Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v3.1
 
  1/*
  2 * net/sched/sch_choke.c	CHOKE scheduler
  3 *
  4 * Copyright (c) 2011 Stephen Hemminger <shemminger@vyatta.com>
  5 * Copyright (c) 2011 Eric Dumazet <eric.dumazet@gmail.com>
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public License
  9 * version 2 as published by the Free Software Foundation.
 10 *
 11 */
 12
 13#include <linux/module.h>
 14#include <linux/types.h>
 15#include <linux/kernel.h>
 16#include <linux/skbuff.h>
 17#include <linux/reciprocal_div.h>
 18#include <linux/vmalloc.h>
 19#include <net/pkt_sched.h>
 
 20#include <net/inet_ecn.h>
 21#include <net/red.h>
 22#include <linux/ip.h>
 23#include <net/ip.h>
 24#include <linux/ipv6.h>
 25#include <net/ipv6.h>
 26
 27/*
 28   CHOKe stateless AQM for fair bandwidth allocation
 29   =================================================
 30
 31   CHOKe (CHOose and Keep for responsive flows, CHOose and Kill for
 32   unresponsive flows) is a variant of RED that penalizes misbehaving flows but
 33   maintains no flow state. The difference from RED is an additional step
 34   during the enqueuing process. If average queue size is over the
 35   low threshold (qmin), a packet is chosen at random from the queue.
 36   If both the new and chosen packet are from the same flow, both
 37   are dropped. Unlike RED, CHOKe is not really a "classful" qdisc because it
 38   needs to access packets in queue randomly. It has a minimal class
 39   interface to allow overriding the builtin flow classifier with
 40   filters.
 41
 42   Source:
 43   R. Pan, B. Prabhakar, and K. Psounis, "CHOKe, A Stateless
 44   Active Queue Management Scheme for Approximating Fair Bandwidth Allocation",
 45   IEEE INFOCOM, 2000.
 46
 47   A. Tang, J. Wang, S. Low, "Understanding CHOKe: Throughput and Spatial
 48   Characteristics", IEEE/ACM Transactions on Networking, 2004
 49
 50 */
 51
 52/* Upper bound on size of sk_buff table (packets) */
 53#define CHOKE_MAX_QUEUE	(128*1024 - 1)
 54
 55struct choke_sched_data {
 56/* Parameters */
 57	u32		 limit;
 58	unsigned char	 flags;
 59
 60	struct red_parms parms;
 61
 62/* Variables */
 63	struct tcf_proto *filter_list;
 64	struct {
 65		u32	prob_drop;	/* Early probability drops */
 66		u32	prob_mark;	/* Early probability marks */
 67		u32	forced_drop;	/* Forced drops, qavg > max_thresh */
 68		u32	forced_mark;	/* Forced marks, qavg > max_thresh */
 69		u32	pdrop;          /* Drops due to queue limits */
 70		u32	other;          /* Drops due to drop() calls */
 71		u32	matched;	/* Drops to flow match */
 72	} stats;
 73
 74	unsigned int	 head;
 75	unsigned int	 tail;
 76
 77	unsigned int	 tab_mask; /* size - 1 */
 78
 79	struct sk_buff **tab;
 80};
 81
 82/* deliver a random number between 0 and N - 1 */
 83static u32 random_N(unsigned int N)
 84{
 85	return reciprocal_divide(random32(), N);
 86}
 87
 88/* number of elements in queue including holes */
 89static unsigned int choke_len(const struct choke_sched_data *q)
 90{
 91	return (q->tail - q->head) & q->tab_mask;
 92}
 93
 94/* Is ECN parameter configured */
 95static int use_ecn(const struct choke_sched_data *q)
 96{
 97	return q->flags & TC_RED_ECN;
 98}
 99
100/* Should packets over max just be dropped (versus marked) */
101static int use_harddrop(const struct choke_sched_data *q)
102{
103	return q->flags & TC_RED_HARDDROP;
104}
105
106/* Move head pointer forward to skip over holes */
107static void choke_zap_head_holes(struct choke_sched_data *q)
108{
109	do {
110		q->head = (q->head + 1) & q->tab_mask;
111		if (q->head == q->tail)
112			break;
113	} while (q->tab[q->head] == NULL);
114}
115
116/* Move tail pointer backwards to reuse holes */
117static void choke_zap_tail_holes(struct choke_sched_data *q)
118{
119	do {
120		q->tail = (q->tail - 1) & q->tab_mask;
121		if (q->head == q->tail)
122			break;
123	} while (q->tab[q->tail] == NULL);
124}
125
126/* Drop packet from queue array by creating a "hole" */
127static void choke_drop_by_idx(struct Qdisc *sch, unsigned int idx)
 
128{
129	struct choke_sched_data *q = qdisc_priv(sch);
130	struct sk_buff *skb = q->tab[idx];
131
132	q->tab[idx] = NULL;
133
134	if (idx == q->head)
135		choke_zap_head_holes(q);
136	if (idx == q->tail)
137		choke_zap_tail_holes(q);
138
139	sch->qstats.backlog -= qdisc_pkt_len(skb);
140	qdisc_drop(skb, sch);
141	qdisc_tree_decrease_qlen(sch, 1);
142	--sch->q.qlen;
143}
144
 
 
 
 
 
 
 
 
 
 
 
145/*
146 * Compare flow of two packets
147 *  Returns true only if source and destination address and port match.
148 *          false for special cases
149 */
150static bool choke_match_flow(struct sk_buff *skb1,
151			     struct sk_buff *skb2)
152{
153	int off1, off2, poff;
154	const u32 *ports1, *ports2;
155	u8 ip_proto;
156	__u32 hash1;
157
158	if (skb1->protocol != skb2->protocol)
159		return false;
160
161	/* Use hash value as quick check
162	 * Assumes that __skb_get_rxhash makes IP header and ports linear
163	 */
164	hash1 = skb_get_rxhash(skb1);
165	if (!hash1 || hash1 != skb_get_rxhash(skb2))
166		return false;
167
168	/* Probably match, but be sure to avoid hash collisions */
169	off1 = skb_network_offset(skb1);
170	off2 = skb_network_offset(skb2);
171
172	switch (skb1->protocol) {
173	case __constant_htons(ETH_P_IP): {
174		const struct iphdr *ip1, *ip2;
175
176		ip1 = (const struct iphdr *) (skb1->data + off1);
177		ip2 = (const struct iphdr *) (skb2->data + off2);
178
179		ip_proto = ip1->protocol;
180		if (ip_proto != ip2->protocol ||
181		    ip1->saddr != ip2->saddr || ip1->daddr != ip2->daddr)
182			return false;
183
184		if (ip_is_fragment(ip1) | ip_is_fragment(ip2))
185			ip_proto = 0;
186		off1 += ip1->ihl * 4;
187		off2 += ip2->ihl * 4;
188		break;
189	}
190
191	case __constant_htons(ETH_P_IPV6): {
192		const struct ipv6hdr *ip1, *ip2;
193
194		ip1 = (const struct ipv6hdr *) (skb1->data + off1);
195		ip2 = (const struct ipv6hdr *) (skb2->data + off2);
196
197		ip_proto = ip1->nexthdr;
198		if (ip_proto != ip2->nexthdr ||
199		    ipv6_addr_cmp(&ip1->saddr, &ip2->saddr) ||
200		    ipv6_addr_cmp(&ip1->daddr, &ip2->daddr))
201			return false;
202		off1 += 40;
203		off2 += 40;
204	}
205
206	default: /* Maybe compare MAC header here? */
207		return false;
208	}
209
210	poff = proto_ports_offset(ip_proto);
211	if (poff < 0)
212		return true;
213
214	off1 += poff;
215	off2 += poff;
216
217	ports1 = (__force u32 *)(skb1->data + off1);
218	ports2 = (__force u32 *)(skb2->data + off2);
219	return *ports1 == *ports2;
220}
221
222struct choke_skb_cb {
223	u16 classid;
224};
225
226static inline struct choke_skb_cb *choke_skb_cb(const struct sk_buff *skb)
227{
228	BUILD_BUG_ON(sizeof(skb->cb) <
229		sizeof(struct qdisc_skb_cb) + sizeof(struct choke_skb_cb));
230	return (struct choke_skb_cb *)qdisc_skb_cb(skb)->data;
231}
232
233static inline void choke_set_classid(struct sk_buff *skb, u16 classid)
234{
235	choke_skb_cb(skb)->classid = classid;
236}
237
238static u16 choke_get_classid(const struct sk_buff *skb)
239{
240	return choke_skb_cb(skb)->classid;
241}
242
243/*
244 * Classify flow using either:
245 *  1. pre-existing classification result in skb
246 *  2. fast internal classification
247 *  3. use TC filter based classification
248 */
249static bool choke_classify(struct sk_buff *skb,
250			   struct Qdisc *sch, int *qerr)
251
252{
253	struct choke_sched_data *q = qdisc_priv(sch);
254	struct tcf_result res;
255	int result;
256
257	result = tc_classify(skb, q->filter_list, &res);
258	if (result >= 0) {
259#ifdef CONFIG_NET_CLS_ACT
260		switch (result) {
261		case TC_ACT_STOLEN:
262		case TC_ACT_QUEUED:
263			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
264		case TC_ACT_SHOT:
265			return false;
266		}
267#endif
268		choke_set_classid(skb, TC_H_MIN(res.classid));
269		return true;
270	}
271
272	return false;
 
 
273}
274
275/*
276 * Select a packet at random from queue
277 * HACK: since queue can have holes from previous deletion; retry several
278 *   times to find a random skb but then just give up and return the head
279 * Will return NULL if queue is empty (q->head == q->tail)
280 */
281static struct sk_buff *choke_peek_random(const struct choke_sched_data *q,
282					 unsigned int *pidx)
283{
284	struct sk_buff *skb;
285	int retrys = 3;
286
287	do {
288		*pidx = (q->head + random_N(choke_len(q))) & q->tab_mask;
289		skb = q->tab[*pidx];
290		if (skb)
291			return skb;
292	} while (--retrys > 0);
293
294	return q->tab[*pidx = q->head];
295}
296
297/*
298 * Compare new packet with random packet in queue
299 * returns true if matched and sets *pidx
300 */
301static bool choke_match_random(const struct choke_sched_data *q,
302			       struct sk_buff *nskb,
303			       unsigned int *pidx)
304{
305	struct sk_buff *oskb;
306
307	if (q->head == q->tail)
308		return false;
309
310	oskb = choke_peek_random(q, pidx);
311	if (q->filter_list)
312		return choke_get_classid(nskb) == choke_get_classid(oskb);
313
314	return choke_match_flow(oskb, nskb);
315}
316
317static int choke_enqueue(struct sk_buff *skb, struct Qdisc *sch)
 
318{
319	struct choke_sched_data *q = qdisc_priv(sch);
320	struct red_parms *p = &q->parms;
321	int ret = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
322
323	if (q->filter_list) {
324		/* If using external classifiers, get result and record it. */
325		if (!choke_classify(skb, sch, &ret))
326			goto other_drop;	/* Packet was eaten by filter */
327	}
328
 
329	/* Compute average queue usage (see RED) */
330	p->qavg = red_calc_qavg(p, sch->q.qlen);
331	if (red_is_idling(p))
332		red_end_of_idle_period(p);
333
334	/* Is queue small? */
335	if (p->qavg <= p->qth_min)
336		p->qcount = -1;
337	else {
338		unsigned int idx;
339
340		/* Draw a packet at random from queue and compare flow */
341		if (choke_match_random(q, skb, &idx)) {
342			q->stats.matched++;
343			choke_drop_by_idx(sch, idx);
344			goto congestion_drop;
345		}
346
347		/* Queue is large, always mark/drop */
348		if (p->qavg > p->qth_max) {
349			p->qcount = -1;
350
351			sch->qstats.overlimits++;
352			if (use_harddrop(q) || !use_ecn(q) ||
353			    !INET_ECN_set_ce(skb)) {
354				q->stats.forced_drop++;
355				goto congestion_drop;
356			}
357
358			q->stats.forced_mark++;
359		} else if (++p->qcount) {
360			if (red_mark_probability(p, p->qavg)) {
361				p->qcount = 0;
362				p->qR = red_random(p);
363
364				sch->qstats.overlimits++;
365				if (!use_ecn(q) || !INET_ECN_set_ce(skb)) {
366					q->stats.prob_drop++;
367					goto congestion_drop;
368				}
369
370				q->stats.prob_mark++;
371			}
372		} else
373			p->qR = red_random(p);
374	}
375
376	/* Admit new packet */
377	if (sch->q.qlen < q->limit) {
378		q->tab[q->tail] = skb;
379		q->tail = (q->tail + 1) & q->tab_mask;
380		++sch->q.qlen;
381		sch->qstats.backlog += qdisc_pkt_len(skb);
382		return NET_XMIT_SUCCESS;
383	}
384
385	q->stats.pdrop++;
386	sch->qstats.drops++;
387	kfree_skb(skb);
388	return NET_XMIT_DROP;
389
390 congestion_drop:
391	qdisc_drop(skb, sch);
392	return NET_XMIT_CN;
393
394 other_drop:
395	if (ret & __NET_XMIT_BYPASS)
396		sch->qstats.drops++;
397	kfree_skb(skb);
398	return ret;
399}
400
401static struct sk_buff *choke_dequeue(struct Qdisc *sch)
402{
403	struct choke_sched_data *q = qdisc_priv(sch);
404	struct sk_buff *skb;
405
406	if (q->head == q->tail) {
407		if (!red_is_idling(&q->parms))
408			red_start_of_idle_period(&q->parms);
409		return NULL;
410	}
411
412	skb = q->tab[q->head];
413	q->tab[q->head] = NULL;
414	choke_zap_head_holes(q);
415	--sch->q.qlen;
416	sch->qstats.backlog -= qdisc_pkt_len(skb);
417	qdisc_bstats_update(sch, skb);
418
419	return skb;
420}
421
422static unsigned int choke_drop(struct Qdisc *sch)
423{
424	struct choke_sched_data *q = qdisc_priv(sch);
425	unsigned int len;
426
427	len = qdisc_queue_drop(sch);
428	if (len > 0)
429		q->stats.other++;
430	else {
431		if (!red_is_idling(&q->parms))
432			red_start_of_idle_period(&q->parms);
433	}
434
435	return len;
436}
437
438static void choke_reset(struct Qdisc *sch)
439{
440	struct choke_sched_data *q = qdisc_priv(sch);
 
 
441
442	red_restart(&q->parms);
 
 
 
443}
444
445static const struct nla_policy choke_policy[TCA_CHOKE_MAX + 1] = {
446	[TCA_CHOKE_PARMS]	= { .len = sizeof(struct tc_red_qopt) },
447	[TCA_CHOKE_STAB]	= { .len = RED_STAB_SIZE },
 
448};
449
450
451static void choke_free(void *addr)
452{
453	if (addr) {
454		if (is_vmalloc_addr(addr))
455			vfree(addr);
456		else
457			kfree(addr);
458	}
459}
460
461static int choke_change(struct Qdisc *sch, struct nlattr *opt)
 
462{
463	struct choke_sched_data *q = qdisc_priv(sch);
464	struct nlattr *tb[TCA_CHOKE_MAX + 1];
465	const struct tc_red_qopt *ctl;
466	int err;
467	struct sk_buff **old = NULL;
468	unsigned int mask;
 
 
469
470	if (opt == NULL)
471		return -EINVAL;
472
473	err = nla_parse_nested(tb, TCA_CHOKE_MAX, opt, choke_policy);
 
474	if (err < 0)
475		return err;
476
477	if (tb[TCA_CHOKE_PARMS] == NULL ||
478	    tb[TCA_CHOKE_STAB] == NULL)
479		return -EINVAL;
480
 
 
481	ctl = nla_data(tb[TCA_CHOKE_PARMS]);
 
 
 
482
483	if (ctl->limit > CHOKE_MAX_QUEUE)
484		return -EINVAL;
485
486	mask = roundup_pow_of_two(ctl->limit + 1) - 1;
487	if (mask != q->tab_mask) {
488		struct sk_buff **ntab;
489
490		ntab = kcalloc(mask + 1, sizeof(struct sk_buff *), GFP_KERNEL);
491		if (!ntab)
492			ntab = vzalloc((mask + 1) * sizeof(struct sk_buff *));
493		if (!ntab)
494			return -ENOMEM;
495
496		sch_tree_lock(sch);
497		old = q->tab;
498		if (old) {
499			unsigned int oqlen = sch->q.qlen, tail = 0;
 
500
501			while (q->head != q->tail) {
502				struct sk_buff *skb = q->tab[q->head];
503
504				q->head = (q->head + 1) & q->tab_mask;
505				if (!skb)
506					continue;
507				if (tail < mask) {
508					ntab[tail++] = skb;
509					continue;
510				}
511				sch->qstats.backlog -= qdisc_pkt_len(skb);
 
512				--sch->q.qlen;
513				qdisc_drop(skb, sch);
514			}
515			qdisc_tree_decrease_qlen(sch, oqlen - sch->q.qlen);
516			q->head = 0;
517			q->tail = tail;
518		}
519
520		q->tab_mask = mask;
521		q->tab = ntab;
522	} else
523		sch_tree_lock(sch);
524
525	q->flags = ctl->flags;
526	q->limit = ctl->limit;
527
528	red_set_parms(&q->parms, ctl->qth_min, ctl->qth_max, ctl->Wlog,
529		      ctl->Plog, ctl->Scell_log,
530		      nla_data(tb[TCA_CHOKE_STAB]));
 
 
531
532	if (q->head == q->tail)
533		red_end_of_idle_period(&q->parms);
534
535	sch_tree_unlock(sch);
536	choke_free(old);
537	return 0;
538}
539
540static int choke_init(struct Qdisc *sch, struct nlattr *opt)
 
541{
542	return choke_change(sch, opt);
543}
544
545static int choke_dump(struct Qdisc *sch, struct sk_buff *skb)
546{
547	struct choke_sched_data *q = qdisc_priv(sch);
548	struct nlattr *opts = NULL;
549	struct tc_red_qopt opt = {
550		.limit		= q->limit,
551		.flags		= q->flags,
552		.qth_min	= q->parms.qth_min >> q->parms.Wlog,
553		.qth_max	= q->parms.qth_max >> q->parms.Wlog,
554		.Wlog		= q->parms.Wlog,
555		.Plog		= q->parms.Plog,
556		.Scell_log	= q->parms.Scell_log,
557	};
558
559	opts = nla_nest_start(skb, TCA_OPTIONS);
560	if (opts == NULL)
561		goto nla_put_failure;
562
563	NLA_PUT(skb, TCA_CHOKE_PARMS, sizeof(opt), &opt);
 
 
564	return nla_nest_end(skb, opts);
565
566nla_put_failure:
567	nla_nest_cancel(skb, opts);
568	return -EMSGSIZE;
569}
570
571static int choke_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
572{
573	struct choke_sched_data *q = qdisc_priv(sch);
574	struct tc_choke_xstats st = {
575		.early	= q->stats.prob_drop + q->stats.forced_drop,
576		.marked	= q->stats.prob_mark + q->stats.forced_mark,
577		.pdrop	= q->stats.pdrop,
578		.other	= q->stats.other,
579		.matched = q->stats.matched,
580	};
581
582	return gnet_stats_copy_app(d, &st, sizeof(st));
583}
584
585static void choke_destroy(struct Qdisc *sch)
586{
587	struct choke_sched_data *q = qdisc_priv(sch);
588
589	tcf_destroy_chain(&q->filter_list);
590	choke_free(q->tab);
591}
592
593static struct Qdisc *choke_leaf(struct Qdisc *sch, unsigned long arg)
594{
595	return NULL;
596}
597
598static unsigned long choke_get(struct Qdisc *sch, u32 classid)
599{
600	return 0;
601}
602
603static void choke_put(struct Qdisc *q, unsigned long cl)
604{
605}
606
607static unsigned long choke_bind(struct Qdisc *sch, unsigned long parent,
608				u32 classid)
609{
610	return 0;
611}
612
613static struct tcf_proto **choke_find_tcf(struct Qdisc *sch, unsigned long cl)
614{
615	struct choke_sched_data *q = qdisc_priv(sch);
616
617	if (cl)
618		return NULL;
619	return &q->filter_list;
620}
621
622static int choke_dump_class(struct Qdisc *sch, unsigned long cl,
623			  struct sk_buff *skb, struct tcmsg *tcm)
624{
625	tcm->tcm_handle |= TC_H_MIN(cl);
626	return 0;
627}
628
629static void choke_walk(struct Qdisc *sch, struct qdisc_walker *arg)
630{
631	if (!arg->stop) {
632		if (arg->fn(sch, 1, arg) < 0) {
633			arg->stop = 1;
634			return;
635		}
636		arg->count++;
637	}
638}
639
640static const struct Qdisc_class_ops choke_class_ops = {
641	.leaf		=	choke_leaf,
642	.get		=	choke_get,
643	.put		=	choke_put,
644	.tcf_chain	=	choke_find_tcf,
645	.bind_tcf	=	choke_bind,
646	.unbind_tcf	=	choke_put,
647	.dump		=	choke_dump_class,
648	.walk		=	choke_walk,
649};
650
651static struct sk_buff *choke_peek_head(struct Qdisc *sch)
652{
653	struct choke_sched_data *q = qdisc_priv(sch);
654
655	return (q->head != q->tail) ? q->tab[q->head] : NULL;
656}
657
658static struct Qdisc_ops choke_qdisc_ops __read_mostly = {
659	.id		=	"choke",
660	.priv_size	=	sizeof(struct choke_sched_data),
661
662	.enqueue	=	choke_enqueue,
663	.dequeue	=	choke_dequeue,
664	.peek		=	choke_peek_head,
665	.drop		=	choke_drop,
666	.init		=	choke_init,
667	.destroy	=	choke_destroy,
668	.reset		=	choke_reset,
669	.change		=	choke_change,
670	.dump		=	choke_dump,
671	.dump_stats	=	choke_dump_stats,
672	.owner		=	THIS_MODULE,
673};
674
675static int __init choke_module_init(void)
676{
677	return register_qdisc(&choke_qdisc_ops);
678}
679
680static void __exit choke_module_exit(void)
681{
682	unregister_qdisc(&choke_qdisc_ops);
683}
684
685module_init(choke_module_init)
686module_exit(choke_module_exit)
687
688MODULE_LICENSE("GPL");
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * net/sched/sch_choke.c	CHOKE scheduler
  4 *
  5 * Copyright (c) 2011 Stephen Hemminger <shemminger@vyatta.com>
  6 * Copyright (c) 2011 Eric Dumazet <eric.dumazet@gmail.com>
 
 
 
 
 
  7 */
  8
  9#include <linux/module.h>
 10#include <linux/types.h>
 11#include <linux/kernel.h>
 12#include <linux/skbuff.h>
 
 13#include <linux/vmalloc.h>
 14#include <net/pkt_sched.h>
 15#include <net/pkt_cls.h>
 16#include <net/inet_ecn.h>
 17#include <net/red.h>
 18#include <net/flow_dissector.h>
 
 
 
 19
 20/*
 21   CHOKe stateless AQM for fair bandwidth allocation
 22   =================================================
 23
 24   CHOKe (CHOose and Keep for responsive flows, CHOose and Kill for
 25   unresponsive flows) is a variant of RED that penalizes misbehaving flows but
 26   maintains no flow state. The difference from RED is an additional step
 27   during the enqueuing process. If average queue size is over the
 28   low threshold (qmin), a packet is chosen at random from the queue.
 29   If both the new and chosen packet are from the same flow, both
 30   are dropped. Unlike RED, CHOKe is not really a "classful" qdisc because it
 31   needs to access packets in queue randomly. It has a minimal class
 32   interface to allow overriding the builtin flow classifier with
 33   filters.
 34
 35   Source:
 36   R. Pan, B. Prabhakar, and K. Psounis, "CHOKe, A Stateless
 37   Active Queue Management Scheme for Approximating Fair Bandwidth Allocation",
 38   IEEE INFOCOM, 2000.
 39
 40   A. Tang, J. Wang, S. Low, "Understanding CHOKe: Throughput and Spatial
 41   Characteristics", IEEE/ACM Transactions on Networking, 2004
 42
 43 */
 44
 45/* Upper bound on size of sk_buff table (packets) */
 46#define CHOKE_MAX_QUEUE	(128*1024 - 1)
 47
 48struct choke_sched_data {
 49/* Parameters */
 50	u32		 limit;
 51	unsigned char	 flags;
 52
 53	struct red_parms parms;
 54
 55/* Variables */
 56	struct red_vars  vars;
 57	struct {
 58		u32	prob_drop;	/* Early probability drops */
 59		u32	prob_mark;	/* Early probability marks */
 60		u32	forced_drop;	/* Forced drops, qavg > max_thresh */
 61		u32	forced_mark;	/* Forced marks, qavg > max_thresh */
 62		u32	pdrop;          /* Drops due to queue limits */
 
 63		u32	matched;	/* Drops to flow match */
 64	} stats;
 65
 66	unsigned int	 head;
 67	unsigned int	 tail;
 68
 69	unsigned int	 tab_mask; /* size - 1 */
 70
 71	struct sk_buff **tab;
 72};
 73
 
 
 
 
 
 
 74/* number of elements in queue including holes */
 75static unsigned int choke_len(const struct choke_sched_data *q)
 76{
 77	return (q->tail - q->head) & q->tab_mask;
 78}
 79
 80/* Is ECN parameter configured */
 81static int use_ecn(const struct choke_sched_data *q)
 82{
 83	return q->flags & TC_RED_ECN;
 84}
 85
 86/* Should packets over max just be dropped (versus marked) */
 87static int use_harddrop(const struct choke_sched_data *q)
 88{
 89	return q->flags & TC_RED_HARDDROP;
 90}
 91
 92/* Move head pointer forward to skip over holes */
 93static void choke_zap_head_holes(struct choke_sched_data *q)
 94{
 95	do {
 96		q->head = (q->head + 1) & q->tab_mask;
 97		if (q->head == q->tail)
 98			break;
 99	} while (q->tab[q->head] == NULL);
100}
101
102/* Move tail pointer backwards to reuse holes */
103static void choke_zap_tail_holes(struct choke_sched_data *q)
104{
105	do {
106		q->tail = (q->tail - 1) & q->tab_mask;
107		if (q->head == q->tail)
108			break;
109	} while (q->tab[q->tail] == NULL);
110}
111
112/* Drop packet from queue array by creating a "hole" */
113static void choke_drop_by_idx(struct Qdisc *sch, unsigned int idx,
114			      struct sk_buff **to_free)
115{
116	struct choke_sched_data *q = qdisc_priv(sch);
117	struct sk_buff *skb = q->tab[idx];
118
119	q->tab[idx] = NULL;
120
121	if (idx == q->head)
122		choke_zap_head_holes(q);
123	if (idx == q->tail)
124		choke_zap_tail_holes(q);
125
126	qdisc_qstats_backlog_dec(sch, skb);
127	qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb));
128	qdisc_drop(skb, sch, to_free);
129	--sch->q.qlen;
130}
131
132struct choke_skb_cb {
133	u8			keys_valid;
134	struct			flow_keys_digest keys;
135};
136
137static inline struct choke_skb_cb *choke_skb_cb(const struct sk_buff *skb)
138{
139	qdisc_cb_private_validate(skb, sizeof(struct choke_skb_cb));
140	return (struct choke_skb_cb *)qdisc_skb_cb(skb)->data;
141}
142
143/*
144 * Compare flow of two packets
145 *  Returns true only if source and destination address and port match.
146 *          false for special cases
147 */
148static bool choke_match_flow(struct sk_buff *skb1,
149			     struct sk_buff *skb2)
150{
151	struct flow_keys temp;
 
 
 
152
153	if (skb1->protocol != skb2->protocol)
154		return false;
155
156	if (!choke_skb_cb(skb1)->keys_valid) {
157		choke_skb_cb(skb1)->keys_valid = 1;
158		skb_flow_dissect_flow_keys(skb1, &temp, 0);
159		make_flow_keys_digest(&choke_skb_cb(skb1)->keys, &temp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
160	}
161
162	if (!choke_skb_cb(skb2)->keys_valid) {
163		choke_skb_cb(skb2)->keys_valid = 1;
164		skb_flow_dissect_flow_keys(skb2, &temp, 0);
165		make_flow_keys_digest(&choke_skb_cb(skb2)->keys, &temp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166	}
167
168	return !memcmp(&choke_skb_cb(skb1)->keys,
169		       &choke_skb_cb(skb2)->keys,
170		       sizeof(choke_skb_cb(skb1)->keys));
171}
172
173/*
174 * Select a packet at random from queue
175 * HACK: since queue can have holes from previous deletion; retry several
176 *   times to find a random skb but then just give up and return the head
177 * Will return NULL if queue is empty (q->head == q->tail)
178 */
179static struct sk_buff *choke_peek_random(const struct choke_sched_data *q,
180					 unsigned int *pidx)
181{
182	struct sk_buff *skb;
183	int retrys = 3;
184
185	do {
186		*pidx = (q->head + get_random_u32_below(choke_len(q))) & q->tab_mask;
187		skb = q->tab[*pidx];
188		if (skb)
189			return skb;
190	} while (--retrys > 0);
191
192	return q->tab[*pidx = q->head];
193}
194
195/*
196 * Compare new packet with random packet in queue
197 * returns true if matched and sets *pidx
198 */
199static bool choke_match_random(const struct choke_sched_data *q,
200			       struct sk_buff *nskb,
201			       unsigned int *pidx)
202{
203	struct sk_buff *oskb;
204
205	if (q->head == q->tail)
206		return false;
207
208	oskb = choke_peek_random(q, pidx);
 
 
 
209	return choke_match_flow(oskb, nskb);
210}
211
212static int choke_enqueue(struct sk_buff *skb, struct Qdisc *sch,
213			 struct sk_buff **to_free)
214{
215	struct choke_sched_data *q = qdisc_priv(sch);
216	const struct red_parms *p = &q->parms;
 
 
 
 
 
 
 
217
218	choke_skb_cb(skb)->keys_valid = 0;
219	/* Compute average queue usage (see RED) */
220	q->vars.qavg = red_calc_qavg(p, &q->vars, sch->q.qlen);
221	if (red_is_idling(&q->vars))
222		red_end_of_idle_period(&q->vars);
223
224	/* Is queue small? */
225	if (q->vars.qavg <= p->qth_min)
226		q->vars.qcount = -1;
227	else {
228		unsigned int idx;
229
230		/* Draw a packet at random from queue and compare flow */
231		if (choke_match_random(q, skb, &idx)) {
232			q->stats.matched++;
233			choke_drop_by_idx(sch, idx, to_free);
234			goto congestion_drop;
235		}
236
237		/* Queue is large, always mark/drop */
238		if (q->vars.qavg > p->qth_max) {
239			q->vars.qcount = -1;
240
241			qdisc_qstats_overlimit(sch);
242			if (use_harddrop(q) || !use_ecn(q) ||
243			    !INET_ECN_set_ce(skb)) {
244				q->stats.forced_drop++;
245				goto congestion_drop;
246			}
247
248			q->stats.forced_mark++;
249		} else if (++q->vars.qcount) {
250			if (red_mark_probability(p, &q->vars, q->vars.qavg)) {
251				q->vars.qcount = 0;
252				q->vars.qR = red_random(p);
253
254				qdisc_qstats_overlimit(sch);
255				if (!use_ecn(q) || !INET_ECN_set_ce(skb)) {
256					q->stats.prob_drop++;
257					goto congestion_drop;
258				}
259
260				q->stats.prob_mark++;
261			}
262		} else
263			q->vars.qR = red_random(p);
264	}
265
266	/* Admit new packet */
267	if (sch->q.qlen < q->limit) {
268		q->tab[q->tail] = skb;
269		q->tail = (q->tail + 1) & q->tab_mask;
270		++sch->q.qlen;
271		qdisc_qstats_backlog_inc(sch, skb);
272		return NET_XMIT_SUCCESS;
273	}
274
275	q->stats.pdrop++;
276	return qdisc_drop(skb, sch, to_free);
 
 
277
278congestion_drop:
279	qdisc_drop(skb, sch, to_free);
280	return NET_XMIT_CN;
 
 
 
 
 
 
281}
282
283static struct sk_buff *choke_dequeue(struct Qdisc *sch)
284{
285	struct choke_sched_data *q = qdisc_priv(sch);
286	struct sk_buff *skb;
287
288	if (q->head == q->tail) {
289		if (!red_is_idling(&q->vars))
290			red_start_of_idle_period(&q->vars);
291		return NULL;
292	}
293
294	skb = q->tab[q->head];
295	q->tab[q->head] = NULL;
296	choke_zap_head_holes(q);
297	--sch->q.qlen;
298	qdisc_qstats_backlog_dec(sch, skb);
299	qdisc_bstats_update(sch, skb);
300
301	return skb;
302}
303
304static void choke_reset(struct Qdisc *sch)
305{
306	struct choke_sched_data *q = qdisc_priv(sch);
 
 
 
 
 
 
 
 
 
307
308	while (q->head != q->tail) {
309		struct sk_buff *skb = q->tab[q->head];
310
311		q->head = (q->head + 1) & q->tab_mask;
312		if (!skb)
313			continue;
314		rtnl_qdisc_drop(skb, sch);
315	}
316
317	if (q->tab)
318		memset(q->tab, 0, (q->tab_mask + 1) * sizeof(struct sk_buff *));
319	q->head = q->tail = 0;
320	red_restart(&q->vars);
321}
322
323static const struct nla_policy choke_policy[TCA_CHOKE_MAX + 1] = {
324	[TCA_CHOKE_PARMS]	= { .len = sizeof(struct tc_red_qopt) },
325	[TCA_CHOKE_STAB]	= { .len = RED_STAB_SIZE },
326	[TCA_CHOKE_MAX_P]	= { .type = NLA_U32 },
327};
328
329
330static void choke_free(void *addr)
331{
332	kvfree(addr);
 
 
 
 
 
333}
334
335static int choke_change(struct Qdisc *sch, struct nlattr *opt,
336			struct netlink_ext_ack *extack)
337{
338	struct choke_sched_data *q = qdisc_priv(sch);
339	struct nlattr *tb[TCA_CHOKE_MAX + 1];
340	const struct tc_red_qopt *ctl;
341	int err;
342	struct sk_buff **old = NULL;
343	unsigned int mask;
344	u32 max_P;
345	u8 *stab;
346
347	if (opt == NULL)
348		return -EINVAL;
349
350	err = nla_parse_nested_deprecated(tb, TCA_CHOKE_MAX, opt,
351					  choke_policy, NULL);
352	if (err < 0)
353		return err;
354
355	if (tb[TCA_CHOKE_PARMS] == NULL ||
356	    tb[TCA_CHOKE_STAB] == NULL)
357		return -EINVAL;
358
359	max_P = tb[TCA_CHOKE_MAX_P] ? nla_get_u32(tb[TCA_CHOKE_MAX_P]) : 0;
360
361	ctl = nla_data(tb[TCA_CHOKE_PARMS]);
362	stab = nla_data(tb[TCA_CHOKE_STAB]);
363	if (!red_check_params(ctl->qth_min, ctl->qth_max, ctl->Wlog, ctl->Scell_log, stab))
364		return -EINVAL;
365
366	if (ctl->limit > CHOKE_MAX_QUEUE)
367		return -EINVAL;
368
369	mask = roundup_pow_of_two(ctl->limit + 1) - 1;
370	if (mask != q->tab_mask) {
371		struct sk_buff **ntab;
372
373		ntab = kvcalloc(mask + 1, sizeof(struct sk_buff *), GFP_KERNEL);
 
 
374		if (!ntab)
375			return -ENOMEM;
376
377		sch_tree_lock(sch);
378		old = q->tab;
379		if (old) {
380			unsigned int oqlen = sch->q.qlen, tail = 0;
381			unsigned dropped = 0;
382
383			while (q->head != q->tail) {
384				struct sk_buff *skb = q->tab[q->head];
385
386				q->head = (q->head + 1) & q->tab_mask;
387				if (!skb)
388					continue;
389				if (tail < mask) {
390					ntab[tail++] = skb;
391					continue;
392				}
393				dropped += qdisc_pkt_len(skb);
394				qdisc_qstats_backlog_dec(sch, skb);
395				--sch->q.qlen;
396				rtnl_qdisc_drop(skb, sch);
397			}
398			qdisc_tree_reduce_backlog(sch, oqlen - sch->q.qlen, dropped);
399			q->head = 0;
400			q->tail = tail;
401		}
402
403		q->tab_mask = mask;
404		q->tab = ntab;
405	} else
406		sch_tree_lock(sch);
407
408	q->flags = ctl->flags;
409	q->limit = ctl->limit;
410
411	red_set_parms(&q->parms, ctl->qth_min, ctl->qth_max, ctl->Wlog,
412		      ctl->Plog, ctl->Scell_log,
413		      stab,
414		      max_P);
415	red_set_vars(&q->vars);
416
417	if (q->head == q->tail)
418		red_end_of_idle_period(&q->vars);
419
420	sch_tree_unlock(sch);
421	choke_free(old);
422	return 0;
423}
424
425static int choke_init(struct Qdisc *sch, struct nlattr *opt,
426		      struct netlink_ext_ack *extack)
427{
428	return choke_change(sch, opt, extack);
429}
430
431static int choke_dump(struct Qdisc *sch, struct sk_buff *skb)
432{
433	struct choke_sched_data *q = qdisc_priv(sch);
434	struct nlattr *opts = NULL;
435	struct tc_red_qopt opt = {
436		.limit		= q->limit,
437		.flags		= q->flags,
438		.qth_min	= q->parms.qth_min >> q->parms.Wlog,
439		.qth_max	= q->parms.qth_max >> q->parms.Wlog,
440		.Wlog		= q->parms.Wlog,
441		.Plog		= q->parms.Plog,
442		.Scell_log	= q->parms.Scell_log,
443	};
444
445	opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
446	if (opts == NULL)
447		goto nla_put_failure;
448
449	if (nla_put(skb, TCA_CHOKE_PARMS, sizeof(opt), &opt) ||
450	    nla_put_u32(skb, TCA_CHOKE_MAX_P, q->parms.max_P))
451		goto nla_put_failure;
452	return nla_nest_end(skb, opts);
453
454nla_put_failure:
455	nla_nest_cancel(skb, opts);
456	return -EMSGSIZE;
457}
458
459static int choke_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
460{
461	struct choke_sched_data *q = qdisc_priv(sch);
462	struct tc_choke_xstats st = {
463		.early	= q->stats.prob_drop + q->stats.forced_drop,
464		.marked	= q->stats.prob_mark + q->stats.forced_mark,
465		.pdrop	= q->stats.pdrop,
 
466		.matched = q->stats.matched,
467	};
468
469	return gnet_stats_copy_app(d, &st, sizeof(st));
470}
471
472static void choke_destroy(struct Qdisc *sch)
473{
474	struct choke_sched_data *q = qdisc_priv(sch);
475
 
476	choke_free(q->tab);
477}
478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
479static struct sk_buff *choke_peek_head(struct Qdisc *sch)
480{
481	struct choke_sched_data *q = qdisc_priv(sch);
482
483	return (q->head != q->tail) ? q->tab[q->head] : NULL;
484}
485
486static struct Qdisc_ops choke_qdisc_ops __read_mostly = {
487	.id		=	"choke",
488	.priv_size	=	sizeof(struct choke_sched_data),
489
490	.enqueue	=	choke_enqueue,
491	.dequeue	=	choke_dequeue,
492	.peek		=	choke_peek_head,
 
493	.init		=	choke_init,
494	.destroy	=	choke_destroy,
495	.reset		=	choke_reset,
496	.change		=	choke_change,
497	.dump		=	choke_dump,
498	.dump_stats	=	choke_dump_stats,
499	.owner		=	THIS_MODULE,
500};
501
502static int __init choke_module_init(void)
503{
504	return register_qdisc(&choke_qdisc_ops);
505}
506
507static void __exit choke_module_exit(void)
508{
509	unregister_qdisc(&choke_qdisc_ops);
510}
511
512module_init(choke_module_init)
513module_exit(choke_module_exit)
514
515MODULE_LICENSE("GPL");