Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 *  linux/mm/swap_state.c
  3 *
  4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  5 *  Swap reorganised 29.12.95, Stephen Tweedie
  6 *
  7 *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
  8 */
  9#include <linux/module.h>
 10#include <linux/mm.h>
 11#include <linux/gfp.h>
 12#include <linux/kernel_stat.h>
 13#include <linux/swap.h>
 14#include <linux/swapops.h>
 15#include <linux/init.h>
 16#include <linux/pagemap.h>
 17#include <linux/buffer_head.h>
 18#include <linux/backing-dev.h>
 
 19#include <linux/pagevec.h>
 20#include <linux/migrate.h>
 21#include <linux/page_cgroup.h>
 22
 23#include <asm/pgtable.h>
 
 
 
 24
 25/*
 26 * swapper_space is a fiction, retained to simplify the path through
 27 * vmscan's shrink_page_list.
 28 */
 29static const struct address_space_operations swap_aops = {
 30	.writepage	= swap_writepage,
 31	.set_page_dirty	= __set_page_dirty_nobuffers,
 32	.migratepage	= migrate_page,
 33};
 34
 35static struct backing_dev_info swap_backing_dev_info = {
 36	.name		= "swap",
 37	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
 38};
 39
 40struct address_space swapper_space = {
 41	.page_tree	= RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
 42	.tree_lock	= __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock),
 43	.a_ops		= &swap_aops,
 44	.i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
 45	.backing_dev_info = &swap_backing_dev_info,
 46};
 47
 48#define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
 
 
 
 
 
 
 
 
 
 
 
 
 49
 50static struct {
 51	unsigned long add_total;
 52	unsigned long del_total;
 53	unsigned long find_success;
 54	unsigned long find_total;
 55} swap_cache_info;
 56
 57void show_swap_cache_info(void)
 58{
 59	printk("%lu pages in swap cache\n", total_swapcache_pages);
 60	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
 61		swap_cache_info.add_total, swap_cache_info.del_total,
 62		swap_cache_info.find_success, swap_cache_info.find_total);
 63	printk("Free swap  = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10));
 64	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
 65}
 66
 
 
 
 
 
 
 
 
 
 
 
 
 67/*
 68 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
 69 * but sets SwapCache flag and private instead of mapping and index.
 70 */
 71static int __add_to_swap_cache(struct page *page, swp_entry_t entry)
 
 72{
 73	int error;
 74
 75	VM_BUG_ON(!PageLocked(page));
 76	VM_BUG_ON(PageSwapCache(page));
 77	VM_BUG_ON(!PageSwapBacked(page));
 78
 79	page_cache_get(page);
 80	SetPageSwapCache(page);
 81	set_page_private(page, entry.val);
 82
 83	spin_lock_irq(&swapper_space.tree_lock);
 84	error = radix_tree_insert(&swapper_space.page_tree, entry.val, page);
 85	if (likely(!error)) {
 86		total_swapcache_pages++;
 87		__inc_zone_page_state(page, NR_FILE_PAGES);
 88		INC_CACHE_INFO(add_total);
 89	}
 90	spin_unlock_irq(&swapper_space.tree_lock);
 91
 92	if (unlikely(error)) {
 93		/*
 94		 * Only the context which have set SWAP_HAS_CACHE flag
 95		 * would call add_to_swap_cache().
 96		 * So add_to_swap_cache() doesn't returns -EEXIST.
 97		 */
 98		VM_BUG_ON(error == -EEXIST);
 99		set_page_private(page, 0UL);
100		ClearPageSwapCache(page);
101		page_cache_release(page);
102	}
103
104	return error;
105}
106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107
108int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
109{
110	int error;
111
112	error = radix_tree_preload(gfp_mask);
113	if (!error) {
114		error = __add_to_swap_cache(page, entry);
115		radix_tree_preload_end();
116	}
117	return error;
118}
119
120/*
121 * This must be called only on pages that have
122 * been verified to be in the swap cache.
123 */
124void __delete_from_swap_cache(struct page *page)
 
125{
126	VM_BUG_ON(!PageLocked(page));
127	VM_BUG_ON(!PageSwapCache(page));
128	VM_BUG_ON(PageWriteback(page));
129
130	radix_tree_delete(&swapper_space.page_tree, page_private(page));
131	set_page_private(page, 0);
132	ClearPageSwapCache(page);
133	total_swapcache_pages--;
134	__dec_zone_page_state(page, NR_FILE_PAGES);
135	INC_CACHE_INFO(del_total);
 
 
 
 
 
 
 
 
 
 
136}
137
138/**
139 * add_to_swap - allocate swap space for a page
140 * @page: page we want to move to swap
 
 
 
141 *
142 * Allocate swap space for the page and add the page to the
143 * swap cache.  Caller needs to hold the page lock. 
144 */
145int add_to_swap(struct page *page)
146{
147	swp_entry_t entry;
148	int err;
149
150	VM_BUG_ON(!PageLocked(page));
151	VM_BUG_ON(!PageUptodate(page));
152
153	entry = get_swap_page();
154	if (!entry.val)
155		return 0;
156
157	if (unlikely(PageTransHuge(page)))
158		if (unlikely(split_huge_page(page))) {
159			swapcache_free(entry, NULL);
160			return 0;
161		}
162
163	/*
164	 * Radix-tree node allocations from PF_MEMALLOC contexts could
165	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
166	 * stops emergency reserves from being allocated.
167	 *
168	 * TODO: this could cause a theoretical memory reclaim
169	 * deadlock in the swap out path.
170	 */
171	/*
172	 * Add it to the swap cache and mark it dirty
173	 */
174	err = add_to_swap_cache(page, entry,
175			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
176
177	if (!err) {	/* Success */
178		SetPageDirty(page);
179		return 1;
180	} else {	/* -ENOMEM radix-tree allocation failure */
181		/*
182		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
183		 * clear SWAP_HAS_CACHE flag.
184		 */
185		swapcache_free(entry, NULL);
186		return 0;
187	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
188}
189
190/*
191 * This must be called only on pages that have
192 * been verified to be in the swap cache and locked.
193 * It will never put the page into the free list,
194 * the caller has a reference on the page.
195 */
196void delete_from_swap_cache(struct page *page)
197{
198	swp_entry_t entry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199
200	entry.val = page_private(page);
 
 
 
201
202	spin_lock_irq(&swapper_space.tree_lock);
203	__delete_from_swap_cache(page);
204	spin_unlock_irq(&swapper_space.tree_lock);
 
 
 
 
205
206	swapcache_free(entry, page);
207	page_cache_release(page);
 
 
 
 
 
208}
209
210/* 
211 * If we are the only user, then try to free up the swap cache. 
212 * 
213 * Its ok to check for PageSwapCache without the page lock
214 * here because we are going to recheck again inside
215 * try_to_free_swap() _with_ the lock.
216 * 					- Marcelo
217 */
218static inline void free_swap_cache(struct page *page)
219{
220	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
221		try_to_free_swap(page);
222		unlock_page(page);
 
 
 
223	}
224}
225
226/* 
227 * Perform a free_page(), also freeing any swap cache associated with
228 * this page if it is the last user of the page.
229 */
230void free_page_and_swap_cache(struct page *page)
231{
232	free_swap_cache(page);
233	page_cache_release(page);
 
234}
235
236/*
237 * Passed an array of pages, drop them all from swapcache and then release
238 * them.  They are removed from the LRU and freed if this is their last use.
239 */
240void free_pages_and_swap_cache(struct page **pages, int nr)
241{
242	struct page **pagep = pages;
243
244	lru_add_drain();
245	while (nr) {
246		int todo = min(nr, PAGEVEC_SIZE);
247		int i;
248
249		for (i = 0; i < todo; i++)
250			free_swap_cache(pagep[i]);
251		release_pages(pagep, todo, 0);
252		pagep += todo;
253		nr -= todo;
254	}
255}
256
257/*
258 * Lookup a swap entry in the swap cache. A found page will be returned
259 * unlocked and with its refcount incremented - we rely on the kernel
260 * lock getting page table operations atomic even if we drop the page
261 * lock before returning.
262 */
263struct page * lookup_swap_cache(swp_entry_t entry)
 
264{
265	struct page *page;
 
 
 
 
 
 
 
 
 
 
 
266
267	page = find_get_page(&swapper_space, entry.val);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268
269	if (page)
270		INC_CACHE_INFO(find_success);
 
 
 
 
271
272	INC_CACHE_INFO(find_total);
273	return page;
274}
275
276/* 
277 * Locate a page of swap in physical memory, reserving swap cache space
278 * and reading the disk if it is not already cached.
279 * A failure return means that either the page allocation failed or that
280 * the swap entry is no longer in use.
 
 
 
 
281 */
282struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
283			struct vm_area_struct *vma, unsigned long addr)
284{
285	struct page *found_page, *new_page = NULL;
286	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
287
288	do {
 
 
 
289		/*
290		 * First check the swap cache.  Since this is normally
291		 * called after lookup_swap_cache() failed, re-calling
292		 * that would confuse statistics.
293		 */
294		found_page = find_get_page(&swapper_space, entry.val);
295		if (found_page)
296			break;
 
 
 
 
 
297
298		/*
299		 * Get a new page to read into from swap.
 
 
 
 
 
300		 */
301		if (!new_page) {
302			new_page = alloc_page_vma(gfp_mask, vma, addr);
303			if (!new_page)
304				break;		/* Out of memory */
305		}
306
307		/*
308		 * call radix_tree_preload() while we can wait.
 
 
309		 */
310		err = radix_tree_preload(gfp_mask & GFP_KERNEL);
311		if (err)
312			break;
313
314		/*
315		 * Swap entry may have been freed since our caller observed it.
316		 */
317		err = swapcache_prepare(entry);
318		if (err == -EEXIST) {	/* seems racy */
319			radix_tree_preload_end();
320			continue;
321		}
322		if (err) {		/* swp entry is obsolete ? */
323			radix_tree_preload_end();
324			break;
325		}
326
327		/* May fail (-ENOMEM) if radix-tree node allocation failed. */
328		__set_page_locked(new_page);
329		SetPageSwapBacked(new_page);
330		err = __add_to_swap_cache(new_page, entry);
331		if (likely(!err)) {
332			radix_tree_preload_end();
333			/*
334			 * Initiate read into locked page and return.
335			 */
336			lru_cache_add_anon(new_page);
337			swap_readpage(new_page);
338			return new_page;
339		}
340		radix_tree_preload_end();
341		ClearPageSwapBacked(new_page);
342		__clear_page_locked(new_page);
343		/*
344		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
345		 * clear SWAP_HAS_CACHE flag.
 
 
 
346		 */
347		swapcache_free(entry, NULL);
348	} while (err != -ENOMEM);
349
350	if (new_page)
351		page_cache_release(new_page);
352	return found_page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
353}
354
355/**
356 * swapin_readahead - swap in pages in hope we need them soon
357 * @entry: swap entry of this memory
358 * @gfp_mask: memory allocation flags
359 * @vma: user vma this address belongs to
360 * @addr: target address for mempolicy
361 *
362 * Returns the struct page for entry and addr, after queueing swapin.
363 *
364 * Primitive swap readahead code. We simply read an aligned block of
365 * (1 << page_cluster) entries in the swap area. This method is chosen
366 * because it doesn't cost us any seek time.  We also make sure to queue
367 * the 'original' request together with the readahead ones...
368 *
369 * This has been extended to use the NUMA policies from the mm triggering
370 * the readahead.
371 *
372 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
373 */
374struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
375			struct vm_area_struct *vma, unsigned long addr)
376{
377	int nr_pages;
378	struct page *page;
379	unsigned long offset;
380	unsigned long end_offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
381
382	/*
383	 * Get starting offset for readaround, and number of pages to read.
384	 * Adjust starting address by readbehind (for NUMA interleave case)?
385	 * No, it's very unlikely that swap layout would follow vma layout,
386	 * more likely that neighbouring swap pages came from the same node:
387	 * so use the same "addr" to choose the same node for each swap read.
388	 */
389	nr_pages = valid_swaphandles(entry, &offset);
390	for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
391		/* Ok, do the async read-ahead now */
392		page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
393						gfp_mask, vma, addr);
 
394		if (!page)
395			break;
396		page_cache_release(page);
 
 
 
 
 
 
 
397	}
 
 
 
398	lru_add_drain();	/* Push any new pages onto the LRU now */
399	return read_swap_cache_async(entry, gfp_mask, vma, addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
400}
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/mm/swap_state.c
  4 *
  5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  6 *  Swap reorganised 29.12.95, Stephen Tweedie
  7 *
  8 *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
  9 */
 
 10#include <linux/mm.h>
 11#include <linux/gfp.h>
 12#include <linux/kernel_stat.h>
 13#include <linux/swap.h>
 14#include <linux/swapops.h>
 15#include <linux/init.h>
 16#include <linux/pagemap.h>
 
 17#include <linux/backing-dev.h>
 18#include <linux/blkdev.h>
 19#include <linux/pagevec.h>
 20#include <linux/migrate.h>
 21#include <linux/vmalloc.h>
 22#include <linux/swap_slots.h>
 23#include <linux/huge_mm.h>
 24#include <linux/shmem_fs.h>
 25#include "internal.h"
 26#include "swap.h"
 27
 28/*
 29 * swapper_space is a fiction, retained to simplify the path through
 30 * vmscan's shrink_page_list.
 31 */
 32static const struct address_space_operations swap_aops = {
 33	.writepage	= swap_writepage,
 34	.dirty_folio	= noop_dirty_folio,
 35#ifdef CONFIG_MIGRATION
 36	.migrate_folio	= migrate_folio,
 37#endif
 
 
 
 38};
 39
 40struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
 41static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
 42static bool enable_vma_readahead __read_mostly = true;
 43
 44#define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
 45#define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
 46#define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
 47#define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
 48
 49#define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
 50#define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
 51#define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
 52
 53#define SWAP_RA_VAL(addr, win, hits)				\
 54	(((addr) & PAGE_MASK) |					\
 55	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
 56	 ((hits) & SWAP_RA_HITS_MASK))
 57
 58/* Initial readahead hits is 4 to start up with a small window */
 59#define GET_SWAP_RA_VAL(vma)					\
 60	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
 61
 62static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
 
 
 
 
 
 63
 64void show_swap_cache_info(void)
 65{
 66	printk("%lu pages in swap cache\n", total_swapcache_pages());
 67	printk("Free swap  = %ldkB\n",
 68		get_nr_swap_pages() << (PAGE_SHIFT - 10));
 
 
 69	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
 70}
 71
 72void *get_shadow_from_swap_cache(swp_entry_t entry)
 73{
 74	struct address_space *address_space = swap_address_space(entry);
 75	pgoff_t idx = swp_offset(entry);
 76	struct page *page;
 77
 78	page = xa_load(&address_space->i_pages, idx);
 79	if (xa_is_value(page))
 80		return page;
 81	return NULL;
 82}
 83
 84/*
 85 * add_to_swap_cache resembles filemap_add_folio on swapper_space,
 86 * but sets SwapCache flag and private instead of mapping and index.
 87 */
 88int add_to_swap_cache(struct folio *folio, swp_entry_t entry,
 89			gfp_t gfp, void **shadowp)
 90{
 91	struct address_space *address_space = swap_address_space(entry);
 92	pgoff_t idx = swp_offset(entry);
 93	XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio));
 94	unsigned long i, nr = folio_nr_pages(folio);
 95	void *old;
 96
 97	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 98	VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
 99	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
100
101	folio_ref_add(folio, nr);
102	folio_set_swapcache(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
104	do {
105		xas_lock_irq(&xas);
106		xas_create_range(&xas);
107		if (xas_error(&xas))
108			goto unlock;
109		for (i = 0; i < nr; i++) {
110			VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio);
111			old = xas_load(&xas);
112			if (xa_is_value(old)) {
113				if (shadowp)
114					*shadowp = old;
115			}
116			set_page_private(folio_page(folio, i), entry.val + i);
117			xas_store(&xas, folio);
118			xas_next(&xas);
119		}
120		address_space->nrpages += nr;
121		__node_stat_mod_folio(folio, NR_FILE_PAGES, nr);
122		__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr);
123unlock:
124		xas_unlock_irq(&xas);
125	} while (xas_nomem(&xas, gfp));
126
127	if (!xas_error(&xas))
128		return 0;
 
129
130	folio_clear_swapcache(folio);
131	folio_ref_sub(folio, nr);
132	return xas_error(&xas);
 
 
 
133}
134
135/*
136 * This must be called only on folios that have
137 * been verified to be in the swap cache.
138 */
139void __delete_from_swap_cache(struct folio *folio,
140			swp_entry_t entry, void *shadow)
141{
142	struct address_space *address_space = swap_address_space(entry);
143	int i;
144	long nr = folio_nr_pages(folio);
145	pgoff_t idx = swp_offset(entry);
146	XA_STATE(xas, &address_space->i_pages, idx);
147
148	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
149	VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
150	VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
151
152	for (i = 0; i < nr; i++) {
153		void *entry = xas_store(&xas, shadow);
154		VM_BUG_ON_PAGE(entry != folio, entry);
155		set_page_private(folio_page(folio, i), 0);
156		xas_next(&xas);
157	}
158	folio_clear_swapcache(folio);
159	address_space->nrpages -= nr;
160	__node_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
161	__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr);
162}
163
164/**
165 * add_to_swap - allocate swap space for a folio
166 * @folio: folio we want to move to swap
167 *
168 * Allocate swap space for the folio and add the folio to the
169 * swap cache.
170 *
171 * Context: Caller needs to hold the folio lock.
172 * Return: Whether the folio was added to the swap cache.
173 */
174bool add_to_swap(struct folio *folio)
175{
176	swp_entry_t entry;
177	int err;
178
179	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
180	VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
181
182	entry = folio_alloc_swap(folio);
183	if (!entry.val)
184		return false;
 
 
 
 
 
 
185
186	/*
187	 * XArray node allocations from PF_MEMALLOC contexts could
188	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
189	 * stops emergency reserves from being allocated.
190	 *
191	 * TODO: this could cause a theoretical memory reclaim
192	 * deadlock in the swap out path.
193	 */
194	/*
195	 * Add it to the swap cache.
196	 */
197	err = add_to_swap_cache(folio, entry,
198			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
199	if (err)
 
 
 
 
200		/*
201		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
202		 * clear SWAP_HAS_CACHE flag.
203		 */
204		goto fail;
205	/*
206	 * Normally the folio will be dirtied in unmap because its
207	 * pte should be dirty. A special case is MADV_FREE page. The
208	 * page's pte could have dirty bit cleared but the folio's
209	 * SwapBacked flag is still set because clearing the dirty bit
210	 * and SwapBacked flag has no lock protected. For such folio,
211	 * unmap will not set dirty bit for it, so folio reclaim will
212	 * not write the folio out. This can cause data corruption when
213	 * the folio is swapped in later. Always setting the dirty flag
214	 * for the folio solves the problem.
215	 */
216	folio_mark_dirty(folio);
217
218	return true;
219
220fail:
221	put_swap_folio(folio, entry);
222	return false;
223}
224
225/*
226 * This must be called only on folios that have
227 * been verified to be in the swap cache and locked.
228 * It will never put the folio into the free list,
229 * the caller has a reference on the folio.
230 */
231void delete_from_swap_cache(struct folio *folio)
232{
233	swp_entry_t entry = folio_swap_entry(folio);
234	struct address_space *address_space = swap_address_space(entry);
235
236	xa_lock_irq(&address_space->i_pages);
237	__delete_from_swap_cache(folio, entry, NULL);
238	xa_unlock_irq(&address_space->i_pages);
239
240	put_swap_folio(folio, entry);
241	folio_ref_sub(folio, folio_nr_pages(folio));
242}
243
244void clear_shadow_from_swap_cache(int type, unsigned long begin,
245				unsigned long end)
246{
247	unsigned long curr = begin;
248	void *old;
249
250	for (;;) {
251		swp_entry_t entry = swp_entry(type, curr);
252		struct address_space *address_space = swap_address_space(entry);
253		XA_STATE(xas, &address_space->i_pages, curr);
254
255		xa_lock_irq(&address_space->i_pages);
256		xas_for_each(&xas, old, end) {
257			if (!xa_is_value(old))
258				continue;
259			xas_store(&xas, NULL);
260		}
261		xa_unlock_irq(&address_space->i_pages);
262
263		/* search the next swapcache until we meet end */
264		curr >>= SWAP_ADDRESS_SPACE_SHIFT;
265		curr++;
266		curr <<= SWAP_ADDRESS_SPACE_SHIFT;
267		if (curr > end)
268			break;
269	}
270}
271
272/* 
273 * If we are the only user, then try to free up the swap cache. 
274 * 
275 * Its ok to check the swapcache flag without the folio lock
276 * here because we are going to recheck again inside
277 * folio_free_swap() _with_ the lock.
278 * 					- Marcelo
279 */
280void free_swap_cache(struct page *page)
281{
282	struct folio *folio = page_folio(page);
283
284	if (folio_test_swapcache(folio) && !folio_mapped(folio) &&
285	    folio_trylock(folio)) {
286		folio_free_swap(folio);
287		folio_unlock(folio);
288	}
289}
290
291/* 
292 * Perform a free_page(), also freeing any swap cache associated with
293 * this page if it is the last user of the page.
294 */
295void free_page_and_swap_cache(struct page *page)
296{
297	free_swap_cache(page);
298	if (!is_huge_zero_page(page))
299		put_page(page);
300}
301
302/*
303 * Passed an array of pages, drop them all from swapcache and then release
304 * them.  They are removed from the LRU and freed if this is their last use.
305 */
306void free_pages_and_swap_cache(struct encoded_page **pages, int nr)
307{
 
 
308	lru_add_drain();
309	for (int i = 0; i < nr; i++)
310		free_swap_cache(encoded_page_ptr(pages[i]));
311	release_pages(pages, nr);
312}
313
314static inline bool swap_use_vma_readahead(void)
315{
316	return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
 
 
317}
318
319/*
320 * Lookup a swap entry in the swap cache. A found folio will be returned
321 * unlocked and with its refcount incremented - we rely on the kernel
322 * lock getting page table operations atomic even if we drop the folio
323 * lock before returning.
324 */
325struct folio *swap_cache_get_folio(swp_entry_t entry,
326		struct vm_area_struct *vma, unsigned long addr)
327{
328	struct folio *folio;
329	struct swap_info_struct *si;
330
331	si = get_swap_device(entry);
332	if (!si)
333		return NULL;
334	folio = filemap_get_folio(swap_address_space(entry), swp_offset(entry));
335	put_swap_device(si);
336
337	if (folio) {
338		bool vma_ra = swap_use_vma_readahead();
339		bool readahead;
340
341		/*
342		 * At the moment, we don't support PG_readahead for anon THP
343		 * so let's bail out rather than confusing the readahead stat.
344		 */
345		if (unlikely(folio_test_large(folio)))
346			return folio;
347
348		readahead = folio_test_clear_readahead(folio);
349		if (vma && vma_ra) {
350			unsigned long ra_val;
351			int win, hits;
352
353			ra_val = GET_SWAP_RA_VAL(vma);
354			win = SWAP_RA_WIN(ra_val);
355			hits = SWAP_RA_HITS(ra_val);
356			if (readahead)
357				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
358			atomic_long_set(&vma->swap_readahead_info,
359					SWAP_RA_VAL(addr, win, hits));
360		}
361
362		if (readahead) {
363			count_vm_event(SWAP_RA_HIT);
364			if (!vma || !vma_ra)
365				atomic_inc(&swapin_readahead_hits);
366		}
367	}
368
369	return folio;
 
370}
371
372/**
373 * filemap_get_incore_folio - Find and get a folio from the page or swap caches.
374 * @mapping: The address_space to search.
375 * @index: The page cache index.
376 *
377 * This differs from filemap_get_folio() in that it will also look for the
378 * folio in the swap cache.
379 *
380 * Return: The found folio or %NULL.
381 */
382struct folio *filemap_get_incore_folio(struct address_space *mapping,
383		pgoff_t index)
384{
385	swp_entry_t swp;
386	struct swap_info_struct *si;
387	struct folio *folio = __filemap_get_folio(mapping, index, FGP_ENTRY, 0);
388
389	if (!xa_is_value(folio))
390		goto out;
391	if (!shmem_mapping(mapping))
392		return NULL;
393
394	swp = radix_to_swp_entry(folio);
395	/* There might be swapin error entries in shmem mapping. */
396	if (non_swap_entry(swp))
397		return NULL;
398	/* Prevent swapoff from happening to us */
399	si = get_swap_device(swp);
400	if (!si)
401		return NULL;
402	index = swp_offset(swp);
403	folio = filemap_get_folio(swap_address_space(swp), index);
404	put_swap_device(si);
405out:
406	return folio;
407}
408
409struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
410			struct vm_area_struct *vma, unsigned long addr,
411			bool *new_page_allocated)
412{
413	struct swap_info_struct *si;
414	struct folio *folio;
415	void *shadow = NULL;
416
417	*new_page_allocated = false;
418
419	for (;;) {
420		int err;
421		/*
422		 * First check the swap cache.  Since this is normally
423		 * called after swap_cache_get_folio() failed, re-calling
424		 * that would confuse statistics.
425		 */
426		si = get_swap_device(entry);
427		if (!si)
428			return NULL;
429		folio = filemap_get_folio(swap_address_space(entry),
430						swp_offset(entry));
431		put_swap_device(si);
432		if (folio)
433			return folio_file_page(folio, swp_offset(entry));
434
435		/*
436		 * Just skip read ahead for unused swap slot.
437		 * During swap_off when swap_slot_cache is disabled,
438		 * we have to handle the race between putting
439		 * swap entry in swap cache and marking swap slot
440		 * as SWAP_HAS_CACHE.  That's done in later part of code or
441		 * else swap_off will be aborted if we return NULL.
442		 */
443		if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
444			return NULL;
 
 
 
445
446		/*
447		 * Get a new page to read into from swap.  Allocate it now,
448		 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
449		 * cause any racers to loop around until we add it to cache.
450		 */
451		folio = vma_alloc_folio(gfp_mask, 0, vma, addr, false);
452		if (!folio)
453			return NULL;
454
455		/*
456		 * Swap entry may have been freed since our caller observed it.
457		 */
458		err = swapcache_prepare(entry);
459		if (!err)
 
 
 
 
 
460			break;
 
461
462		folio_put(folio);
463		if (err != -EEXIST)
464			return NULL;
465
 
 
 
 
 
 
 
 
 
 
 
 
466		/*
467		 * We might race against __delete_from_swap_cache(), and
468		 * stumble across a swap_map entry whose SWAP_HAS_CACHE
469		 * has not yet been cleared.  Or race against another
470		 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
471		 * in swap_map, but not yet added its page to swap cache.
472		 */
473		schedule_timeout_uninterruptible(1);
474	}
475
476	/*
477	 * The swap entry is ours to swap in. Prepare the new page.
478	 */
479
480	__folio_set_locked(folio);
481	__folio_set_swapbacked(folio);
482
483	if (mem_cgroup_swapin_charge_folio(folio, NULL, gfp_mask, entry))
484		goto fail_unlock;
485
486	/* May fail (-ENOMEM) if XArray node allocation failed. */
487	if (add_to_swap_cache(folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
488		goto fail_unlock;
489
490	mem_cgroup_swapin_uncharge_swap(entry);
491
492	if (shadow)
493		workingset_refault(folio, shadow);
494
495	/* Caller will initiate read into locked folio */
496	folio_add_lru(folio);
497	*new_page_allocated = true;
498	return &folio->page;
499
500fail_unlock:
501	put_swap_folio(folio, entry);
502	folio_unlock(folio);
503	folio_put(folio);
504	return NULL;
505}
506
507/*
508 * Locate a page of swap in physical memory, reserving swap cache space
509 * and reading the disk if it is not already cached.
510 * A failure return means that either the page allocation failed or that
511 * the swap entry is no longer in use.
512 */
513struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
514				   struct vm_area_struct *vma,
515				   unsigned long addr, bool do_poll,
516				   struct swap_iocb **plug)
517{
518	bool page_was_allocated;
519	struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
520			vma, addr, &page_was_allocated);
521
522	if (page_was_allocated)
523		swap_readpage(retpage, do_poll, plug);
524
525	return retpage;
526}
527
528static unsigned int __swapin_nr_pages(unsigned long prev_offset,
529				      unsigned long offset,
530				      int hits,
531				      int max_pages,
532				      int prev_win)
533{
534	unsigned int pages, last_ra;
535
536	/*
537	 * This heuristic has been found to work well on both sequential and
538	 * random loads, swapping to hard disk or to SSD: please don't ask
539	 * what the "+ 2" means, it just happens to work well, that's all.
540	 */
541	pages = hits + 2;
542	if (pages == 2) {
543		/*
544		 * We can have no readahead hits to judge by: but must not get
545		 * stuck here forever, so check for an adjacent offset instead
546		 * (and don't even bother to check whether swap type is same).
547		 */
548		if (offset != prev_offset + 1 && offset != prev_offset - 1)
549			pages = 1;
550	} else {
551		unsigned int roundup = 4;
552		while (roundup < pages)
553			roundup <<= 1;
554		pages = roundup;
555	}
556
557	if (pages > max_pages)
558		pages = max_pages;
559
560	/* Don't shrink readahead too fast */
561	last_ra = prev_win / 2;
562	if (pages < last_ra)
563		pages = last_ra;
564
565	return pages;
566}
567
568static unsigned long swapin_nr_pages(unsigned long offset)
569{
570	static unsigned long prev_offset;
571	unsigned int hits, pages, max_pages;
572	static atomic_t last_readahead_pages;
573
574	max_pages = 1 << READ_ONCE(page_cluster);
575	if (max_pages <= 1)
576		return 1;
577
578	hits = atomic_xchg(&swapin_readahead_hits, 0);
579	pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
580				  max_pages,
581				  atomic_read(&last_readahead_pages));
582	if (!hits)
583		WRITE_ONCE(prev_offset, offset);
584	atomic_set(&last_readahead_pages, pages);
585
586	return pages;
587}
588
589/**
590 * swap_cluster_readahead - swap in pages in hope we need them soon
591 * @entry: swap entry of this memory
592 * @gfp_mask: memory allocation flags
593 * @vmf: fault information
 
594 *
595 * Returns the struct page for entry and addr, after queueing swapin.
596 *
597 * Primitive swap readahead code. We simply read an aligned block of
598 * (1 << page_cluster) entries in the swap area. This method is chosen
599 * because it doesn't cost us any seek time.  We also make sure to queue
600 * the 'original' request together with the readahead ones...
601 *
602 * This has been extended to use the NUMA policies from the mm triggering
603 * the readahead.
604 *
605 * Caller must hold read mmap_lock if vmf->vma is not NULL.
606 */
607struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
608				struct vm_fault *vmf)
609{
 
610	struct page *page;
611	unsigned long entry_offset = swp_offset(entry);
612	unsigned long offset = entry_offset;
613	unsigned long start_offset, end_offset;
614	unsigned long mask;
615	struct swap_info_struct *si = swp_swap_info(entry);
616	struct blk_plug plug;
617	struct swap_iocb *splug = NULL;
618	bool do_poll = true, page_allocated;
619	struct vm_area_struct *vma = vmf->vma;
620	unsigned long addr = vmf->address;
621
622	mask = swapin_nr_pages(offset) - 1;
623	if (!mask)
624		goto skip;
625
626	do_poll = false;
627	/* Read a page_cluster sized and aligned cluster around offset. */
628	start_offset = offset & ~mask;
629	end_offset = offset | mask;
630	if (!start_offset)	/* First page is swap header. */
631		start_offset++;
632	if (end_offset >= si->max)
633		end_offset = si->max - 1;
634
635	blk_start_plug(&plug);
636	for (offset = start_offset; offset <= end_offset ; offset++) {
 
 
 
 
 
 
 
637		/* Ok, do the async read-ahead now */
638		page = __read_swap_cache_async(
639			swp_entry(swp_type(entry), offset),
640			gfp_mask, vma, addr, &page_allocated);
641		if (!page)
642			continue;
643		if (page_allocated) {
644			swap_readpage(page, false, &splug);
645			if (offset != entry_offset) {
646				SetPageReadahead(page);
647				count_vm_event(SWAP_RA);
648			}
649		}
650		put_page(page);
651	}
652	blk_finish_plug(&plug);
653	swap_read_unplug(splug);
654
655	lru_add_drain();	/* Push any new pages onto the LRU now */
656skip:
657	/* The page was likely read above, so no need for plugging here */
658	return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll, NULL);
659}
660
661int init_swap_address_space(unsigned int type, unsigned long nr_pages)
662{
663	struct address_space *spaces, *space;
664	unsigned int i, nr;
665
666	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
667	spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
668	if (!spaces)
669		return -ENOMEM;
670	for (i = 0; i < nr; i++) {
671		space = spaces + i;
672		xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
673		atomic_set(&space->i_mmap_writable, 0);
674		space->a_ops = &swap_aops;
675		/* swap cache doesn't use writeback related tags */
676		mapping_set_no_writeback_tags(space);
677	}
678	nr_swapper_spaces[type] = nr;
679	swapper_spaces[type] = spaces;
680
681	return 0;
682}
683
684void exit_swap_address_space(unsigned int type)
685{
686	int i;
687	struct address_space *spaces = swapper_spaces[type];
688
689	for (i = 0; i < nr_swapper_spaces[type]; i++)
690		VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
691	kvfree(spaces);
692	nr_swapper_spaces[type] = 0;
693	swapper_spaces[type] = NULL;
694}
695
696static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
697				     unsigned long faddr,
698				     unsigned long lpfn,
699				     unsigned long rpfn,
700				     unsigned long *start,
701				     unsigned long *end)
702{
703	*start = max3(lpfn, PFN_DOWN(vma->vm_start),
704		      PFN_DOWN(faddr & PMD_MASK));
705	*end = min3(rpfn, PFN_DOWN(vma->vm_end),
706		    PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
707}
708
709static void swap_ra_info(struct vm_fault *vmf,
710			struct vma_swap_readahead *ra_info)
711{
712	struct vm_area_struct *vma = vmf->vma;
713	unsigned long ra_val;
714	unsigned long faddr, pfn, fpfn;
715	unsigned long start, end;
716	pte_t *pte, *orig_pte;
717	unsigned int max_win, hits, prev_win, win, left;
718#ifndef CONFIG_64BIT
719	pte_t *tpte;
720#endif
721
722	max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
723			     SWAP_RA_ORDER_CEILING);
724	if (max_win == 1) {
725		ra_info->win = 1;
726		return;
727	}
728
729	faddr = vmf->address;
730	orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
731
732	fpfn = PFN_DOWN(faddr);
733	ra_val = GET_SWAP_RA_VAL(vma);
734	pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
735	prev_win = SWAP_RA_WIN(ra_val);
736	hits = SWAP_RA_HITS(ra_val);
737	ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
738					       max_win, prev_win);
739	atomic_long_set(&vma->swap_readahead_info,
740			SWAP_RA_VAL(faddr, win, 0));
741
742	if (win == 1) {
743		pte_unmap(orig_pte);
744		return;
745	}
746
747	/* Copy the PTEs because the page table may be unmapped */
748	if (fpfn == pfn + 1)
749		swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
750	else if (pfn == fpfn + 1)
751		swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
752				  &start, &end);
753	else {
754		left = (win - 1) / 2;
755		swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
756				  &start, &end);
757	}
758	ra_info->nr_pte = end - start;
759	ra_info->offset = fpfn - start;
760	pte -= ra_info->offset;
761#ifdef CONFIG_64BIT
762	ra_info->ptes = pte;
763#else
764	tpte = ra_info->ptes;
765	for (pfn = start; pfn != end; pfn++)
766		*tpte++ = *pte++;
767#endif
768	pte_unmap(orig_pte);
769}
770
771/**
772 * swap_vma_readahead - swap in pages in hope we need them soon
773 * @fentry: swap entry of this memory
774 * @gfp_mask: memory allocation flags
775 * @vmf: fault information
776 *
777 * Returns the struct page for entry and addr, after queueing swapin.
778 *
779 * Primitive swap readahead code. We simply read in a few pages whose
780 * virtual addresses are around the fault address in the same vma.
781 *
782 * Caller must hold read mmap_lock if vmf->vma is not NULL.
783 *
784 */
785static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
786				       struct vm_fault *vmf)
787{
788	struct blk_plug plug;
789	struct swap_iocb *splug = NULL;
790	struct vm_area_struct *vma = vmf->vma;
791	struct page *page;
792	pte_t *pte, pentry;
793	swp_entry_t entry;
794	unsigned int i;
795	bool page_allocated;
796	struct vma_swap_readahead ra_info = {
797		.win = 1,
798	};
799
800	swap_ra_info(vmf, &ra_info);
801	if (ra_info.win == 1)
802		goto skip;
803
804	blk_start_plug(&plug);
805	for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
806	     i++, pte++) {
807		pentry = *pte;
808		if (!is_swap_pte(pentry))
809			continue;
810		entry = pte_to_swp_entry(pentry);
811		if (unlikely(non_swap_entry(entry)))
812			continue;
813		page = __read_swap_cache_async(entry, gfp_mask, vma,
814					       vmf->address, &page_allocated);
815		if (!page)
816			continue;
817		if (page_allocated) {
818			swap_readpage(page, false, &splug);
819			if (i != ra_info.offset) {
820				SetPageReadahead(page);
821				count_vm_event(SWAP_RA);
822			}
823		}
824		put_page(page);
825	}
826	blk_finish_plug(&plug);
827	swap_read_unplug(splug);
828	lru_add_drain();
829skip:
830	/* The page was likely read above, so no need for plugging here */
831	return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
832				     ra_info.win == 1, NULL);
833}
834
835/**
836 * swapin_readahead - swap in pages in hope we need them soon
837 * @entry: swap entry of this memory
838 * @gfp_mask: memory allocation flags
839 * @vmf: fault information
840 *
841 * Returns the struct page for entry and addr, after queueing swapin.
842 *
843 * It's a main entry function for swap readahead. By the configuration,
844 * it will read ahead blocks by cluster-based(ie, physical disk based)
845 * or vma-based(ie, virtual address based on faulty address) readahead.
846 */
847struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
848				struct vm_fault *vmf)
849{
850	return swap_use_vma_readahead() ?
851			swap_vma_readahead(entry, gfp_mask, vmf) :
852			swap_cluster_readahead(entry, gfp_mask, vmf);
853}
854
855#ifdef CONFIG_SYSFS
856static ssize_t vma_ra_enabled_show(struct kobject *kobj,
857				     struct kobj_attribute *attr, char *buf)
858{
859	return sysfs_emit(buf, "%s\n",
860			  enable_vma_readahead ? "true" : "false");
861}
862static ssize_t vma_ra_enabled_store(struct kobject *kobj,
863				      struct kobj_attribute *attr,
864				      const char *buf, size_t count)
865{
866	ssize_t ret;
867
868	ret = kstrtobool(buf, &enable_vma_readahead);
869	if (ret)
870		return ret;
871
872	return count;
873}
874static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
875
876static struct attribute *swap_attrs[] = {
877	&vma_ra_enabled_attr.attr,
878	NULL,
879};
880
881static const struct attribute_group swap_attr_group = {
882	.attrs = swap_attrs,
883};
884
885static int __init swap_init_sysfs(void)
886{
887	int err;
888	struct kobject *swap_kobj;
889
890	swap_kobj = kobject_create_and_add("swap", mm_kobj);
891	if (!swap_kobj) {
892		pr_err("failed to create swap kobject\n");
893		return -ENOMEM;
894	}
895	err = sysfs_create_group(swap_kobj, &swap_attr_group);
896	if (err) {
897		pr_err("failed to register swap group\n");
898		goto delete_obj;
899	}
900	return 0;
901
902delete_obj:
903	kobject_put(swap_kobj);
904	return err;
905}
906subsys_initcall(swap_init_sysfs);
907#endif