3048#if defined(USE_PRINTER)
30493:	btst	#0,%a1@(LSTMFP_GPIP)
3050	jne	3b
3051	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
3052	moveb	%d0,%a1@(LPSG_WRITE)
3053	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
3054	moveb	%a1@(LPSG_READ),%d0
3055	bclr	#5,%d0
3056	moveb	%d0,%a1@(LPSG_WRITE)
3057	nop
3058	nop
3059	bset	#5,%d0
3060	moveb	%d0,%a1@(LPSG_WRITE)
3061#elif defined(USE_SCC_A) || defined(USE_SCC_B)
30623:	btst	#2,%a1@(LSCC_CTRL)
3063	jeq	3b
3064	moveb	%d0,%a1@(LSCC_DATA)
3065#elif defined(USE_MFP)
30663:	btst	#7,%a1@(LMFP_TSR)
3067	jeq	3b
3068	moveb	%d0,%a1@(LMFP_UDR)
3069#endif
3070	jra	L(serial_putc_done)
30714:
3072#endif	/* CONFIG_ATARI */
3073
3074#ifdef CONFIG_MVME147
3075	is_not_mvme147(2f)
30761:	btst	#2,M147_SCC_CTRL_A
3077	jeq	1b
3078	moveb	%d0,M147_SCC_DATA_A
3079	jbra	L(serial_putc_done)
30802:
3081#endif
3082
3083#ifdef CONFIG_MVME16x
3084	is_not_mvme16x(2f)
3085	/*
3086	 * If the loader gave us a board type then we can use that to
3087	 * select an appropriate output routine; otherwise we just use
3088	 * the Bug code.  If we have to use the Bug that means the Bug
3089	 * workspace has to be valid, which means the Bug has to use
3090	 * the SRAM, which is non-standard.
3091	 */
3092	moveml	%d0-%d7/%a2-%a6,%sp@-
3093	movel	vme_brdtype,%d1
3094	jeq	1f			| No tag - use the Bug
3095	cmpi	#VME_TYPE_MVME162,%d1
3096	jeq	6f
3097	cmpi	#VME_TYPE_MVME172,%d1
3098	jne	5f
3099	/* 162/172; it's an SCC */
31006:	btst	#2,M162_SCC_CTRL_A
3101	nop
3102	nop
3103	nop
3104	jeq	6b
3105	moveb	#8,M162_SCC_CTRL_A
3106	nop
3107	nop
3108	nop
3109	moveb	%d0,M162_SCC_CTRL_A
3110	jra	3f
31115:
3112	/* 166/167/177; it's a CD2401 */
3113	moveb	#0,M167_CYCAR
3114	moveb	M167_CYIER,%d2
3115	moveb	#0x02,M167_CYIER
31167:
3117	btst	#5,M167_PCSCCTICR
3118	jeq	7b
3119	moveb	M167_PCTPIACKR,%d1
3120	moveb	M167_CYLICR,%d1
3121	jeq	8f
3122	moveb	#0x08,M167_CYTEOIR
3123	jra	7b
31248:
3125	moveb	%d0,M167_CYTDR
3126	moveb	#0,M167_CYTEOIR
3127	moveb	%d2,M167_CYIER
3128	jra	3f
31291:
3130	moveb	%d0,%sp@-
3131	trap	#15
3132	.word	0x0020	/* TRAP 0x020 */
31333:
3134	moveml	%sp@+,%d0-%d7/%a2-%a6
3135	jbra	L(serial_putc_done)
31362:
3137#endif /* CONFIG_MVME16x */
3138
3139#ifdef CONFIG_BVME6000
3140	is_not_bvme6000(2f)
3141	/*
3142	 * The BVME6000 machine has a serial port ...
3143	 */
31441:	btst	#2,BVME_SCC_CTRL_A
3145	jeq	1b
3146	moveb	%d0,BVME_SCC_DATA_A
3147	jbra	L(serial_putc_done)
31482:
3149#endif
3150
3151#ifdef CONFIG_SUN3X
3152	is_not_sun3x(2f)
3153	movel	%d0,-(%sp)
3154	movel	0xFEFE0018,%a1
3155	jbsr	(%a1)
3156	addq	#4,%sp
3157	jbra	L(serial_putc_done)
31582:
3159#endif
3160
3161#ifdef CONFIG_Q40
3162	is_not_q40(2f)
3163	tst.l	%pc@(L(q40_do_debug))	/* only debug if requested */
3164	beq	2f
3165	lea	%pc@(q40_mem_cptr),%a1
3166	move.l	%a1@,%a0
3167	move.b	%d0,%a0@
3168	addq.l	#4,%a0
3169	move.l	%a0,%a1@
3170	jbra    L(serial_putc_done)
31712:
3172#endif
3173
3174#ifdef CONFIG_APOLLO
3175	is_not_apollo(2f)
3176	movl    %pc@(L(iobase)),%a1
3177	moveb	%d0,%a1@(LTHRB0)
31781:      moveb   %a1@(LSRB0),%d0
3179	andb	#0x4,%d0
3180	beq	1b
3181	jbra	L(serial_putc_done)
31822:
3183#endif
3184
3185#ifdef CONFIG_HP300
3186	is_not_hp300(3f)
3187	movl    %pc@(L(iobase)),%a1
3188	addl	%pc@(L(uartbase)),%a1
3189	movel	%pc@(L(uart_scode)),%d1	/* Check the scode */
3190	jmi	3f			/* Unset? Exit */
3191	cmpi	#256,%d1		/* APCI scode? */
3192	jeq	2f
31931:      moveb   %a1@(DCALSR),%d1	/* Output to DCA */
3194	andb	#0x20,%d1
3195	beq	1b
3196	moveb	%d0,%a1@(DCADATA)
3197	jbra	L(serial_putc_done)
31982:	moveb	%a1@(APCILSR),%d1	/* Output to APCI */
3199	andb	#0x20,%d1
3200	beq	2b
3201	moveb	%d0,%a1@(APCIDATA)
3202	jbra	L(serial_putc_done)
32033:
3204#endif
3205
3206#ifdef CONFIG_VIRT
3207	is_not_virt(1f)
3208
3209	movel L(virt_gf_tty_base),%a1
3210	movel %d0,%a1@(GF_PUT_CHAR)
32111:
3212#endif
3213
3214L(serial_putc_done):
3215func_return	serial_putc
3216
3217/*
3218 * Output a string.
3219 */
3220func_start	puts,%d0/%a0
3221
3222	movel	ARG1,%a0
3223	jra	2f
32241:
3225#ifdef CONSOLE_DEBUG
3226	console_putc	%d0
3227#endif
3228#ifdef SERIAL_DEBUG
3229	serial_putc	%d0
3230#endif
32312:	moveb	%a0@+,%d0
3232	jne	1b
3233
3234func_return	puts
3235
3236/*
3237 * Output number in hex notation.
3238 */
3239
3240func_start	putn,%d0-%d2
3241
3242	putc	' '
3243
3244	movel	ARG1,%d0
3245	moveq	#7,%d1
32461:	roll	#4,%d0
3247	move	%d0,%d2
3248	andb	#0x0f,%d2
3249	addb	#'0',%d2
3250	cmpb	#'9',%d2
3251	jls	2f
3252	addb	#'A'-('9'+1),%d2
32532:
3254#ifdef CONSOLE_DEBUG
3255	console_putc	%d2
3256#endif
3257#ifdef SERIAL_DEBUG
3258	serial_putc	%d2
3259#endif
3260	dbra	%d1,1b
3261
3262func_return	putn
3263
3264#ifdef CONFIG_EARLY_PRINTK
3265/*
 
 
3266 *	This routine takes its parameters on the stack.  It then
3267 *	turns around and calls the internal routines.  This routine
3268 *	is used by the boot console.
3269 *
3270 *	The calling parameters are:
3271 *		void debug_cons_nputs(const char *str, unsigned length)
3272 *
3273 *	This routine does NOT understand variable arguments only
3274 *	simple strings!
3275 */
3276ENTRY(debug_cons_nputs)
3277	moveml	%d0/%d1/%a0,%sp@-
3278	movew	%sr,%sp@-
 
3279	ori	#0x0700,%sr
3280	movel	%sp@(18),%a0		/* fetch parameter */
3281	movel	%sp@(22),%d1		/* fetch parameter */
3282	jra	2f
32831:
3284#ifdef CONSOLE_DEBUG
3285	console_putc	%d0
3286#endif
3287#ifdef SERIAL_DEBUG
3288	serial_putc	%d0
3289#endif
3290	subq	#1,%d1
32912:	jeq	3f
3292	moveb	%a0@+,%d0
3293	jne	1b
32943:
3295	movew	%sp@+,%sr
3296	moveml	%sp@+,%d0/%d1/%a0
3297	rts
3298#endif /* CONFIG_EARLY_PRINTK */
3299
3300#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3301func_start	set_leds,%d0/%a0
3302	movel	ARG1,%d0
3303#ifdef CONFIG_HP300
3304	is_not_hp300(1f)
3305	movel	%pc@(L(iobase)),%a0
3306	moveb	%d0,%a0@(0x1ffff)
3307	jra	2f
3308#endif
33091:
3310#ifdef CONFIG_APOLLO
3311	movel   %pc@(L(iobase)),%a0
3312	lsll    #8,%d0
3313	eorw    #0xff00,%d0
3314	moveb	%d0,%a0@(LCPUCTRL)
3315#endif
33162:
3317func_return	set_leds
3318#endif
3319
3320#ifdef CONSOLE_DEBUG
3321/*
3322 *	For continuity, see the data alignment
3323 *	to which this structure is tied.
3324 */
3325#define Lconsole_struct_cur_column	0
3326#define Lconsole_struct_cur_row		4
3327#define Lconsole_struct_num_columns	8
3328#define Lconsole_struct_num_rows	12
3329#define Lconsole_struct_left_edge	16
 
3330
3331func_start	console_init,%a0-%a4/%d0-%d7
3332	/*
3333	 *	Some of the register usage that follows
3334	 *		a0 = pointer to boot_info
3335	 *		a1 = pointer to screen
3336	 *		a2 = pointer to console_globals
3337	 *		d3 = pixel width of screen
3338	 *		d4 = pixel height of screen
3339	 *		(d3,d4) ~= (x,y) of a point just below
3340	 *			and to the right of the screen
3341	 *			NOT on the screen!
3342	 *		d5 = number of bytes per scan line
3343	 *		d6 = number of bytes on the entire screen
3344	 */
3345
3346	lea	%pc@(L(console_globals)),%a2
3347	movel	%pc@(L(mac_videobase)),%a1
3348	movel	%pc@(L(mac_rowbytes)),%d5
3349	movel	%pc@(L(mac_dimensions)),%d3	/* -> low byte */
3350	movel	%d3,%d4
3351	swap	%d4		/* -> high byte */
3352	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3353	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3354
3355	movel	%d5,%d6
3356|	subl	#20,%d6
3357	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3358	divul	#8,%d6		/* we'll clear 8 bytes at a time */
3359	moveq	#-1,%d0		/* Mac_black */
3360	subq	#1,%d6
3361
3362L(console_clear_loop):
3363	movel	%d0,%a1@+
3364	movel	%d0,%a1@+
3365	dbra	%d6,L(console_clear_loop)
3366
3367	/* Calculate font size */
3368
3369#if   defined(FONT_8x8) && defined(CONFIG_FONT_8x8)
3370	lea	%pc@(font_vga_8x8),%a0
3371#elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16)
3372	lea	%pc@(font_vga_8x16),%a0
3373#elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11)
3374	lea	%pc@(font_vga_6x11),%a0
3375#elif defined(CONFIG_FONT_8x8) /* default */
3376	lea	%pc@(font_vga_8x8),%a0
3377#else /* no compiled-in font */
3378	lea	0,%a0
3379#endif
3380
3381	/*
3382	 *	At this point we make a shift in register usage
3383	 *	a1 = address of console_font pointer
3384	 */
3385	lea	%pc@(L(console_font)),%a1
3386	movel	%a0,%a1@	/* store pointer to struct fbcon_font_desc in console_font */
3387	tstl	%a0
3388	jeq	1f
3389	lea	%pc@(L(console_font_data)),%a4
3390	movel	%a0@(FONT_DESC_DATA),%d0
3391	subl	#L(console_font),%a1
3392	addl	%a1,%d0
3393	movel	%d0,%a4@
3394
3395	/*
3396	 *	Calculate global maxs
3397	 *	Note - we can use either an
3398	 *	8 x 16 or 8 x 8 character font
3399	 *	6 x 11 also supported
3400	 */
3401		/* ASSERT: a0 = contents of Lconsole_font */
3402	movel	%d3,%d0				/* screen width in pixels */
3403	divul	%a0@(FONT_DESC_WIDTH),%d0	/* d0 = max num chars per row */
3404
3405	movel	%d4,%d1				/* screen height in pixels */
3406	divul	%a0@(FONT_DESC_HEIGHT),%d1	/* d1 = max num rows */
3407
3408	movel	%d0,%a2@(Lconsole_struct_num_columns)
3409	movel	%d1,%a2@(Lconsole_struct_num_rows)
3410
3411	/*
3412	 *	Clear the current row and column
3413	 */
3414	clrl	%a2@(Lconsole_struct_cur_column)
3415	clrl	%a2@(Lconsole_struct_cur_row)
3416	clrl	%a2@(Lconsole_struct_left_edge)
3417
3418	/*
3419	 * Initialization is complete
3420	 */
34211:
3422func_return	console_init
3423
3424#ifdef CONFIG_LOGO
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3425func_start	console_put_penguin,%a0-%a1/%d0-%d7
3426	/*
3427	 *	Get 'that_penguin' onto the screen in the upper right corner
3428	 *	penguin is 64 x 74 pixels, align against right edge of screen
3429	 */
3430	lea	%pc@(L(mac_dimensions)),%a0
3431	movel	%a0@,%d0
3432	andil	#0xffff,%d0
3433	subil	#64,%d0		/* snug up against the right edge */
3434	clrl	%d1		/* start at the top */
3435	movel	#73,%d7
3436	lea	%pc@(L(that_penguin)),%a1
3437L(console_penguin_row):
3438	movel	#31,%d6
3439L(console_penguin_pixel_pair):
3440	moveb	%a1@,%d2
3441	lsrb	#4,%d2
3442	console_plot_pixel %d0,%d1,%d2
3443	addq	#1,%d0
3444	moveb	%a1@+,%d2
3445	console_plot_pixel %d0,%d1,%d2
3446	addq	#1,%d0
3447	dbra	%d6,L(console_penguin_pixel_pair)
3448
3449	subil	#64,%d0
3450	addq	#1,%d1
3451	dbra	%d7,L(console_penguin_row)
3452
3453func_return	console_put_penguin
3454
3455/* include penguin bitmap */
3456L(that_penguin):
3457#include "../mac/mac_penguin.S"
3458#endif
3459
3460	/*
3461	 * Calculate source and destination addresses
3462	 *	output	a1 = dest
3463	 *		a2 = source
3464	 */
3465
3466func_start	console_scroll,%a0-%a4/%d0-%d7
3467	lea	%pc@(L(mac_videobase)),%a0
3468	movel	%a0@,%a1
3469	movel	%a1,%a2
3470	lea	%pc@(L(mac_rowbytes)),%a0
3471	movel	%a0@,%d5
3472	movel	%pc@(L(console_font)),%a0
3473	tstl	%a0
3474	jeq	1f
3475	mulul	%a0@(FONT_DESC_HEIGHT),%d5	/* account for # scan lines per character */
3476	addal	%d5,%a2
3477
3478	/*
3479	 * Get dimensions
3480	 */
3481	lea	%pc@(L(mac_dimensions)),%a0
3482	movel	%a0@,%d3
3483	movel	%d3,%d4
3484	swap	%d4
3485	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3486	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3487
3488	/*
3489	 * Calculate number of bytes to move
3490	 */
3491	lea	%pc@(L(mac_rowbytes)),%a0
3492	movel	%a0@,%d6
3493	movel	%pc@(L(console_font)),%a0
3494	subl	%a0@(FONT_DESC_HEIGHT),%d4	/* we're not scrolling the top row! */
3495	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3496	divul	#32,%d6		/* we'll move 8 longs at a time */
3497	subq	#1,%d6
3498
3499L(console_scroll_loop):
3500	movel	%a2@+,%a1@+
3501	movel	%a2@+,%a1@+
3502	movel	%a2@+,%a1@+
3503	movel	%a2@+,%a1@+
3504	movel	%a2@+,%a1@+
3505	movel	%a2@+,%a1@+
3506	movel	%a2@+,%a1@+
3507	movel	%a2@+,%a1@+
3508	dbra	%d6,L(console_scroll_loop)
3509
3510	lea	%pc@(L(mac_rowbytes)),%a0
3511	movel	%a0@,%d6
3512	movel	%pc@(L(console_font)),%a0
3513	mulul	%a0@(FONT_DESC_HEIGHT),%d6	/* scan line bytes x font height */
3514	divul	#32,%d6			/* we'll move 8 words at a time */
3515	subq	#1,%d6
3516
3517	moveq	#-1,%d0
3518L(console_scroll_clear_loop):
3519	movel	%d0,%a1@+
3520	movel	%d0,%a1@+
3521	movel	%d0,%a1@+
3522	movel	%d0,%a1@+
3523	movel	%d0,%a1@+
3524	movel	%d0,%a1@+
3525	movel	%d0,%a1@+
3526	movel	%d0,%a1@+
3527	dbra	%d6,L(console_scroll_clear_loop)
3528
35291:
3530func_return	console_scroll
3531
3532
3533func_start	console_putc,%a0/%a1/%d0-%d7
3534
3535	is_not_mac(L(console_exit))
3536	tstl	%pc@(L(console_font))
3537	jeq	L(console_exit)
3538
3539	/* Output character in d7 on console.
3540	 */
3541	movel	ARG1,%d7
3542	cmpib	#'\n',%d7
3543	jbne	1f
3544
3545	/* A little safe recursion is good for the soul */
3546	console_putc	#'\r'
35471:
3548	lea	%pc@(L(console_globals)),%a0
3549
3550	cmpib	#10,%d7
3551	jne	L(console_not_lf)
3552	movel	%a0@(Lconsole_struct_cur_row),%d0
3553	addil	#1,%d0
3554	movel	%d0,%a0@(Lconsole_struct_cur_row)
3555	movel	%a0@(Lconsole_struct_num_rows),%d1
3556	cmpl	%d1,%d0
3557	jcs	1f
3558	subil	#1,%d0
3559	movel	%d0,%a0@(Lconsole_struct_cur_row)
3560	console_scroll
35611:
3562	jra	L(console_exit)
3563
3564L(console_not_lf):
3565	cmpib	#13,%d7
3566	jne	L(console_not_cr)
3567	clrl	%a0@(Lconsole_struct_cur_column)
3568	jra	L(console_exit)
3569
3570L(console_not_cr):
3571	cmpib	#1,%d7
3572	jne	L(console_not_home)
3573	clrl	%a0@(Lconsole_struct_cur_row)
3574	clrl	%a0@(Lconsole_struct_cur_column)
3575	jra	L(console_exit)
3576
3577/*
3578 *	At this point we know that the %d7 character is going to be
3579 *	rendered on the screen.  Register usage is -
3580 *		a0 = pointer to console globals
3581 *		a1 = font data
3582 *		d0 = cursor column
3583 *		d1 = cursor row to draw the character
3584 *		d7 = character number
3585 */
3586L(console_not_home):
3587	movel	%a0@(Lconsole_struct_cur_column),%d0
3588	addql	#1,%a0@(Lconsole_struct_cur_column)
3589	movel	%a0@(Lconsole_struct_num_columns),%d1
3590	cmpl	%d1,%d0
3591	jcs	1f
3592	console_putc	#'\n'	/* recursion is OK! */
35931:
3594	movel	%a0@(Lconsole_struct_cur_row),%d1
3595
3596	/*
3597	 *	At this point we make a shift in register usage
3598	 *	a0 = address of pointer to font data (fbcon_font_desc)
3599	 */
3600	movel	%pc@(L(console_font)),%a0
3601	movel	%pc@(L(console_font_data)),%a1	/* Load fbcon_font_desc.data into a1 */
3602	andl	#0x000000ff,%d7
3603		/* ASSERT: a0 = contents of Lconsole_font */
3604	mulul	%a0@(FONT_DESC_HEIGHT),%d7	/* d7 = index into font data */
3605	addl	%d7,%a1			/* a1 = points to char image */
3606
3607	/*
3608	 *	At this point we make a shift in register usage
3609	 *	d0 = pixel coordinate, x
3610	 *	d1 = pixel coordinate, y
3611	 *	d2 = (bit 0) 1/0 for white/black (!) pixel on screen
3612	 *	d3 = font scan line data (8 pixels)
3613	 *	d6 = count down for the font's pixel width (8)
3614	 *	d7 = count down for the font's pixel count in height
3615	 */
3616		/* ASSERT: a0 = contents of Lconsole_font */
3617	mulul	%a0@(FONT_DESC_WIDTH),%d0
3618	mulul	%a0@(FONT_DESC_HEIGHT),%d1
3619	movel	%a0@(FONT_DESC_HEIGHT),%d7	/* Load fbcon_font_desc.height into d7 */
3620	subq	#1,%d7
3621L(console_read_char_scanline):
3622	moveb	%a1@+,%d3
3623
3624		/* ASSERT: a0 = contents of Lconsole_font */
3625	movel	%a0@(FONT_DESC_WIDTH),%d6	/* Load fbcon_font_desc.width into d6 */
3626	subql	#1,%d6
3627
3628L(console_do_font_scanline):
3629	lslb	#1,%d3
3630	scsb	%d2		/* convert 1 bit into a byte */
3631	console_plot_pixel %d0,%d1,%d2
3632	addq	#1,%d0
3633	dbra	%d6,L(console_do_font_scanline)
3634
3635		/* ASSERT: a0 = contents of Lconsole_font */
3636	subl	%a0@(FONT_DESC_WIDTH),%d0
3637	addq	#1,%d1
3638	dbra	%d7,L(console_read_char_scanline)
3639
3640L(console_exit):
3641func_return	console_putc
3642
3643	/*
3644	 *	Input:
3645	 *		d0 = x coordinate
3646	 *		d1 = y coordinate
3647	 *		d2 = (bit 0) 1/0 for white/black (!)
3648	 *	All registers are preserved
3649	 */
3650func_start	console_plot_pixel,%a0-%a1/%d0-%d4
3651
3652	movel	%pc@(L(mac_videobase)),%a1
3653	movel	%pc@(L(mac_videodepth)),%d3
3654	movel	ARG1,%d0
3655	movel	ARG2,%d1
3656	mulul	%pc@(L(mac_rowbytes)),%d1
3657	movel	ARG3,%d2
3658
3659	/*
3660	 *	Register usage:
3661	 *		d0 = x coord becomes byte offset into frame buffer
3662	 *		d1 = y coord
3663	 *		d2 = black or white (0/1)
3664	 *		d3 = video depth
3665	 *		d4 = temp of x (d0) for many bit depths
3666	 */
3667L(test_1bit):
3668	cmpb	#1,%d3
3669	jbne	L(test_2bit)
3670	movel	%d0,%d4		/* we need the low order 3 bits! */
3671	divul	#8,%d0
3672	addal	%d0,%a1
3673	addal	%d1,%a1
3674	andb	#7,%d4
3675	eorb	#7,%d4		/* reverse the x-coordinate w/ screen-bit # */
3676	andb	#1,%d2
3677	jbne	L(white_1)
3678	bsetb	%d4,%a1@
3679	jbra	L(console_plot_pixel_exit)
3680L(white_1):
3681	bclrb	%d4,%a1@
3682	jbra	L(console_plot_pixel_exit)
3683
3684L(test_2bit):
3685	cmpb	#2,%d3
3686	jbne	L(test_4bit)
3687	movel	%d0,%d4		/* we need the low order 2 bits! */
3688	divul	#4,%d0
3689	addal	%d0,%a1
3690	addal	%d1,%a1
3691	andb	#3,%d4
3692	eorb	#3,%d4		/* reverse the x-coordinate w/ screen-bit # */
3693	lsll	#1,%d4		/* ! */
3694	andb	#1,%d2
3695	jbne	L(white_2)
3696	bsetb	%d4,%a1@
3697	addq	#1,%d4
3698	bsetb	%d4,%a1@
3699	jbra	L(console_plot_pixel_exit)
3700L(white_2):
3701	bclrb	%d4,%a1@
3702	addq	#1,%d4
3703	bclrb	%d4,%a1@
3704	jbra	L(console_plot_pixel_exit)
3705
3706L(test_4bit):
3707	cmpb	#4,%d3
3708	jbne	L(test_8bit)
3709	movel	%d0,%d4		/* we need the low order bit! */
3710	divul	#2,%d0
3711	addal	%d0,%a1
3712	addal	%d1,%a1
3713	andb	#1,%d4
3714	eorb	#1,%d4
3715	lsll	#2,%d4		/* ! */
3716	andb	#1,%d2
3717	jbne	L(white_4)
3718	bsetb	%d4,%a1@
3719	addq	#1,%d4
3720	bsetb	%d4,%a1@
3721	addq	#1,%d4
3722	bsetb	%d4,%a1@
3723	addq	#1,%d4
3724	bsetb	%d4,%a1@
3725	jbra	L(console_plot_pixel_exit)
3726L(white_4):
3727	bclrb	%d4,%a1@
3728	addq	#1,%d4
3729	bclrb	%d4,%a1@
3730	addq	#1,%d4
3731	bclrb	%d4,%a1@
3732	addq	#1,%d4
3733	bclrb	%d4,%a1@
3734	jbra	L(console_plot_pixel_exit)
3735
3736L(test_8bit):
3737	cmpb	#8,%d3
3738	jbne	L(test_16bit)
3739	addal	%d0,%a1
3740	addal	%d1,%a1
3741	andb	#1,%d2
3742	jbne	L(white_8)
3743	moveb	#0xff,%a1@
3744	jbra	L(console_plot_pixel_exit)
3745L(white_8):
3746	clrb	%a1@
3747	jbra	L(console_plot_pixel_exit)
3748
3749L(test_16bit):
3750	cmpb	#16,%d3
3751	jbne	L(console_plot_pixel_exit)
3752	addal	%d0,%a1
3753	addal	%d0,%a1
3754	addal	%d1,%a1
3755	andb	#1,%d2
3756	jbne	L(white_16)
3757	clrw	%a1@
3758	jbra	L(console_plot_pixel_exit)
3759L(white_16):
3760	movew	#0x0fff,%a1@
3761	jbra	L(console_plot_pixel_exit)
3762
3763L(console_plot_pixel_exit):
3764func_return	console_plot_pixel
3765#endif /* CONSOLE_DEBUG */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3766
 
 
 
 
3767
3768__INITDATA
3769	.align	4
3770
3771m68k_init_mapped_size:
3772	.long	0
3773
3774#if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \
3775    defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3776L(custom):
3777L(iobase):
3778	.long 0
3779#endif
3780
3781#ifdef CONSOLE_DEBUG
3782L(console_globals):
3783	.long	0		/* cursor column */
3784	.long	0		/* cursor row */
3785	.long	0		/* max num columns */
3786	.long	0		/* max num rows */
3787	.long	0		/* left edge */
 
3788L(console_font):
3789	.long	0		/* pointer to console font (struct font_desc) */
3790L(console_font_data):
3791	.long	0		/* pointer to console font data */
3792#endif /* CONSOLE_DEBUG */
3793
3794#if defined(MMU_PRINT)
3795L(mmu_print_data):
3796	.long	0		/* valid flag */
3797	.long	0		/* start logical */
3798	.long	0		/* next logical */
3799	.long	0		/* start physical */
3800	.long	0		/* next physical */
3801#endif /* MMU_PRINT */
3802
3803L(cputype):
3804	.long	0
3805L(mmu_cached_pointer_tables):
3806	.long	0
3807L(mmu_num_pointer_tables):
3808	.long	0
3809L(phys_kernel_start):
3810	.long	0
3811L(kernel_end):
3812	.long	0
3813L(memory_start):
3814	.long	0
3815L(kernel_pgdir_ptr):
3816	.long	0
3817L(temp_mmap_mem):
3818	.long	0
3819
3820#if defined (CONFIG_MVME147)
3821M147_SCC_CTRL_A = 0xfffe3002
3822M147_SCC_DATA_A = 0xfffe3003
3823#endif
3824
3825#if defined (CONFIG_MVME16x)
3826M162_SCC_CTRL_A = 0xfff45005
3827M167_CYCAR = 0xfff450ee
3828M167_CYIER = 0xfff45011
3829M167_CYLICR = 0xfff45026
3830M167_CYTEOIR = 0xfff45085
3831M167_CYTDR = 0xfff450f8
3832M167_PCSCCMICR = 0xfff4201d
3833M167_PCSCCTICR = 0xfff4201e
3834M167_PCSCCRICR = 0xfff4201f
3835M167_PCTPIACKR = 0xfff42025
3836#endif
3837
3838#if defined (CONFIG_BVME6000)
3839BVME_SCC_CTRL_A	= 0xffb0000b
3840BVME_SCC_DATA_A	= 0xffb0000f
3841#endif
3842
3843#if defined(CONFIG_MAC)
 
 
3844L(mac_videobase):
3845	.long	0
3846L(mac_videodepth):
3847	.long	0
3848L(mac_dimensions):
3849	.long	0
3850L(mac_rowbytes):
3851	.long	0
 
3852L(mac_sccbase):
3853	.long	0
3854#endif /* CONFIG_MAC */
 
3855
3856#if defined (CONFIG_APOLLO)
3857LSRB0        = 0x10412
3858LTHRB0       = 0x10416
3859LCPUCTRL     = 0x10100
3860#endif
3861
3862#if defined(CONFIG_HP300)
3863DCADATA	     = 0x11
3864DCALSR	     = 0x1b
3865APCIDATA     = 0x00
3866APCILSR      = 0x14
3867L(uartbase):
3868	.long	0
3869L(uart_scode):
3870	.long	-1
3871#endif
3872
3873__FINIT
3874	.data
3875	.align	4
3876
3877availmem:
3878	.long	0
3879m68k_pgtable_cachemode:
3880	.long	0
3881m68k_supervisor_cachemode:
3882	.long	0
3883#if defined(CONFIG_MVME16x)
3884mvme_bdid:
3885	.long	0,0,0,0,0,0,0,0
3886#endif
3887#if defined(CONFIG_Q40)
3888q40_mem_cptr:
3889	.long	0
3890L(q40_do_debug):
3891	.long	0
3892#endif
3893
3894#if defined(CONFIG_VIRT)
3895GF_PUT_CHAR = 0x00
3896L(virt_gf_tty_base):
3897	.long 0
3898#endif /* CONFIG_VIRT */