Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v3.1
 
   1/*
   2 *  linux/arch/arm/mm/mmu.c
   3 *
   4 *  Copyright (C) 1995-2005 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/module.h>
  11#include <linux/kernel.h>
  12#include <linux/errno.h>
  13#include <linux/init.h>
  14#include <linux/mman.h>
  15#include <linux/nodemask.h>
  16#include <linux/memblock.h>
  17#include <linux/fs.h>
 
 
  18
 
  19#include <asm/cputype.h>
  20#include <asm/sections.h>
  21#include <asm/cachetype.h>
 
  22#include <asm/setup.h>
  23#include <asm/sizes.h>
  24#include <asm/smp_plat.h>
  25#include <asm/tlb.h>
  26#include <asm/highmem.h>
 
  27#include <asm/traps.h>
 
 
 
 
  28
  29#include <asm/mach/arch.h>
  30#include <asm/mach/map.h>
 
 
  31
 
  32#include "mm.h"
 
 
 
  33
  34/*
  35 * empty_zero_page is a special page that is used for
  36 * zero-initialized data and COW.
  37 */
  38struct page *empty_zero_page;
  39EXPORT_SYMBOL(empty_zero_page);
  40
  41/*
  42 * The pmd table for the upper-most set of pages.
  43 */
  44pmd_t *top_pmd;
  45
 
 
  46#define CPOLICY_UNCACHED	0
  47#define CPOLICY_BUFFERED	1
  48#define CPOLICY_WRITETHROUGH	2
  49#define CPOLICY_WRITEBACK	3
  50#define CPOLICY_WRITEALLOC	4
  51
  52static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  53static unsigned int ecc_mask __initdata = 0;
  54pgprot_t pgprot_user;
  55pgprot_t pgprot_kernel;
  56
  57EXPORT_SYMBOL(pgprot_user);
  58EXPORT_SYMBOL(pgprot_kernel);
  59
  60struct cachepolicy {
  61	const char	policy[16];
  62	unsigned int	cr_mask;
  63	unsigned int	pmd;
  64	pteval_t	pte;
  65};
  66
  67static struct cachepolicy cache_policies[] __initdata = {
  68	{
  69		.policy		= "uncached",
  70		.cr_mask	= CR_W|CR_C,
  71		.pmd		= PMD_SECT_UNCACHED,
  72		.pte		= L_PTE_MT_UNCACHED,
  73	}, {
  74		.policy		= "buffered",
  75		.cr_mask	= CR_C,
  76		.pmd		= PMD_SECT_BUFFERED,
  77		.pte		= L_PTE_MT_BUFFERABLE,
  78	}, {
  79		.policy		= "writethrough",
  80		.cr_mask	= 0,
  81		.pmd		= PMD_SECT_WT,
  82		.pte		= L_PTE_MT_WRITETHROUGH,
  83	}, {
  84		.policy		= "writeback",
  85		.cr_mask	= 0,
  86		.pmd		= PMD_SECT_WB,
  87		.pte		= L_PTE_MT_WRITEBACK,
  88	}, {
  89		.policy		= "writealloc",
  90		.cr_mask	= 0,
  91		.pmd		= PMD_SECT_WBWA,
  92		.pte		= L_PTE_MT_WRITEALLOC,
  93	}
  94};
  95
 
 
 
  96/*
  97 * These are useful for identifying cache coherency
  98 * problems by allowing the cache or the cache and
  99 * writebuffer to be turned off.  (Note: the write
 100 * buffer should not be on and the cache off).
 
 101 */
 102static int __init early_cachepolicy(char *p)
 103{
 104	int i;
 105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 106	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
 107		int len = strlen(cache_policies[i].policy);
 108
 109		if (memcmp(p, cache_policies[i].policy, len) == 0) {
 110			cachepolicy = i;
 111			cr_alignment &= ~cache_policies[i].cr_mask;
 112			cr_no_alignment &= ~cache_policies[i].cr_mask;
 113			break;
 114		}
 115	}
 116	if (i == ARRAY_SIZE(cache_policies))
 117		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
 
 
 118	/*
 119	 * This restriction is partly to do with the way we boot; it is
 120	 * unpredictable to have memory mapped using two different sets of
 121	 * memory attributes (shared, type, and cache attribs).  We can not
 122	 * change these attributes once the initial assembly has setup the
 123	 * page tables.
 124	 */
 125	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
 126		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
 127		cachepolicy = CPOLICY_WRITEBACK;
 
 
 
 
 
 
 
 
 128	}
 129	flush_cache_all();
 130	set_cr(cr_alignment);
 131	return 0;
 132}
 133early_param("cachepolicy", early_cachepolicy);
 134
 135static int __init early_nocache(char *__unused)
 136{
 137	char *p = "buffered";
 138	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
 139	early_cachepolicy(p);
 140	return 0;
 141}
 142early_param("nocache", early_nocache);
 143
 144static int __init early_nowrite(char *__unused)
 145{
 146	char *p = "uncached";
 147	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
 148	early_cachepolicy(p);
 149	return 0;
 150}
 151early_param("nowb", early_nowrite);
 152
 
 153static int __init early_ecc(char *p)
 154{
 155	if (memcmp(p, "on", 2) == 0)
 156		ecc_mask = PMD_PROTECTION;
 157	else if (memcmp(p, "off", 3) == 0)
 158		ecc_mask = 0;
 159	return 0;
 160}
 161early_param("ecc", early_ecc);
 
 
 
 
 
 
 
 
 
 
 162
 163static int __init noalign_setup(char *__unused)
 164{
 165	cr_alignment &= ~CR_A;
 166	cr_no_alignment &= ~CR_A;
 167	set_cr(cr_alignment);
 168	return 1;
 169}
 170__setup("noalign", noalign_setup);
 171
 172#ifndef CONFIG_SMP
 173void adjust_cr(unsigned long mask, unsigned long set)
 174{
 175	unsigned long flags;
 176
 177	mask &= ~CR_A;
 178
 179	set &= mask;
 180
 181	local_irq_save(flags);
 182
 183	cr_no_alignment = (cr_no_alignment & ~mask) | set;
 184	cr_alignment = (cr_alignment & ~mask) | set;
 185
 186	set_cr((get_cr() & ~mask) | set);
 187
 188	local_irq_restore(flags);
 189}
 190#endif
 191
 192#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
 
 193#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
 194
 195static struct mem_type mem_types[] = {
 196	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
 197		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
 198				  L_PTE_SHARED,
 199		.prot_l1	= PMD_TYPE_TABLE,
 200		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
 201		.domain		= DOMAIN_IO,
 202	},
 203	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
 204		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
 205		.prot_l1	= PMD_TYPE_TABLE,
 206		.prot_sect	= PROT_SECT_DEVICE,
 207		.domain		= DOMAIN_IO,
 208	},
 209	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
 210		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
 211		.prot_l1	= PMD_TYPE_TABLE,
 212		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
 213		.domain		= DOMAIN_IO,
 214	},	
 215	[MT_DEVICE_WC] = {	/* ioremap_wc */
 216		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
 217		.prot_l1	= PMD_TYPE_TABLE,
 218		.prot_sect	= PROT_SECT_DEVICE,
 219		.domain		= DOMAIN_IO,
 220	},
 221	[MT_UNCACHED] = {
 222		.prot_pte	= PROT_PTE_DEVICE,
 223		.prot_l1	= PMD_TYPE_TABLE,
 224		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
 225		.domain		= DOMAIN_IO,
 226	},
 227	[MT_CACHECLEAN] = {
 228		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 229		.domain    = DOMAIN_KERNEL,
 230	},
 
 231	[MT_MINICLEAN] = {
 232		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
 233		.domain    = DOMAIN_KERNEL,
 234	},
 
 235	[MT_LOW_VECTORS] = {
 236		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 237				L_PTE_RDONLY,
 238		.prot_l1   = PMD_TYPE_TABLE,
 239		.domain    = DOMAIN_USER,
 240	},
 241	[MT_HIGH_VECTORS] = {
 242		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 243				L_PTE_USER | L_PTE_RDONLY,
 244		.prot_l1   = PMD_TYPE_TABLE,
 245		.domain    = DOMAIN_USER,
 246	},
 247	[MT_MEMORY] = {
 248		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 249		.prot_l1   = PMD_TYPE_TABLE,
 250		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 251		.domain    = DOMAIN_KERNEL,
 252	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 253	[MT_ROM] = {
 254		.prot_sect = PMD_TYPE_SECT,
 255		.domain    = DOMAIN_KERNEL,
 256	},
 257	[MT_MEMORY_NONCACHED] = {
 258		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 259				L_PTE_MT_BUFFERABLE,
 260		.prot_l1   = PMD_TYPE_TABLE,
 261		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 262		.domain    = DOMAIN_KERNEL,
 263	},
 264	[MT_MEMORY_DTCM] = {
 265		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 266				L_PTE_XN,
 267		.prot_l1   = PMD_TYPE_TABLE,
 268		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 269		.domain    = DOMAIN_KERNEL,
 270	},
 271	[MT_MEMORY_ITCM] = {
 272		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 273		.prot_l1   = PMD_TYPE_TABLE,
 274		.domain    = DOMAIN_KERNEL,
 275	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 276};
 277
 278const struct mem_type *get_mem_type(unsigned int type)
 279{
 280	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
 281}
 282EXPORT_SYMBOL(get_mem_type);
 283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284/*
 285 * Adjust the PMD section entries according to the CPU in use.
 286 */
 287static void __init build_mem_type_table(void)
 288{
 289	struct cachepolicy *cp;
 290	unsigned int cr = get_cr();
 291	unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
 292	int cpu_arch = cpu_architecture();
 293	int i;
 294
 295	if (cpu_arch < CPU_ARCH_ARMv6) {
 296#if defined(CONFIG_CPU_DCACHE_DISABLE)
 297		if (cachepolicy > CPOLICY_BUFFERED)
 298			cachepolicy = CPOLICY_BUFFERED;
 299#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
 300		if (cachepolicy > CPOLICY_WRITETHROUGH)
 301			cachepolicy = CPOLICY_WRITETHROUGH;
 302#endif
 303	}
 304	if (cpu_arch < CPU_ARCH_ARMv5) {
 305		if (cachepolicy >= CPOLICY_WRITEALLOC)
 306			cachepolicy = CPOLICY_WRITEBACK;
 307		ecc_mask = 0;
 308	}
 309	if (is_smp())
 310		cachepolicy = CPOLICY_WRITEALLOC;
 
 
 
 
 
 
 
 
 
 311
 312	/*
 313	 * Strip out features not present on earlier architectures.
 314	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
 315	 * without extended page tables don't have the 'Shared' bit.
 316	 */
 317	if (cpu_arch < CPU_ARCH_ARMv5)
 318		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 319			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
 320	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
 321		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 322			mem_types[i].prot_sect &= ~PMD_SECT_S;
 323
 324	/*
 325	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
 326	 * "update-able on write" bit on ARM610).  However, Xscale and
 327	 * Xscale3 require this bit to be cleared.
 328	 */
 329	if (cpu_is_xscale() || cpu_is_xsc3()) {
 330		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 331			mem_types[i].prot_sect &= ~PMD_BIT4;
 332			mem_types[i].prot_l1 &= ~PMD_BIT4;
 333		}
 334	} else if (cpu_arch < CPU_ARCH_ARMv6) {
 335		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 336			if (mem_types[i].prot_l1)
 337				mem_types[i].prot_l1 |= PMD_BIT4;
 338			if (mem_types[i].prot_sect)
 339				mem_types[i].prot_sect |= PMD_BIT4;
 340		}
 341	}
 342
 343	/*
 344	 * Mark the device areas according to the CPU/architecture.
 345	 */
 346	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
 347		if (!cpu_is_xsc3()) {
 348			/*
 349			 * Mark device regions on ARMv6+ as execute-never
 350			 * to prevent speculative instruction fetches.
 351			 */
 352			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
 353			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
 354			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
 355			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
 
 
 
 
 356		}
 357		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 358			/*
 359			 * For ARMv7 with TEX remapping,
 360			 * - shared device is SXCB=1100
 361			 * - nonshared device is SXCB=0100
 362			 * - write combine device mem is SXCB=0001
 363			 * (Uncached Normal memory)
 364			 */
 365			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
 366			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
 367			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 368		} else if (cpu_is_xsc3()) {
 369			/*
 370			 * For Xscale3,
 371			 * - shared device is TEXCB=00101
 372			 * - nonshared device is TEXCB=01000
 373			 * - write combine device mem is TEXCB=00100
 374			 * (Inner/Outer Uncacheable in xsc3 parlance)
 375			 */
 376			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
 377			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 378			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 379		} else {
 380			/*
 381			 * For ARMv6 and ARMv7 without TEX remapping,
 382			 * - shared device is TEXCB=00001
 383			 * - nonshared device is TEXCB=01000
 384			 * - write combine device mem is TEXCB=00100
 385			 * (Uncached Normal in ARMv6 parlance).
 386			 */
 387			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
 388			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 389			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 390		}
 391	} else {
 392		/*
 393		 * On others, write combining is "Uncached/Buffered"
 394		 */
 395		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 396	}
 397
 398	/*
 399	 * Now deal with the memory-type mappings
 400	 */
 401	cp = &cache_policies[cachepolicy];
 402	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
 403
 
 404	/*
 405	 * Only use write-through for non-SMP systems
 
 
 406	 */
 407	if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
 408		vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
 409
 410	/*
 411	 * Enable CPU-specific coherency if supported.
 412	 * (Only available on XSC3 at the moment.)
 413	 */
 414	if (arch_is_coherent() && cpu_is_xsc3()) {
 415		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
 416		mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
 417		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
 418		mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
 419	}
 
 
 420	/*
 421	 * ARMv6 and above have extended page tables.
 422	 */
 423	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
 
 424		/*
 425		 * Mark cache clean areas and XIP ROM read only
 426		 * from SVC mode and no access from userspace.
 427		 */
 428		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 429		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 430		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 
 
 431
 432		if (is_smp()) {
 433			/*
 434			 * Mark memory with the "shared" attribute
 435			 * for SMP systems
 436			 */
 
 437			user_pgprot |= L_PTE_SHARED;
 438			kern_pgprot |= L_PTE_SHARED;
 439			vecs_pgprot |= L_PTE_SHARED;
 440			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
 441			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
 442			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
 443			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
 444			mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
 445			mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
 446			mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
 447			mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
 
 
 
 
 
 448		}
 449	}
 450
 451	/*
 452	 * Non-cacheable Normal - intended for memory areas that must
 453	 * not cause dirty cache line writebacks when used
 454	 */
 455	if (cpu_arch >= CPU_ARCH_ARMv6) {
 456		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 457			/* Non-cacheable Normal is XCB = 001 */
 458			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
 459				PMD_SECT_BUFFERED;
 460		} else {
 461			/* For both ARMv6 and non-TEX-remapping ARMv7 */
 462			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
 463				PMD_SECT_TEX(1);
 464		}
 465	} else {
 466		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
 467	}
 468
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 469	for (i = 0; i < 16; i++) {
 470		unsigned long v = pgprot_val(protection_map[i]);
 471		protection_map[i] = __pgprot(v | user_pgprot);
 472	}
 473
 474	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
 475	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
 476
 477	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
 478	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
 479				 L_PTE_DIRTY | kern_pgprot);
 480
 481	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
 482	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
 483	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
 484	mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
 485	mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
 
 
 
 
 
 486	mem_types[MT_ROM].prot_sect |= cp->pmd;
 487
 488	switch (cp->pmd) {
 489	case PMD_SECT_WT:
 490		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
 491		break;
 492	case PMD_SECT_WB:
 493	case PMD_SECT_WBWA:
 494		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
 495		break;
 496	}
 497	printk("Memory policy: ECC %sabled, Data cache %s\n",
 498		ecc_mask ? "en" : "dis", cp->policy);
 499
 500	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 501		struct mem_type *t = &mem_types[i];
 502		if (t->prot_l1)
 503			t->prot_l1 |= PMD_DOMAIN(t->domain);
 504		if (t->prot_sect)
 505			t->prot_sect |= PMD_DOMAIN(t->domain);
 506	}
 507}
 508
 509#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
 510pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 511			      unsigned long size, pgprot_t vma_prot)
 512{
 513	if (!pfn_valid(pfn))
 514		return pgprot_noncached(vma_prot);
 515	else if (file->f_flags & O_SYNC)
 516		return pgprot_writecombine(vma_prot);
 517	return vma_prot;
 518}
 519EXPORT_SYMBOL(phys_mem_access_prot);
 520#endif
 521
 522#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
 523
 524static void __init *early_alloc(unsigned long sz)
 525{
 526	void *ptr = __va(memblock_alloc(sz, sz));
 527	memset(ptr, 0, sz);
 
 
 
 
 528	return ptr;
 529}
 530
 531static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
 
 
 
 
 
 
 
 
 
 
 
 532{
 533	if (pmd_none(*pmd)) {
 534		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
 535		__pmd_populate(pmd, __pa(pte), prot);
 536	}
 537	BUG_ON(pmd_bad(*pmd));
 538	return pte_offset_kernel(pmd, addr);
 539}
 540
 
 
 
 
 
 
 541static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
 542				  unsigned long end, unsigned long pfn,
 543				  const struct mem_type *type)
 
 
 544{
 545	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
 546	do {
 547		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
 
 548		pfn++;
 549	} while (pte++, addr += PAGE_SIZE, addr != end);
 550}
 551
 552static void __init alloc_init_section(pud_t *pud, unsigned long addr,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 553				      unsigned long end, phys_addr_t phys,
 554				      const struct mem_type *type)
 
 555{
 556	pmd_t *pmd = pmd_offset(pud, addr);
 
 557
 558	/*
 559	 * Try a section mapping - end, addr and phys must all be aligned
 560	 * to a section boundary.  Note that PMDs refer to the individual
 561	 * L1 entries, whereas PGDs refer to a group of L1 entries making
 562	 * up one logical pointer to an L2 table.
 563	 */
 564	if (((addr | end | phys) & ~SECTION_MASK) == 0) {
 565		pmd_t *p = pmd;
 566
 567		if (addr & SECTION_SIZE)
 568			pmd++;
 569
 570		do {
 571			*pmd = __pmd(phys | type->prot_sect);
 572			phys += SECTION_SIZE;
 573		} while (pmd++, addr += SECTION_SIZE, addr != end);
 574
 575		flush_pmd_entry(p);
 576	} else {
 577		/*
 578		 * No need to loop; pte's aren't interested in the
 579		 * individual L1 entries.
 580		 */
 581		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
 582	}
 
 
 
 
 
 
 
 
 
 583}
 584
 585static void alloc_init_pud(pgd_t *pgd, unsigned long addr, unsigned long end,
 586	unsigned long phys, const struct mem_type *type)
 
 
 587{
 588	pud_t *pud = pud_offset(pgd, addr);
 589	unsigned long next;
 590
 591	do {
 592		next = pud_addr_end(addr, end);
 593		alloc_init_section(pud, addr, next, phys, type);
 594		phys += next - addr;
 595	} while (pud++, addr = next, addr != end);
 596}
 597
 598static void __init create_36bit_mapping(struct map_desc *md,
 599					const struct mem_type *type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 600{
 601	unsigned long addr, length, end;
 602	phys_addr_t phys;
 603	pgd_t *pgd;
 604
 605	addr = md->virtual;
 606	phys = __pfn_to_phys(md->pfn);
 607	length = PAGE_ALIGN(md->length);
 608
 609	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
 610		printk(KERN_ERR "MM: CPU does not support supersection "
 611		       "mapping for 0x%08llx at 0x%08lx\n",
 612		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 613		return;
 614	}
 615
 616	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
 617	 *	Since domain assignments can in fact be arbitrary, the
 618	 *	'domain == 0' check below is required to insure that ARMv6
 619	 *	supersections are only allocated for domain 0 regardless
 620	 *	of the actual domain assignments in use.
 621	 */
 622	if (type->domain) {
 623		printk(KERN_ERR "MM: invalid domain in supersection "
 624		       "mapping for 0x%08llx at 0x%08lx\n",
 625		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 626		return;
 627	}
 628
 629	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
 630		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
 631		       " at 0x%08lx invalid alignment\n",
 632		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 633		return;
 634	}
 635
 636	/*
 637	 * Shift bits [35:32] of address into bits [23:20] of PMD
 638	 * (See ARMv6 spec).
 639	 */
 640	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
 641
 642	pgd = pgd_offset_k(addr);
 643	end = addr + length;
 644	do {
 645		pud_t *pud = pud_offset(pgd, addr);
 
 646		pmd_t *pmd = pmd_offset(pud, addr);
 647		int i;
 648
 649		for (i = 0; i < 16; i++)
 650			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
 
 651
 652		addr += SUPERSECTION_SIZE;
 653		phys += SUPERSECTION_SIZE;
 654		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
 655	} while (addr != end);
 656}
 
 657
 658/*
 659 * Create the page directory entries and any necessary
 660 * page tables for the mapping specified by `md'.  We
 661 * are able to cope here with varying sizes and address
 662 * offsets, and we take full advantage of sections and
 663 * supersections.
 664 */
 665static void __init create_mapping(struct map_desc *md)
 666{
 667	unsigned long addr, length, end;
 668	phys_addr_t phys;
 669	const struct mem_type *type;
 670	pgd_t *pgd;
 671
 672	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
 673		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
 674		       " at 0x%08lx in user region\n",
 675		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 676		return;
 677	}
 678
 679	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
 680	    md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
 681		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
 682		       " at 0x%08lx overlaps vmalloc space\n",
 683		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 684	}
 685
 686	type = &mem_types[md->type];
 687
 
 688	/*
 689	 * Catch 36-bit addresses
 690	 */
 691	if (md->pfn >= 0x100000) {
 692		create_36bit_mapping(md, type);
 693		return;
 694	}
 
 695
 696	addr = md->virtual & PAGE_MASK;
 697	phys = __pfn_to_phys(md->pfn);
 698	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 699
 700	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
 701		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
 702		       "be mapped using pages, ignoring.\n",
 703		       (long long)__pfn_to_phys(md->pfn), addr);
 704		return;
 705	}
 706
 707	pgd = pgd_offset_k(addr);
 708	end = addr + length;
 709	do {
 710		unsigned long next = pgd_addr_end(addr, end);
 711
 712		alloc_init_pud(pgd, addr, next, phys, type);
 713
 714		phys += next - addr;
 715		addr = next;
 716	} while (pgd++, addr != end);
 717}
 718
 719/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 720 * Create the architecture specific mappings
 721 */
 722void __init iotable_init(struct map_desc *io_desc, int nr)
 723{
 724	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 725
 726	for (i = 0; i < nr; i++)
 727		create_mapping(io_desc + i);
 
 
 
 
 728}
 729
 730static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 731
 732/*
 733 * vmalloc=size forces the vmalloc area to be exactly 'size'
 734 * bytes. This can be used to increase (or decrease) the vmalloc
 735 * area - the default is 128m.
 736 */
 737static int __init early_vmalloc(char *arg)
 738{
 739	unsigned long vmalloc_reserve = memparse(arg, NULL);
 
 740
 741	if (vmalloc_reserve < SZ_16M) {
 742		vmalloc_reserve = SZ_16M;
 743		printk(KERN_WARNING
 744			"vmalloc area too small, limiting to %luMB\n",
 745			vmalloc_reserve >> 20);
 746	}
 747
 748	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
 749		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
 750		printk(KERN_WARNING
 751			"vmalloc area is too big, limiting to %luMB\n",
 752			vmalloc_reserve >> 20);
 753	}
 754
 755	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
 756	return 0;
 757}
 758early_param("vmalloc", early_vmalloc);
 759
 760static phys_addr_t lowmem_limit __initdata = 0;
 761
 762void __init sanity_check_meminfo(void)
 763{
 764	int i, j, highmem = 0;
 
 
 765
 766	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
 767		struct membank *bank = &meminfo.bank[j];
 768		*bank = meminfo.bank[i];
 
 
 
 
 
 
 769
 770#ifdef CONFIG_HIGHMEM
 771		if (__va(bank->start) >= vmalloc_min ||
 772		    __va(bank->start) < (void *)PAGE_OFFSET)
 773			highmem = 1;
 
 
 
 
 
 
 
 
 
 774
 775		bank->highmem = highmem;
 
 
 
 
 
 
 
 
 
 
 
 776
 777		/*
 778		 * Split those memory banks which are partially overlapping
 779		 * the vmalloc area greatly simplifying things later.
 780		 */
 781		if (__va(bank->start) < vmalloc_min &&
 782		    bank->size > vmalloc_min - __va(bank->start)) {
 783			if (meminfo.nr_banks >= NR_BANKS) {
 784				printk(KERN_CRIT "NR_BANKS too low, "
 785						 "ignoring high memory\n");
 786			} else {
 787				memmove(bank + 1, bank,
 788					(meminfo.nr_banks - i) * sizeof(*bank));
 789				meminfo.nr_banks++;
 790				i++;
 791				bank[1].size -= vmalloc_min - __va(bank->start);
 792				bank[1].start = __pa(vmalloc_min - 1) + 1;
 793				bank[1].highmem = highmem = 1;
 794				j++;
 795			}
 796			bank->size = vmalloc_min - __va(bank->start);
 797		}
 798#else
 799		bank->highmem = highmem;
 800
 801		/*
 802		 * Check whether this memory bank would entirely overlap
 803		 * the vmalloc area.
 804		 */
 805		if (__va(bank->start) >= vmalloc_min ||
 806		    __va(bank->start) < (void *)PAGE_OFFSET) {
 807			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
 808			       "(vmalloc region overlap).\n",
 809			       (unsigned long long)bank->start,
 810			       (unsigned long long)bank->start + bank->size - 1);
 811			continue;
 812		}
 
 813
 814		/*
 815		 * Check whether this memory bank would partially overlap
 816		 * the vmalloc area.
 817		 */
 818		if (__va(bank->start + bank->size) > vmalloc_min ||
 819		    __va(bank->start + bank->size) < __va(bank->start)) {
 820			unsigned long newsize = vmalloc_min - __va(bank->start);
 821			printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
 822			       "to -%.8llx (vmalloc region overlap).\n",
 823			       (unsigned long long)bank->start,
 824			       (unsigned long long)bank->start + bank->size - 1,
 825			       (unsigned long long)bank->start + newsize - 1);
 826			bank->size = newsize;
 827		}
 828#endif
 829		if (!bank->highmem && bank->start + bank->size > lowmem_limit)
 830			lowmem_limit = bank->start + bank->size;
 831
 832		j++;
 833	}
 834#ifdef CONFIG_HIGHMEM
 835	if (highmem) {
 836		const char *reason = NULL;
 837
 838		if (cache_is_vipt_aliasing()) {
 839			/*
 840			 * Interactions between kmap and other mappings
 841			 * make highmem support with aliasing VIPT caches
 842			 * rather difficult.
 843			 */
 844			reason = "with VIPT aliasing cache";
 845		}
 846		if (reason) {
 847			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
 848				reason);
 849			while (j > 0 && meminfo.bank[j - 1].highmem)
 850				j--;
 
 
 
 
 
 
 851		}
 852	}
 853#endif
 854	meminfo.nr_banks = j;
 855	memblock_set_current_limit(lowmem_limit);
 856}
 857
 858static inline void prepare_page_table(void)
 859{
 860	unsigned long addr;
 861	phys_addr_t end;
 862
 863	/*
 864	 * Clear out all the mappings below the kernel image.
 865	 */
 866	for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 867		pmd_clear(pmd_off_k(addr));
 
 
 
 
 868
 869#ifdef CONFIG_XIP_KERNEL
 870	/* The XIP kernel is mapped in the module area -- skip over it */
 871	addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
 872#endif
 873	for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
 874		pmd_clear(pmd_off_k(addr));
 875
 876	/*
 877	 * Find the end of the first block of lowmem.
 878	 */
 879	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
 880	if (end >= lowmem_limit)
 881		end = lowmem_limit;
 882
 883	/*
 884	 * Clear out all the kernel space mappings, except for the first
 885	 * memory bank, up to the end of the vmalloc region.
 886	 */
 887	for (addr = __phys_to_virt(end);
 888	     addr < VMALLOC_END; addr += PGDIR_SIZE)
 889		pmd_clear(pmd_off_k(addr));
 890}
 891
 
 
 
 
 
 
 
 
 892/*
 893 * Reserve the special regions of memory
 894 */
 895void __init arm_mm_memblock_reserve(void)
 896{
 897	/*
 898	 * Reserve the page tables.  These are already in use,
 899	 * and can only be in node 0.
 900	 */
 901	memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
 902
 903#ifdef CONFIG_SA1111
 904	/*
 905	 * Because of the SA1111 DMA bug, we want to preserve our
 906	 * precious DMA-able memory...
 907	 */
 908	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
 909#endif
 910}
 911
 912/*
 913 * Set up device the mappings.  Since we clear out the page tables for all
 914 * mappings above VMALLOC_END, we will remove any debug device mappings.
 915 * This means you have to be careful how you debug this function, or any
 916 * called function.  This means you can't use any function or debugging
 917 * method which may touch any device, otherwise the kernel _will_ crash.
 918 */
 919static void __init devicemaps_init(struct machine_desc *mdesc)
 920{
 921	struct map_desc map;
 922	unsigned long addr;
 
 923
 924	/*
 925	 * Allocate the vector page early.
 926	 */
 927	vectors_page = early_alloc(PAGE_SIZE);
 928
 929	for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
 
 
 
 
 
 930		pmd_clear(pmd_off_k(addr));
 931
 
 
 
 
 
 
 
 
 
 932	/*
 933	 * Map the kernel if it is XIP.
 934	 * It is always first in the modulearea.
 935	 */
 936#ifdef CONFIG_XIP_KERNEL
 937	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
 938	map.virtual = MODULES_VADDR;
 939	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
 940	map.type = MT_ROM;
 941	create_mapping(&map);
 942#endif
 943
 944	/*
 945	 * Map the cache flushing regions.
 946	 */
 947#ifdef FLUSH_BASE
 948	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
 949	map.virtual = FLUSH_BASE;
 950	map.length = SZ_1M;
 951	map.type = MT_CACHECLEAN;
 952	create_mapping(&map);
 953#endif
 954#ifdef FLUSH_BASE_MINICACHE
 955	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
 956	map.virtual = FLUSH_BASE_MINICACHE;
 957	map.length = SZ_1M;
 958	map.type = MT_MINICLEAN;
 959	create_mapping(&map);
 960#endif
 961
 962	/*
 963	 * Create a mapping for the machine vectors at the high-vectors
 964	 * location (0xffff0000).  If we aren't using high-vectors, also
 965	 * create a mapping at the low-vectors virtual address.
 966	 */
 967	map.pfn = __phys_to_pfn(virt_to_phys(vectors_page));
 968	map.virtual = 0xffff0000;
 969	map.length = PAGE_SIZE;
 
 970	map.type = MT_HIGH_VECTORS;
 
 
 
 971	create_mapping(&map);
 972
 973	if (!vectors_high()) {
 974		map.virtual = 0;
 
 975		map.type = MT_LOW_VECTORS;
 976		create_mapping(&map);
 977	}
 978
 
 
 
 
 
 
 
 979	/*
 980	 * Ask the machine support to map in the statically mapped devices.
 981	 */
 982	if (mdesc->map_io)
 983		mdesc->map_io();
 
 
 
 
 
 
 984
 985	/*
 986	 * Finally flush the caches and tlb to ensure that we're in a
 987	 * consistent state wrt the writebuffer.  This also ensures that
 988	 * any write-allocated cache lines in the vector page are written
 989	 * back.  After this point, we can start to touch devices again.
 990	 */
 991	local_flush_tlb_all();
 992	flush_cache_all();
 
 
 
 993}
 994
 995static void __init kmap_init(void)
 996{
 997#ifdef CONFIG_HIGHMEM
 998	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
 999		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1000#endif
 
 
 
1001}
1002
1003static void __init map_lowmem(void)
1004{
1005	struct memblock_region *reg;
 
1006
1007	/* Map all the lowmem memory banks. */
1008	for_each_memblock(memory, reg) {
1009		phys_addr_t start = reg->base;
1010		phys_addr_t end = start + reg->size;
1011		struct map_desc map;
1012
1013		if (end > lowmem_limit)
1014			end = lowmem_limit;
 
 
1015		if (start >= end)
1016			break;
1017
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1018		map.pfn = __phys_to_pfn(start);
1019		map.virtual = __phys_to_virt(start);
1020		map.length = end - start;
1021		map.type = MT_MEMORY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1022
1023		create_mapping(&map);
1024	}
1025}
1026
1027/*
1028 * paging_init() sets up the page tables, initialises the zone memory
1029 * maps, and sets up the zero page, bad page and bad page tables.
1030 */
1031void __init paging_init(struct machine_desc *mdesc)
1032{
1033	void *zero_page;
1034
1035	memblock_set_current_limit(lowmem_limit);
 
1036
1037	build_mem_type_table();
1038	prepare_page_table();
1039	map_lowmem();
 
 
 
 
 
 
 
 
 
1040	devicemaps_init(mdesc);
1041	kmap_init();
 
1042
1043	top_pmd = pmd_off_k(0xffff0000);
1044
1045	/* allocate the zero page. */
1046	zero_page = early_alloc(PAGE_SIZE);
1047
1048	bootmem_init();
1049
1050	empty_zero_page = virt_to_page(zero_page);
1051	__flush_dcache_page(NULL, empty_zero_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1052}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/mm/mmu.c
   4 *
   5 *  Copyright (C) 1995-2005 Russell King
 
 
 
 
   6 */
   7#include <linux/module.h>
   8#include <linux/kernel.h>
   9#include <linux/errno.h>
  10#include <linux/init.h>
  11#include <linux/mman.h>
  12#include <linux/nodemask.h>
  13#include <linux/memblock.h>
  14#include <linux/fs.h>
  15#include <linux/vmalloc.h>
  16#include <linux/sizes.h>
  17
  18#include <asm/cp15.h>
  19#include <asm/cputype.h>
 
  20#include <asm/cachetype.h>
  21#include <asm/sections.h>
  22#include <asm/setup.h>
 
  23#include <asm/smp_plat.h>
  24#include <asm/tlb.h>
  25#include <asm/highmem.h>
  26#include <asm/system_info.h>
  27#include <asm/traps.h>
  28#include <asm/procinfo.h>
  29#include <asm/memory.h>
  30#include <asm/pgalloc.h>
  31#include <asm/kasan_def.h>
  32
  33#include <asm/mach/arch.h>
  34#include <asm/mach/map.h>
  35#include <asm/mach/pci.h>
  36#include <asm/fixmap.h>
  37
  38#include "fault.h"
  39#include "mm.h"
  40#include "tcm.h"
  41
  42extern unsigned long __atags_pointer;
  43
  44/*
  45 * empty_zero_page is a special page that is used for
  46 * zero-initialized data and COW.
  47 */
  48struct page *empty_zero_page;
  49EXPORT_SYMBOL(empty_zero_page);
  50
  51/*
  52 * The pmd table for the upper-most set of pages.
  53 */
  54pmd_t *top_pmd;
  55
  56pmdval_t user_pmd_table = _PAGE_USER_TABLE;
  57
  58#define CPOLICY_UNCACHED	0
  59#define CPOLICY_BUFFERED	1
  60#define CPOLICY_WRITETHROUGH	2
  61#define CPOLICY_WRITEBACK	3
  62#define CPOLICY_WRITEALLOC	4
  63
  64static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  65static unsigned int ecc_mask __initdata = 0;
  66pgprot_t pgprot_user;
  67pgprot_t pgprot_kernel;
  68
  69EXPORT_SYMBOL(pgprot_user);
  70EXPORT_SYMBOL(pgprot_kernel);
  71
  72struct cachepolicy {
  73	const char	policy[16];
  74	unsigned int	cr_mask;
  75	pmdval_t	pmd;
  76	pteval_t	pte;
  77};
  78
  79static struct cachepolicy cache_policies[] __initdata = {
  80	{
  81		.policy		= "uncached",
  82		.cr_mask	= CR_W|CR_C,
  83		.pmd		= PMD_SECT_UNCACHED,
  84		.pte		= L_PTE_MT_UNCACHED,
  85	}, {
  86		.policy		= "buffered",
  87		.cr_mask	= CR_C,
  88		.pmd		= PMD_SECT_BUFFERED,
  89		.pte		= L_PTE_MT_BUFFERABLE,
  90	}, {
  91		.policy		= "writethrough",
  92		.cr_mask	= 0,
  93		.pmd		= PMD_SECT_WT,
  94		.pte		= L_PTE_MT_WRITETHROUGH,
  95	}, {
  96		.policy		= "writeback",
  97		.cr_mask	= 0,
  98		.pmd		= PMD_SECT_WB,
  99		.pte		= L_PTE_MT_WRITEBACK,
 100	}, {
 101		.policy		= "writealloc",
 102		.cr_mask	= 0,
 103		.pmd		= PMD_SECT_WBWA,
 104		.pte		= L_PTE_MT_WRITEALLOC,
 105	}
 106};
 107
 108#ifdef CONFIG_CPU_CP15
 109static unsigned long initial_pmd_value __initdata = 0;
 110
 111/*
 112 * Initialise the cache_policy variable with the initial state specified
 113 * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
 114 * the C code sets the page tables up with the same policy as the head
 115 * assembly code, which avoids an illegal state where the TLBs can get
 116 * confused.  See comments in early_cachepolicy() for more information.
 117 */
 118void __init init_default_cache_policy(unsigned long pmd)
 119{
 120	int i;
 121
 122	initial_pmd_value = pmd;
 123
 124	pmd &= PMD_SECT_CACHE_MASK;
 125
 126	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
 127		if (cache_policies[i].pmd == pmd) {
 128			cachepolicy = i;
 129			break;
 130		}
 131
 132	if (i == ARRAY_SIZE(cache_policies))
 133		pr_err("ERROR: could not find cache policy\n");
 134}
 135
 136/*
 137 * These are useful for identifying cache coherency problems by allowing
 138 * the cache or the cache and writebuffer to be turned off.  (Note: the
 139 * write buffer should not be on and the cache off).
 140 */
 141static int __init early_cachepolicy(char *p)
 142{
 143	int i, selected = -1;
 144
 145	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
 146		int len = strlen(cache_policies[i].policy);
 147
 148		if (memcmp(p, cache_policies[i].policy, len) == 0) {
 149			selected = i;
 
 
 150			break;
 151		}
 152	}
 153
 154	if (selected == -1)
 155		pr_err("ERROR: unknown or unsupported cache policy\n");
 156
 157	/*
 158	 * This restriction is partly to do with the way we boot; it is
 159	 * unpredictable to have memory mapped using two different sets of
 160	 * memory attributes (shared, type, and cache attribs).  We can not
 161	 * change these attributes once the initial assembly has setup the
 162	 * page tables.
 163	 */
 164	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
 165		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
 166			cache_policies[cachepolicy].policy);
 167		return 0;
 168	}
 169
 170	if (selected != cachepolicy) {
 171		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
 172		cachepolicy = selected;
 173		flush_cache_all();
 174		set_cr(cr);
 175	}
 
 
 176	return 0;
 177}
 178early_param("cachepolicy", early_cachepolicy);
 179
 180static int __init early_nocache(char *__unused)
 181{
 182	char *p = "buffered";
 183	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
 184	early_cachepolicy(p);
 185	return 0;
 186}
 187early_param("nocache", early_nocache);
 188
 189static int __init early_nowrite(char *__unused)
 190{
 191	char *p = "uncached";
 192	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
 193	early_cachepolicy(p);
 194	return 0;
 195}
 196early_param("nowb", early_nowrite);
 197
 198#ifndef CONFIG_ARM_LPAE
 199static int __init early_ecc(char *p)
 200{
 201	if (memcmp(p, "on", 2) == 0)
 202		ecc_mask = PMD_PROTECTION;
 203	else if (memcmp(p, "off", 3) == 0)
 204		ecc_mask = 0;
 205	return 0;
 206}
 207early_param("ecc", early_ecc);
 208#endif
 209
 210#else /* ifdef CONFIG_CPU_CP15 */
 211
 212static int __init early_cachepolicy(char *p)
 213{
 214	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
 215	return 0;
 216}
 217early_param("cachepolicy", early_cachepolicy);
 218
 219static int __init noalign_setup(char *__unused)
 220{
 221	pr_warn("noalign kernel parameter not supported without cp15\n");
 
 
 222	return 1;
 223}
 224__setup("noalign", noalign_setup);
 225
 226#endif /* ifdef CONFIG_CPU_CP15 / else */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 227
 228#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
 229#define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
 230#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
 231
 232static struct mem_type mem_types[] __ro_after_init = {
 233	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
 234		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
 235				  L_PTE_SHARED,
 236		.prot_l1	= PMD_TYPE_TABLE,
 237		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
 238		.domain		= DOMAIN_IO,
 239	},
 240	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
 241		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
 242		.prot_l1	= PMD_TYPE_TABLE,
 243		.prot_sect	= PROT_SECT_DEVICE,
 244		.domain		= DOMAIN_IO,
 245	},
 246	[MT_DEVICE_CACHED] = {	  /* ioremap_cache */
 247		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
 248		.prot_l1	= PMD_TYPE_TABLE,
 249		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
 250		.domain		= DOMAIN_IO,
 251	},
 252	[MT_DEVICE_WC] = {	/* ioremap_wc */
 253		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
 254		.prot_l1	= PMD_TYPE_TABLE,
 255		.prot_sect	= PROT_SECT_DEVICE,
 256		.domain		= DOMAIN_IO,
 257	},
 258	[MT_UNCACHED] = {
 259		.prot_pte	= PROT_PTE_DEVICE,
 260		.prot_l1	= PMD_TYPE_TABLE,
 261		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
 262		.domain		= DOMAIN_IO,
 263	},
 264	[MT_CACHECLEAN] = {
 265		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 266		.domain    = DOMAIN_KERNEL,
 267	},
 268#ifndef CONFIG_ARM_LPAE
 269	[MT_MINICLEAN] = {
 270		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
 271		.domain    = DOMAIN_KERNEL,
 272	},
 273#endif
 274	[MT_LOW_VECTORS] = {
 275		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 276				L_PTE_RDONLY,
 277		.prot_l1   = PMD_TYPE_TABLE,
 278		.domain    = DOMAIN_VECTORS,
 279	},
 280	[MT_HIGH_VECTORS] = {
 281		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 282				L_PTE_USER | L_PTE_RDONLY,
 283		.prot_l1   = PMD_TYPE_TABLE,
 284		.domain    = DOMAIN_VECTORS,
 285	},
 286	[MT_MEMORY_RWX] = {
 287		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 288		.prot_l1   = PMD_TYPE_TABLE,
 289		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 290		.domain    = DOMAIN_KERNEL,
 291	},
 292	[MT_MEMORY_RW] = {
 293		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 294			     L_PTE_XN,
 295		.prot_l1   = PMD_TYPE_TABLE,
 296		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 297		.domain    = DOMAIN_KERNEL,
 298	},
 299	[MT_MEMORY_RO] = {
 300		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 301			     L_PTE_XN | L_PTE_RDONLY,
 302		.prot_l1   = PMD_TYPE_TABLE,
 303#ifdef CONFIG_ARM_LPAE
 304		.prot_sect = PMD_TYPE_SECT | L_PMD_SECT_RDONLY | PMD_SECT_AP2,
 305#else
 306		.prot_sect = PMD_TYPE_SECT,
 307#endif
 308		.domain    = DOMAIN_KERNEL,
 309	},
 310	[MT_ROM] = {
 311		.prot_sect = PMD_TYPE_SECT,
 312		.domain    = DOMAIN_KERNEL,
 313	},
 314	[MT_MEMORY_RWX_NONCACHED] = {
 315		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 316				L_PTE_MT_BUFFERABLE,
 317		.prot_l1   = PMD_TYPE_TABLE,
 318		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 319		.domain    = DOMAIN_KERNEL,
 320	},
 321	[MT_MEMORY_RW_DTCM] = {
 322		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 323				L_PTE_XN,
 324		.prot_l1   = PMD_TYPE_TABLE,
 325		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 326		.domain    = DOMAIN_KERNEL,
 327	},
 328	[MT_MEMORY_RWX_ITCM] = {
 329		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 330		.prot_l1   = PMD_TYPE_TABLE,
 331		.domain    = DOMAIN_KERNEL,
 332	},
 333	[MT_MEMORY_RW_SO] = {
 334		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 335				L_PTE_MT_UNCACHED | L_PTE_XN,
 336		.prot_l1   = PMD_TYPE_TABLE,
 337		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
 338				PMD_SECT_UNCACHED | PMD_SECT_XN,
 339		.domain    = DOMAIN_KERNEL,
 340	},
 341	[MT_MEMORY_DMA_READY] = {
 342		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 343				L_PTE_XN,
 344		.prot_l1   = PMD_TYPE_TABLE,
 345		.domain    = DOMAIN_KERNEL,
 346	},
 347};
 348
 349const struct mem_type *get_mem_type(unsigned int type)
 350{
 351	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
 352}
 353EXPORT_SYMBOL(get_mem_type);
 354
 355static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
 356
 357static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
 358	__aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
 359
 360static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
 361{
 362	return &bm_pte[pte_index(addr)];
 363}
 364
 365static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
 366{
 367	return pte_offset_kernel(dir, addr);
 368}
 369
 370static inline pmd_t * __init fixmap_pmd(unsigned long addr)
 371{
 372	return pmd_off_k(addr);
 373}
 374
 375void __init early_fixmap_init(void)
 376{
 377	pmd_t *pmd;
 378
 379	/*
 380	 * The early fixmap range spans multiple pmds, for which
 381	 * we are not prepared:
 382	 */
 383	BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
 384		     != FIXADDR_TOP >> PMD_SHIFT);
 385
 386	pmd = fixmap_pmd(FIXADDR_TOP);
 387	pmd_populate_kernel(&init_mm, pmd, bm_pte);
 388
 389	pte_offset_fixmap = pte_offset_early_fixmap;
 390}
 391
 392/*
 393 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
 394 * As a result, this can only be called with preemption disabled, as under
 395 * stop_machine().
 396 */
 397void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
 398{
 399	unsigned long vaddr = __fix_to_virt(idx);
 400	pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
 401
 402	/* Make sure fixmap region does not exceed available allocation. */
 403	BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) < FIXADDR_START);
 404	BUG_ON(idx >= __end_of_fixed_addresses);
 405
 406	/* We support only device mappings before pgprot_kernel is set. */
 407	if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
 408		    pgprot_val(prot) && pgprot_val(pgprot_kernel) == 0))
 409		return;
 410
 411	if (pgprot_val(prot))
 412		set_pte_at(NULL, vaddr, pte,
 413			pfn_pte(phys >> PAGE_SHIFT, prot));
 414	else
 415		pte_clear(NULL, vaddr, pte);
 416	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
 417}
 418
 419static pgprot_t protection_map[16] __ro_after_init = {
 420	[VM_NONE]					= __PAGE_NONE,
 421	[VM_READ]					= __PAGE_READONLY,
 422	[VM_WRITE]					= __PAGE_COPY,
 423	[VM_WRITE | VM_READ]				= __PAGE_COPY,
 424	[VM_EXEC]					= __PAGE_READONLY_EXEC,
 425	[VM_EXEC | VM_READ]				= __PAGE_READONLY_EXEC,
 426	[VM_EXEC | VM_WRITE]				= __PAGE_COPY_EXEC,
 427	[VM_EXEC | VM_WRITE | VM_READ]			= __PAGE_COPY_EXEC,
 428	[VM_SHARED]					= __PAGE_NONE,
 429	[VM_SHARED | VM_READ]				= __PAGE_READONLY,
 430	[VM_SHARED | VM_WRITE]				= __PAGE_SHARED,
 431	[VM_SHARED | VM_WRITE | VM_READ]		= __PAGE_SHARED,
 432	[VM_SHARED | VM_EXEC]				= __PAGE_READONLY_EXEC,
 433	[VM_SHARED | VM_EXEC | VM_READ]			= __PAGE_READONLY_EXEC,
 434	[VM_SHARED | VM_EXEC | VM_WRITE]		= __PAGE_SHARED_EXEC,
 435	[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= __PAGE_SHARED_EXEC
 436};
 437DECLARE_VM_GET_PAGE_PROT
 438
 439/*
 440 * Adjust the PMD section entries according to the CPU in use.
 441 */
 442static void __init build_mem_type_table(void)
 443{
 444	struct cachepolicy *cp;
 445	unsigned int cr = get_cr();
 446	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
 447	int cpu_arch = cpu_architecture();
 448	int i;
 449
 450	if (cpu_arch < CPU_ARCH_ARMv6) {
 451#if defined(CONFIG_CPU_DCACHE_DISABLE)
 452		if (cachepolicy > CPOLICY_BUFFERED)
 453			cachepolicy = CPOLICY_BUFFERED;
 454#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
 455		if (cachepolicy > CPOLICY_WRITETHROUGH)
 456			cachepolicy = CPOLICY_WRITETHROUGH;
 457#endif
 458	}
 459	if (cpu_arch < CPU_ARCH_ARMv5) {
 460		if (cachepolicy >= CPOLICY_WRITEALLOC)
 461			cachepolicy = CPOLICY_WRITEBACK;
 462		ecc_mask = 0;
 463	}
 464
 465	if (is_smp()) {
 466		if (cachepolicy != CPOLICY_WRITEALLOC) {
 467			pr_warn("Forcing write-allocate cache policy for SMP\n");
 468			cachepolicy = CPOLICY_WRITEALLOC;
 469		}
 470		if (!(initial_pmd_value & PMD_SECT_S)) {
 471			pr_warn("Forcing shared mappings for SMP\n");
 472			initial_pmd_value |= PMD_SECT_S;
 473		}
 474	}
 475
 476	/*
 477	 * Strip out features not present on earlier architectures.
 478	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
 479	 * without extended page tables don't have the 'Shared' bit.
 480	 */
 481	if (cpu_arch < CPU_ARCH_ARMv5)
 482		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 483			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
 484	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
 485		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 486			mem_types[i].prot_sect &= ~PMD_SECT_S;
 487
 488	/*
 489	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
 490	 * "update-able on write" bit on ARM610).  However, Xscale and
 491	 * Xscale3 require this bit to be cleared.
 492	 */
 493	if (cpu_is_xscale_family()) {
 494		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 495			mem_types[i].prot_sect &= ~PMD_BIT4;
 496			mem_types[i].prot_l1 &= ~PMD_BIT4;
 497		}
 498	} else if (cpu_arch < CPU_ARCH_ARMv6) {
 499		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 500			if (mem_types[i].prot_l1)
 501				mem_types[i].prot_l1 |= PMD_BIT4;
 502			if (mem_types[i].prot_sect)
 503				mem_types[i].prot_sect |= PMD_BIT4;
 504		}
 505	}
 506
 507	/*
 508	 * Mark the device areas according to the CPU/architecture.
 509	 */
 510	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
 511		if (!cpu_is_xsc3()) {
 512			/*
 513			 * Mark device regions on ARMv6+ as execute-never
 514			 * to prevent speculative instruction fetches.
 515			 */
 516			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
 517			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
 518			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
 519			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
 520
 521			/* Also setup NX memory mapping */
 522			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
 523			mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_XN;
 524		}
 525		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 526			/*
 527			 * For ARMv7 with TEX remapping,
 528			 * - shared device is SXCB=1100
 529			 * - nonshared device is SXCB=0100
 530			 * - write combine device mem is SXCB=0001
 531			 * (Uncached Normal memory)
 532			 */
 533			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
 534			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
 535			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 536		} else if (cpu_is_xsc3()) {
 537			/*
 538			 * For Xscale3,
 539			 * - shared device is TEXCB=00101
 540			 * - nonshared device is TEXCB=01000
 541			 * - write combine device mem is TEXCB=00100
 542			 * (Inner/Outer Uncacheable in xsc3 parlance)
 543			 */
 544			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
 545			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 546			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 547		} else {
 548			/*
 549			 * For ARMv6 and ARMv7 without TEX remapping,
 550			 * - shared device is TEXCB=00001
 551			 * - nonshared device is TEXCB=01000
 552			 * - write combine device mem is TEXCB=00100
 553			 * (Uncached Normal in ARMv6 parlance).
 554			 */
 555			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
 556			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 557			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 558		}
 559	} else {
 560		/*
 561		 * On others, write combining is "Uncached/Buffered"
 562		 */
 563		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 564	}
 565
 566	/*
 567	 * Now deal with the memory-type mappings
 568	 */
 569	cp = &cache_policies[cachepolicy];
 570	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
 571
 572#ifndef CONFIG_ARM_LPAE
 573	/*
 574	 * We don't use domains on ARMv6 (since this causes problems with
 575	 * v6/v7 kernels), so we must use a separate memory type for user
 576	 * r/o, kernel r/w to map the vectors page.
 577	 */
 578	if (cpu_arch == CPU_ARCH_ARMv6)
 579		vecs_pgprot |= L_PTE_MT_VECTORS;
 580
 581	/*
 582	 * Check is it with support for the PXN bit
 583	 * in the Short-descriptor translation table format descriptors.
 584	 */
 585	if (cpu_arch == CPU_ARCH_ARMv7 &&
 586		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
 587		user_pmd_table |= PMD_PXNTABLE;
 
 
 588	}
 589#endif
 590
 591	/*
 592	 * ARMv6 and above have extended page tables.
 593	 */
 594	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
 595#ifndef CONFIG_ARM_LPAE
 596		/*
 597		 * Mark cache clean areas and XIP ROM read only
 598		 * from SVC mode and no access from userspace.
 599		 */
 600		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 601		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 602		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 603		mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 604#endif
 605
 606		/*
 607		 * If the initial page tables were created with the S bit
 608		 * set, then we need to do the same here for the same
 609		 * reasons given in early_cachepolicy().
 610		 */
 611		if (initial_pmd_value & PMD_SECT_S) {
 612			user_pgprot |= L_PTE_SHARED;
 613			kern_pgprot |= L_PTE_SHARED;
 614			vecs_pgprot |= L_PTE_SHARED;
 615			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
 616			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
 617			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
 618			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
 619			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
 620			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
 621			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
 622			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
 623			mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_S;
 624			mem_types[MT_MEMORY_RO].prot_pte |= L_PTE_SHARED;
 625			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
 626			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
 627			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
 628		}
 629	}
 630
 631	/*
 632	 * Non-cacheable Normal - intended for memory areas that must
 633	 * not cause dirty cache line writebacks when used
 634	 */
 635	if (cpu_arch >= CPU_ARCH_ARMv6) {
 636		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 637			/* Non-cacheable Normal is XCB = 001 */
 638			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 639				PMD_SECT_BUFFERED;
 640		} else {
 641			/* For both ARMv6 and non-TEX-remapping ARMv7 */
 642			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 643				PMD_SECT_TEX(1);
 644		}
 645	} else {
 646		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
 647	}
 648
 649#ifdef CONFIG_ARM_LPAE
 650	/*
 651	 * Do not generate access flag faults for the kernel mappings.
 652	 */
 653	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 654		mem_types[i].prot_pte |= PTE_EXT_AF;
 655		if (mem_types[i].prot_sect)
 656			mem_types[i].prot_sect |= PMD_SECT_AF;
 657	}
 658	kern_pgprot |= PTE_EXT_AF;
 659	vecs_pgprot |= PTE_EXT_AF;
 660
 661	/*
 662	 * Set PXN for user mappings
 663	 */
 664	user_pgprot |= PTE_EXT_PXN;
 665#endif
 666
 667	for (i = 0; i < 16; i++) {
 668		pteval_t v = pgprot_val(protection_map[i]);
 669		protection_map[i] = __pgprot(v | user_pgprot);
 670	}
 671
 672	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
 673	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
 674
 675	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
 676	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
 677				 L_PTE_DIRTY | kern_pgprot);
 678
 679	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
 680	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
 681	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
 682	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
 683	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
 684	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
 685	mem_types[MT_MEMORY_RO].prot_sect |= ecc_mask | cp->pmd;
 686	mem_types[MT_MEMORY_RO].prot_pte |= kern_pgprot;
 687	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
 688	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
 689	mem_types[MT_ROM].prot_sect |= cp->pmd;
 690
 691	switch (cp->pmd) {
 692	case PMD_SECT_WT:
 693		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
 694		break;
 695	case PMD_SECT_WB:
 696	case PMD_SECT_WBWA:
 697		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
 698		break;
 699	}
 700	pr_info("Memory policy: %sData cache %s\n",
 701		ecc_mask ? "ECC enabled, " : "", cp->policy);
 702
 703	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 704		struct mem_type *t = &mem_types[i];
 705		if (t->prot_l1)
 706			t->prot_l1 |= PMD_DOMAIN(t->domain);
 707		if (t->prot_sect)
 708			t->prot_sect |= PMD_DOMAIN(t->domain);
 709	}
 710}
 711
 712#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
 713pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 714			      unsigned long size, pgprot_t vma_prot)
 715{
 716	if (!pfn_valid(pfn))
 717		return pgprot_noncached(vma_prot);
 718	else if (file->f_flags & O_SYNC)
 719		return pgprot_writecombine(vma_prot);
 720	return vma_prot;
 721}
 722EXPORT_SYMBOL(phys_mem_access_prot);
 723#endif
 724
 725#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
 726
 727static void __init *early_alloc(unsigned long sz)
 728{
 729	void *ptr = memblock_alloc(sz, sz);
 730
 731	if (!ptr)
 732		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
 733		      __func__, sz, sz);
 734
 735	return ptr;
 736}
 737
 738static void *__init late_alloc(unsigned long sz)
 739{
 740	void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz));
 741
 742	if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr)))
 743		BUG();
 744	return ptr;
 745}
 746
 747static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
 748				unsigned long prot,
 749				void *(*alloc)(unsigned long sz))
 750{
 751	if (pmd_none(*pmd)) {
 752		pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
 753		__pmd_populate(pmd, __pa(pte), prot);
 754	}
 755	BUG_ON(pmd_bad(*pmd));
 756	return pte_offset_kernel(pmd, addr);
 757}
 758
 759static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
 760				      unsigned long prot)
 761{
 762	return arm_pte_alloc(pmd, addr, prot, early_alloc);
 763}
 764
 765static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
 766				  unsigned long end, unsigned long pfn,
 767				  const struct mem_type *type,
 768				  void *(*alloc)(unsigned long sz),
 769				  bool ng)
 770{
 771	pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
 772	do {
 773		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
 774			    ng ? PTE_EXT_NG : 0);
 775		pfn++;
 776	} while (pte++, addr += PAGE_SIZE, addr != end);
 777}
 778
 779static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
 780			unsigned long end, phys_addr_t phys,
 781			const struct mem_type *type, bool ng)
 782{
 783	pmd_t *p = pmd;
 784
 785#ifndef CONFIG_ARM_LPAE
 786	/*
 787	 * In classic MMU format, puds and pmds are folded in to
 788	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
 789	 * group of L1 entries making up one logical pointer to
 790	 * an L2 table (2MB), where as PMDs refer to the individual
 791	 * L1 entries (1MB). Hence increment to get the correct
 792	 * offset for odd 1MB sections.
 793	 * (See arch/arm/include/asm/pgtable-2level.h)
 794	 */
 795	if (addr & SECTION_SIZE)
 796		pmd++;
 797#endif
 798	do {
 799		*pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
 800		phys += SECTION_SIZE;
 801	} while (pmd++, addr += SECTION_SIZE, addr != end);
 802
 803	flush_pmd_entry(p);
 804}
 805
 806static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
 807				      unsigned long end, phys_addr_t phys,
 808				      const struct mem_type *type,
 809				      void *(*alloc)(unsigned long sz), bool ng)
 810{
 811	pmd_t *pmd = pmd_offset(pud, addr);
 812	unsigned long next;
 813
 814	do {
 815		/*
 816		 * With LPAE, we must loop over to map
 817		 * all the pmds for the given range.
 818		 */
 819		next = pmd_addr_end(addr, end);
 
 
 
 
 
 
 
 
 
 
 820
 
 
 821		/*
 822		 * Try a section mapping - addr, next and phys must all be
 823		 * aligned to a section boundary.
 824		 */
 825		if (type->prot_sect &&
 826				((addr | next | phys) & ~SECTION_MASK) == 0) {
 827			__map_init_section(pmd, addr, next, phys, type, ng);
 828		} else {
 829			alloc_init_pte(pmd, addr, next,
 830				       __phys_to_pfn(phys), type, alloc, ng);
 831		}
 832
 833		phys += next - addr;
 834
 835	} while (pmd++, addr = next, addr != end);
 836}
 837
 838static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr,
 839				  unsigned long end, phys_addr_t phys,
 840				  const struct mem_type *type,
 841				  void *(*alloc)(unsigned long sz), bool ng)
 842{
 843	pud_t *pud = pud_offset(p4d, addr);
 844	unsigned long next;
 845
 846	do {
 847		next = pud_addr_end(addr, end);
 848		alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
 849		phys += next - addr;
 850	} while (pud++, addr = next, addr != end);
 851}
 852
 853static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr,
 854				  unsigned long end, phys_addr_t phys,
 855				  const struct mem_type *type,
 856				  void *(*alloc)(unsigned long sz), bool ng)
 857{
 858	p4d_t *p4d = p4d_offset(pgd, addr);
 859	unsigned long next;
 860
 861	do {
 862		next = p4d_addr_end(addr, end);
 863		alloc_init_pud(p4d, addr, next, phys, type, alloc, ng);
 864		phys += next - addr;
 865	} while (p4d++, addr = next, addr != end);
 866}
 867
 868#ifndef CONFIG_ARM_LPAE
 869static void __init create_36bit_mapping(struct mm_struct *mm,
 870					struct map_desc *md,
 871					const struct mem_type *type,
 872					bool ng)
 873{
 874	unsigned long addr, length, end;
 875	phys_addr_t phys;
 876	pgd_t *pgd;
 877
 878	addr = md->virtual;
 879	phys = __pfn_to_phys(md->pfn);
 880	length = PAGE_ALIGN(md->length);
 881
 882	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
 883		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
 
 884		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 885		return;
 886	}
 887
 888	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
 889	 *	Since domain assignments can in fact be arbitrary, the
 890	 *	'domain == 0' check below is required to insure that ARMv6
 891	 *	supersections are only allocated for domain 0 regardless
 892	 *	of the actual domain assignments in use.
 893	 */
 894	if (type->domain) {
 895		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
 
 896		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 897		return;
 898	}
 899
 900	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
 901		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
 
 902		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 903		return;
 904	}
 905
 906	/*
 907	 * Shift bits [35:32] of address into bits [23:20] of PMD
 908	 * (See ARMv6 spec).
 909	 */
 910	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
 911
 912	pgd = pgd_offset(mm, addr);
 913	end = addr + length;
 914	do {
 915		p4d_t *p4d = p4d_offset(pgd, addr);
 916		pud_t *pud = pud_offset(p4d, addr);
 917		pmd_t *pmd = pmd_offset(pud, addr);
 918		int i;
 919
 920		for (i = 0; i < 16; i++)
 921			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
 922				       (ng ? PMD_SECT_nG : 0));
 923
 924		addr += SUPERSECTION_SIZE;
 925		phys += SUPERSECTION_SIZE;
 926		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
 927	} while (addr != end);
 928}
 929#endif	/* !CONFIG_ARM_LPAE */
 930
 931static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
 932				    void *(*alloc)(unsigned long sz),
 933				    bool ng)
 
 
 
 
 
 934{
 935	unsigned long addr, length, end;
 936	phys_addr_t phys;
 937	const struct mem_type *type;
 938	pgd_t *pgd;
 939
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 940	type = &mem_types[md->type];
 941
 942#ifndef CONFIG_ARM_LPAE
 943	/*
 944	 * Catch 36-bit addresses
 945	 */
 946	if (md->pfn >= 0x100000) {
 947		create_36bit_mapping(mm, md, type, ng);
 948		return;
 949	}
 950#endif
 951
 952	addr = md->virtual & PAGE_MASK;
 953	phys = __pfn_to_phys(md->pfn);
 954	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 955
 956	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
 957		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
 958			(long long)__pfn_to_phys(md->pfn), addr);
 
 959		return;
 960	}
 961
 962	pgd = pgd_offset(mm, addr);
 963	end = addr + length;
 964	do {
 965		unsigned long next = pgd_addr_end(addr, end);
 966
 967		alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng);
 968
 969		phys += next - addr;
 970		addr = next;
 971	} while (pgd++, addr != end);
 972}
 973
 974/*
 975 * Create the page directory entries and any necessary
 976 * page tables for the mapping specified by `md'.  We
 977 * are able to cope here with varying sizes and address
 978 * offsets, and we take full advantage of sections and
 979 * supersections.
 980 */
 981static void __init create_mapping(struct map_desc *md)
 982{
 983	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
 984		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
 985			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 986		return;
 987	}
 988
 989	if (md->type == MT_DEVICE &&
 990	    md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
 991	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
 992		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
 993			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 994	}
 995
 996	__create_mapping(&init_mm, md, early_alloc, false);
 997}
 998
 999void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
1000				bool ng)
1001{
1002#ifdef CONFIG_ARM_LPAE
1003	p4d_t *p4d;
1004	pud_t *pud;
1005
1006	p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
1007	if (WARN_ON(!p4d))
1008		return;
1009	pud = pud_alloc(mm, p4d, md->virtual);
1010	if (WARN_ON(!pud))
1011		return;
1012	pmd_alloc(mm, pud, 0);
1013#endif
1014	__create_mapping(mm, md, late_alloc, ng);
1015}
1016
1017/*
1018 * Create the architecture specific mappings
1019 */
1020void __init iotable_init(struct map_desc *io_desc, int nr)
1021{
1022	struct map_desc *md;
1023	struct vm_struct *vm;
1024	struct static_vm *svm;
1025
1026	if (!nr)
1027		return;
1028
1029	svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
1030	if (!svm)
1031		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1032		      __func__, sizeof(*svm) * nr, __alignof__(*svm));
1033
1034	for (md = io_desc; nr; md++, nr--) {
1035		create_mapping(md);
1036
1037		vm = &svm->vm;
1038		vm->addr = (void *)(md->virtual & PAGE_MASK);
1039		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1040		vm->phys_addr = __pfn_to_phys(md->pfn);
1041		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1042		vm->flags |= VM_ARM_MTYPE(md->type);
1043		vm->caller = iotable_init;
1044		add_static_vm_early(svm++);
1045	}
1046}
1047
1048void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1049				  void *caller)
1050{
1051	struct vm_struct *vm;
1052	struct static_vm *svm;
1053
1054	svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
1055	if (!svm)
1056		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1057		      __func__, sizeof(*svm), __alignof__(*svm));
1058
1059	vm = &svm->vm;
1060	vm->addr = (void *)addr;
1061	vm->size = size;
1062	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1063	vm->caller = caller;
1064	add_static_vm_early(svm);
1065}
1066
1067#ifndef CONFIG_ARM_LPAE
1068
1069/*
1070 * The Linux PMD is made of two consecutive section entries covering 2MB
1071 * (see definition in include/asm/pgtable-2level.h).  However a call to
1072 * create_mapping() may optimize static mappings by using individual
1073 * 1MB section mappings.  This leaves the actual PMD potentially half
1074 * initialized if the top or bottom section entry isn't used, leaving it
1075 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1076 * the virtual space left free by that unused section entry.
1077 *
1078 * Let's avoid the issue by inserting dummy vm entries covering the unused
1079 * PMD halves once the static mappings are in place.
1080 */
1081
1082static void __init pmd_empty_section_gap(unsigned long addr)
1083{
1084	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1085}
1086
1087static void __init fill_pmd_gaps(void)
1088{
1089	struct static_vm *svm;
1090	struct vm_struct *vm;
1091	unsigned long addr, next = 0;
1092	pmd_t *pmd;
1093
1094	list_for_each_entry(svm, &static_vmlist, list) {
1095		vm = &svm->vm;
1096		addr = (unsigned long)vm->addr;
1097		if (addr < next)
1098			continue;
1099
1100		/*
1101		 * Check if this vm starts on an odd section boundary.
1102		 * If so and the first section entry for this PMD is free
1103		 * then we block the corresponding virtual address.
1104		 */
1105		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1106			pmd = pmd_off_k(addr);
1107			if (pmd_none(*pmd))
1108				pmd_empty_section_gap(addr & PMD_MASK);
1109		}
1110
1111		/*
1112		 * Then check if this vm ends on an odd section boundary.
1113		 * If so and the second section entry for this PMD is empty
1114		 * then we block the corresponding virtual address.
1115		 */
1116		addr += vm->size;
1117		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1118			pmd = pmd_off_k(addr) + 1;
1119			if (pmd_none(*pmd))
1120				pmd_empty_section_gap(addr);
1121		}
1122
1123		/* no need to look at any vm entry until we hit the next PMD */
1124		next = (addr + PMD_SIZE - 1) & PMD_MASK;
1125	}
1126}
1127
1128#else
1129#define fill_pmd_gaps() do { } while (0)
1130#endif
1131
1132#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1133static void __init pci_reserve_io(void)
1134{
1135	struct static_vm *svm;
1136
1137	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1138	if (svm)
1139		return;
1140
1141	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1142}
1143#else
1144#define pci_reserve_io() do { } while (0)
1145#endif
1146
1147#ifdef CONFIG_DEBUG_LL
1148void __init debug_ll_io_init(void)
1149{
1150	struct map_desc map;
1151
1152	debug_ll_addr(&map.pfn, &map.virtual);
1153	if (!map.pfn || !map.virtual)
1154		return;
1155	map.pfn = __phys_to_pfn(map.pfn);
1156	map.virtual &= PAGE_MASK;
1157	map.length = PAGE_SIZE;
1158	map.type = MT_DEVICE;
1159	iotable_init(&map, 1);
1160}
1161#endif
1162
1163static unsigned long __initdata vmalloc_size = 240 * SZ_1M;
1164
1165/*
1166 * vmalloc=size forces the vmalloc area to be exactly 'size'
1167 * bytes. This can be used to increase (or decrease) the vmalloc
1168 * area - the default is 240MiB.
1169 */
1170static int __init early_vmalloc(char *arg)
1171{
1172	unsigned long vmalloc_reserve = memparse(arg, NULL);
1173	unsigned long vmalloc_max;
1174
1175	if (vmalloc_reserve < SZ_16M) {
1176		vmalloc_reserve = SZ_16M;
1177		pr_warn("vmalloc area is too small, limiting to %luMiB\n",
 
1178			vmalloc_reserve >> 20);
1179	}
1180
1181	vmalloc_max = VMALLOC_END - (PAGE_OFFSET + SZ_32M + VMALLOC_OFFSET);
1182	if (vmalloc_reserve > vmalloc_max) {
1183		vmalloc_reserve = vmalloc_max;
1184		pr_warn("vmalloc area is too big, limiting to %luMiB\n",
1185			vmalloc_reserve >> 20);
1186	}
1187
1188	vmalloc_size = vmalloc_reserve;
1189	return 0;
1190}
1191early_param("vmalloc", early_vmalloc);
1192
1193phys_addr_t arm_lowmem_limit __initdata = 0;
1194
1195void __init adjust_lowmem_bounds(void)
1196{
1197	phys_addr_t block_start, block_end, memblock_limit = 0;
1198	u64 vmalloc_limit, i;
1199	phys_addr_t lowmem_limit = 0;
1200
1201	/*
1202	 * Let's use our own (unoptimized) equivalent of __pa() that is
1203	 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1204	 * The result is used as the upper bound on physical memory address
1205	 * and may itself be outside the valid range for which phys_addr_t
1206	 * and therefore __pa() is defined.
1207	 */
1208	vmalloc_limit = (u64)VMALLOC_END - vmalloc_size - VMALLOC_OFFSET -
1209			PAGE_OFFSET + PHYS_OFFSET;
1210
1211	/*
1212	 * The first usable region must be PMD aligned. Mark its start
1213	 * as MEMBLOCK_NOMAP if it isn't
1214	 */
1215	for_each_mem_range(i, &block_start, &block_end) {
1216		if (!IS_ALIGNED(block_start, PMD_SIZE)) {
1217			phys_addr_t len;
1218
1219			len = round_up(block_start, PMD_SIZE) - block_start;
1220			memblock_mark_nomap(block_start, len);
1221		}
1222		break;
1223	}
1224
1225	for_each_mem_range(i, &block_start, &block_end) {
1226		if (block_start < vmalloc_limit) {
1227			if (block_end > lowmem_limit)
1228				/*
1229				 * Compare as u64 to ensure vmalloc_limit does
1230				 * not get truncated. block_end should always
1231				 * fit in phys_addr_t so there should be no
1232				 * issue with assignment.
1233				 */
1234				lowmem_limit = min_t(u64,
1235							 vmalloc_limit,
1236							 block_end);
1237
1238			/*
1239			 * Find the first non-pmd-aligned page, and point
1240			 * memblock_limit at it. This relies on rounding the
1241			 * limit down to be pmd-aligned, which happens at the
1242			 * end of this function.
1243			 *
1244			 * With this algorithm, the start or end of almost any
1245			 * bank can be non-pmd-aligned. The only exception is
1246			 * that the start of the bank 0 must be section-
1247			 * aligned, since otherwise memory would need to be
1248			 * allocated when mapping the start of bank 0, which
1249			 * occurs before any free memory is mapped.
1250			 */
1251			if (!memblock_limit) {
1252				if (!IS_ALIGNED(block_start, PMD_SIZE))
1253					memblock_limit = block_start;
1254				else if (!IS_ALIGNED(block_end, PMD_SIZE))
1255					memblock_limit = lowmem_limit;
1256			}
 
 
 
 
1257
 
 
 
 
 
 
 
 
 
 
 
1258		}
1259	}
1260
1261	arm_lowmem_limit = lowmem_limit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1262
1263	high_memory = __va(arm_lowmem_limit - 1) + 1;
 
 
 
 
1264
1265	if (!memblock_limit)
1266		memblock_limit = arm_lowmem_limit;
1267
1268	/*
1269	 * Round the memblock limit down to a pmd size.  This
1270	 * helps to ensure that we will allocate memory from the
1271	 * last full pmd, which should be mapped.
1272	 */
1273	memblock_limit = round_down(memblock_limit, PMD_SIZE);
1274
1275	if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1276		if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1277			phys_addr_t end = memblock_end_of_DRAM();
1278
1279			pr_notice("Ignoring RAM at %pa-%pa\n",
1280				  &memblock_limit, &end);
1281			pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1282
1283			memblock_remove(memblock_limit, end - memblock_limit);
1284		}
1285	}
1286
1287	memblock_set_current_limit(memblock_limit);
 
1288}
1289
1290static __init void prepare_page_table(void)
1291{
1292	unsigned long addr;
1293	phys_addr_t end;
1294
1295	/*
1296	 * Clear out all the mappings below the kernel image.
1297	 */
1298#ifdef CONFIG_KASAN
1299	/*
1300	 * KASan's shadow memory inserts itself between the TASK_SIZE
1301	 * and MODULES_VADDR. Do not clear the KASan shadow memory mappings.
1302	 */
1303	for (addr = 0; addr < KASAN_SHADOW_START; addr += PMD_SIZE)
1304		pmd_clear(pmd_off_k(addr));
1305	/*
1306	 * Skip over the KASan shadow area. KASAN_SHADOW_END is sometimes
1307	 * equal to MODULES_VADDR and then we exit the pmd clearing. If we
1308	 * are using a thumb-compiled kernel, there there will be 8MB more
1309	 * to clear as KASan always offset to 16 MB below MODULES_VADDR.
1310	 */
1311	for (addr = KASAN_SHADOW_END; addr < MODULES_VADDR; addr += PMD_SIZE)
1312		pmd_clear(pmd_off_k(addr));
1313#else
1314	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1315		pmd_clear(pmd_off_k(addr));
1316#endif
1317
1318#ifdef CONFIG_XIP_KERNEL
1319	/* The XIP kernel is mapped in the module area -- skip over it */
1320	addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1321#endif
1322	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1323		pmd_clear(pmd_off_k(addr));
1324
1325	/*
1326	 * Find the end of the first block of lowmem.
1327	 */
1328	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1329	if (end >= arm_lowmem_limit)
1330		end = arm_lowmem_limit;
1331
1332	/*
1333	 * Clear out all the kernel space mappings, except for the first
1334	 * memory bank, up to the vmalloc region.
1335	 */
1336	for (addr = __phys_to_virt(end);
1337	     addr < VMALLOC_START; addr += PMD_SIZE)
1338		pmd_clear(pmd_off_k(addr));
1339}
1340
1341#ifdef CONFIG_ARM_LPAE
1342/* the first page is reserved for pgd */
1343#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1344				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1345#else
1346#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1347#endif
1348
1349/*
1350 * Reserve the special regions of memory
1351 */
1352void __init arm_mm_memblock_reserve(void)
1353{
1354	/*
1355	 * Reserve the page tables.  These are already in use,
1356	 * and can only be in node 0.
1357	 */
1358	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1359
1360#ifdef CONFIG_SA1111
1361	/*
1362	 * Because of the SA1111 DMA bug, we want to preserve our
1363	 * precious DMA-able memory...
1364	 */
1365	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1366#endif
1367}
1368
1369/*
1370 * Set up the device mappings.  Since we clear out the page tables for all
1371 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1372 * device mappings.  This means earlycon can be used to debug this function
1373 * Any other function or debugging method which may touch any device _will_
1374 * crash the kernel.
1375 */
1376static void __init devicemaps_init(const struct machine_desc *mdesc)
1377{
1378	struct map_desc map;
1379	unsigned long addr;
1380	void *vectors;
1381
1382	/*
1383	 * Allocate the vector page early.
1384	 */
1385	vectors = early_alloc(PAGE_SIZE * 2);
1386
1387	early_trap_init(vectors);
1388
1389	/*
1390	 * Clear page table except top pmd used by early fixmaps
1391	 */
1392	for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1393		pmd_clear(pmd_off_k(addr));
1394
1395	if (__atags_pointer) {
1396		/* create a read-only mapping of the device tree */
1397		map.pfn = __phys_to_pfn(__atags_pointer & SECTION_MASK);
1398		map.virtual = FDT_FIXED_BASE;
1399		map.length = FDT_FIXED_SIZE;
1400		map.type = MT_MEMORY_RO;
1401		create_mapping(&map);
1402	}
1403
1404	/*
1405	 * Map the kernel if it is XIP.
1406	 * It is always first in the modulearea.
1407	 */
1408#ifdef CONFIG_XIP_KERNEL
1409	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1410	map.virtual = MODULES_VADDR;
1411	map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1412	map.type = MT_ROM;
1413	create_mapping(&map);
1414#endif
1415
1416	/*
1417	 * Map the cache flushing regions.
1418	 */
1419#ifdef FLUSH_BASE
1420	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1421	map.virtual = FLUSH_BASE;
1422	map.length = SZ_1M;
1423	map.type = MT_CACHECLEAN;
1424	create_mapping(&map);
1425#endif
1426#ifdef FLUSH_BASE_MINICACHE
1427	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1428	map.virtual = FLUSH_BASE_MINICACHE;
1429	map.length = SZ_1M;
1430	map.type = MT_MINICLEAN;
1431	create_mapping(&map);
1432#endif
1433
1434	/*
1435	 * Create a mapping for the machine vectors at the high-vectors
1436	 * location (0xffff0000).  If we aren't using high-vectors, also
1437	 * create a mapping at the low-vectors virtual address.
1438	 */
1439	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1440	map.virtual = 0xffff0000;
1441	map.length = PAGE_SIZE;
1442#ifdef CONFIG_KUSER_HELPERS
1443	map.type = MT_HIGH_VECTORS;
1444#else
1445	map.type = MT_LOW_VECTORS;
1446#endif
1447	create_mapping(&map);
1448
1449	if (!vectors_high()) {
1450		map.virtual = 0;
1451		map.length = PAGE_SIZE * 2;
1452		map.type = MT_LOW_VECTORS;
1453		create_mapping(&map);
1454	}
1455
1456	/* Now create a kernel read-only mapping */
1457	map.pfn += 1;
1458	map.virtual = 0xffff0000 + PAGE_SIZE;
1459	map.length = PAGE_SIZE;
1460	map.type = MT_LOW_VECTORS;
1461	create_mapping(&map);
1462
1463	/*
1464	 * Ask the machine support to map in the statically mapped devices.
1465	 */
1466	if (mdesc->map_io)
1467		mdesc->map_io();
1468	else
1469		debug_ll_io_init();
1470	fill_pmd_gaps();
1471
1472	/* Reserve fixed i/o space in VMALLOC region */
1473	pci_reserve_io();
1474
1475	/*
1476	 * Finally flush the caches and tlb to ensure that we're in a
1477	 * consistent state wrt the writebuffer.  This also ensures that
1478	 * any write-allocated cache lines in the vector page are written
1479	 * back.  After this point, we can start to touch devices again.
1480	 */
1481	local_flush_tlb_all();
1482	flush_cache_all();
1483
1484	/* Enable asynchronous aborts */
1485	early_abt_enable();
1486}
1487
1488static void __init kmap_init(void)
1489{
1490#ifdef CONFIG_HIGHMEM
1491	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1492		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1493#endif
1494
1495	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1496			_PAGE_KERNEL_TABLE);
1497}
1498
1499static void __init map_lowmem(void)
1500{
1501	phys_addr_t start, end;
1502	u64 i;
1503
1504	/* Map all the lowmem memory banks. */
1505	for_each_mem_range(i, &start, &end) {
 
 
1506		struct map_desc map;
1507
1508		pr_debug("map lowmem start: 0x%08llx, end: 0x%08llx\n",
1509			 (long long)start, (long long)end);
1510		if (end > arm_lowmem_limit)
1511			end = arm_lowmem_limit;
1512		if (start >= end)
1513			break;
1514
1515		/*
1516		 * If our kernel image is in the VMALLOC area we need to remove
1517		 * the kernel physical memory from lowmem since the kernel will
1518		 * be mapped separately.
1519		 *
1520		 * The kernel will typically be at the very start of lowmem,
1521		 * but any placement relative to memory ranges is possible.
1522		 *
1523		 * If the memblock contains the kernel, we have to chisel out
1524		 * the kernel memory from it and map each part separately. We
1525		 * get 6 different theoretical cases:
1526		 *
1527		 *                            +--------+ +--------+
1528		 *  +-- start --+  +--------+ | Kernel | | Kernel |
1529		 *  |           |  | Kernel | | case 2 | | case 5 |
1530		 *  |           |  | case 1 | +--------+ |        | +--------+
1531		 *  |  Memory   |  +--------+            |        | | Kernel |
1532		 *  |  range    |  +--------+            |        | | case 6 |
1533		 *  |           |  | Kernel | +--------+ |        | +--------+
1534		 *  |           |  | case 3 | | Kernel | |        |
1535		 *  +-- end ----+  +--------+ | case 4 | |        |
1536		 *                            +--------+ +--------+
1537		 */
1538
1539		/* Case 5: kernel covers range, don't map anything, should be rare */
1540		if ((start > kernel_sec_start) && (end < kernel_sec_end))
1541			break;
1542
1543		/* Cases where the kernel is starting inside the range */
1544		if ((kernel_sec_start >= start) && (kernel_sec_start <= end)) {
1545			/* Case 6: kernel is embedded in the range, we need two mappings */
1546			if ((start < kernel_sec_start) && (end > kernel_sec_end)) {
1547				/* Map memory below the kernel */
1548				map.pfn = __phys_to_pfn(start);
1549				map.virtual = __phys_to_virt(start);
1550				map.length = kernel_sec_start - start;
1551				map.type = MT_MEMORY_RW;
1552				create_mapping(&map);
1553				/* Map memory above the kernel */
1554				map.pfn = __phys_to_pfn(kernel_sec_end);
1555				map.virtual = __phys_to_virt(kernel_sec_end);
1556				map.length = end - kernel_sec_end;
1557				map.type = MT_MEMORY_RW;
1558				create_mapping(&map);
1559				break;
1560			}
1561			/* Case 1: kernel and range start at the same address, should be common */
1562			if (kernel_sec_start == start)
1563				start = kernel_sec_end;
1564			/* Case 3: kernel and range end at the same address, should be rare */
1565			if (kernel_sec_end == end)
1566				end = kernel_sec_start;
1567		} else if ((kernel_sec_start < start) && (kernel_sec_end > start) && (kernel_sec_end < end)) {
1568			/* Case 2: kernel ends inside range, starts below it */
1569			start = kernel_sec_end;
1570		} else if ((kernel_sec_start > start) && (kernel_sec_start < end) && (kernel_sec_end > end)) {
1571			/* Case 4: kernel starts inside range, ends above it */
1572			end = kernel_sec_start;
1573		}
1574		map.pfn = __phys_to_pfn(start);
1575		map.virtual = __phys_to_virt(start);
1576		map.length = end - start;
1577		map.type = MT_MEMORY_RW;
1578		create_mapping(&map);
1579	}
1580}
1581
1582static void __init map_kernel(void)
1583{
1584	/*
1585	 * We use the well known kernel section start and end and split the area in the
1586	 * middle like this:
1587	 *  .                .
1588	 *  | RW memory      |
1589	 *  +----------------+ kernel_x_start
1590	 *  | Executable     |
1591	 *  | kernel memory  |
1592	 *  +----------------+ kernel_x_end / kernel_nx_start
1593	 *  | Non-executable |
1594	 *  | kernel memory  |
1595	 *  +----------------+ kernel_nx_end
1596	 *  | RW memory      |
1597	 *  .                .
1598	 *
1599	 * Notice that we are dealing with section sized mappings here so all of this
1600	 * will be bumped to the closest section boundary. This means that some of the
1601	 * non-executable part of the kernel memory is actually mapped as executable.
1602	 * This will only persist until we turn on proper memory management later on
1603	 * and we remap the whole kernel with page granularity.
1604	 */
1605	phys_addr_t kernel_x_start = kernel_sec_start;
1606	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1607	phys_addr_t kernel_nx_start = kernel_x_end;
1608	phys_addr_t kernel_nx_end = kernel_sec_end;
1609	struct map_desc map;
1610
1611	map.pfn = __phys_to_pfn(kernel_x_start);
1612	map.virtual = __phys_to_virt(kernel_x_start);
1613	map.length = kernel_x_end - kernel_x_start;
1614	map.type = MT_MEMORY_RWX;
1615	create_mapping(&map);
1616
1617	/* If the nx part is small it may end up covered by the tail of the RWX section */
1618	if (kernel_x_end == kernel_nx_end)
1619		return;
1620
1621	map.pfn = __phys_to_pfn(kernel_nx_start);
1622	map.virtual = __phys_to_virt(kernel_nx_start);
1623	map.length = kernel_nx_end - kernel_nx_start;
1624	map.type = MT_MEMORY_RW;
1625	create_mapping(&map);
1626}
1627
1628#ifdef CONFIG_ARM_PV_FIXUP
1629typedef void pgtables_remap(long long offset, unsigned long pgd);
1630pgtables_remap lpae_pgtables_remap_asm;
1631
1632/*
1633 * early_paging_init() recreates boot time page table setup, allowing machines
1634 * to switch over to a high (>4G) address space on LPAE systems
1635 */
1636static void __init early_paging_init(const struct machine_desc *mdesc)
1637{
1638	pgtables_remap *lpae_pgtables_remap;
1639	unsigned long pa_pgd;
1640	unsigned int cr, ttbcr;
1641	long long offset;
1642
1643	if (!mdesc->pv_fixup)
1644		return;
1645
1646	offset = mdesc->pv_fixup();
1647	if (offset == 0)
1648		return;
1649
1650	/*
1651	 * Offset the kernel section physical offsets so that the kernel
1652	 * mapping will work out later on.
1653	 */
1654	kernel_sec_start += offset;
1655	kernel_sec_end += offset;
1656
1657	/*
1658	 * Get the address of the remap function in the 1:1 identity
1659	 * mapping setup by the early page table assembly code.  We
1660	 * must get this prior to the pv update.  The following barrier
1661	 * ensures that this is complete before we fixup any P:V offsets.
1662	 */
1663	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1664	pa_pgd = __pa(swapper_pg_dir);
1665	barrier();
1666
1667	pr_info("Switching physical address space to 0x%08llx\n",
1668		(u64)PHYS_OFFSET + offset);
1669
1670	/* Re-set the phys pfn offset, and the pv offset */
1671	__pv_offset += offset;
1672	__pv_phys_pfn_offset += PFN_DOWN(offset);
1673
1674	/* Run the patch stub to update the constants */
1675	fixup_pv_table(&__pv_table_begin,
1676		(&__pv_table_end - &__pv_table_begin) << 2);
1677
1678	/*
1679	 * We changing not only the virtual to physical mapping, but also
1680	 * the physical addresses used to access memory.  We need to flush
1681	 * all levels of cache in the system with caching disabled to
1682	 * ensure that all data is written back, and nothing is prefetched
1683	 * into the caches.  We also need to prevent the TLB walkers
1684	 * allocating into the caches too.  Note that this is ARMv7 LPAE
1685	 * specific.
1686	 */
1687	cr = get_cr();
1688	set_cr(cr & ~(CR_I | CR_C));
1689	asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1690	asm volatile("mcr p15, 0, %0, c2, c0, 2"
1691		: : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1692	flush_cache_all();
1693
1694	/*
1695	 * Fixup the page tables - this must be in the idmap region as
1696	 * we need to disable the MMU to do this safely, and hence it
1697	 * needs to be assembly.  It's fairly simple, as we're using the
1698	 * temporary tables setup by the initial assembly code.
1699	 */
1700	lpae_pgtables_remap(offset, pa_pgd);
1701
1702	/* Re-enable the caches and cacheable TLB walks */
1703	asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1704	set_cr(cr);
1705}
1706
1707#else
1708
1709static void __init early_paging_init(const struct machine_desc *mdesc)
1710{
1711	long long offset;
1712
1713	if (!mdesc->pv_fixup)
1714		return;
1715
1716	offset = mdesc->pv_fixup();
1717	if (offset == 0)
1718		return;
1719
1720	pr_crit("Physical address space modification is only to support Keystone2.\n");
1721	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1722	pr_crit("feature. Your kernel may crash now, have a good day.\n");
1723	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1724}
1725
1726#endif
1727
1728static void __init early_fixmap_shutdown(void)
1729{
1730	int i;
1731	unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1732
1733	pte_offset_fixmap = pte_offset_late_fixmap;
1734	pmd_clear(fixmap_pmd(va));
1735	local_flush_tlb_kernel_page(va);
1736
1737	for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1738		pte_t *pte;
1739		struct map_desc map;
1740
1741		map.virtual = fix_to_virt(i);
1742		pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1743
1744		/* Only i/o device mappings are supported ATM */
1745		if (pte_none(*pte) ||
1746		    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1747			continue;
1748
1749		map.pfn = pte_pfn(*pte);
1750		map.type = MT_DEVICE;
1751		map.length = PAGE_SIZE;
1752
1753		create_mapping(&map);
1754	}
1755}
1756
1757/*
1758 * paging_init() sets up the page tables, initialises the zone memory
1759 * maps, and sets up the zero page, bad page and bad page tables.
1760 */
1761void __init paging_init(const struct machine_desc *mdesc)
1762{
1763	void *zero_page;
1764
1765	pr_debug("physical kernel sections: 0x%08llx-0x%08llx\n",
1766		 kernel_sec_start, kernel_sec_end);
1767
 
1768	prepare_page_table();
1769	map_lowmem();
1770	memblock_set_current_limit(arm_lowmem_limit);
1771	pr_debug("lowmem limit is %08llx\n", (long long)arm_lowmem_limit);
1772	/*
1773	 * After this point early_alloc(), i.e. the memblock allocator, can
1774	 * be used
1775	 */
1776	map_kernel();
1777	dma_contiguous_remap();
1778	early_fixmap_shutdown();
1779	devicemaps_init(mdesc);
1780	kmap_init();
1781	tcm_init();
1782
1783	top_pmd = pmd_off_k(0xffff0000);
1784
1785	/* allocate the zero page. */
1786	zero_page = early_alloc(PAGE_SIZE);
1787
1788	bootmem_init();
1789
1790	empty_zero_page = virt_to_page(zero_page);
1791	__flush_dcache_page(NULL, empty_zero_page);
1792}
1793
1794void __init early_mm_init(const struct machine_desc *mdesc)
1795{
1796	build_mem_type_table();
1797	early_paging_init(mdesc);
1798}
1799
1800void set_pte_at(struct mm_struct *mm, unsigned long addr,
1801			      pte_t *ptep, pte_t pteval)
1802{
1803	unsigned long ext = 0;
1804
1805	if (addr < TASK_SIZE && pte_valid_user(pteval)) {
1806		if (!pte_special(pteval))
1807			__sync_icache_dcache(pteval);
1808		ext |= PTE_EXT_NG;
1809	}
1810
1811	set_pte_ext(ptep, pteval, ext);
1812}