Loading...
1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5#include <linux/time.h>
6#include <linux/fs.h>
7#include <linux/reiserfs_fs.h>
8#include <linux/reiserfs_acl.h>
9#include <linux/reiserfs_xattr.h>
10#include <linux/exportfs.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/slab.h>
14#include <asm/uaccess.h>
15#include <asm/unaligned.h>
16#include <linux/buffer_head.h>
17#include <linux/mpage.h>
18#include <linux/writeback.h>
19#include <linux/quotaops.h>
20#include <linux/swap.h>
21
22int reiserfs_commit_write(struct file *f, struct page *page,
23 unsigned from, unsigned to);
24
25void reiserfs_evict_inode(struct inode *inode)
26{
27 /* We need blocks for transaction + (user+group) quota update (possibly delete) */
28 int jbegin_count =
29 JOURNAL_PER_BALANCE_CNT * 2 +
30 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
31 struct reiserfs_transaction_handle th;
32 int depth;
33 int err;
34
35 if (!inode->i_nlink && !is_bad_inode(inode))
36 dquot_initialize(inode);
37
38 truncate_inode_pages(&inode->i_data, 0);
39 if (inode->i_nlink)
40 goto no_delete;
41
42 depth = reiserfs_write_lock_once(inode->i_sb);
43
44 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
45 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */
46 reiserfs_delete_xattrs(inode);
47
48 if (journal_begin(&th, inode->i_sb, jbegin_count))
49 goto out;
50 reiserfs_update_inode_transaction(inode);
51
52 reiserfs_discard_prealloc(&th, inode);
53
54 err = reiserfs_delete_object(&th, inode);
55
56 /* Do quota update inside a transaction for journaled quotas. We must do that
57 * after delete_object so that quota updates go into the same transaction as
58 * stat data deletion */
59 if (!err)
60 dquot_free_inode(inode);
61
62 if (journal_end(&th, inode->i_sb, jbegin_count))
63 goto out;
64
65 /* check return value from reiserfs_delete_object after
66 * ending the transaction
67 */
68 if (err)
69 goto out;
70
71 /* all items of file are deleted, so we can remove "save" link */
72 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything
73 * about an error here */
74 } else {
75 /* no object items are in the tree */
76 ;
77 }
78 out:
79 end_writeback(inode); /* note this must go after the journal_end to prevent deadlock */
80 dquot_drop(inode);
81 inode->i_blocks = 0;
82 reiserfs_write_unlock_once(inode->i_sb, depth);
83 return;
84
85no_delete:
86 end_writeback(inode);
87 dquot_drop(inode);
88}
89
90static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
91 __u32 objectid, loff_t offset, int type, int length)
92{
93 key->version = version;
94
95 key->on_disk_key.k_dir_id = dirid;
96 key->on_disk_key.k_objectid = objectid;
97 set_cpu_key_k_offset(key, offset);
98 set_cpu_key_k_type(key, type);
99 key->key_length = length;
100}
101
102/* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
103 offset and type of key */
104void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
105 int type, int length)
106{
107 _make_cpu_key(key, get_inode_item_key_version(inode),
108 le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
109 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
110 length);
111}
112
113//
114// when key is 0, do not set version and short key
115//
116inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
117 int version,
118 loff_t offset, int type, int length,
119 int entry_count /*or ih_free_space */ )
120{
121 if (key) {
122 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
123 ih->ih_key.k_objectid =
124 cpu_to_le32(key->on_disk_key.k_objectid);
125 }
126 put_ih_version(ih, version);
127 set_le_ih_k_offset(ih, offset);
128 set_le_ih_k_type(ih, type);
129 put_ih_item_len(ih, length);
130 /* set_ih_free_space (ih, 0); */
131 // for directory items it is entry count, for directs and stat
132 // datas - 0xffff, for indirects - 0
133 put_ih_entry_count(ih, entry_count);
134}
135
136//
137// FIXME: we might cache recently accessed indirect item
138
139// Ugh. Not too eager for that....
140// I cut the code until such time as I see a convincing argument (benchmark).
141// I don't want a bloated inode struct..., and I don't like code complexity....
142
143/* cutting the code is fine, since it really isn't in use yet and is easy
144** to add back in. But, Vladimir has a really good idea here. Think
145** about what happens for reading a file. For each page,
146** The VFS layer calls reiserfs_readpage, who searches the tree to find
147** an indirect item. This indirect item has X number of pointers, where
148** X is a big number if we've done the block allocation right. But,
149** we only use one or two of these pointers during each call to readpage,
150** needlessly researching again later on.
151**
152** The size of the cache could be dynamic based on the size of the file.
153**
154** I'd also like to see us cache the location the stat data item, since
155** we are needlessly researching for that frequently.
156**
157** --chris
158*/
159
160/* If this page has a file tail in it, and
161** it was read in by get_block_create_0, the page data is valid,
162** but tail is still sitting in a direct item, and we can't write to
163** it. So, look through this page, and check all the mapped buffers
164** to make sure they have valid block numbers. Any that don't need
165** to be unmapped, so that __block_write_begin will correctly call
166** reiserfs_get_block to convert the tail into an unformatted node
167*/
168static inline void fix_tail_page_for_writing(struct page *page)
169{
170 struct buffer_head *head, *next, *bh;
171
172 if (page && page_has_buffers(page)) {
173 head = page_buffers(page);
174 bh = head;
175 do {
176 next = bh->b_this_page;
177 if (buffer_mapped(bh) && bh->b_blocknr == 0) {
178 reiserfs_unmap_buffer(bh);
179 }
180 bh = next;
181 } while (bh != head);
182 }
183}
184
185/* reiserfs_get_block does not need to allocate a block only if it has been
186 done already or non-hole position has been found in the indirect item */
187static inline int allocation_needed(int retval, b_blocknr_t allocated,
188 struct item_head *ih,
189 __le32 * item, int pos_in_item)
190{
191 if (allocated)
192 return 0;
193 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
194 get_block_num(item, pos_in_item))
195 return 0;
196 return 1;
197}
198
199static inline int indirect_item_found(int retval, struct item_head *ih)
200{
201 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
202}
203
204static inline void set_block_dev_mapped(struct buffer_head *bh,
205 b_blocknr_t block, struct inode *inode)
206{
207 map_bh(bh, inode->i_sb, block);
208}
209
210//
211// files which were created in the earlier version can not be longer,
212// than 2 gb
213//
214static int file_capable(struct inode *inode, sector_t block)
215{
216 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file.
217 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb
218 return 1;
219
220 return 0;
221}
222
223static int restart_transaction(struct reiserfs_transaction_handle *th,
224 struct inode *inode, struct treepath *path)
225{
226 struct super_block *s = th->t_super;
227 int len = th->t_blocks_allocated;
228 int err;
229
230 BUG_ON(!th->t_trans_id);
231 BUG_ON(!th->t_refcount);
232
233 pathrelse(path);
234
235 /* we cannot restart while nested */
236 if (th->t_refcount > 1) {
237 return 0;
238 }
239 reiserfs_update_sd(th, inode);
240 err = journal_end(th, s, len);
241 if (!err) {
242 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
243 if (!err)
244 reiserfs_update_inode_transaction(inode);
245 }
246 return err;
247}
248
249// it is called by get_block when create == 0. Returns block number
250// for 'block'-th logical block of file. When it hits direct item it
251// returns 0 (being called from bmap) or read direct item into piece
252// of page (bh_result)
253
254// Please improve the english/clarity in the comment above, as it is
255// hard to understand.
256
257static int _get_block_create_0(struct inode *inode, sector_t block,
258 struct buffer_head *bh_result, int args)
259{
260 INITIALIZE_PATH(path);
261 struct cpu_key key;
262 struct buffer_head *bh;
263 struct item_head *ih, tmp_ih;
264 b_blocknr_t blocknr;
265 char *p = NULL;
266 int chars;
267 int ret;
268 int result;
269 int done = 0;
270 unsigned long offset;
271
272 // prepare the key to look for the 'block'-th block of file
273 make_cpu_key(&key, inode,
274 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
275 3);
276
277 result = search_for_position_by_key(inode->i_sb, &key, &path);
278 if (result != POSITION_FOUND) {
279 pathrelse(&path);
280 if (p)
281 kunmap(bh_result->b_page);
282 if (result == IO_ERROR)
283 return -EIO;
284 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
285 // That there is some MMAPED data associated with it that is yet to be written to disk.
286 if ((args & GET_BLOCK_NO_HOLE)
287 && !PageUptodate(bh_result->b_page)) {
288 return -ENOENT;
289 }
290 return 0;
291 }
292 //
293 bh = get_last_bh(&path);
294 ih = get_ih(&path);
295 if (is_indirect_le_ih(ih)) {
296 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
297
298 /* FIXME: here we could cache indirect item or part of it in
299 the inode to avoid search_by_key in case of subsequent
300 access to file */
301 blocknr = get_block_num(ind_item, path.pos_in_item);
302 ret = 0;
303 if (blocknr) {
304 map_bh(bh_result, inode->i_sb, blocknr);
305 if (path.pos_in_item ==
306 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
307 set_buffer_boundary(bh_result);
308 }
309 } else
310 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
311 // That there is some MMAPED data associated with it that is yet to be written to disk.
312 if ((args & GET_BLOCK_NO_HOLE)
313 && !PageUptodate(bh_result->b_page)) {
314 ret = -ENOENT;
315 }
316
317 pathrelse(&path);
318 if (p)
319 kunmap(bh_result->b_page);
320 return ret;
321 }
322 // requested data are in direct item(s)
323 if (!(args & GET_BLOCK_READ_DIRECT)) {
324 // we are called by bmap. FIXME: we can not map block of file
325 // when it is stored in direct item(s)
326 pathrelse(&path);
327 if (p)
328 kunmap(bh_result->b_page);
329 return -ENOENT;
330 }
331
332 /* if we've got a direct item, and the buffer or page was uptodate,
333 ** we don't want to pull data off disk again. skip to the
334 ** end, where we map the buffer and return
335 */
336 if (buffer_uptodate(bh_result)) {
337 goto finished;
338 } else
339 /*
340 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
341 ** pages without any buffers. If the page is up to date, we don't want
342 ** read old data off disk. Set the up to date bit on the buffer instead
343 ** and jump to the end
344 */
345 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
346 set_buffer_uptodate(bh_result);
347 goto finished;
348 }
349 // read file tail into part of page
350 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
351 copy_item_head(&tmp_ih, ih);
352
353 /* we only want to kmap if we are reading the tail into the page.
354 ** this is not the common case, so we don't kmap until we are
355 ** sure we need to. But, this means the item might move if
356 ** kmap schedules
357 */
358 if (!p)
359 p = (char *)kmap(bh_result->b_page);
360
361 p += offset;
362 memset(p, 0, inode->i_sb->s_blocksize);
363 do {
364 if (!is_direct_le_ih(ih)) {
365 BUG();
366 }
367 /* make sure we don't read more bytes than actually exist in
368 ** the file. This can happen in odd cases where i_size isn't
369 ** correct, and when direct item padding results in a few
370 ** extra bytes at the end of the direct item
371 */
372 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
373 break;
374 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
375 chars =
376 inode->i_size - (le_ih_k_offset(ih) - 1) -
377 path.pos_in_item;
378 done = 1;
379 } else {
380 chars = ih_item_len(ih) - path.pos_in_item;
381 }
382 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
383
384 if (done)
385 break;
386
387 p += chars;
388
389 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
390 // we done, if read direct item is not the last item of
391 // node FIXME: we could try to check right delimiting key
392 // to see whether direct item continues in the right
393 // neighbor or rely on i_size
394 break;
395
396 // update key to look for the next piece
397 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
398 result = search_for_position_by_key(inode->i_sb, &key, &path);
399 if (result != POSITION_FOUND)
400 // i/o error most likely
401 break;
402 bh = get_last_bh(&path);
403 ih = get_ih(&path);
404 } while (1);
405
406 flush_dcache_page(bh_result->b_page);
407 kunmap(bh_result->b_page);
408
409 finished:
410 pathrelse(&path);
411
412 if (result == IO_ERROR)
413 return -EIO;
414
415 /* this buffer has valid data, but isn't valid for io. mapping it to
416 * block #0 tells the rest of reiserfs it just has a tail in it
417 */
418 map_bh(bh_result, inode->i_sb, 0);
419 set_buffer_uptodate(bh_result);
420 return 0;
421}
422
423// this is called to create file map. So, _get_block_create_0 will not
424// read direct item
425static int reiserfs_bmap(struct inode *inode, sector_t block,
426 struct buffer_head *bh_result, int create)
427{
428 if (!file_capable(inode, block))
429 return -EFBIG;
430
431 reiserfs_write_lock(inode->i_sb);
432 /* do not read the direct item */
433 _get_block_create_0(inode, block, bh_result, 0);
434 reiserfs_write_unlock(inode->i_sb);
435 return 0;
436}
437
438/* special version of get_block that is only used by grab_tail_page right
439** now. It is sent to __block_write_begin, and when you try to get a
440** block past the end of the file (or a block from a hole) it returns
441** -ENOENT instead of a valid buffer. __block_write_begin expects to
442** be able to do i/o on the buffers returned, unless an error value
443** is also returned.
444**
445** So, this allows __block_write_begin to be used for reading a single block
446** in a page. Where it does not produce a valid page for holes, or past the
447** end of the file. This turns out to be exactly what we need for reading
448** tails for conversion.
449**
450** The point of the wrapper is forcing a certain value for create, even
451** though the VFS layer is calling this function with create==1. If you
452** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
453** don't use this function.
454*/
455static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
456 struct buffer_head *bh_result,
457 int create)
458{
459 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
460}
461
462/* This is special helper for reiserfs_get_block in case we are executing
463 direct_IO request. */
464static int reiserfs_get_blocks_direct_io(struct inode *inode,
465 sector_t iblock,
466 struct buffer_head *bh_result,
467 int create)
468{
469 int ret;
470
471 bh_result->b_page = NULL;
472
473 /* We set the b_size before reiserfs_get_block call since it is
474 referenced in convert_tail_for_hole() that may be called from
475 reiserfs_get_block() */
476 bh_result->b_size = (1 << inode->i_blkbits);
477
478 ret = reiserfs_get_block(inode, iblock, bh_result,
479 create | GET_BLOCK_NO_DANGLE);
480 if (ret)
481 goto out;
482
483 /* don't allow direct io onto tail pages */
484 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
485 /* make sure future calls to the direct io funcs for this offset
486 ** in the file fail by unmapping the buffer
487 */
488 clear_buffer_mapped(bh_result);
489 ret = -EINVAL;
490 }
491 /* Possible unpacked tail. Flush the data before pages have
492 disappeared */
493 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
494 int err;
495
496 reiserfs_write_lock(inode->i_sb);
497
498 err = reiserfs_commit_for_inode(inode);
499 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
500
501 reiserfs_write_unlock(inode->i_sb);
502
503 if (err < 0)
504 ret = err;
505 }
506 out:
507 return ret;
508}
509
510/*
511** helper function for when reiserfs_get_block is called for a hole
512** but the file tail is still in a direct item
513** bh_result is the buffer head for the hole
514** tail_offset is the offset of the start of the tail in the file
515**
516** This calls prepare_write, which will start a new transaction
517** you should not be in a transaction, or have any paths held when you
518** call this.
519*/
520static int convert_tail_for_hole(struct inode *inode,
521 struct buffer_head *bh_result,
522 loff_t tail_offset)
523{
524 unsigned long index;
525 unsigned long tail_end;
526 unsigned long tail_start;
527 struct page *tail_page;
528 struct page *hole_page = bh_result->b_page;
529 int retval = 0;
530
531 if ((tail_offset & (bh_result->b_size - 1)) != 1)
532 return -EIO;
533
534 /* always try to read until the end of the block */
535 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
536 tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
537
538 index = tail_offset >> PAGE_CACHE_SHIFT;
539 /* hole_page can be zero in case of direct_io, we are sure
540 that we cannot get here if we write with O_DIRECT into
541 tail page */
542 if (!hole_page || index != hole_page->index) {
543 tail_page = grab_cache_page(inode->i_mapping, index);
544 retval = -ENOMEM;
545 if (!tail_page) {
546 goto out;
547 }
548 } else {
549 tail_page = hole_page;
550 }
551
552 /* we don't have to make sure the conversion did not happen while
553 ** we were locking the page because anyone that could convert
554 ** must first take i_mutex.
555 **
556 ** We must fix the tail page for writing because it might have buffers
557 ** that are mapped, but have a block number of 0. This indicates tail
558 ** data that has been read directly into the page, and
559 ** __block_write_begin won't trigger a get_block in this case.
560 */
561 fix_tail_page_for_writing(tail_page);
562 retval = __reiserfs_write_begin(tail_page, tail_start,
563 tail_end - tail_start);
564 if (retval)
565 goto unlock;
566
567 /* tail conversion might change the data in the page */
568 flush_dcache_page(tail_page);
569
570 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
571
572 unlock:
573 if (tail_page != hole_page) {
574 unlock_page(tail_page);
575 page_cache_release(tail_page);
576 }
577 out:
578 return retval;
579}
580
581static inline int _allocate_block(struct reiserfs_transaction_handle *th,
582 sector_t block,
583 struct inode *inode,
584 b_blocknr_t * allocated_block_nr,
585 struct treepath *path, int flags)
586{
587 BUG_ON(!th->t_trans_id);
588
589#ifdef REISERFS_PREALLOCATE
590 if (!(flags & GET_BLOCK_NO_IMUX)) {
591 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
592 path, block);
593 }
594#endif
595 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
596 block);
597}
598
599int reiserfs_get_block(struct inode *inode, sector_t block,
600 struct buffer_head *bh_result, int create)
601{
602 int repeat, retval = 0;
603 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int
604 INITIALIZE_PATH(path);
605 int pos_in_item;
606 struct cpu_key key;
607 struct buffer_head *bh, *unbh = NULL;
608 struct item_head *ih, tmp_ih;
609 __le32 *item;
610 int done;
611 int fs_gen;
612 int lock_depth;
613 struct reiserfs_transaction_handle *th = NULL;
614 /* space reserved in transaction batch:
615 . 3 balancings in direct->indirect conversion
616 . 1 block involved into reiserfs_update_sd()
617 XXX in practically impossible worst case direct2indirect()
618 can incur (much) more than 3 balancings.
619 quota update for user, group */
620 int jbegin_count =
621 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
622 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
623 int version;
624 int dangle = 1;
625 loff_t new_offset =
626 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
627
628 lock_depth = reiserfs_write_lock_once(inode->i_sb);
629 version = get_inode_item_key_version(inode);
630
631 if (!file_capable(inode, block)) {
632 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
633 return -EFBIG;
634 }
635
636 /* if !create, we aren't changing the FS, so we don't need to
637 ** log anything, so we don't need to start a transaction
638 */
639 if (!(create & GET_BLOCK_CREATE)) {
640 int ret;
641 /* find number of block-th logical block of the file */
642 ret = _get_block_create_0(inode, block, bh_result,
643 create | GET_BLOCK_READ_DIRECT);
644 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
645 return ret;
646 }
647 /*
648 * if we're already in a transaction, make sure to close
649 * any new transactions we start in this func
650 */
651 if ((create & GET_BLOCK_NO_DANGLE) ||
652 reiserfs_transaction_running(inode->i_sb))
653 dangle = 0;
654
655 /* If file is of such a size, that it might have a tail and tails are enabled
656 ** we should mark it as possibly needing tail packing on close
657 */
658 if ((have_large_tails(inode->i_sb)
659 && inode->i_size < i_block_size(inode) * 4)
660 || (have_small_tails(inode->i_sb)
661 && inode->i_size < i_block_size(inode)))
662 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
663
664 /* set the key of the first byte in the 'block'-th block of file */
665 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
666 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
667 start_trans:
668 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
669 if (!th) {
670 retval = -ENOMEM;
671 goto failure;
672 }
673 reiserfs_update_inode_transaction(inode);
674 }
675 research:
676
677 retval = search_for_position_by_key(inode->i_sb, &key, &path);
678 if (retval == IO_ERROR) {
679 retval = -EIO;
680 goto failure;
681 }
682
683 bh = get_last_bh(&path);
684 ih = get_ih(&path);
685 item = get_item(&path);
686 pos_in_item = path.pos_in_item;
687
688 fs_gen = get_generation(inode->i_sb);
689 copy_item_head(&tmp_ih, ih);
690
691 if (allocation_needed
692 (retval, allocated_block_nr, ih, item, pos_in_item)) {
693 /* we have to allocate block for the unformatted node */
694 if (!th) {
695 pathrelse(&path);
696 goto start_trans;
697 }
698
699 repeat =
700 _allocate_block(th, block, inode, &allocated_block_nr,
701 &path, create);
702
703 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
704 /* restart the transaction to give the journal a chance to free
705 ** some blocks. releases the path, so we have to go back to
706 ** research if we succeed on the second try
707 */
708 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
709 retval = restart_transaction(th, inode, &path);
710 if (retval)
711 goto failure;
712 repeat =
713 _allocate_block(th, block, inode,
714 &allocated_block_nr, NULL, create);
715
716 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
717 goto research;
718 }
719 if (repeat == QUOTA_EXCEEDED)
720 retval = -EDQUOT;
721 else
722 retval = -ENOSPC;
723 goto failure;
724 }
725
726 if (fs_changed(fs_gen, inode->i_sb)
727 && item_moved(&tmp_ih, &path)) {
728 goto research;
729 }
730 }
731
732 if (indirect_item_found(retval, ih)) {
733 b_blocknr_t unfm_ptr;
734 /* 'block'-th block is in the file already (there is
735 corresponding cell in some indirect item). But it may be
736 zero unformatted node pointer (hole) */
737 unfm_ptr = get_block_num(item, pos_in_item);
738 if (unfm_ptr == 0) {
739 /* use allocated block to plug the hole */
740 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
741 if (fs_changed(fs_gen, inode->i_sb)
742 && item_moved(&tmp_ih, &path)) {
743 reiserfs_restore_prepared_buffer(inode->i_sb,
744 bh);
745 goto research;
746 }
747 set_buffer_new(bh_result);
748 if (buffer_dirty(bh_result)
749 && reiserfs_data_ordered(inode->i_sb))
750 reiserfs_add_ordered_list(inode, bh_result);
751 put_block_num(item, pos_in_item, allocated_block_nr);
752 unfm_ptr = allocated_block_nr;
753 journal_mark_dirty(th, inode->i_sb, bh);
754 reiserfs_update_sd(th, inode);
755 }
756 set_block_dev_mapped(bh_result, unfm_ptr, inode);
757 pathrelse(&path);
758 retval = 0;
759 if (!dangle && th)
760 retval = reiserfs_end_persistent_transaction(th);
761
762 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
763
764 /* the item was found, so new blocks were not added to the file
765 ** there is no need to make sure the inode is updated with this
766 ** transaction
767 */
768 return retval;
769 }
770
771 if (!th) {
772 pathrelse(&path);
773 goto start_trans;
774 }
775
776 /* desired position is not found or is in the direct item. We have
777 to append file with holes up to 'block'-th block converting
778 direct items to indirect one if necessary */
779 done = 0;
780 do {
781 if (is_statdata_le_ih(ih)) {
782 __le32 unp = 0;
783 struct cpu_key tmp_key;
784
785 /* indirect item has to be inserted */
786 make_le_item_head(&tmp_ih, &key, version, 1,
787 TYPE_INDIRECT, UNFM_P_SIZE,
788 0 /* free_space */ );
789
790 if (cpu_key_k_offset(&key) == 1) {
791 /* we are going to add 'block'-th block to the file. Use
792 allocated block for that */
793 unp = cpu_to_le32(allocated_block_nr);
794 set_block_dev_mapped(bh_result,
795 allocated_block_nr, inode);
796 set_buffer_new(bh_result);
797 done = 1;
798 }
799 tmp_key = key; // ;)
800 set_cpu_key_k_offset(&tmp_key, 1);
801 PATH_LAST_POSITION(&path)++;
802
803 retval =
804 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
805 inode, (char *)&unp);
806 if (retval) {
807 reiserfs_free_block(th, inode,
808 allocated_block_nr, 1);
809 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
810 }
811 //mark_tail_converted (inode);
812 } else if (is_direct_le_ih(ih)) {
813 /* direct item has to be converted */
814 loff_t tail_offset;
815
816 tail_offset =
817 ((le_ih_k_offset(ih) -
818 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
819 if (tail_offset == cpu_key_k_offset(&key)) {
820 /* direct item we just found fits into block we have
821 to map. Convert it into unformatted node: use
822 bh_result for the conversion */
823 set_block_dev_mapped(bh_result,
824 allocated_block_nr, inode);
825 unbh = bh_result;
826 done = 1;
827 } else {
828 /* we have to padd file tail stored in direct item(s)
829 up to block size and convert it to unformatted
830 node. FIXME: this should also get into page cache */
831
832 pathrelse(&path);
833 /*
834 * ugly, but we can only end the transaction if
835 * we aren't nested
836 */
837 BUG_ON(!th->t_refcount);
838 if (th->t_refcount == 1) {
839 retval =
840 reiserfs_end_persistent_transaction
841 (th);
842 th = NULL;
843 if (retval)
844 goto failure;
845 }
846
847 retval =
848 convert_tail_for_hole(inode, bh_result,
849 tail_offset);
850 if (retval) {
851 if (retval != -ENOSPC)
852 reiserfs_error(inode->i_sb,
853 "clm-6004",
854 "convert tail failed "
855 "inode %lu, error %d",
856 inode->i_ino,
857 retval);
858 if (allocated_block_nr) {
859 /* the bitmap, the super, and the stat data == 3 */
860 if (!th)
861 th = reiserfs_persistent_transaction(inode->i_sb, 3);
862 if (th)
863 reiserfs_free_block(th,
864 inode,
865 allocated_block_nr,
866 1);
867 }
868 goto failure;
869 }
870 goto research;
871 }
872 retval =
873 direct2indirect(th, inode, &path, unbh,
874 tail_offset);
875 if (retval) {
876 reiserfs_unmap_buffer(unbh);
877 reiserfs_free_block(th, inode,
878 allocated_block_nr, 1);
879 goto failure;
880 }
881 /* it is important the set_buffer_uptodate is done after
882 ** the direct2indirect. The buffer might contain valid
883 ** data newer than the data on disk (read by readpage, changed,
884 ** and then sent here by writepage). direct2indirect needs
885 ** to know if unbh was already up to date, so it can decide
886 ** if the data in unbh needs to be replaced with data from
887 ** the disk
888 */
889 set_buffer_uptodate(unbh);
890
891 /* unbh->b_page == NULL in case of DIRECT_IO request, this means
892 buffer will disappear shortly, so it should not be added to
893 */
894 if (unbh->b_page) {
895 /* we've converted the tail, so we must
896 ** flush unbh before the transaction commits
897 */
898 reiserfs_add_tail_list(inode, unbh);
899
900 /* mark it dirty now to prevent commit_write from adding
901 ** this buffer to the inode's dirty buffer list
902 */
903 /*
904 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
905 * It's still atomic, but it sets the page dirty too,
906 * which makes it eligible for writeback at any time by the
907 * VM (which was also the case with __mark_buffer_dirty())
908 */
909 mark_buffer_dirty(unbh);
910 }
911 } else {
912 /* append indirect item with holes if needed, when appending
913 pointer to 'block'-th block use block, which is already
914 allocated */
915 struct cpu_key tmp_key;
916 unp_t unf_single = 0; // We use this in case we need to allocate only
917 // one block which is a fastpath
918 unp_t *un;
919 __u64 max_to_insert =
920 MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
921 UNFM_P_SIZE;
922 __u64 blocks_needed;
923
924 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
925 "vs-804: invalid position for append");
926 /* indirect item has to be appended, set up key of that position */
927 make_cpu_key(&tmp_key, inode,
928 le_key_k_offset(version,
929 &(ih->ih_key)) +
930 op_bytes_number(ih,
931 inode->i_sb->s_blocksize),
932 //pos_in_item * inode->i_sb->s_blocksize,
933 TYPE_INDIRECT, 3); // key type is unimportant
934
935 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
936 "green-805: invalid offset");
937 blocks_needed =
938 1 +
939 ((cpu_key_k_offset(&key) -
940 cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
941 s_blocksize_bits);
942
943 if (blocks_needed == 1) {
944 un = &unf_single;
945 } else {
946 un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
947 if (!un) {
948 un = &unf_single;
949 blocks_needed = 1;
950 max_to_insert = 0;
951 }
952 }
953 if (blocks_needed <= max_to_insert) {
954 /* we are going to add target block to the file. Use allocated
955 block for that */
956 un[blocks_needed - 1] =
957 cpu_to_le32(allocated_block_nr);
958 set_block_dev_mapped(bh_result,
959 allocated_block_nr, inode);
960 set_buffer_new(bh_result);
961 done = 1;
962 } else {
963 /* paste hole to the indirect item */
964 /* If kmalloc failed, max_to_insert becomes zero and it means we
965 only have space for one block */
966 blocks_needed =
967 max_to_insert ? max_to_insert : 1;
968 }
969 retval =
970 reiserfs_paste_into_item(th, &path, &tmp_key, inode,
971 (char *)un,
972 UNFM_P_SIZE *
973 blocks_needed);
974
975 if (blocks_needed != 1)
976 kfree(un);
977
978 if (retval) {
979 reiserfs_free_block(th, inode,
980 allocated_block_nr, 1);
981 goto failure;
982 }
983 if (!done) {
984 /* We need to mark new file size in case this function will be
985 interrupted/aborted later on. And we may do this only for
986 holes. */
987 inode->i_size +=
988 inode->i_sb->s_blocksize * blocks_needed;
989 }
990 }
991
992 if (done == 1)
993 break;
994
995 /* this loop could log more blocks than we had originally asked
996 ** for. So, we have to allow the transaction to end if it is
997 ** too big or too full. Update the inode so things are
998 ** consistent if we crash before the function returns
999 **
1000 ** release the path so that anybody waiting on the path before
1001 ** ending their transaction will be able to continue.
1002 */
1003 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1004 retval = restart_transaction(th, inode, &path);
1005 if (retval)
1006 goto failure;
1007 }
1008 /*
1009 * inserting indirect pointers for a hole can take a
1010 * long time. reschedule if needed and also release the write
1011 * lock for others.
1012 */
1013 if (need_resched()) {
1014 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1015 schedule();
1016 lock_depth = reiserfs_write_lock_once(inode->i_sb);
1017 }
1018
1019 retval = search_for_position_by_key(inode->i_sb, &key, &path);
1020 if (retval == IO_ERROR) {
1021 retval = -EIO;
1022 goto failure;
1023 }
1024 if (retval == POSITION_FOUND) {
1025 reiserfs_warning(inode->i_sb, "vs-825",
1026 "%K should not be found", &key);
1027 retval = -EEXIST;
1028 if (allocated_block_nr)
1029 reiserfs_free_block(th, inode,
1030 allocated_block_nr, 1);
1031 pathrelse(&path);
1032 goto failure;
1033 }
1034 bh = get_last_bh(&path);
1035 ih = get_ih(&path);
1036 item = get_item(&path);
1037 pos_in_item = path.pos_in_item;
1038 } while (1);
1039
1040 retval = 0;
1041
1042 failure:
1043 if (th && (!dangle || (retval && !th->t_trans_id))) {
1044 int err;
1045 if (th->t_trans_id)
1046 reiserfs_update_sd(th, inode);
1047 err = reiserfs_end_persistent_transaction(th);
1048 if (err)
1049 retval = err;
1050 }
1051
1052 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1053 reiserfs_check_path(&path);
1054 return retval;
1055}
1056
1057static int
1058reiserfs_readpages(struct file *file, struct address_space *mapping,
1059 struct list_head *pages, unsigned nr_pages)
1060{
1061 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1062}
1063
1064/* Compute real number of used bytes by file
1065 * Following three functions can go away when we'll have enough space in stat item
1066 */
1067static int real_space_diff(struct inode *inode, int sd_size)
1068{
1069 int bytes;
1070 loff_t blocksize = inode->i_sb->s_blocksize;
1071
1072 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1073 return sd_size;
1074
1075 /* End of file is also in full block with indirect reference, so round
1076 ** up to the next block.
1077 **
1078 ** there is just no way to know if the tail is actually packed
1079 ** on the file, so we have to assume it isn't. When we pack the
1080 ** tail, we add 4 bytes to pretend there really is an unformatted
1081 ** node pointer
1082 */
1083 bytes =
1084 ((inode->i_size +
1085 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1086 sd_size;
1087 return bytes;
1088}
1089
1090static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1091 int sd_size)
1092{
1093 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1094 return inode->i_size +
1095 (loff_t) (real_space_diff(inode, sd_size));
1096 }
1097 return ((loff_t) real_space_diff(inode, sd_size)) +
1098 (((loff_t) blocks) << 9);
1099}
1100
1101/* Compute number of blocks used by file in ReiserFS counting */
1102static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1103{
1104 loff_t bytes = inode_get_bytes(inode);
1105 loff_t real_space = real_space_diff(inode, sd_size);
1106
1107 /* keeps fsck and non-quota versions of reiserfs happy */
1108 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1109 bytes += (loff_t) 511;
1110 }
1111
1112 /* files from before the quota patch might i_blocks such that
1113 ** bytes < real_space. Deal with that here to prevent it from
1114 ** going negative.
1115 */
1116 if (bytes < real_space)
1117 return 0;
1118 return (bytes - real_space) >> 9;
1119}
1120
1121//
1122// BAD: new directories have stat data of new type and all other items
1123// of old type. Version stored in the inode says about body items, so
1124// in update_stat_data we can not rely on inode, but have to check
1125// item version directly
1126//
1127
1128// called by read_locked_inode
1129static void init_inode(struct inode *inode, struct treepath *path)
1130{
1131 struct buffer_head *bh;
1132 struct item_head *ih;
1133 __u32 rdev;
1134 //int version = ITEM_VERSION_1;
1135
1136 bh = PATH_PLAST_BUFFER(path);
1137 ih = PATH_PITEM_HEAD(path);
1138
1139 copy_key(INODE_PKEY(inode), &(ih->ih_key));
1140
1141 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1142 REISERFS_I(inode)->i_flags = 0;
1143 REISERFS_I(inode)->i_prealloc_block = 0;
1144 REISERFS_I(inode)->i_prealloc_count = 0;
1145 REISERFS_I(inode)->i_trans_id = 0;
1146 REISERFS_I(inode)->i_jl = NULL;
1147 reiserfs_init_xattr_rwsem(inode);
1148
1149 if (stat_data_v1(ih)) {
1150 struct stat_data_v1 *sd =
1151 (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1152 unsigned long blocks;
1153
1154 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1155 set_inode_sd_version(inode, STAT_DATA_V1);
1156 inode->i_mode = sd_v1_mode(sd);
1157 inode->i_nlink = sd_v1_nlink(sd);
1158 inode->i_uid = sd_v1_uid(sd);
1159 inode->i_gid = sd_v1_gid(sd);
1160 inode->i_size = sd_v1_size(sd);
1161 inode->i_atime.tv_sec = sd_v1_atime(sd);
1162 inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1163 inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1164 inode->i_atime.tv_nsec = 0;
1165 inode->i_ctime.tv_nsec = 0;
1166 inode->i_mtime.tv_nsec = 0;
1167
1168 inode->i_blocks = sd_v1_blocks(sd);
1169 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1170 blocks = (inode->i_size + 511) >> 9;
1171 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1172 if (inode->i_blocks > blocks) {
1173 // there was a bug in <=3.5.23 when i_blocks could take negative
1174 // values. Starting from 3.5.17 this value could even be stored in
1175 // stat data. For such files we set i_blocks based on file
1176 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1177 // only updated if file's inode will ever change
1178 inode->i_blocks = blocks;
1179 }
1180
1181 rdev = sd_v1_rdev(sd);
1182 REISERFS_I(inode)->i_first_direct_byte =
1183 sd_v1_first_direct_byte(sd);
1184 /* an early bug in the quota code can give us an odd number for the
1185 ** block count. This is incorrect, fix it here.
1186 */
1187 if (inode->i_blocks & 1) {
1188 inode->i_blocks++;
1189 }
1190 inode_set_bytes(inode,
1191 to_real_used_space(inode, inode->i_blocks,
1192 SD_V1_SIZE));
1193 /* nopack is initially zero for v1 objects. For v2 objects,
1194 nopack is initialised from sd_attrs */
1195 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1196 } else {
1197 // new stat data found, but object may have old items
1198 // (directories and symlinks)
1199 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1200
1201 inode->i_mode = sd_v2_mode(sd);
1202 inode->i_nlink = sd_v2_nlink(sd);
1203 inode->i_uid = sd_v2_uid(sd);
1204 inode->i_size = sd_v2_size(sd);
1205 inode->i_gid = sd_v2_gid(sd);
1206 inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1207 inode->i_atime.tv_sec = sd_v2_atime(sd);
1208 inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1209 inode->i_ctime.tv_nsec = 0;
1210 inode->i_mtime.tv_nsec = 0;
1211 inode->i_atime.tv_nsec = 0;
1212 inode->i_blocks = sd_v2_blocks(sd);
1213 rdev = sd_v2_rdev(sd);
1214 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1215 inode->i_generation =
1216 le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1217 else
1218 inode->i_generation = sd_v2_generation(sd);
1219
1220 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1221 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1222 else
1223 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1224 REISERFS_I(inode)->i_first_direct_byte = 0;
1225 set_inode_sd_version(inode, STAT_DATA_V2);
1226 inode_set_bytes(inode,
1227 to_real_used_space(inode, inode->i_blocks,
1228 SD_V2_SIZE));
1229 /* read persistent inode attributes from sd and initialise
1230 generic inode flags from them */
1231 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1232 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1233 }
1234
1235 pathrelse(path);
1236 if (S_ISREG(inode->i_mode)) {
1237 inode->i_op = &reiserfs_file_inode_operations;
1238 inode->i_fop = &reiserfs_file_operations;
1239 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1240 } else if (S_ISDIR(inode->i_mode)) {
1241 inode->i_op = &reiserfs_dir_inode_operations;
1242 inode->i_fop = &reiserfs_dir_operations;
1243 } else if (S_ISLNK(inode->i_mode)) {
1244 inode->i_op = &reiserfs_symlink_inode_operations;
1245 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1246 } else {
1247 inode->i_blocks = 0;
1248 inode->i_op = &reiserfs_special_inode_operations;
1249 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1250 }
1251}
1252
1253// update new stat data with inode fields
1254static void inode2sd(void *sd, struct inode *inode, loff_t size)
1255{
1256 struct stat_data *sd_v2 = (struct stat_data *)sd;
1257 __u16 flags;
1258
1259 set_sd_v2_mode(sd_v2, inode->i_mode);
1260 set_sd_v2_nlink(sd_v2, inode->i_nlink);
1261 set_sd_v2_uid(sd_v2, inode->i_uid);
1262 set_sd_v2_size(sd_v2, size);
1263 set_sd_v2_gid(sd_v2, inode->i_gid);
1264 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1265 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1266 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1267 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1268 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1269 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1270 else
1271 set_sd_v2_generation(sd_v2, inode->i_generation);
1272 flags = REISERFS_I(inode)->i_attrs;
1273 i_attrs_to_sd_attrs(inode, &flags);
1274 set_sd_v2_attrs(sd_v2, flags);
1275}
1276
1277// used to copy inode's fields to old stat data
1278static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1279{
1280 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1281
1282 set_sd_v1_mode(sd_v1, inode->i_mode);
1283 set_sd_v1_uid(sd_v1, inode->i_uid);
1284 set_sd_v1_gid(sd_v1, inode->i_gid);
1285 set_sd_v1_nlink(sd_v1, inode->i_nlink);
1286 set_sd_v1_size(sd_v1, size);
1287 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1288 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1289 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1290
1291 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1292 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1293 else
1294 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1295
1296 // Sigh. i_first_direct_byte is back
1297 set_sd_v1_first_direct_byte(sd_v1,
1298 REISERFS_I(inode)->i_first_direct_byte);
1299}
1300
1301/* NOTE, you must prepare the buffer head before sending it here,
1302** and then log it after the call
1303*/
1304static void update_stat_data(struct treepath *path, struct inode *inode,
1305 loff_t size)
1306{
1307 struct buffer_head *bh;
1308 struct item_head *ih;
1309
1310 bh = PATH_PLAST_BUFFER(path);
1311 ih = PATH_PITEM_HEAD(path);
1312
1313 if (!is_statdata_le_ih(ih))
1314 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1315 INODE_PKEY(inode), ih);
1316
1317 if (stat_data_v1(ih)) {
1318 // path points to old stat data
1319 inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1320 } else {
1321 inode2sd(B_I_PITEM(bh, ih), inode, size);
1322 }
1323
1324 return;
1325}
1326
1327void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1328 struct inode *inode, loff_t size)
1329{
1330 struct cpu_key key;
1331 INITIALIZE_PATH(path);
1332 struct buffer_head *bh;
1333 int fs_gen;
1334 struct item_head *ih, tmp_ih;
1335 int retval;
1336
1337 BUG_ON(!th->t_trans_id);
1338
1339 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant
1340
1341 for (;;) {
1342 int pos;
1343 /* look for the object's stat data */
1344 retval = search_item(inode->i_sb, &key, &path);
1345 if (retval == IO_ERROR) {
1346 reiserfs_error(inode->i_sb, "vs-13050",
1347 "i/o failure occurred trying to "
1348 "update %K stat data", &key);
1349 return;
1350 }
1351 if (retval == ITEM_NOT_FOUND) {
1352 pos = PATH_LAST_POSITION(&path);
1353 pathrelse(&path);
1354 if (inode->i_nlink == 0) {
1355 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1356 return;
1357 }
1358 reiserfs_warning(inode->i_sb, "vs-13060",
1359 "stat data of object %k (nlink == %d) "
1360 "not found (pos %d)",
1361 INODE_PKEY(inode), inode->i_nlink,
1362 pos);
1363 reiserfs_check_path(&path);
1364 return;
1365 }
1366
1367 /* sigh, prepare_for_journal might schedule. When it schedules the
1368 ** FS might change. We have to detect that, and loop back to the
1369 ** search if the stat data item has moved
1370 */
1371 bh = get_last_bh(&path);
1372 ih = get_ih(&path);
1373 copy_item_head(&tmp_ih, ih);
1374 fs_gen = get_generation(inode->i_sb);
1375 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1376 if (fs_changed(fs_gen, inode->i_sb)
1377 && item_moved(&tmp_ih, &path)) {
1378 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1379 continue; /* Stat_data item has been moved after scheduling. */
1380 }
1381 break;
1382 }
1383 update_stat_data(&path, inode, size);
1384 journal_mark_dirty(th, th->t_super, bh);
1385 pathrelse(&path);
1386 return;
1387}
1388
1389/* reiserfs_read_locked_inode is called to read the inode off disk, and it
1390** does a make_bad_inode when things go wrong. But, we need to make sure
1391** and clear the key in the private portion of the inode, otherwise a
1392** corresponding iput might try to delete whatever object the inode last
1393** represented.
1394*/
1395static void reiserfs_make_bad_inode(struct inode *inode)
1396{
1397 memset(INODE_PKEY(inode), 0, KEY_SIZE);
1398 make_bad_inode(inode);
1399}
1400
1401//
1402// initially this function was derived from minix or ext2's analog and
1403// evolved as the prototype did
1404//
1405
1406int reiserfs_init_locked_inode(struct inode *inode, void *p)
1407{
1408 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1409 inode->i_ino = args->objectid;
1410 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1411 return 0;
1412}
1413
1414/* looks for stat data in the tree, and fills up the fields of in-core
1415 inode stat data fields */
1416void reiserfs_read_locked_inode(struct inode *inode,
1417 struct reiserfs_iget_args *args)
1418{
1419 INITIALIZE_PATH(path_to_sd);
1420 struct cpu_key key;
1421 unsigned long dirino;
1422 int retval;
1423
1424 dirino = args->dirid;
1425
1426 /* set version 1, version 2 could be used too, because stat data
1427 key is the same in both versions */
1428 key.version = KEY_FORMAT_3_5;
1429 key.on_disk_key.k_dir_id = dirino;
1430 key.on_disk_key.k_objectid = inode->i_ino;
1431 key.on_disk_key.k_offset = 0;
1432 key.on_disk_key.k_type = 0;
1433
1434 /* look for the object's stat data */
1435 retval = search_item(inode->i_sb, &key, &path_to_sd);
1436 if (retval == IO_ERROR) {
1437 reiserfs_error(inode->i_sb, "vs-13070",
1438 "i/o failure occurred trying to find "
1439 "stat data of %K", &key);
1440 reiserfs_make_bad_inode(inode);
1441 return;
1442 }
1443 if (retval != ITEM_FOUND) {
1444 /* a stale NFS handle can trigger this without it being an error */
1445 pathrelse(&path_to_sd);
1446 reiserfs_make_bad_inode(inode);
1447 inode->i_nlink = 0;
1448 return;
1449 }
1450
1451 init_inode(inode, &path_to_sd);
1452
1453 /* It is possible that knfsd is trying to access inode of a file
1454 that is being removed from the disk by some other thread. As we
1455 update sd on unlink all that is required is to check for nlink
1456 here. This bug was first found by Sizif when debugging
1457 SquidNG/Butterfly, forgotten, and found again after Philippe
1458 Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1459
1460 More logical fix would require changes in fs/inode.c:iput() to
1461 remove inode from hash-table _after_ fs cleaned disk stuff up and
1462 in iget() to return NULL if I_FREEING inode is found in
1463 hash-table. */
1464 /* Currently there is one place where it's ok to meet inode with
1465 nlink==0: processing of open-unlinked and half-truncated files
1466 during mount (fs/reiserfs/super.c:finish_unfinished()). */
1467 if ((inode->i_nlink == 0) &&
1468 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1469 reiserfs_warning(inode->i_sb, "vs-13075",
1470 "dead inode read from disk %K. "
1471 "This is likely to be race with knfsd. Ignore",
1472 &key);
1473 reiserfs_make_bad_inode(inode);
1474 }
1475
1476 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */
1477
1478 /*
1479 * Stat data v1 doesn't support ACLs.
1480 */
1481 if (get_inode_sd_version(inode) == STAT_DATA_V1)
1482 cache_no_acl(inode);
1483}
1484
1485/**
1486 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1487 *
1488 * @inode: inode from hash table to check
1489 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1490 *
1491 * This function is called by iget5_locked() to distinguish reiserfs inodes
1492 * having the same inode numbers. Such inodes can only exist due to some
1493 * error condition. One of them should be bad. Inodes with identical
1494 * inode numbers (objectids) are distinguished by parent directory ids.
1495 *
1496 */
1497int reiserfs_find_actor(struct inode *inode, void *opaque)
1498{
1499 struct reiserfs_iget_args *args;
1500
1501 args = opaque;
1502 /* args is already in CPU order */
1503 return (inode->i_ino == args->objectid) &&
1504 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1505}
1506
1507struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1508{
1509 struct inode *inode;
1510 struct reiserfs_iget_args args;
1511
1512 args.objectid = key->on_disk_key.k_objectid;
1513 args.dirid = key->on_disk_key.k_dir_id;
1514 reiserfs_write_unlock(s);
1515 inode = iget5_locked(s, key->on_disk_key.k_objectid,
1516 reiserfs_find_actor, reiserfs_init_locked_inode,
1517 (void *)(&args));
1518 reiserfs_write_lock(s);
1519 if (!inode)
1520 return ERR_PTR(-ENOMEM);
1521
1522 if (inode->i_state & I_NEW) {
1523 reiserfs_read_locked_inode(inode, &args);
1524 unlock_new_inode(inode);
1525 }
1526
1527 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1528 /* either due to i/o error or a stale NFS handle */
1529 iput(inode);
1530 inode = NULL;
1531 }
1532 return inode;
1533}
1534
1535static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1536 u32 objectid, u32 dir_id, u32 generation)
1537
1538{
1539 struct cpu_key key;
1540 struct inode *inode;
1541
1542 key.on_disk_key.k_objectid = objectid;
1543 key.on_disk_key.k_dir_id = dir_id;
1544 reiserfs_write_lock(sb);
1545 inode = reiserfs_iget(sb, &key);
1546 if (inode && !IS_ERR(inode) && generation != 0 &&
1547 generation != inode->i_generation) {
1548 iput(inode);
1549 inode = NULL;
1550 }
1551 reiserfs_write_unlock(sb);
1552
1553 return d_obtain_alias(inode);
1554}
1555
1556struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1557 int fh_len, int fh_type)
1558{
1559 /* fhtype happens to reflect the number of u32s encoded.
1560 * due to a bug in earlier code, fhtype might indicate there
1561 * are more u32s then actually fitted.
1562 * so if fhtype seems to be more than len, reduce fhtype.
1563 * Valid types are:
1564 * 2 - objectid + dir_id - legacy support
1565 * 3 - objectid + dir_id + generation
1566 * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1567 * 5 - objectid + dir_id + generation + objectid and dirid of parent
1568 * 6 - as above plus generation of directory
1569 * 6 does not fit in NFSv2 handles
1570 */
1571 if (fh_type > fh_len) {
1572 if (fh_type != 6 || fh_len != 5)
1573 reiserfs_warning(sb, "reiserfs-13077",
1574 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1575 fh_type, fh_len);
1576 fh_type = 5;
1577 }
1578
1579 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1580 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1581}
1582
1583struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1584 int fh_len, int fh_type)
1585{
1586 if (fh_type < 4)
1587 return NULL;
1588
1589 return reiserfs_get_dentry(sb,
1590 (fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1591 (fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1592 (fh_type == 6) ? fid->raw[5] : 0);
1593}
1594
1595int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1596 int need_parent)
1597{
1598 struct inode *inode = dentry->d_inode;
1599 int maxlen = *lenp;
1600
1601 if (need_parent && (maxlen < 5)) {
1602 *lenp = 5;
1603 return 255;
1604 } else if (maxlen < 3) {
1605 *lenp = 3;
1606 return 255;
1607 }
1608
1609 data[0] = inode->i_ino;
1610 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1611 data[2] = inode->i_generation;
1612 *lenp = 3;
1613 /* no room for directory info? return what we've stored so far */
1614 if (maxlen < 5 || !need_parent)
1615 return 3;
1616
1617 spin_lock(&dentry->d_lock);
1618 inode = dentry->d_parent->d_inode;
1619 data[3] = inode->i_ino;
1620 data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1621 *lenp = 5;
1622 if (maxlen >= 6) {
1623 data[5] = inode->i_generation;
1624 *lenp = 6;
1625 }
1626 spin_unlock(&dentry->d_lock);
1627 return *lenp;
1628}
1629
1630/* looks for stat data, then copies fields to it, marks the buffer
1631 containing stat data as dirty */
1632/* reiserfs inodes are never really dirty, since the dirty inode call
1633** always logs them. This call allows the VFS inode marking routines
1634** to properly mark inodes for datasync and such, but only actually
1635** does something when called for a synchronous update.
1636*/
1637int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1638{
1639 struct reiserfs_transaction_handle th;
1640 int jbegin_count = 1;
1641
1642 if (inode->i_sb->s_flags & MS_RDONLY)
1643 return -EROFS;
1644 /* memory pressure can sometimes initiate write_inode calls with sync == 1,
1645 ** these cases are just when the system needs ram, not when the
1646 ** inode needs to reach disk for safety, and they can safely be
1647 ** ignored because the altered inode has already been logged.
1648 */
1649 if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1650 reiserfs_write_lock(inode->i_sb);
1651 if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1652 reiserfs_update_sd(&th, inode);
1653 journal_end_sync(&th, inode->i_sb, jbegin_count);
1654 }
1655 reiserfs_write_unlock(inode->i_sb);
1656 }
1657 return 0;
1658}
1659
1660/* stat data of new object is inserted already, this inserts the item
1661 containing "." and ".." entries */
1662static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1663 struct inode *inode,
1664 struct item_head *ih, struct treepath *path,
1665 struct inode *dir)
1666{
1667 struct super_block *sb = th->t_super;
1668 char empty_dir[EMPTY_DIR_SIZE];
1669 char *body = empty_dir;
1670 struct cpu_key key;
1671 int retval;
1672
1673 BUG_ON(!th->t_trans_id);
1674
1675 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1676 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1677 TYPE_DIRENTRY, 3 /*key length */ );
1678
1679 /* compose item head for new item. Directories consist of items of
1680 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1681 is done by reiserfs_new_inode */
1682 if (old_format_only(sb)) {
1683 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1684 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1685
1686 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1687 ih->ih_key.k_objectid,
1688 INODE_PKEY(dir)->k_dir_id,
1689 INODE_PKEY(dir)->k_objectid);
1690 } else {
1691 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1692 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1693
1694 make_empty_dir_item(body, ih->ih_key.k_dir_id,
1695 ih->ih_key.k_objectid,
1696 INODE_PKEY(dir)->k_dir_id,
1697 INODE_PKEY(dir)->k_objectid);
1698 }
1699
1700 /* look for place in the tree for new item */
1701 retval = search_item(sb, &key, path);
1702 if (retval == IO_ERROR) {
1703 reiserfs_error(sb, "vs-13080",
1704 "i/o failure occurred creating new directory");
1705 return -EIO;
1706 }
1707 if (retval == ITEM_FOUND) {
1708 pathrelse(path);
1709 reiserfs_warning(sb, "vs-13070",
1710 "object with this key exists (%k)",
1711 &(ih->ih_key));
1712 return -EEXIST;
1713 }
1714
1715 /* insert item, that is empty directory item */
1716 return reiserfs_insert_item(th, path, &key, ih, inode, body);
1717}
1718
1719/* stat data of object has been inserted, this inserts the item
1720 containing the body of symlink */
1721static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */
1722 struct item_head *ih,
1723 struct treepath *path, const char *symname,
1724 int item_len)
1725{
1726 struct super_block *sb = th->t_super;
1727 struct cpu_key key;
1728 int retval;
1729
1730 BUG_ON(!th->t_trans_id);
1731
1732 _make_cpu_key(&key, KEY_FORMAT_3_5,
1733 le32_to_cpu(ih->ih_key.k_dir_id),
1734 le32_to_cpu(ih->ih_key.k_objectid),
1735 1, TYPE_DIRECT, 3 /*key length */ );
1736
1737 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1738 0 /*free_space */ );
1739
1740 /* look for place in the tree for new item */
1741 retval = search_item(sb, &key, path);
1742 if (retval == IO_ERROR) {
1743 reiserfs_error(sb, "vs-13080",
1744 "i/o failure occurred creating new symlink");
1745 return -EIO;
1746 }
1747 if (retval == ITEM_FOUND) {
1748 pathrelse(path);
1749 reiserfs_warning(sb, "vs-13080",
1750 "object with this key exists (%k)",
1751 &(ih->ih_key));
1752 return -EEXIST;
1753 }
1754
1755 /* insert item, that is body of symlink */
1756 return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1757}
1758
1759/* inserts the stat data into the tree, and then calls
1760 reiserfs_new_directory (to insert ".", ".." item if new object is
1761 directory) or reiserfs_new_symlink (to insert symlink body if new
1762 object is symlink) or nothing (if new object is regular file)
1763
1764 NOTE! uid and gid must already be set in the inode. If we return
1765 non-zero due to an error, we have to drop the quota previously allocated
1766 for the fresh inode. This can only be done outside a transaction, so
1767 if we return non-zero, we also end the transaction. */
1768int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1769 struct inode *dir, int mode, const char *symname,
1770 /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1771 strlen (symname) for symlinks) */
1772 loff_t i_size, struct dentry *dentry,
1773 struct inode *inode,
1774 struct reiserfs_security_handle *security)
1775{
1776 struct super_block *sb;
1777 struct reiserfs_iget_args args;
1778 INITIALIZE_PATH(path_to_key);
1779 struct cpu_key key;
1780 struct item_head ih;
1781 struct stat_data sd;
1782 int retval;
1783 int err;
1784
1785 BUG_ON(!th->t_trans_id);
1786
1787 dquot_initialize(inode);
1788 err = dquot_alloc_inode(inode);
1789 if (err)
1790 goto out_end_trans;
1791 if (!dir->i_nlink) {
1792 err = -EPERM;
1793 goto out_bad_inode;
1794 }
1795
1796 sb = dir->i_sb;
1797
1798 /* item head of new item */
1799 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1800 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1801 if (!ih.ih_key.k_objectid) {
1802 err = -ENOMEM;
1803 goto out_bad_inode;
1804 }
1805 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1806 if (old_format_only(sb))
1807 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1808 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1809 else
1810 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1811 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1812 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1813 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1814 if (insert_inode_locked4(inode, args.objectid,
1815 reiserfs_find_actor, &args) < 0) {
1816 err = -EINVAL;
1817 goto out_bad_inode;
1818 }
1819 if (old_format_only(sb))
1820 /* not a perfect generation count, as object ids can be reused, but
1821 ** this is as good as reiserfs can do right now.
1822 ** note that the private part of inode isn't filled in yet, we have
1823 ** to use the directory.
1824 */
1825 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1826 else
1827#if defined( USE_INODE_GENERATION_COUNTER )
1828 inode->i_generation =
1829 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1830#else
1831 inode->i_generation = ++event;
1832#endif
1833
1834 /* fill stat data */
1835 inode->i_nlink = (S_ISDIR(mode) ? 2 : 1);
1836
1837 /* uid and gid must already be set by the caller for quota init */
1838
1839 /* symlink cannot be immutable or append only, right? */
1840 if (S_ISLNK(inode->i_mode))
1841 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1842
1843 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1844 inode->i_size = i_size;
1845 inode->i_blocks = 0;
1846 inode->i_bytes = 0;
1847 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1848 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1849
1850 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1851 REISERFS_I(inode)->i_flags = 0;
1852 REISERFS_I(inode)->i_prealloc_block = 0;
1853 REISERFS_I(inode)->i_prealloc_count = 0;
1854 REISERFS_I(inode)->i_trans_id = 0;
1855 REISERFS_I(inode)->i_jl = NULL;
1856 REISERFS_I(inode)->i_attrs =
1857 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1858 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1859 reiserfs_init_xattr_rwsem(inode);
1860
1861 /* key to search for correct place for new stat data */
1862 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1863 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1864 TYPE_STAT_DATA, 3 /*key length */ );
1865
1866 /* find proper place for inserting of stat data */
1867 retval = search_item(sb, &key, &path_to_key);
1868 if (retval == IO_ERROR) {
1869 err = -EIO;
1870 goto out_bad_inode;
1871 }
1872 if (retval == ITEM_FOUND) {
1873 pathrelse(&path_to_key);
1874 err = -EEXIST;
1875 goto out_bad_inode;
1876 }
1877 if (old_format_only(sb)) {
1878 if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1879 pathrelse(&path_to_key);
1880 /* i_uid or i_gid is too big to be stored in stat data v3.5 */
1881 err = -EINVAL;
1882 goto out_bad_inode;
1883 }
1884 inode2sd_v1(&sd, inode, inode->i_size);
1885 } else {
1886 inode2sd(&sd, inode, inode->i_size);
1887 }
1888 // store in in-core inode the key of stat data and version all
1889 // object items will have (directory items will have old offset
1890 // format, other new objects will consist of new items)
1891 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1892 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1893 else
1894 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1895 if (old_format_only(sb))
1896 set_inode_sd_version(inode, STAT_DATA_V1);
1897 else
1898 set_inode_sd_version(inode, STAT_DATA_V2);
1899
1900 /* insert the stat data into the tree */
1901#ifdef DISPLACE_NEW_PACKING_LOCALITIES
1902 if (REISERFS_I(dir)->new_packing_locality)
1903 th->displace_new_blocks = 1;
1904#endif
1905 retval =
1906 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1907 (char *)(&sd));
1908 if (retval) {
1909 err = retval;
1910 reiserfs_check_path(&path_to_key);
1911 goto out_bad_inode;
1912 }
1913#ifdef DISPLACE_NEW_PACKING_LOCALITIES
1914 if (!th->displace_new_blocks)
1915 REISERFS_I(dir)->new_packing_locality = 0;
1916#endif
1917 if (S_ISDIR(mode)) {
1918 /* insert item with "." and ".." */
1919 retval =
1920 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1921 }
1922
1923 if (S_ISLNK(mode)) {
1924 /* insert body of symlink */
1925 if (!old_format_only(sb))
1926 i_size = ROUND_UP(i_size);
1927 retval =
1928 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1929 i_size);
1930 }
1931 if (retval) {
1932 err = retval;
1933 reiserfs_check_path(&path_to_key);
1934 journal_end(th, th->t_super, th->t_blocks_allocated);
1935 goto out_inserted_sd;
1936 }
1937
1938 if (reiserfs_posixacl(inode->i_sb)) {
1939 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
1940 if (retval) {
1941 err = retval;
1942 reiserfs_check_path(&path_to_key);
1943 journal_end(th, th->t_super, th->t_blocks_allocated);
1944 goto out_inserted_sd;
1945 }
1946 } else if (inode->i_sb->s_flags & MS_POSIXACL) {
1947 reiserfs_warning(inode->i_sb, "jdm-13090",
1948 "ACLs aren't enabled in the fs, "
1949 "but vfs thinks they are!");
1950 } else if (IS_PRIVATE(dir))
1951 inode->i_flags |= S_PRIVATE;
1952
1953 if (security->name) {
1954 retval = reiserfs_security_write(th, inode, security);
1955 if (retval) {
1956 err = retval;
1957 reiserfs_check_path(&path_to_key);
1958 retval = journal_end(th, th->t_super,
1959 th->t_blocks_allocated);
1960 if (retval)
1961 err = retval;
1962 goto out_inserted_sd;
1963 }
1964 }
1965
1966 reiserfs_update_sd(th, inode);
1967 reiserfs_check_path(&path_to_key);
1968
1969 return 0;
1970
1971/* it looks like you can easily compress these two goto targets into
1972 * one. Keeping it like this doesn't actually hurt anything, and they
1973 * are place holders for what the quota code actually needs.
1974 */
1975 out_bad_inode:
1976 /* Invalidate the object, nothing was inserted yet */
1977 INODE_PKEY(inode)->k_objectid = 0;
1978
1979 /* Quota change must be inside a transaction for journaling */
1980 dquot_free_inode(inode);
1981
1982 out_end_trans:
1983 journal_end(th, th->t_super, th->t_blocks_allocated);
1984 /* Drop can be outside and it needs more credits so it's better to have it outside */
1985 dquot_drop(inode);
1986 inode->i_flags |= S_NOQUOTA;
1987 make_bad_inode(inode);
1988
1989 out_inserted_sd:
1990 inode->i_nlink = 0;
1991 th->t_trans_id = 0; /* so the caller can't use this handle later */
1992 unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
1993 iput(inode);
1994 return err;
1995}
1996
1997/*
1998** finds the tail page in the page cache,
1999** reads the last block in.
2000**
2001** On success, page_result is set to a locked, pinned page, and bh_result
2002** is set to an up to date buffer for the last block in the file. returns 0.
2003**
2004** tail conversion is not done, so bh_result might not be valid for writing
2005** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2006** trying to write the block.
2007**
2008** on failure, nonzero is returned, page_result and bh_result are untouched.
2009*/
2010static int grab_tail_page(struct inode *inode,
2011 struct page **page_result,
2012 struct buffer_head **bh_result)
2013{
2014
2015 /* we want the page with the last byte in the file,
2016 ** not the page that will hold the next byte for appending
2017 */
2018 unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2019 unsigned long pos = 0;
2020 unsigned long start = 0;
2021 unsigned long blocksize = inode->i_sb->s_blocksize;
2022 unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2023 struct buffer_head *bh;
2024 struct buffer_head *head;
2025 struct page *page;
2026 int error;
2027
2028 /* we know that we are only called with inode->i_size > 0.
2029 ** we also know that a file tail can never be as big as a block
2030 ** If i_size % blocksize == 0, our file is currently block aligned
2031 ** and it won't need converting or zeroing after a truncate.
2032 */
2033 if ((offset & (blocksize - 1)) == 0) {
2034 return -ENOENT;
2035 }
2036 page = grab_cache_page(inode->i_mapping, index);
2037 error = -ENOMEM;
2038 if (!page) {
2039 goto out;
2040 }
2041 /* start within the page of the last block in the file */
2042 start = (offset / blocksize) * blocksize;
2043
2044 error = __block_write_begin(page, start, offset - start,
2045 reiserfs_get_block_create_0);
2046 if (error)
2047 goto unlock;
2048
2049 head = page_buffers(page);
2050 bh = head;
2051 do {
2052 if (pos >= start) {
2053 break;
2054 }
2055 bh = bh->b_this_page;
2056 pos += blocksize;
2057 } while (bh != head);
2058
2059 if (!buffer_uptodate(bh)) {
2060 /* note, this should never happen, prepare_write should
2061 ** be taking care of this for us. If the buffer isn't up to date,
2062 ** I've screwed up the code to find the buffer, or the code to
2063 ** call prepare_write
2064 */
2065 reiserfs_error(inode->i_sb, "clm-6000",
2066 "error reading block %lu", bh->b_blocknr);
2067 error = -EIO;
2068 goto unlock;
2069 }
2070 *bh_result = bh;
2071 *page_result = page;
2072
2073 out:
2074 return error;
2075
2076 unlock:
2077 unlock_page(page);
2078 page_cache_release(page);
2079 return error;
2080}
2081
2082/*
2083** vfs version of truncate file. Must NOT be called with
2084** a transaction already started.
2085**
2086** some code taken from block_truncate_page
2087*/
2088int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2089{
2090 struct reiserfs_transaction_handle th;
2091 /* we want the offset for the first byte after the end of the file */
2092 unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2093 unsigned blocksize = inode->i_sb->s_blocksize;
2094 unsigned length;
2095 struct page *page = NULL;
2096 int error;
2097 struct buffer_head *bh = NULL;
2098 int err2;
2099 int lock_depth;
2100
2101 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2102
2103 if (inode->i_size > 0) {
2104 error = grab_tail_page(inode, &page, &bh);
2105 if (error) {
2106 // -ENOENT means we truncated past the end of the file,
2107 // and get_block_create_0 could not find a block to read in,
2108 // which is ok.
2109 if (error != -ENOENT)
2110 reiserfs_error(inode->i_sb, "clm-6001",
2111 "grab_tail_page failed %d",
2112 error);
2113 page = NULL;
2114 bh = NULL;
2115 }
2116 }
2117
2118 /* so, if page != NULL, we have a buffer head for the offset at
2119 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2120 ** then we have an unformatted node. Otherwise, we have a direct item,
2121 ** and no zeroing is required on disk. We zero after the truncate,
2122 ** because the truncate might pack the item anyway
2123 ** (it will unmap bh if it packs).
2124 */
2125 /* it is enough to reserve space in transaction for 2 balancings:
2126 one for "save" link adding and another for the first
2127 cut_from_item. 1 is for update_sd */
2128 error = journal_begin(&th, inode->i_sb,
2129 JOURNAL_PER_BALANCE_CNT * 2 + 1);
2130 if (error)
2131 goto out;
2132 reiserfs_update_inode_transaction(inode);
2133 if (update_timestamps)
2134 /* we are doing real truncate: if the system crashes before the last
2135 transaction of truncating gets committed - on reboot the file
2136 either appears truncated properly or not truncated at all */
2137 add_save_link(&th, inode, 1);
2138 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2139 error =
2140 journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2141 if (error)
2142 goto out;
2143
2144 /* check reiserfs_do_truncate after ending the transaction */
2145 if (err2) {
2146 error = err2;
2147 goto out;
2148 }
2149
2150 if (update_timestamps) {
2151 error = remove_save_link(inode, 1 /* truncate */);
2152 if (error)
2153 goto out;
2154 }
2155
2156 if (page) {
2157 length = offset & (blocksize - 1);
2158 /* if we are not on a block boundary */
2159 if (length) {
2160 length = blocksize - length;
2161 zero_user(page, offset, length);
2162 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2163 mark_buffer_dirty(bh);
2164 }
2165 }
2166 unlock_page(page);
2167 page_cache_release(page);
2168 }
2169
2170 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2171
2172 return 0;
2173 out:
2174 if (page) {
2175 unlock_page(page);
2176 page_cache_release(page);
2177 }
2178
2179 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2180
2181 return error;
2182}
2183
2184static int map_block_for_writepage(struct inode *inode,
2185 struct buffer_head *bh_result,
2186 unsigned long block)
2187{
2188 struct reiserfs_transaction_handle th;
2189 int fs_gen;
2190 struct item_head tmp_ih;
2191 struct item_head *ih;
2192 struct buffer_head *bh;
2193 __le32 *item;
2194 struct cpu_key key;
2195 INITIALIZE_PATH(path);
2196 int pos_in_item;
2197 int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2198 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2199 int retval;
2200 int use_get_block = 0;
2201 int bytes_copied = 0;
2202 int copy_size;
2203 int trans_running = 0;
2204
2205 /* catch places below that try to log something without starting a trans */
2206 th.t_trans_id = 0;
2207
2208 if (!buffer_uptodate(bh_result)) {
2209 return -EIO;
2210 }
2211
2212 kmap(bh_result->b_page);
2213 start_over:
2214 reiserfs_write_lock(inode->i_sb);
2215 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2216
2217 research:
2218 retval = search_for_position_by_key(inode->i_sb, &key, &path);
2219 if (retval != POSITION_FOUND) {
2220 use_get_block = 1;
2221 goto out;
2222 }
2223
2224 bh = get_last_bh(&path);
2225 ih = get_ih(&path);
2226 item = get_item(&path);
2227 pos_in_item = path.pos_in_item;
2228
2229 /* we've found an unformatted node */
2230 if (indirect_item_found(retval, ih)) {
2231 if (bytes_copied > 0) {
2232 reiserfs_warning(inode->i_sb, "clm-6002",
2233 "bytes_copied %d", bytes_copied);
2234 }
2235 if (!get_block_num(item, pos_in_item)) {
2236 /* crap, we are writing to a hole */
2237 use_get_block = 1;
2238 goto out;
2239 }
2240 set_block_dev_mapped(bh_result,
2241 get_block_num(item, pos_in_item), inode);
2242 } else if (is_direct_le_ih(ih)) {
2243 char *p;
2244 p = page_address(bh_result->b_page);
2245 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2246 copy_size = ih_item_len(ih) - pos_in_item;
2247
2248 fs_gen = get_generation(inode->i_sb);
2249 copy_item_head(&tmp_ih, ih);
2250
2251 if (!trans_running) {
2252 /* vs-3050 is gone, no need to drop the path */
2253 retval = journal_begin(&th, inode->i_sb, jbegin_count);
2254 if (retval)
2255 goto out;
2256 reiserfs_update_inode_transaction(inode);
2257 trans_running = 1;
2258 if (fs_changed(fs_gen, inode->i_sb)
2259 && item_moved(&tmp_ih, &path)) {
2260 reiserfs_restore_prepared_buffer(inode->i_sb,
2261 bh);
2262 goto research;
2263 }
2264 }
2265
2266 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2267
2268 if (fs_changed(fs_gen, inode->i_sb)
2269 && item_moved(&tmp_ih, &path)) {
2270 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2271 goto research;
2272 }
2273
2274 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2275 copy_size);
2276
2277 journal_mark_dirty(&th, inode->i_sb, bh);
2278 bytes_copied += copy_size;
2279 set_block_dev_mapped(bh_result, 0, inode);
2280
2281 /* are there still bytes left? */
2282 if (bytes_copied < bh_result->b_size &&
2283 (byte_offset + bytes_copied) < inode->i_size) {
2284 set_cpu_key_k_offset(&key,
2285 cpu_key_k_offset(&key) +
2286 copy_size);
2287 goto research;
2288 }
2289 } else {
2290 reiserfs_warning(inode->i_sb, "clm-6003",
2291 "bad item inode %lu", inode->i_ino);
2292 retval = -EIO;
2293 goto out;
2294 }
2295 retval = 0;
2296
2297 out:
2298 pathrelse(&path);
2299 if (trans_running) {
2300 int err = journal_end(&th, inode->i_sb, jbegin_count);
2301 if (err)
2302 retval = err;
2303 trans_running = 0;
2304 }
2305 reiserfs_write_unlock(inode->i_sb);
2306
2307 /* this is where we fill in holes in the file. */
2308 if (use_get_block) {
2309 retval = reiserfs_get_block(inode, block, bh_result,
2310 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2311 | GET_BLOCK_NO_DANGLE);
2312 if (!retval) {
2313 if (!buffer_mapped(bh_result)
2314 || bh_result->b_blocknr == 0) {
2315 /* get_block failed to find a mapped unformatted node. */
2316 use_get_block = 0;
2317 goto start_over;
2318 }
2319 }
2320 }
2321 kunmap(bh_result->b_page);
2322
2323 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2324 /* we've copied data from the page into the direct item, so the
2325 * buffer in the page is now clean, mark it to reflect that.
2326 */
2327 lock_buffer(bh_result);
2328 clear_buffer_dirty(bh_result);
2329 unlock_buffer(bh_result);
2330 }
2331 return retval;
2332}
2333
2334/*
2335 * mason@suse.com: updated in 2.5.54 to follow the same general io
2336 * start/recovery path as __block_write_full_page, along with special
2337 * code to handle reiserfs tails.
2338 */
2339static int reiserfs_write_full_page(struct page *page,
2340 struct writeback_control *wbc)
2341{
2342 struct inode *inode = page->mapping->host;
2343 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2344 int error = 0;
2345 unsigned long block;
2346 sector_t last_block;
2347 struct buffer_head *head, *bh;
2348 int partial = 0;
2349 int nr = 0;
2350 int checked = PageChecked(page);
2351 struct reiserfs_transaction_handle th;
2352 struct super_block *s = inode->i_sb;
2353 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2354 th.t_trans_id = 0;
2355
2356 /* no logging allowed when nonblocking or from PF_MEMALLOC */
2357 if (checked && (current->flags & PF_MEMALLOC)) {
2358 redirty_page_for_writepage(wbc, page);
2359 unlock_page(page);
2360 return 0;
2361 }
2362
2363 /* The page dirty bit is cleared before writepage is called, which
2364 * means we have to tell create_empty_buffers to make dirty buffers
2365 * The page really should be up to date at this point, so tossing
2366 * in the BH_Uptodate is just a sanity check.
2367 */
2368 if (!page_has_buffers(page)) {
2369 create_empty_buffers(page, s->s_blocksize,
2370 (1 << BH_Dirty) | (1 << BH_Uptodate));
2371 }
2372 head = page_buffers(page);
2373
2374 /* last page in the file, zero out any contents past the
2375 ** last byte in the file
2376 */
2377 if (page->index >= end_index) {
2378 unsigned last_offset;
2379
2380 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2381 /* no file contents in this page */
2382 if (page->index >= end_index + 1 || !last_offset) {
2383 unlock_page(page);
2384 return 0;
2385 }
2386 zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2387 }
2388 bh = head;
2389 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2390 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2391 /* first map all the buffers, logging any direct items we find */
2392 do {
2393 if (block > last_block) {
2394 /*
2395 * This can happen when the block size is less than
2396 * the page size. The corresponding bytes in the page
2397 * were zero filled above
2398 */
2399 clear_buffer_dirty(bh);
2400 set_buffer_uptodate(bh);
2401 } else if ((checked || buffer_dirty(bh)) &&
2402 (!buffer_mapped(bh) || (buffer_mapped(bh)
2403 && bh->b_blocknr ==
2404 0))) {
2405 /* not mapped yet, or it points to a direct item, search
2406 * the btree for the mapping info, and log any direct
2407 * items found
2408 */
2409 if ((error = map_block_for_writepage(inode, bh, block))) {
2410 goto fail;
2411 }
2412 }
2413 bh = bh->b_this_page;
2414 block++;
2415 } while (bh != head);
2416
2417 /*
2418 * we start the transaction after map_block_for_writepage,
2419 * because it can create holes in the file (an unbounded operation).
2420 * starting it here, we can make a reliable estimate for how many
2421 * blocks we're going to log
2422 */
2423 if (checked) {
2424 ClearPageChecked(page);
2425 reiserfs_write_lock(s);
2426 error = journal_begin(&th, s, bh_per_page + 1);
2427 if (error) {
2428 reiserfs_write_unlock(s);
2429 goto fail;
2430 }
2431 reiserfs_update_inode_transaction(inode);
2432 }
2433 /* now go through and lock any dirty buffers on the page */
2434 do {
2435 get_bh(bh);
2436 if (!buffer_mapped(bh))
2437 continue;
2438 if (buffer_mapped(bh) && bh->b_blocknr == 0)
2439 continue;
2440
2441 if (checked) {
2442 reiserfs_prepare_for_journal(s, bh, 1);
2443 journal_mark_dirty(&th, s, bh);
2444 continue;
2445 }
2446 /* from this point on, we know the buffer is mapped to a
2447 * real block and not a direct item
2448 */
2449 if (wbc->sync_mode != WB_SYNC_NONE) {
2450 lock_buffer(bh);
2451 } else {
2452 if (!trylock_buffer(bh)) {
2453 redirty_page_for_writepage(wbc, page);
2454 continue;
2455 }
2456 }
2457 if (test_clear_buffer_dirty(bh)) {
2458 mark_buffer_async_write(bh);
2459 } else {
2460 unlock_buffer(bh);
2461 }
2462 } while ((bh = bh->b_this_page) != head);
2463
2464 if (checked) {
2465 error = journal_end(&th, s, bh_per_page + 1);
2466 reiserfs_write_unlock(s);
2467 if (error)
2468 goto fail;
2469 }
2470 BUG_ON(PageWriteback(page));
2471 set_page_writeback(page);
2472 unlock_page(page);
2473
2474 /*
2475 * since any buffer might be the only dirty buffer on the page,
2476 * the first submit_bh can bring the page out of writeback.
2477 * be careful with the buffers.
2478 */
2479 do {
2480 struct buffer_head *next = bh->b_this_page;
2481 if (buffer_async_write(bh)) {
2482 submit_bh(WRITE, bh);
2483 nr++;
2484 }
2485 put_bh(bh);
2486 bh = next;
2487 } while (bh != head);
2488
2489 error = 0;
2490 done:
2491 if (nr == 0) {
2492 /*
2493 * if this page only had a direct item, it is very possible for
2494 * no io to be required without there being an error. Or,
2495 * someone else could have locked them and sent them down the
2496 * pipe without locking the page
2497 */
2498 bh = head;
2499 do {
2500 if (!buffer_uptodate(bh)) {
2501 partial = 1;
2502 break;
2503 }
2504 bh = bh->b_this_page;
2505 } while (bh != head);
2506 if (!partial)
2507 SetPageUptodate(page);
2508 end_page_writeback(page);
2509 }
2510 return error;
2511
2512 fail:
2513 /* catches various errors, we need to make sure any valid dirty blocks
2514 * get to the media. The page is currently locked and not marked for
2515 * writeback
2516 */
2517 ClearPageUptodate(page);
2518 bh = head;
2519 do {
2520 get_bh(bh);
2521 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2522 lock_buffer(bh);
2523 mark_buffer_async_write(bh);
2524 } else {
2525 /*
2526 * clear any dirty bits that might have come from getting
2527 * attached to a dirty page
2528 */
2529 clear_buffer_dirty(bh);
2530 }
2531 bh = bh->b_this_page;
2532 } while (bh != head);
2533 SetPageError(page);
2534 BUG_ON(PageWriteback(page));
2535 set_page_writeback(page);
2536 unlock_page(page);
2537 do {
2538 struct buffer_head *next = bh->b_this_page;
2539 if (buffer_async_write(bh)) {
2540 clear_buffer_dirty(bh);
2541 submit_bh(WRITE, bh);
2542 nr++;
2543 }
2544 put_bh(bh);
2545 bh = next;
2546 } while (bh != head);
2547 goto done;
2548}
2549
2550static int reiserfs_readpage(struct file *f, struct page *page)
2551{
2552 return block_read_full_page(page, reiserfs_get_block);
2553}
2554
2555static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2556{
2557 struct inode *inode = page->mapping->host;
2558 reiserfs_wait_on_write_block(inode->i_sb);
2559 return reiserfs_write_full_page(page, wbc);
2560}
2561
2562static void reiserfs_truncate_failed_write(struct inode *inode)
2563{
2564 truncate_inode_pages(inode->i_mapping, inode->i_size);
2565 reiserfs_truncate_file(inode, 0);
2566}
2567
2568static int reiserfs_write_begin(struct file *file,
2569 struct address_space *mapping,
2570 loff_t pos, unsigned len, unsigned flags,
2571 struct page **pagep, void **fsdata)
2572{
2573 struct inode *inode;
2574 struct page *page;
2575 pgoff_t index;
2576 int ret;
2577 int old_ref = 0;
2578
2579 inode = mapping->host;
2580 *fsdata = 0;
2581 if (flags & AOP_FLAG_CONT_EXPAND &&
2582 (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2583 pos ++;
2584 *fsdata = (void *)(unsigned long)flags;
2585 }
2586
2587 index = pos >> PAGE_CACHE_SHIFT;
2588 page = grab_cache_page_write_begin(mapping, index, flags);
2589 if (!page)
2590 return -ENOMEM;
2591 *pagep = page;
2592
2593 reiserfs_wait_on_write_block(inode->i_sb);
2594 fix_tail_page_for_writing(page);
2595 if (reiserfs_transaction_running(inode->i_sb)) {
2596 struct reiserfs_transaction_handle *th;
2597 th = (struct reiserfs_transaction_handle *)current->
2598 journal_info;
2599 BUG_ON(!th->t_refcount);
2600 BUG_ON(!th->t_trans_id);
2601 old_ref = th->t_refcount;
2602 th->t_refcount++;
2603 }
2604 ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2605 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2606 struct reiserfs_transaction_handle *th = current->journal_info;
2607 /* this gets a little ugly. If reiserfs_get_block returned an
2608 * error and left a transacstion running, we've got to close it,
2609 * and we've got to free handle if it was a persistent transaction.
2610 *
2611 * But, if we had nested into an existing transaction, we need
2612 * to just drop the ref count on the handle.
2613 *
2614 * If old_ref == 0, the transaction is from reiserfs_get_block,
2615 * and it was a persistent trans. Otherwise, it was nested above.
2616 */
2617 if (th->t_refcount > old_ref) {
2618 if (old_ref)
2619 th->t_refcount--;
2620 else {
2621 int err;
2622 reiserfs_write_lock(inode->i_sb);
2623 err = reiserfs_end_persistent_transaction(th);
2624 reiserfs_write_unlock(inode->i_sb);
2625 if (err)
2626 ret = err;
2627 }
2628 }
2629 }
2630 if (ret) {
2631 unlock_page(page);
2632 page_cache_release(page);
2633 /* Truncate allocated blocks */
2634 reiserfs_truncate_failed_write(inode);
2635 }
2636 return ret;
2637}
2638
2639int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2640{
2641 struct inode *inode = page->mapping->host;
2642 int ret;
2643 int old_ref = 0;
2644
2645 reiserfs_write_unlock(inode->i_sb);
2646 reiserfs_wait_on_write_block(inode->i_sb);
2647 reiserfs_write_lock(inode->i_sb);
2648
2649 fix_tail_page_for_writing(page);
2650 if (reiserfs_transaction_running(inode->i_sb)) {
2651 struct reiserfs_transaction_handle *th;
2652 th = (struct reiserfs_transaction_handle *)current->
2653 journal_info;
2654 BUG_ON(!th->t_refcount);
2655 BUG_ON(!th->t_trans_id);
2656 old_ref = th->t_refcount;
2657 th->t_refcount++;
2658 }
2659
2660 ret = __block_write_begin(page, from, len, reiserfs_get_block);
2661 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2662 struct reiserfs_transaction_handle *th = current->journal_info;
2663 /* this gets a little ugly. If reiserfs_get_block returned an
2664 * error and left a transacstion running, we've got to close it,
2665 * and we've got to free handle if it was a persistent transaction.
2666 *
2667 * But, if we had nested into an existing transaction, we need
2668 * to just drop the ref count on the handle.
2669 *
2670 * If old_ref == 0, the transaction is from reiserfs_get_block,
2671 * and it was a persistent trans. Otherwise, it was nested above.
2672 */
2673 if (th->t_refcount > old_ref) {
2674 if (old_ref)
2675 th->t_refcount--;
2676 else {
2677 int err;
2678 reiserfs_write_lock(inode->i_sb);
2679 err = reiserfs_end_persistent_transaction(th);
2680 reiserfs_write_unlock(inode->i_sb);
2681 if (err)
2682 ret = err;
2683 }
2684 }
2685 }
2686 return ret;
2687
2688}
2689
2690static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2691{
2692 return generic_block_bmap(as, block, reiserfs_bmap);
2693}
2694
2695static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2696 loff_t pos, unsigned len, unsigned copied,
2697 struct page *page, void *fsdata)
2698{
2699 struct inode *inode = page->mapping->host;
2700 int ret = 0;
2701 int update_sd = 0;
2702 struct reiserfs_transaction_handle *th;
2703 unsigned start;
2704 int lock_depth = 0;
2705 bool locked = false;
2706
2707 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2708 pos ++;
2709
2710 reiserfs_wait_on_write_block(inode->i_sb);
2711 if (reiserfs_transaction_running(inode->i_sb))
2712 th = current->journal_info;
2713 else
2714 th = NULL;
2715
2716 start = pos & (PAGE_CACHE_SIZE - 1);
2717 if (unlikely(copied < len)) {
2718 if (!PageUptodate(page))
2719 copied = 0;
2720
2721 page_zero_new_buffers(page, start + copied, start + len);
2722 }
2723 flush_dcache_page(page);
2724
2725 reiserfs_commit_page(inode, page, start, start + copied);
2726
2727 /* generic_commit_write does this for us, but does not update the
2728 ** transaction tracking stuff when the size changes. So, we have
2729 ** to do the i_size updates here.
2730 */
2731 if (pos + copied > inode->i_size) {
2732 struct reiserfs_transaction_handle myth;
2733 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2734 locked = true;
2735 /* If the file have grown beyond the border where it
2736 can have a tail, unmark it as needing a tail
2737 packing */
2738 if ((have_large_tails(inode->i_sb)
2739 && inode->i_size > i_block_size(inode) * 4)
2740 || (have_small_tails(inode->i_sb)
2741 && inode->i_size > i_block_size(inode)))
2742 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2743
2744 ret = journal_begin(&myth, inode->i_sb, 1);
2745 if (ret)
2746 goto journal_error;
2747
2748 reiserfs_update_inode_transaction(inode);
2749 inode->i_size = pos + copied;
2750 /*
2751 * this will just nest into our transaction. It's important
2752 * to use mark_inode_dirty so the inode gets pushed around on the
2753 * dirty lists, and so that O_SYNC works as expected
2754 */
2755 mark_inode_dirty(inode);
2756 reiserfs_update_sd(&myth, inode);
2757 update_sd = 1;
2758 ret = journal_end(&myth, inode->i_sb, 1);
2759 if (ret)
2760 goto journal_error;
2761 }
2762 if (th) {
2763 if (!locked) {
2764 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2765 locked = true;
2766 }
2767 if (!update_sd)
2768 mark_inode_dirty(inode);
2769 ret = reiserfs_end_persistent_transaction(th);
2770 if (ret)
2771 goto out;
2772 }
2773
2774 out:
2775 if (locked)
2776 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2777 unlock_page(page);
2778 page_cache_release(page);
2779
2780 if (pos + len > inode->i_size)
2781 reiserfs_truncate_failed_write(inode);
2782
2783 return ret == 0 ? copied : ret;
2784
2785 journal_error:
2786 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2787 locked = false;
2788 if (th) {
2789 if (!update_sd)
2790 reiserfs_update_sd(th, inode);
2791 ret = reiserfs_end_persistent_transaction(th);
2792 }
2793 goto out;
2794}
2795
2796int reiserfs_commit_write(struct file *f, struct page *page,
2797 unsigned from, unsigned to)
2798{
2799 struct inode *inode = page->mapping->host;
2800 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2801 int ret = 0;
2802 int update_sd = 0;
2803 struct reiserfs_transaction_handle *th = NULL;
2804
2805 reiserfs_write_unlock(inode->i_sb);
2806 reiserfs_wait_on_write_block(inode->i_sb);
2807 reiserfs_write_lock(inode->i_sb);
2808
2809 if (reiserfs_transaction_running(inode->i_sb)) {
2810 th = current->journal_info;
2811 }
2812 reiserfs_commit_page(inode, page, from, to);
2813
2814 /* generic_commit_write does this for us, but does not update the
2815 ** transaction tracking stuff when the size changes. So, we have
2816 ** to do the i_size updates here.
2817 */
2818 if (pos > inode->i_size) {
2819 struct reiserfs_transaction_handle myth;
2820 /* If the file have grown beyond the border where it
2821 can have a tail, unmark it as needing a tail
2822 packing */
2823 if ((have_large_tails(inode->i_sb)
2824 && inode->i_size > i_block_size(inode) * 4)
2825 || (have_small_tails(inode->i_sb)
2826 && inode->i_size > i_block_size(inode)))
2827 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2828
2829 ret = journal_begin(&myth, inode->i_sb, 1);
2830 if (ret)
2831 goto journal_error;
2832
2833 reiserfs_update_inode_transaction(inode);
2834 inode->i_size = pos;
2835 /*
2836 * this will just nest into our transaction. It's important
2837 * to use mark_inode_dirty so the inode gets pushed around on the
2838 * dirty lists, and so that O_SYNC works as expected
2839 */
2840 mark_inode_dirty(inode);
2841 reiserfs_update_sd(&myth, inode);
2842 update_sd = 1;
2843 ret = journal_end(&myth, inode->i_sb, 1);
2844 if (ret)
2845 goto journal_error;
2846 }
2847 if (th) {
2848 if (!update_sd)
2849 mark_inode_dirty(inode);
2850 ret = reiserfs_end_persistent_transaction(th);
2851 if (ret)
2852 goto out;
2853 }
2854
2855 out:
2856 return ret;
2857
2858 journal_error:
2859 if (th) {
2860 if (!update_sd)
2861 reiserfs_update_sd(th, inode);
2862 ret = reiserfs_end_persistent_transaction(th);
2863 }
2864
2865 return ret;
2866}
2867
2868void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2869{
2870 if (reiserfs_attrs(inode->i_sb)) {
2871 if (sd_attrs & REISERFS_SYNC_FL)
2872 inode->i_flags |= S_SYNC;
2873 else
2874 inode->i_flags &= ~S_SYNC;
2875 if (sd_attrs & REISERFS_IMMUTABLE_FL)
2876 inode->i_flags |= S_IMMUTABLE;
2877 else
2878 inode->i_flags &= ~S_IMMUTABLE;
2879 if (sd_attrs & REISERFS_APPEND_FL)
2880 inode->i_flags |= S_APPEND;
2881 else
2882 inode->i_flags &= ~S_APPEND;
2883 if (sd_attrs & REISERFS_NOATIME_FL)
2884 inode->i_flags |= S_NOATIME;
2885 else
2886 inode->i_flags &= ~S_NOATIME;
2887 if (sd_attrs & REISERFS_NOTAIL_FL)
2888 REISERFS_I(inode)->i_flags |= i_nopack_mask;
2889 else
2890 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2891 }
2892}
2893
2894void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2895{
2896 if (reiserfs_attrs(inode->i_sb)) {
2897 if (inode->i_flags & S_IMMUTABLE)
2898 *sd_attrs |= REISERFS_IMMUTABLE_FL;
2899 else
2900 *sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2901 if (inode->i_flags & S_SYNC)
2902 *sd_attrs |= REISERFS_SYNC_FL;
2903 else
2904 *sd_attrs &= ~REISERFS_SYNC_FL;
2905 if (inode->i_flags & S_NOATIME)
2906 *sd_attrs |= REISERFS_NOATIME_FL;
2907 else
2908 *sd_attrs &= ~REISERFS_NOATIME_FL;
2909 if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2910 *sd_attrs |= REISERFS_NOTAIL_FL;
2911 else
2912 *sd_attrs &= ~REISERFS_NOTAIL_FL;
2913 }
2914}
2915
2916/* decide if this buffer needs to stay around for data logging or ordered
2917** write purposes
2918*/
2919static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2920{
2921 int ret = 1;
2922 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2923
2924 lock_buffer(bh);
2925 spin_lock(&j->j_dirty_buffers_lock);
2926 if (!buffer_mapped(bh)) {
2927 goto free_jh;
2928 }
2929 /* the page is locked, and the only places that log a data buffer
2930 * also lock the page.
2931 */
2932 if (reiserfs_file_data_log(inode)) {
2933 /*
2934 * very conservative, leave the buffer pinned if
2935 * anyone might need it.
2936 */
2937 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2938 ret = 0;
2939 }
2940 } else if (buffer_dirty(bh)) {
2941 struct reiserfs_journal_list *jl;
2942 struct reiserfs_jh *jh = bh->b_private;
2943
2944 /* why is this safe?
2945 * reiserfs_setattr updates i_size in the on disk
2946 * stat data before allowing vmtruncate to be called.
2947 *
2948 * If buffer was put onto the ordered list for this
2949 * transaction, we know for sure either this transaction
2950 * or an older one already has updated i_size on disk,
2951 * and this ordered data won't be referenced in the file
2952 * if we crash.
2953 *
2954 * if the buffer was put onto the ordered list for an older
2955 * transaction, we need to leave it around
2956 */
2957 if (jh && (jl = jh->jl)
2958 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2959 ret = 0;
2960 }
2961 free_jh:
2962 if (ret && bh->b_private) {
2963 reiserfs_free_jh(bh);
2964 }
2965 spin_unlock(&j->j_dirty_buffers_lock);
2966 unlock_buffer(bh);
2967 return ret;
2968}
2969
2970/* clm -- taken from fs/buffer.c:block_invalidate_page */
2971static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2972{
2973 struct buffer_head *head, *bh, *next;
2974 struct inode *inode = page->mapping->host;
2975 unsigned int curr_off = 0;
2976 int ret = 1;
2977
2978 BUG_ON(!PageLocked(page));
2979
2980 if (offset == 0)
2981 ClearPageChecked(page);
2982
2983 if (!page_has_buffers(page))
2984 goto out;
2985
2986 head = page_buffers(page);
2987 bh = head;
2988 do {
2989 unsigned int next_off = curr_off + bh->b_size;
2990 next = bh->b_this_page;
2991
2992 /*
2993 * is this block fully invalidated?
2994 */
2995 if (offset <= curr_off) {
2996 if (invalidatepage_can_drop(inode, bh))
2997 reiserfs_unmap_buffer(bh);
2998 else
2999 ret = 0;
3000 }
3001 curr_off = next_off;
3002 bh = next;
3003 } while (bh != head);
3004
3005 /*
3006 * We release buffers only if the entire page is being invalidated.
3007 * The get_block cached value has been unconditionally invalidated,
3008 * so real IO is not possible anymore.
3009 */
3010 if (!offset && ret) {
3011 ret = try_to_release_page(page, 0);
3012 /* maybe should BUG_ON(!ret); - neilb */
3013 }
3014 out:
3015 return;
3016}
3017
3018static int reiserfs_set_page_dirty(struct page *page)
3019{
3020 struct inode *inode = page->mapping->host;
3021 if (reiserfs_file_data_log(inode)) {
3022 SetPageChecked(page);
3023 return __set_page_dirty_nobuffers(page);
3024 }
3025 return __set_page_dirty_buffers(page);
3026}
3027
3028/*
3029 * Returns 1 if the page's buffers were dropped. The page is locked.
3030 *
3031 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3032 * in the buffers at page_buffers(page).
3033 *
3034 * even in -o notail mode, we can't be sure an old mount without -o notail
3035 * didn't create files with tails.
3036 */
3037static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3038{
3039 struct inode *inode = page->mapping->host;
3040 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3041 struct buffer_head *head;
3042 struct buffer_head *bh;
3043 int ret = 1;
3044
3045 WARN_ON(PageChecked(page));
3046 spin_lock(&j->j_dirty_buffers_lock);
3047 head = page_buffers(page);
3048 bh = head;
3049 do {
3050 if (bh->b_private) {
3051 if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3052 reiserfs_free_jh(bh);
3053 } else {
3054 ret = 0;
3055 break;
3056 }
3057 }
3058 bh = bh->b_this_page;
3059 } while (bh != head);
3060 if (ret)
3061 ret = try_to_free_buffers(page);
3062 spin_unlock(&j->j_dirty_buffers_lock);
3063 return ret;
3064}
3065
3066/* We thank Mingming Cao for helping us understand in great detail what
3067 to do in this section of the code. */
3068static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3069 const struct iovec *iov, loff_t offset,
3070 unsigned long nr_segs)
3071{
3072 struct file *file = iocb->ki_filp;
3073 struct inode *inode = file->f_mapping->host;
3074 ssize_t ret;
3075
3076 ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
3077 reiserfs_get_blocks_direct_io);
3078
3079 /*
3080 * In case of error extending write may have instantiated a few
3081 * blocks outside i_size. Trim these off again.
3082 */
3083 if (unlikely((rw & WRITE) && ret < 0)) {
3084 loff_t isize = i_size_read(inode);
3085 loff_t end = offset + iov_length(iov, nr_segs);
3086
3087 if (end > isize)
3088 vmtruncate(inode, isize);
3089 }
3090
3091 return ret;
3092}
3093
3094int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3095{
3096 struct inode *inode = dentry->d_inode;
3097 unsigned int ia_valid;
3098 int depth;
3099 int error;
3100
3101 error = inode_change_ok(inode, attr);
3102 if (error)
3103 return error;
3104
3105 /* must be turned off for recursive notify_change calls */
3106 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3107
3108 depth = reiserfs_write_lock_once(inode->i_sb);
3109 if (is_quota_modification(inode, attr))
3110 dquot_initialize(inode);
3111
3112 if (attr->ia_valid & ATTR_SIZE) {
3113 /* version 2 items will be caught by the s_maxbytes check
3114 ** done for us in vmtruncate
3115 */
3116 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3117 attr->ia_size > MAX_NON_LFS) {
3118 error = -EFBIG;
3119 goto out;
3120 }
3121
3122 inode_dio_wait(inode);
3123
3124 /* fill in hole pointers in the expanding truncate case. */
3125 if (attr->ia_size > inode->i_size) {
3126 error = generic_cont_expand_simple(inode, attr->ia_size);
3127 if (REISERFS_I(inode)->i_prealloc_count > 0) {
3128 int err;
3129 struct reiserfs_transaction_handle th;
3130 /* we're changing at most 2 bitmaps, inode + super */
3131 err = journal_begin(&th, inode->i_sb, 4);
3132 if (!err) {
3133 reiserfs_discard_prealloc(&th, inode);
3134 err = journal_end(&th, inode->i_sb, 4);
3135 }
3136 if (err)
3137 error = err;
3138 }
3139 if (error)
3140 goto out;
3141 /*
3142 * file size is changed, ctime and mtime are
3143 * to be updated
3144 */
3145 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3146 }
3147 }
3148
3149 if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
3150 ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
3151 (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3152 /* stat data of format v3.5 has 16 bit uid and gid */
3153 error = -EINVAL;
3154 goto out;
3155 }
3156
3157 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3158 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3159 struct reiserfs_transaction_handle th;
3160 int jbegin_count =
3161 2 *
3162 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3163 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3164 2;
3165
3166 error = reiserfs_chown_xattrs(inode, attr);
3167
3168 if (error)
3169 return error;
3170
3171 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
3172 error = journal_begin(&th, inode->i_sb, jbegin_count);
3173 if (error)
3174 goto out;
3175 error = dquot_transfer(inode, attr);
3176 if (error) {
3177 journal_end(&th, inode->i_sb, jbegin_count);
3178 goto out;
3179 }
3180
3181 /* Update corresponding info in inode so that everything is in
3182 * one transaction */
3183 if (attr->ia_valid & ATTR_UID)
3184 inode->i_uid = attr->ia_uid;
3185 if (attr->ia_valid & ATTR_GID)
3186 inode->i_gid = attr->ia_gid;
3187 mark_inode_dirty(inode);
3188 error = journal_end(&th, inode->i_sb, jbegin_count);
3189 if (error)
3190 goto out;
3191 }
3192
3193 /*
3194 * Relax the lock here, as it might truncate the
3195 * inode pages and wait for inode pages locks.
3196 * To release such page lock, the owner needs the
3197 * reiserfs lock
3198 */
3199 reiserfs_write_unlock_once(inode->i_sb, depth);
3200 if ((attr->ia_valid & ATTR_SIZE) &&
3201 attr->ia_size != i_size_read(inode))
3202 error = vmtruncate(inode, attr->ia_size);
3203
3204 if (!error) {
3205 setattr_copy(inode, attr);
3206 mark_inode_dirty(inode);
3207 }
3208 depth = reiserfs_write_lock_once(inode->i_sb);
3209
3210 if (!error && reiserfs_posixacl(inode->i_sb)) {
3211 if (attr->ia_valid & ATTR_MODE)
3212 error = reiserfs_acl_chmod(inode);
3213 }
3214
3215 out:
3216 reiserfs_write_unlock_once(inode->i_sb, depth);
3217
3218 return error;
3219}
3220
3221const struct address_space_operations reiserfs_address_space_operations = {
3222 .writepage = reiserfs_writepage,
3223 .readpage = reiserfs_readpage,
3224 .readpages = reiserfs_readpages,
3225 .releasepage = reiserfs_releasepage,
3226 .invalidatepage = reiserfs_invalidatepage,
3227 .write_begin = reiserfs_write_begin,
3228 .write_end = reiserfs_write_end,
3229 .bmap = reiserfs_aop_bmap,
3230 .direct_IO = reiserfs_direct_IO,
3231 .set_page_dirty = reiserfs_set_page_dirty,
3232};
1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5#include <linux/time.h>
6#include <linux/fs.h>
7#include "reiserfs.h"
8#include "acl.h"
9#include "xattr.h"
10#include <linux/exportfs.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/slab.h>
14#include <linux/uaccess.h>
15#include <asm/unaligned.h>
16#include <linux/buffer_head.h>
17#include <linux/mpage.h>
18#include <linux/writeback.h>
19#include <linux/quotaops.h>
20#include <linux/swap.h>
21#include <linux/uio.h>
22#include <linux/bio.h>
23
24int reiserfs_commit_write(struct file *f, struct page *page,
25 unsigned from, unsigned to);
26
27void reiserfs_evict_inode(struct inode *inode)
28{
29 /*
30 * We need blocks for transaction + (user+group) quota
31 * update (possibly delete)
32 */
33 int jbegin_count =
34 JOURNAL_PER_BALANCE_CNT * 2 +
35 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
36 struct reiserfs_transaction_handle th;
37 int err;
38
39 if (!inode->i_nlink && !is_bad_inode(inode))
40 dquot_initialize(inode);
41
42 truncate_inode_pages_final(&inode->i_data);
43 if (inode->i_nlink)
44 goto no_delete;
45
46 /*
47 * The = 0 happens when we abort creating a new inode
48 * for some reason like lack of space..
49 * also handles bad_inode case
50 */
51 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {
52
53 reiserfs_delete_xattrs(inode);
54
55 reiserfs_write_lock(inode->i_sb);
56
57 if (journal_begin(&th, inode->i_sb, jbegin_count))
58 goto out;
59 reiserfs_update_inode_transaction(inode);
60
61 reiserfs_discard_prealloc(&th, inode);
62
63 err = reiserfs_delete_object(&th, inode);
64
65 /*
66 * Do quota update inside a transaction for journaled quotas.
67 * We must do that after delete_object so that quota updates
68 * go into the same transaction as stat data deletion
69 */
70 if (!err) {
71 int depth = reiserfs_write_unlock_nested(inode->i_sb);
72 dquot_free_inode(inode);
73 reiserfs_write_lock_nested(inode->i_sb, depth);
74 }
75
76 if (journal_end(&th))
77 goto out;
78
79 /*
80 * check return value from reiserfs_delete_object after
81 * ending the transaction
82 */
83 if (err)
84 goto out;
85
86 /*
87 * all items of file are deleted, so we can remove
88 * "save" link
89 * we can't do anything about an error here
90 */
91 remove_save_link(inode, 0 /* not truncate */);
92out:
93 reiserfs_write_unlock(inode->i_sb);
94 } else {
95 /* no object items are in the tree */
96 ;
97 }
98
99 /* note this must go after the journal_end to prevent deadlock */
100 clear_inode(inode);
101
102 dquot_drop(inode);
103 inode->i_blocks = 0;
104 return;
105
106no_delete:
107 clear_inode(inode);
108 dquot_drop(inode);
109}
110
111static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
112 __u32 objectid, loff_t offset, int type, int length)
113{
114 key->version = version;
115
116 key->on_disk_key.k_dir_id = dirid;
117 key->on_disk_key.k_objectid = objectid;
118 set_cpu_key_k_offset(key, offset);
119 set_cpu_key_k_type(key, type);
120 key->key_length = length;
121}
122
123/*
124 * take base of inode_key (it comes from inode always) (dirid, objectid)
125 * and version from an inode, set offset and type of key
126 */
127void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
128 int type, int length)
129{
130 _make_cpu_key(key, get_inode_item_key_version(inode),
131 le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
132 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
133 length);
134}
135
136/* when key is 0, do not set version and short key */
137inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
138 int version,
139 loff_t offset, int type, int length,
140 int entry_count /*or ih_free_space */ )
141{
142 if (key) {
143 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
144 ih->ih_key.k_objectid =
145 cpu_to_le32(key->on_disk_key.k_objectid);
146 }
147 put_ih_version(ih, version);
148 set_le_ih_k_offset(ih, offset);
149 set_le_ih_k_type(ih, type);
150 put_ih_item_len(ih, length);
151 /* set_ih_free_space (ih, 0); */
152 /*
153 * for directory items it is entry count, for directs and stat
154 * datas - 0xffff, for indirects - 0
155 */
156 put_ih_entry_count(ih, entry_count);
157}
158
159/*
160 * FIXME: we might cache recently accessed indirect item
161 * Ugh. Not too eager for that....
162 * I cut the code until such time as I see a convincing argument (benchmark).
163 * I don't want a bloated inode struct..., and I don't like code complexity....
164 */
165
166/*
167 * cutting the code is fine, since it really isn't in use yet and is easy
168 * to add back in. But, Vladimir has a really good idea here. Think
169 * about what happens for reading a file. For each page,
170 * The VFS layer calls reiserfs_read_folio, who searches the tree to find
171 * an indirect item. This indirect item has X number of pointers, where
172 * X is a big number if we've done the block allocation right. But,
173 * we only use one or two of these pointers during each call to read_folio,
174 * needlessly researching again later on.
175 *
176 * The size of the cache could be dynamic based on the size of the file.
177 *
178 * I'd also like to see us cache the location the stat data item, since
179 * we are needlessly researching for that frequently.
180 *
181 * --chris
182 */
183
184/*
185 * If this page has a file tail in it, and
186 * it was read in by get_block_create_0, the page data is valid,
187 * but tail is still sitting in a direct item, and we can't write to
188 * it. So, look through this page, and check all the mapped buffers
189 * to make sure they have valid block numbers. Any that don't need
190 * to be unmapped, so that __block_write_begin will correctly call
191 * reiserfs_get_block to convert the tail into an unformatted node
192 */
193static inline void fix_tail_page_for_writing(struct page *page)
194{
195 struct buffer_head *head, *next, *bh;
196
197 if (page && page_has_buffers(page)) {
198 head = page_buffers(page);
199 bh = head;
200 do {
201 next = bh->b_this_page;
202 if (buffer_mapped(bh) && bh->b_blocknr == 0) {
203 reiserfs_unmap_buffer(bh);
204 }
205 bh = next;
206 } while (bh != head);
207 }
208}
209
210/*
211 * reiserfs_get_block does not need to allocate a block only if it has been
212 * done already or non-hole position has been found in the indirect item
213 */
214static inline int allocation_needed(int retval, b_blocknr_t allocated,
215 struct item_head *ih,
216 __le32 * item, int pos_in_item)
217{
218 if (allocated)
219 return 0;
220 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
221 get_block_num(item, pos_in_item))
222 return 0;
223 return 1;
224}
225
226static inline int indirect_item_found(int retval, struct item_head *ih)
227{
228 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
229}
230
231static inline void set_block_dev_mapped(struct buffer_head *bh,
232 b_blocknr_t block, struct inode *inode)
233{
234 map_bh(bh, inode->i_sb, block);
235}
236
237/*
238 * files which were created in the earlier version can not be longer,
239 * than 2 gb
240 */
241static int file_capable(struct inode *inode, sector_t block)
242{
243 /* it is new file. */
244 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||
245 /* old file, but 'block' is inside of 2gb */
246 block < (1 << (31 - inode->i_sb->s_blocksize_bits)))
247 return 1;
248
249 return 0;
250}
251
252static int restart_transaction(struct reiserfs_transaction_handle *th,
253 struct inode *inode, struct treepath *path)
254{
255 struct super_block *s = th->t_super;
256 int err;
257
258 BUG_ON(!th->t_trans_id);
259 BUG_ON(!th->t_refcount);
260
261 pathrelse(path);
262
263 /* we cannot restart while nested */
264 if (th->t_refcount > 1) {
265 return 0;
266 }
267 reiserfs_update_sd(th, inode);
268 err = journal_end(th);
269 if (!err) {
270 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
271 if (!err)
272 reiserfs_update_inode_transaction(inode);
273 }
274 return err;
275}
276
277/*
278 * it is called by get_block when create == 0. Returns block number
279 * for 'block'-th logical block of file. When it hits direct item it
280 * returns 0 (being called from bmap) or read direct item into piece
281 * of page (bh_result)
282 * Please improve the english/clarity in the comment above, as it is
283 * hard to understand.
284 */
285static int _get_block_create_0(struct inode *inode, sector_t block,
286 struct buffer_head *bh_result, int args)
287{
288 INITIALIZE_PATH(path);
289 struct cpu_key key;
290 struct buffer_head *bh;
291 struct item_head *ih, tmp_ih;
292 b_blocknr_t blocknr;
293 char *p;
294 int chars;
295 int ret;
296 int result;
297 int done = 0;
298 unsigned long offset;
299
300 /* prepare the key to look for the 'block'-th block of file */
301 make_cpu_key(&key, inode,
302 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
303 3);
304
305 result = search_for_position_by_key(inode->i_sb, &key, &path);
306 if (result != POSITION_FOUND) {
307 pathrelse(&path);
308 if (result == IO_ERROR)
309 return -EIO;
310 /*
311 * We do not return -ENOENT if there is a hole but page is
312 * uptodate, because it means that there is some MMAPED data
313 * associated with it that is yet to be written to disk.
314 */
315 if ((args & GET_BLOCK_NO_HOLE)
316 && !PageUptodate(bh_result->b_page)) {
317 return -ENOENT;
318 }
319 return 0;
320 }
321
322 bh = get_last_bh(&path);
323 ih = tp_item_head(&path);
324 if (is_indirect_le_ih(ih)) {
325 __le32 *ind_item = (__le32 *) ih_item_body(bh, ih);
326
327 /*
328 * FIXME: here we could cache indirect item or part of it in
329 * the inode to avoid search_by_key in case of subsequent
330 * access to file
331 */
332 blocknr = get_block_num(ind_item, path.pos_in_item);
333 ret = 0;
334 if (blocknr) {
335 map_bh(bh_result, inode->i_sb, blocknr);
336 if (path.pos_in_item ==
337 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
338 set_buffer_boundary(bh_result);
339 }
340 } else
341 /*
342 * We do not return -ENOENT if there is a hole but
343 * page is uptodate, because it means that there is
344 * some MMAPED data associated with it that is
345 * yet to be written to disk.
346 */
347 if ((args & GET_BLOCK_NO_HOLE)
348 && !PageUptodate(bh_result->b_page)) {
349 ret = -ENOENT;
350 }
351
352 pathrelse(&path);
353 return ret;
354 }
355 /* requested data are in direct item(s) */
356 if (!(args & GET_BLOCK_READ_DIRECT)) {
357 /*
358 * we are called by bmap. FIXME: we can not map block of file
359 * when it is stored in direct item(s)
360 */
361 pathrelse(&path);
362 return -ENOENT;
363 }
364
365 /*
366 * if we've got a direct item, and the buffer or page was uptodate,
367 * we don't want to pull data off disk again. skip to the
368 * end, where we map the buffer and return
369 */
370 if (buffer_uptodate(bh_result)) {
371 goto finished;
372 } else
373 /*
374 * grab_tail_page can trigger calls to reiserfs_get_block on
375 * up to date pages without any buffers. If the page is up
376 * to date, we don't want read old data off disk. Set the up
377 * to date bit on the buffer instead and jump to the end
378 */
379 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
380 set_buffer_uptodate(bh_result);
381 goto finished;
382 }
383 /* read file tail into part of page */
384 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1);
385 copy_item_head(&tmp_ih, ih);
386
387 /*
388 * we only want to kmap if we are reading the tail into the page.
389 * this is not the common case, so we don't kmap until we are
390 * sure we need to. But, this means the item might move if
391 * kmap schedules
392 */
393 p = (char *)kmap(bh_result->b_page);
394 p += offset;
395 memset(p, 0, inode->i_sb->s_blocksize);
396 do {
397 if (!is_direct_le_ih(ih)) {
398 BUG();
399 }
400 /*
401 * make sure we don't read more bytes than actually exist in
402 * the file. This can happen in odd cases where i_size isn't
403 * correct, and when direct item padding results in a few
404 * extra bytes at the end of the direct item
405 */
406 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
407 break;
408 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
409 chars =
410 inode->i_size - (le_ih_k_offset(ih) - 1) -
411 path.pos_in_item;
412 done = 1;
413 } else {
414 chars = ih_item_len(ih) - path.pos_in_item;
415 }
416 memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars);
417
418 if (done)
419 break;
420
421 p += chars;
422
423 /*
424 * we done, if read direct item is not the last item of
425 * node FIXME: we could try to check right delimiting key
426 * to see whether direct item continues in the right
427 * neighbor or rely on i_size
428 */
429 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
430 break;
431
432 /* update key to look for the next piece */
433 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
434 result = search_for_position_by_key(inode->i_sb, &key, &path);
435 if (result != POSITION_FOUND)
436 /* i/o error most likely */
437 break;
438 bh = get_last_bh(&path);
439 ih = tp_item_head(&path);
440 } while (1);
441
442 flush_dcache_page(bh_result->b_page);
443 kunmap(bh_result->b_page);
444
445finished:
446 pathrelse(&path);
447
448 if (result == IO_ERROR)
449 return -EIO;
450
451 /*
452 * this buffer has valid data, but isn't valid for io. mapping it to
453 * block #0 tells the rest of reiserfs it just has a tail in it
454 */
455 map_bh(bh_result, inode->i_sb, 0);
456 set_buffer_uptodate(bh_result);
457 return 0;
458}
459
460/*
461 * this is called to create file map. So, _get_block_create_0 will not
462 * read direct item
463 */
464static int reiserfs_bmap(struct inode *inode, sector_t block,
465 struct buffer_head *bh_result, int create)
466{
467 if (!file_capable(inode, block))
468 return -EFBIG;
469
470 reiserfs_write_lock(inode->i_sb);
471 /* do not read the direct item */
472 _get_block_create_0(inode, block, bh_result, 0);
473 reiserfs_write_unlock(inode->i_sb);
474 return 0;
475}
476
477/*
478 * special version of get_block that is only used by grab_tail_page right
479 * now. It is sent to __block_write_begin, and when you try to get a
480 * block past the end of the file (or a block from a hole) it returns
481 * -ENOENT instead of a valid buffer. __block_write_begin expects to
482 * be able to do i/o on the buffers returned, unless an error value
483 * is also returned.
484 *
485 * So, this allows __block_write_begin to be used for reading a single block
486 * in a page. Where it does not produce a valid page for holes, or past the
487 * end of the file. This turns out to be exactly what we need for reading
488 * tails for conversion.
489 *
490 * The point of the wrapper is forcing a certain value for create, even
491 * though the VFS layer is calling this function with create==1. If you
492 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
493 * don't use this function.
494*/
495static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
496 struct buffer_head *bh_result,
497 int create)
498{
499 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
500}
501
502/*
503 * This is special helper for reiserfs_get_block in case we are executing
504 * direct_IO request.
505 */
506static int reiserfs_get_blocks_direct_io(struct inode *inode,
507 sector_t iblock,
508 struct buffer_head *bh_result,
509 int create)
510{
511 int ret;
512
513 bh_result->b_page = NULL;
514
515 /*
516 * We set the b_size before reiserfs_get_block call since it is
517 * referenced in convert_tail_for_hole() that may be called from
518 * reiserfs_get_block()
519 */
520 bh_result->b_size = i_blocksize(inode);
521
522 ret = reiserfs_get_block(inode, iblock, bh_result,
523 create | GET_BLOCK_NO_DANGLE);
524 if (ret)
525 goto out;
526
527 /* don't allow direct io onto tail pages */
528 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
529 /*
530 * make sure future calls to the direct io funcs for this
531 * offset in the file fail by unmapping the buffer
532 */
533 clear_buffer_mapped(bh_result);
534 ret = -EINVAL;
535 }
536
537 /*
538 * Possible unpacked tail. Flush the data before pages have
539 * disappeared
540 */
541 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
542 int err;
543
544 reiserfs_write_lock(inode->i_sb);
545
546 err = reiserfs_commit_for_inode(inode);
547 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
548
549 reiserfs_write_unlock(inode->i_sb);
550
551 if (err < 0)
552 ret = err;
553 }
554out:
555 return ret;
556}
557
558/*
559 * helper function for when reiserfs_get_block is called for a hole
560 * but the file tail is still in a direct item
561 * bh_result is the buffer head for the hole
562 * tail_offset is the offset of the start of the tail in the file
563 *
564 * This calls prepare_write, which will start a new transaction
565 * you should not be in a transaction, or have any paths held when you
566 * call this.
567 */
568static int convert_tail_for_hole(struct inode *inode,
569 struct buffer_head *bh_result,
570 loff_t tail_offset)
571{
572 unsigned long index;
573 unsigned long tail_end;
574 unsigned long tail_start;
575 struct page *tail_page;
576 struct page *hole_page = bh_result->b_page;
577 int retval = 0;
578
579 if ((tail_offset & (bh_result->b_size - 1)) != 1)
580 return -EIO;
581
582 /* always try to read until the end of the block */
583 tail_start = tail_offset & (PAGE_SIZE - 1);
584 tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
585
586 index = tail_offset >> PAGE_SHIFT;
587 /*
588 * hole_page can be zero in case of direct_io, we are sure
589 * that we cannot get here if we write with O_DIRECT into tail page
590 */
591 if (!hole_page || index != hole_page->index) {
592 tail_page = grab_cache_page(inode->i_mapping, index);
593 retval = -ENOMEM;
594 if (!tail_page) {
595 goto out;
596 }
597 } else {
598 tail_page = hole_page;
599 }
600
601 /*
602 * we don't have to make sure the conversion did not happen while
603 * we were locking the page because anyone that could convert
604 * must first take i_mutex.
605 *
606 * We must fix the tail page for writing because it might have buffers
607 * that are mapped, but have a block number of 0. This indicates tail
608 * data that has been read directly into the page, and
609 * __block_write_begin won't trigger a get_block in this case.
610 */
611 fix_tail_page_for_writing(tail_page);
612 retval = __reiserfs_write_begin(tail_page, tail_start,
613 tail_end - tail_start);
614 if (retval)
615 goto unlock;
616
617 /* tail conversion might change the data in the page */
618 flush_dcache_page(tail_page);
619
620 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
621
622unlock:
623 if (tail_page != hole_page) {
624 unlock_page(tail_page);
625 put_page(tail_page);
626 }
627out:
628 return retval;
629}
630
631static inline int _allocate_block(struct reiserfs_transaction_handle *th,
632 sector_t block,
633 struct inode *inode,
634 b_blocknr_t * allocated_block_nr,
635 struct treepath *path, int flags)
636{
637 BUG_ON(!th->t_trans_id);
638
639#ifdef REISERFS_PREALLOCATE
640 if (!(flags & GET_BLOCK_NO_IMUX)) {
641 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
642 path, block);
643 }
644#endif
645 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
646 block);
647}
648
649int reiserfs_get_block(struct inode *inode, sector_t block,
650 struct buffer_head *bh_result, int create)
651{
652 int repeat, retval = 0;
653 /* b_blocknr_t is (unsigned) 32 bit int*/
654 b_blocknr_t allocated_block_nr = 0;
655 INITIALIZE_PATH(path);
656 int pos_in_item;
657 struct cpu_key key;
658 struct buffer_head *bh, *unbh = NULL;
659 struct item_head *ih, tmp_ih;
660 __le32 *item;
661 int done;
662 int fs_gen;
663 struct reiserfs_transaction_handle *th = NULL;
664 /*
665 * space reserved in transaction batch:
666 * . 3 balancings in direct->indirect conversion
667 * . 1 block involved into reiserfs_update_sd()
668 * XXX in practically impossible worst case direct2indirect()
669 * can incur (much) more than 3 balancings.
670 * quota update for user, group
671 */
672 int jbegin_count =
673 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
674 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
675 int version;
676 int dangle = 1;
677 loff_t new_offset =
678 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
679
680 reiserfs_write_lock(inode->i_sb);
681 version = get_inode_item_key_version(inode);
682
683 if (!file_capable(inode, block)) {
684 reiserfs_write_unlock(inode->i_sb);
685 return -EFBIG;
686 }
687
688 /*
689 * if !create, we aren't changing the FS, so we don't need to
690 * log anything, so we don't need to start a transaction
691 */
692 if (!(create & GET_BLOCK_CREATE)) {
693 int ret;
694 /* find number of block-th logical block of the file */
695 ret = _get_block_create_0(inode, block, bh_result,
696 create | GET_BLOCK_READ_DIRECT);
697 reiserfs_write_unlock(inode->i_sb);
698 return ret;
699 }
700
701 /*
702 * if we're already in a transaction, make sure to close
703 * any new transactions we start in this func
704 */
705 if ((create & GET_BLOCK_NO_DANGLE) ||
706 reiserfs_transaction_running(inode->i_sb))
707 dangle = 0;
708
709 /*
710 * If file is of such a size, that it might have a tail and
711 * tails are enabled we should mark it as possibly needing
712 * tail packing on close
713 */
714 if ((have_large_tails(inode->i_sb)
715 && inode->i_size < i_block_size(inode) * 4)
716 || (have_small_tails(inode->i_sb)
717 && inode->i_size < i_block_size(inode)))
718 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
719
720 /* set the key of the first byte in the 'block'-th block of file */
721 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
722 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
723start_trans:
724 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
725 if (!th) {
726 retval = -ENOMEM;
727 goto failure;
728 }
729 reiserfs_update_inode_transaction(inode);
730 }
731research:
732
733 retval = search_for_position_by_key(inode->i_sb, &key, &path);
734 if (retval == IO_ERROR) {
735 retval = -EIO;
736 goto failure;
737 }
738
739 bh = get_last_bh(&path);
740 ih = tp_item_head(&path);
741 item = tp_item_body(&path);
742 pos_in_item = path.pos_in_item;
743
744 fs_gen = get_generation(inode->i_sb);
745 copy_item_head(&tmp_ih, ih);
746
747 if (allocation_needed
748 (retval, allocated_block_nr, ih, item, pos_in_item)) {
749 /* we have to allocate block for the unformatted node */
750 if (!th) {
751 pathrelse(&path);
752 goto start_trans;
753 }
754
755 repeat =
756 _allocate_block(th, block, inode, &allocated_block_nr,
757 &path, create);
758
759 /*
760 * restart the transaction to give the journal a chance to free
761 * some blocks. releases the path, so we have to go back to
762 * research if we succeed on the second try
763 */
764 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
765 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
766 retval = restart_transaction(th, inode, &path);
767 if (retval)
768 goto failure;
769 repeat =
770 _allocate_block(th, block, inode,
771 &allocated_block_nr, NULL, create);
772
773 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
774 goto research;
775 }
776 if (repeat == QUOTA_EXCEEDED)
777 retval = -EDQUOT;
778 else
779 retval = -ENOSPC;
780 goto failure;
781 }
782
783 if (fs_changed(fs_gen, inode->i_sb)
784 && item_moved(&tmp_ih, &path)) {
785 goto research;
786 }
787 }
788
789 if (indirect_item_found(retval, ih)) {
790 b_blocknr_t unfm_ptr;
791 /*
792 * 'block'-th block is in the file already (there is
793 * corresponding cell in some indirect item). But it may be
794 * zero unformatted node pointer (hole)
795 */
796 unfm_ptr = get_block_num(item, pos_in_item);
797 if (unfm_ptr == 0) {
798 /* use allocated block to plug the hole */
799 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
800 if (fs_changed(fs_gen, inode->i_sb)
801 && item_moved(&tmp_ih, &path)) {
802 reiserfs_restore_prepared_buffer(inode->i_sb,
803 bh);
804 goto research;
805 }
806 set_buffer_new(bh_result);
807 if (buffer_dirty(bh_result)
808 && reiserfs_data_ordered(inode->i_sb))
809 reiserfs_add_ordered_list(inode, bh_result);
810 put_block_num(item, pos_in_item, allocated_block_nr);
811 unfm_ptr = allocated_block_nr;
812 journal_mark_dirty(th, bh);
813 reiserfs_update_sd(th, inode);
814 }
815 set_block_dev_mapped(bh_result, unfm_ptr, inode);
816 pathrelse(&path);
817 retval = 0;
818 if (!dangle && th)
819 retval = reiserfs_end_persistent_transaction(th);
820
821 reiserfs_write_unlock(inode->i_sb);
822
823 /*
824 * the item was found, so new blocks were not added to the file
825 * there is no need to make sure the inode is updated with this
826 * transaction
827 */
828 return retval;
829 }
830
831 if (!th) {
832 pathrelse(&path);
833 goto start_trans;
834 }
835
836 /*
837 * desired position is not found or is in the direct item. We have
838 * to append file with holes up to 'block'-th block converting
839 * direct items to indirect one if necessary
840 */
841 done = 0;
842 do {
843 if (is_statdata_le_ih(ih)) {
844 __le32 unp = 0;
845 struct cpu_key tmp_key;
846
847 /* indirect item has to be inserted */
848 make_le_item_head(&tmp_ih, &key, version, 1,
849 TYPE_INDIRECT, UNFM_P_SIZE,
850 0 /* free_space */ );
851
852 /*
853 * we are going to add 'block'-th block to the file.
854 * Use allocated block for that
855 */
856 if (cpu_key_k_offset(&key) == 1) {
857 unp = cpu_to_le32(allocated_block_nr);
858 set_block_dev_mapped(bh_result,
859 allocated_block_nr, inode);
860 set_buffer_new(bh_result);
861 done = 1;
862 }
863 tmp_key = key; /* ;) */
864 set_cpu_key_k_offset(&tmp_key, 1);
865 PATH_LAST_POSITION(&path)++;
866
867 retval =
868 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
869 inode, (char *)&unp);
870 if (retval) {
871 reiserfs_free_block(th, inode,
872 allocated_block_nr, 1);
873 /*
874 * retval == -ENOSPC, -EDQUOT or -EIO
875 * or -EEXIST
876 */
877 goto failure;
878 }
879 } else if (is_direct_le_ih(ih)) {
880 /* direct item has to be converted */
881 loff_t tail_offset;
882
883 tail_offset =
884 ((le_ih_k_offset(ih) -
885 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
886
887 /*
888 * direct item we just found fits into block we have
889 * to map. Convert it into unformatted node: use
890 * bh_result for the conversion
891 */
892 if (tail_offset == cpu_key_k_offset(&key)) {
893 set_block_dev_mapped(bh_result,
894 allocated_block_nr, inode);
895 unbh = bh_result;
896 done = 1;
897 } else {
898 /*
899 * we have to pad file tail stored in direct
900 * item(s) up to block size and convert it
901 * to unformatted node. FIXME: this should
902 * also get into page cache
903 */
904
905 pathrelse(&path);
906 /*
907 * ugly, but we can only end the transaction if
908 * we aren't nested
909 */
910 BUG_ON(!th->t_refcount);
911 if (th->t_refcount == 1) {
912 retval =
913 reiserfs_end_persistent_transaction
914 (th);
915 th = NULL;
916 if (retval)
917 goto failure;
918 }
919
920 retval =
921 convert_tail_for_hole(inode, bh_result,
922 tail_offset);
923 if (retval) {
924 if (retval != -ENOSPC)
925 reiserfs_error(inode->i_sb,
926 "clm-6004",
927 "convert tail failed "
928 "inode %lu, error %d",
929 inode->i_ino,
930 retval);
931 if (allocated_block_nr) {
932 /*
933 * the bitmap, the super,
934 * and the stat data == 3
935 */
936 if (!th)
937 th = reiserfs_persistent_transaction(inode->i_sb, 3);
938 if (th)
939 reiserfs_free_block(th,
940 inode,
941 allocated_block_nr,
942 1);
943 }
944 goto failure;
945 }
946 goto research;
947 }
948 retval =
949 direct2indirect(th, inode, &path, unbh,
950 tail_offset);
951 if (retval) {
952 reiserfs_unmap_buffer(unbh);
953 reiserfs_free_block(th, inode,
954 allocated_block_nr, 1);
955 goto failure;
956 }
957 /*
958 * it is important the set_buffer_uptodate is done
959 * after the direct2indirect. The buffer might
960 * contain valid data newer than the data on disk
961 * (read by read_folio, changed, and then sent here by
962 * writepage). direct2indirect needs to know if unbh
963 * was already up to date, so it can decide if the
964 * data in unbh needs to be replaced with data from
965 * the disk
966 */
967 set_buffer_uptodate(unbh);
968
969 /*
970 * unbh->b_page == NULL in case of DIRECT_IO request,
971 * this means buffer will disappear shortly, so it
972 * should not be added to
973 */
974 if (unbh->b_page) {
975 /*
976 * we've converted the tail, so we must
977 * flush unbh before the transaction commits
978 */
979 reiserfs_add_tail_list(inode, unbh);
980
981 /*
982 * mark it dirty now to prevent commit_write
983 * from adding this buffer to the inode's
984 * dirty buffer list
985 */
986 /*
987 * AKPM: changed __mark_buffer_dirty to
988 * mark_buffer_dirty(). It's still atomic,
989 * but it sets the page dirty too, which makes
990 * it eligible for writeback at any time by the
991 * VM (which was also the case with
992 * __mark_buffer_dirty())
993 */
994 mark_buffer_dirty(unbh);
995 }
996 } else {
997 /*
998 * append indirect item with holes if needed, when
999 * appending pointer to 'block'-th block use block,
1000 * which is already allocated
1001 */
1002 struct cpu_key tmp_key;
1003 /*
1004 * We use this in case we need to allocate
1005 * only one block which is a fastpath
1006 */
1007 unp_t unf_single = 0;
1008 unp_t *un;
1009 __u64 max_to_insert =
1010 MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
1011 UNFM_P_SIZE;
1012 __u64 blocks_needed;
1013
1014 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
1015 "vs-804: invalid position for append");
1016 /*
1017 * indirect item has to be appended,
1018 * set up key of that position
1019 * (key type is unimportant)
1020 */
1021 make_cpu_key(&tmp_key, inode,
1022 le_key_k_offset(version,
1023 &ih->ih_key) +
1024 op_bytes_number(ih,
1025 inode->i_sb->s_blocksize),
1026 TYPE_INDIRECT, 3);
1027
1028 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
1029 "green-805: invalid offset");
1030 blocks_needed =
1031 1 +
1032 ((cpu_key_k_offset(&key) -
1033 cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
1034 s_blocksize_bits);
1035
1036 if (blocks_needed == 1) {
1037 un = &unf_single;
1038 } else {
1039 un = kcalloc(min(blocks_needed, max_to_insert),
1040 UNFM_P_SIZE, GFP_NOFS);
1041 if (!un) {
1042 un = &unf_single;
1043 blocks_needed = 1;
1044 max_to_insert = 0;
1045 }
1046 }
1047 if (blocks_needed <= max_to_insert) {
1048 /*
1049 * we are going to add target block to
1050 * the file. Use allocated block for that
1051 */
1052 un[blocks_needed - 1] =
1053 cpu_to_le32(allocated_block_nr);
1054 set_block_dev_mapped(bh_result,
1055 allocated_block_nr, inode);
1056 set_buffer_new(bh_result);
1057 done = 1;
1058 } else {
1059 /* paste hole to the indirect item */
1060 /*
1061 * If kcalloc failed, max_to_insert becomes
1062 * zero and it means we only have space for
1063 * one block
1064 */
1065 blocks_needed =
1066 max_to_insert ? max_to_insert : 1;
1067 }
1068 retval =
1069 reiserfs_paste_into_item(th, &path, &tmp_key, inode,
1070 (char *)un,
1071 UNFM_P_SIZE *
1072 blocks_needed);
1073
1074 if (blocks_needed != 1)
1075 kfree(un);
1076
1077 if (retval) {
1078 reiserfs_free_block(th, inode,
1079 allocated_block_nr, 1);
1080 goto failure;
1081 }
1082 if (!done) {
1083 /*
1084 * We need to mark new file size in case
1085 * this function will be interrupted/aborted
1086 * later on. And we may do this only for
1087 * holes.
1088 */
1089 inode->i_size +=
1090 inode->i_sb->s_blocksize * blocks_needed;
1091 }
1092 }
1093
1094 if (done == 1)
1095 break;
1096
1097 /*
1098 * this loop could log more blocks than we had originally
1099 * asked for. So, we have to allow the transaction to end
1100 * if it is too big or too full. Update the inode so things
1101 * are consistent if we crash before the function returns
1102 * release the path so that anybody waiting on the path before
1103 * ending their transaction will be able to continue.
1104 */
1105 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1106 retval = restart_transaction(th, inode, &path);
1107 if (retval)
1108 goto failure;
1109 }
1110 /*
1111 * inserting indirect pointers for a hole can take a
1112 * long time. reschedule if needed and also release the write
1113 * lock for others.
1114 */
1115 reiserfs_cond_resched(inode->i_sb);
1116
1117 retval = search_for_position_by_key(inode->i_sb, &key, &path);
1118 if (retval == IO_ERROR) {
1119 retval = -EIO;
1120 goto failure;
1121 }
1122 if (retval == POSITION_FOUND) {
1123 reiserfs_warning(inode->i_sb, "vs-825",
1124 "%K should not be found", &key);
1125 retval = -EEXIST;
1126 if (allocated_block_nr)
1127 reiserfs_free_block(th, inode,
1128 allocated_block_nr, 1);
1129 pathrelse(&path);
1130 goto failure;
1131 }
1132 bh = get_last_bh(&path);
1133 ih = tp_item_head(&path);
1134 item = tp_item_body(&path);
1135 pos_in_item = path.pos_in_item;
1136 } while (1);
1137
1138 retval = 0;
1139
1140failure:
1141 if (th && (!dangle || (retval && !th->t_trans_id))) {
1142 int err;
1143 if (th->t_trans_id)
1144 reiserfs_update_sd(th, inode);
1145 err = reiserfs_end_persistent_transaction(th);
1146 if (err)
1147 retval = err;
1148 }
1149
1150 reiserfs_write_unlock(inode->i_sb);
1151 reiserfs_check_path(&path);
1152 return retval;
1153}
1154
1155static void reiserfs_readahead(struct readahead_control *rac)
1156{
1157 mpage_readahead(rac, reiserfs_get_block);
1158}
1159
1160/*
1161 * Compute real number of used bytes by file
1162 * Following three functions can go away when we'll have enough space in
1163 * stat item
1164 */
1165static int real_space_diff(struct inode *inode, int sd_size)
1166{
1167 int bytes;
1168 loff_t blocksize = inode->i_sb->s_blocksize;
1169
1170 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1171 return sd_size;
1172
1173 /*
1174 * End of file is also in full block with indirect reference, so round
1175 * up to the next block.
1176 *
1177 * there is just no way to know if the tail is actually packed
1178 * on the file, so we have to assume it isn't. When we pack the
1179 * tail, we add 4 bytes to pretend there really is an unformatted
1180 * node pointer
1181 */
1182 bytes =
1183 ((inode->i_size +
1184 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1185 sd_size;
1186 return bytes;
1187}
1188
1189static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1190 int sd_size)
1191{
1192 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1193 return inode->i_size +
1194 (loff_t) (real_space_diff(inode, sd_size));
1195 }
1196 return ((loff_t) real_space_diff(inode, sd_size)) +
1197 (((loff_t) blocks) << 9);
1198}
1199
1200/* Compute number of blocks used by file in ReiserFS counting */
1201static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1202{
1203 loff_t bytes = inode_get_bytes(inode);
1204 loff_t real_space = real_space_diff(inode, sd_size);
1205
1206 /* keeps fsck and non-quota versions of reiserfs happy */
1207 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1208 bytes += (loff_t) 511;
1209 }
1210
1211 /*
1212 * files from before the quota patch might i_blocks such that
1213 * bytes < real_space. Deal with that here to prevent it from
1214 * going negative.
1215 */
1216 if (bytes < real_space)
1217 return 0;
1218 return (bytes - real_space) >> 9;
1219}
1220
1221/*
1222 * BAD: new directories have stat data of new type and all other items
1223 * of old type. Version stored in the inode says about body items, so
1224 * in update_stat_data we can not rely on inode, but have to check
1225 * item version directly
1226 */
1227
1228/* called by read_locked_inode */
1229static void init_inode(struct inode *inode, struct treepath *path)
1230{
1231 struct buffer_head *bh;
1232 struct item_head *ih;
1233 __u32 rdev;
1234
1235 bh = PATH_PLAST_BUFFER(path);
1236 ih = tp_item_head(path);
1237
1238 copy_key(INODE_PKEY(inode), &ih->ih_key);
1239
1240 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1241 REISERFS_I(inode)->i_flags = 0;
1242 REISERFS_I(inode)->i_prealloc_block = 0;
1243 REISERFS_I(inode)->i_prealloc_count = 0;
1244 REISERFS_I(inode)->i_trans_id = 0;
1245 REISERFS_I(inode)->i_jl = NULL;
1246 reiserfs_init_xattr_rwsem(inode);
1247
1248 if (stat_data_v1(ih)) {
1249 struct stat_data_v1 *sd =
1250 (struct stat_data_v1 *)ih_item_body(bh, ih);
1251 unsigned long blocks;
1252
1253 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1254 set_inode_sd_version(inode, STAT_DATA_V1);
1255 inode->i_mode = sd_v1_mode(sd);
1256 set_nlink(inode, sd_v1_nlink(sd));
1257 i_uid_write(inode, sd_v1_uid(sd));
1258 i_gid_write(inode, sd_v1_gid(sd));
1259 inode->i_size = sd_v1_size(sd);
1260 inode->i_atime.tv_sec = sd_v1_atime(sd);
1261 inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1262 inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1263 inode->i_atime.tv_nsec = 0;
1264 inode->i_ctime.tv_nsec = 0;
1265 inode->i_mtime.tv_nsec = 0;
1266
1267 inode->i_blocks = sd_v1_blocks(sd);
1268 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1269 blocks = (inode->i_size + 511) >> 9;
1270 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1271
1272 /*
1273 * there was a bug in <=3.5.23 when i_blocks could take
1274 * negative values. Starting from 3.5.17 this value could
1275 * even be stored in stat data. For such files we set
1276 * i_blocks based on file size. Just 2 notes: this can be
1277 * wrong for sparse files. On-disk value will be only
1278 * updated if file's inode will ever change
1279 */
1280 if (inode->i_blocks > blocks) {
1281 inode->i_blocks = blocks;
1282 }
1283
1284 rdev = sd_v1_rdev(sd);
1285 REISERFS_I(inode)->i_first_direct_byte =
1286 sd_v1_first_direct_byte(sd);
1287
1288 /*
1289 * an early bug in the quota code can give us an odd
1290 * number for the block count. This is incorrect, fix it here.
1291 */
1292 if (inode->i_blocks & 1) {
1293 inode->i_blocks++;
1294 }
1295 inode_set_bytes(inode,
1296 to_real_used_space(inode, inode->i_blocks,
1297 SD_V1_SIZE));
1298 /*
1299 * nopack is initially zero for v1 objects. For v2 objects,
1300 * nopack is initialised from sd_attrs
1301 */
1302 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1303 } else {
1304 /*
1305 * new stat data found, but object may have old items
1306 * (directories and symlinks)
1307 */
1308 struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih);
1309
1310 inode->i_mode = sd_v2_mode(sd);
1311 set_nlink(inode, sd_v2_nlink(sd));
1312 i_uid_write(inode, sd_v2_uid(sd));
1313 inode->i_size = sd_v2_size(sd);
1314 i_gid_write(inode, sd_v2_gid(sd));
1315 inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1316 inode->i_atime.tv_sec = sd_v2_atime(sd);
1317 inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1318 inode->i_ctime.tv_nsec = 0;
1319 inode->i_mtime.tv_nsec = 0;
1320 inode->i_atime.tv_nsec = 0;
1321 inode->i_blocks = sd_v2_blocks(sd);
1322 rdev = sd_v2_rdev(sd);
1323 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1324 inode->i_generation =
1325 le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1326 else
1327 inode->i_generation = sd_v2_generation(sd);
1328
1329 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1330 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1331 else
1332 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1333 REISERFS_I(inode)->i_first_direct_byte = 0;
1334 set_inode_sd_version(inode, STAT_DATA_V2);
1335 inode_set_bytes(inode,
1336 to_real_used_space(inode, inode->i_blocks,
1337 SD_V2_SIZE));
1338 /*
1339 * read persistent inode attributes from sd and initialise
1340 * generic inode flags from them
1341 */
1342 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1343 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1344 }
1345
1346 pathrelse(path);
1347 if (S_ISREG(inode->i_mode)) {
1348 inode->i_op = &reiserfs_file_inode_operations;
1349 inode->i_fop = &reiserfs_file_operations;
1350 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1351 } else if (S_ISDIR(inode->i_mode)) {
1352 inode->i_op = &reiserfs_dir_inode_operations;
1353 inode->i_fop = &reiserfs_dir_operations;
1354 } else if (S_ISLNK(inode->i_mode)) {
1355 inode->i_op = &reiserfs_symlink_inode_operations;
1356 inode_nohighmem(inode);
1357 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1358 } else {
1359 inode->i_blocks = 0;
1360 inode->i_op = &reiserfs_special_inode_operations;
1361 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1362 }
1363}
1364
1365/* update new stat data with inode fields */
1366static void inode2sd(void *sd, struct inode *inode, loff_t size)
1367{
1368 struct stat_data *sd_v2 = (struct stat_data *)sd;
1369
1370 set_sd_v2_mode(sd_v2, inode->i_mode);
1371 set_sd_v2_nlink(sd_v2, inode->i_nlink);
1372 set_sd_v2_uid(sd_v2, i_uid_read(inode));
1373 set_sd_v2_size(sd_v2, size);
1374 set_sd_v2_gid(sd_v2, i_gid_read(inode));
1375 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1376 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1377 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1378 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1379 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1380 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1381 else
1382 set_sd_v2_generation(sd_v2, inode->i_generation);
1383 set_sd_v2_attrs(sd_v2, REISERFS_I(inode)->i_attrs);
1384}
1385
1386/* used to copy inode's fields to old stat data */
1387static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1388{
1389 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1390
1391 set_sd_v1_mode(sd_v1, inode->i_mode);
1392 set_sd_v1_uid(sd_v1, i_uid_read(inode));
1393 set_sd_v1_gid(sd_v1, i_gid_read(inode));
1394 set_sd_v1_nlink(sd_v1, inode->i_nlink);
1395 set_sd_v1_size(sd_v1, size);
1396 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1397 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1398 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1399
1400 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1401 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1402 else
1403 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1404
1405 /* Sigh. i_first_direct_byte is back */
1406 set_sd_v1_first_direct_byte(sd_v1,
1407 REISERFS_I(inode)->i_first_direct_byte);
1408}
1409
1410/*
1411 * NOTE, you must prepare the buffer head before sending it here,
1412 * and then log it after the call
1413 */
1414static void update_stat_data(struct treepath *path, struct inode *inode,
1415 loff_t size)
1416{
1417 struct buffer_head *bh;
1418 struct item_head *ih;
1419
1420 bh = PATH_PLAST_BUFFER(path);
1421 ih = tp_item_head(path);
1422
1423 if (!is_statdata_le_ih(ih))
1424 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1425 INODE_PKEY(inode), ih);
1426
1427 /* path points to old stat data */
1428 if (stat_data_v1(ih)) {
1429 inode2sd_v1(ih_item_body(bh, ih), inode, size);
1430 } else {
1431 inode2sd(ih_item_body(bh, ih), inode, size);
1432 }
1433
1434 return;
1435}
1436
1437void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1438 struct inode *inode, loff_t size)
1439{
1440 struct cpu_key key;
1441 INITIALIZE_PATH(path);
1442 struct buffer_head *bh;
1443 int fs_gen;
1444 struct item_head *ih, tmp_ih;
1445 int retval;
1446
1447 BUG_ON(!th->t_trans_id);
1448
1449 /* key type is unimportant */
1450 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);
1451
1452 for (;;) {
1453 int pos;
1454 /* look for the object's stat data */
1455 retval = search_item(inode->i_sb, &key, &path);
1456 if (retval == IO_ERROR) {
1457 reiserfs_error(inode->i_sb, "vs-13050",
1458 "i/o failure occurred trying to "
1459 "update %K stat data", &key);
1460 return;
1461 }
1462 if (retval == ITEM_NOT_FOUND) {
1463 pos = PATH_LAST_POSITION(&path);
1464 pathrelse(&path);
1465 if (inode->i_nlink == 0) {
1466 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1467 return;
1468 }
1469 reiserfs_warning(inode->i_sb, "vs-13060",
1470 "stat data of object %k (nlink == %d) "
1471 "not found (pos %d)",
1472 INODE_PKEY(inode), inode->i_nlink,
1473 pos);
1474 reiserfs_check_path(&path);
1475 return;
1476 }
1477
1478 /*
1479 * sigh, prepare_for_journal might schedule. When it
1480 * schedules the FS might change. We have to detect that,
1481 * and loop back to the search if the stat data item has moved
1482 */
1483 bh = get_last_bh(&path);
1484 ih = tp_item_head(&path);
1485 copy_item_head(&tmp_ih, ih);
1486 fs_gen = get_generation(inode->i_sb);
1487 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1488
1489 /* Stat_data item has been moved after scheduling. */
1490 if (fs_changed(fs_gen, inode->i_sb)
1491 && item_moved(&tmp_ih, &path)) {
1492 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1493 continue;
1494 }
1495 break;
1496 }
1497 update_stat_data(&path, inode, size);
1498 journal_mark_dirty(th, bh);
1499 pathrelse(&path);
1500 return;
1501}
1502
1503/*
1504 * reiserfs_read_locked_inode is called to read the inode off disk, and it
1505 * does a make_bad_inode when things go wrong. But, we need to make sure
1506 * and clear the key in the private portion of the inode, otherwise a
1507 * corresponding iput might try to delete whatever object the inode last
1508 * represented.
1509 */
1510static void reiserfs_make_bad_inode(struct inode *inode)
1511{
1512 memset(INODE_PKEY(inode), 0, KEY_SIZE);
1513 make_bad_inode(inode);
1514}
1515
1516/*
1517 * initially this function was derived from minix or ext2's analog and
1518 * evolved as the prototype did
1519 */
1520int reiserfs_init_locked_inode(struct inode *inode, void *p)
1521{
1522 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1523 inode->i_ino = args->objectid;
1524 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1525 return 0;
1526}
1527
1528/*
1529 * looks for stat data in the tree, and fills up the fields of in-core
1530 * inode stat data fields
1531 */
1532void reiserfs_read_locked_inode(struct inode *inode,
1533 struct reiserfs_iget_args *args)
1534{
1535 INITIALIZE_PATH(path_to_sd);
1536 struct cpu_key key;
1537 unsigned long dirino;
1538 int retval;
1539
1540 dirino = args->dirid;
1541
1542 /*
1543 * set version 1, version 2 could be used too, because stat data
1544 * key is the same in both versions
1545 */
1546 _make_cpu_key(&key, KEY_FORMAT_3_5, dirino, inode->i_ino, 0, 0, 3);
1547
1548 /* look for the object's stat data */
1549 retval = search_item(inode->i_sb, &key, &path_to_sd);
1550 if (retval == IO_ERROR) {
1551 reiserfs_error(inode->i_sb, "vs-13070",
1552 "i/o failure occurred trying to find "
1553 "stat data of %K", &key);
1554 reiserfs_make_bad_inode(inode);
1555 return;
1556 }
1557
1558 /* a stale NFS handle can trigger this without it being an error */
1559 if (retval != ITEM_FOUND) {
1560 pathrelse(&path_to_sd);
1561 reiserfs_make_bad_inode(inode);
1562 clear_nlink(inode);
1563 return;
1564 }
1565
1566 init_inode(inode, &path_to_sd);
1567
1568 /*
1569 * It is possible that knfsd is trying to access inode of a file
1570 * that is being removed from the disk by some other thread. As we
1571 * update sd on unlink all that is required is to check for nlink
1572 * here. This bug was first found by Sizif when debugging
1573 * SquidNG/Butterfly, forgotten, and found again after Philippe
1574 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1575
1576 * More logical fix would require changes in fs/inode.c:iput() to
1577 * remove inode from hash-table _after_ fs cleaned disk stuff up and
1578 * in iget() to return NULL if I_FREEING inode is found in
1579 * hash-table.
1580 */
1581
1582 /*
1583 * Currently there is one place where it's ok to meet inode with
1584 * nlink==0: processing of open-unlinked and half-truncated files
1585 * during mount (fs/reiserfs/super.c:finish_unfinished()).
1586 */
1587 if ((inode->i_nlink == 0) &&
1588 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1589 reiserfs_warning(inode->i_sb, "vs-13075",
1590 "dead inode read from disk %K. "
1591 "This is likely to be race with knfsd. Ignore",
1592 &key);
1593 reiserfs_make_bad_inode(inode);
1594 }
1595
1596 /* init inode should be relsing */
1597 reiserfs_check_path(&path_to_sd);
1598
1599 /*
1600 * Stat data v1 doesn't support ACLs.
1601 */
1602 if (get_inode_sd_version(inode) == STAT_DATA_V1)
1603 cache_no_acl(inode);
1604}
1605
1606/*
1607 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1608 *
1609 * @inode: inode from hash table to check
1610 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1611 *
1612 * This function is called by iget5_locked() to distinguish reiserfs inodes
1613 * having the same inode numbers. Such inodes can only exist due to some
1614 * error condition. One of them should be bad. Inodes with identical
1615 * inode numbers (objectids) are distinguished by parent directory ids.
1616 *
1617 */
1618int reiserfs_find_actor(struct inode *inode, void *opaque)
1619{
1620 struct reiserfs_iget_args *args;
1621
1622 args = opaque;
1623 /* args is already in CPU order */
1624 return (inode->i_ino == args->objectid) &&
1625 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1626}
1627
1628struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1629{
1630 struct inode *inode;
1631 struct reiserfs_iget_args args;
1632 int depth;
1633
1634 args.objectid = key->on_disk_key.k_objectid;
1635 args.dirid = key->on_disk_key.k_dir_id;
1636 depth = reiserfs_write_unlock_nested(s);
1637 inode = iget5_locked(s, key->on_disk_key.k_objectid,
1638 reiserfs_find_actor, reiserfs_init_locked_inode,
1639 (void *)(&args));
1640 reiserfs_write_lock_nested(s, depth);
1641 if (!inode)
1642 return ERR_PTR(-ENOMEM);
1643
1644 if (inode->i_state & I_NEW) {
1645 reiserfs_read_locked_inode(inode, &args);
1646 unlock_new_inode(inode);
1647 }
1648
1649 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1650 /* either due to i/o error or a stale NFS handle */
1651 iput(inode);
1652 inode = NULL;
1653 }
1654 return inode;
1655}
1656
1657static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1658 u32 objectid, u32 dir_id, u32 generation)
1659
1660{
1661 struct cpu_key key;
1662 struct inode *inode;
1663
1664 key.on_disk_key.k_objectid = objectid;
1665 key.on_disk_key.k_dir_id = dir_id;
1666 reiserfs_write_lock(sb);
1667 inode = reiserfs_iget(sb, &key);
1668 if (inode && !IS_ERR(inode) && generation != 0 &&
1669 generation != inode->i_generation) {
1670 iput(inode);
1671 inode = NULL;
1672 }
1673 reiserfs_write_unlock(sb);
1674
1675 return d_obtain_alias(inode);
1676}
1677
1678struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1679 int fh_len, int fh_type)
1680{
1681 /*
1682 * fhtype happens to reflect the number of u32s encoded.
1683 * due to a bug in earlier code, fhtype might indicate there
1684 * are more u32s then actually fitted.
1685 * so if fhtype seems to be more than len, reduce fhtype.
1686 * Valid types are:
1687 * 2 - objectid + dir_id - legacy support
1688 * 3 - objectid + dir_id + generation
1689 * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1690 * 5 - objectid + dir_id + generation + objectid and dirid of parent
1691 * 6 - as above plus generation of directory
1692 * 6 does not fit in NFSv2 handles
1693 */
1694 if (fh_type > fh_len) {
1695 if (fh_type != 6 || fh_len != 5)
1696 reiserfs_warning(sb, "reiserfs-13077",
1697 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1698 fh_type, fh_len);
1699 fh_type = fh_len;
1700 }
1701 if (fh_len < 2)
1702 return NULL;
1703
1704 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1705 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1706}
1707
1708struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1709 int fh_len, int fh_type)
1710{
1711 if (fh_type > fh_len)
1712 fh_type = fh_len;
1713 if (fh_type < 4)
1714 return NULL;
1715
1716 return reiserfs_get_dentry(sb,
1717 (fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1718 (fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1719 (fh_type == 6) ? fid->raw[5] : 0);
1720}
1721
1722int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1723 struct inode *parent)
1724{
1725 int maxlen = *lenp;
1726
1727 if (parent && (maxlen < 5)) {
1728 *lenp = 5;
1729 return FILEID_INVALID;
1730 } else if (maxlen < 3) {
1731 *lenp = 3;
1732 return FILEID_INVALID;
1733 }
1734
1735 data[0] = inode->i_ino;
1736 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1737 data[2] = inode->i_generation;
1738 *lenp = 3;
1739 if (parent) {
1740 data[3] = parent->i_ino;
1741 data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1742 *lenp = 5;
1743 if (maxlen >= 6) {
1744 data[5] = parent->i_generation;
1745 *lenp = 6;
1746 }
1747 }
1748 return *lenp;
1749}
1750
1751/*
1752 * looks for stat data, then copies fields to it, marks the buffer
1753 * containing stat data as dirty
1754 */
1755/*
1756 * reiserfs inodes are never really dirty, since the dirty inode call
1757 * always logs them. This call allows the VFS inode marking routines
1758 * to properly mark inodes for datasync and such, but only actually
1759 * does something when called for a synchronous update.
1760 */
1761int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1762{
1763 struct reiserfs_transaction_handle th;
1764 int jbegin_count = 1;
1765
1766 if (sb_rdonly(inode->i_sb))
1767 return -EROFS;
1768 /*
1769 * memory pressure can sometimes initiate write_inode calls with
1770 * sync == 1,
1771 * these cases are just when the system needs ram, not when the
1772 * inode needs to reach disk for safety, and they can safely be
1773 * ignored because the altered inode has already been logged.
1774 */
1775 if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1776 reiserfs_write_lock(inode->i_sb);
1777 if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1778 reiserfs_update_sd(&th, inode);
1779 journal_end_sync(&th);
1780 }
1781 reiserfs_write_unlock(inode->i_sb);
1782 }
1783 return 0;
1784}
1785
1786/*
1787 * stat data of new object is inserted already, this inserts the item
1788 * containing "." and ".." entries
1789 */
1790static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1791 struct inode *inode,
1792 struct item_head *ih, struct treepath *path,
1793 struct inode *dir)
1794{
1795 struct super_block *sb = th->t_super;
1796 char empty_dir[EMPTY_DIR_SIZE];
1797 char *body = empty_dir;
1798 struct cpu_key key;
1799 int retval;
1800
1801 BUG_ON(!th->t_trans_id);
1802
1803 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1804 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1805 TYPE_DIRENTRY, 3 /*key length */ );
1806
1807 /*
1808 * compose item head for new item. Directories consist of items of
1809 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1810 * is done by reiserfs_new_inode
1811 */
1812 if (old_format_only(sb)) {
1813 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1814 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1815
1816 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1817 ih->ih_key.k_objectid,
1818 INODE_PKEY(dir)->k_dir_id,
1819 INODE_PKEY(dir)->k_objectid);
1820 } else {
1821 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1822 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1823
1824 make_empty_dir_item(body, ih->ih_key.k_dir_id,
1825 ih->ih_key.k_objectid,
1826 INODE_PKEY(dir)->k_dir_id,
1827 INODE_PKEY(dir)->k_objectid);
1828 }
1829
1830 /* look for place in the tree for new item */
1831 retval = search_item(sb, &key, path);
1832 if (retval == IO_ERROR) {
1833 reiserfs_error(sb, "vs-13080",
1834 "i/o failure occurred creating new directory");
1835 return -EIO;
1836 }
1837 if (retval == ITEM_FOUND) {
1838 pathrelse(path);
1839 reiserfs_warning(sb, "vs-13070",
1840 "object with this key exists (%k)",
1841 &(ih->ih_key));
1842 return -EEXIST;
1843 }
1844
1845 /* insert item, that is empty directory item */
1846 return reiserfs_insert_item(th, path, &key, ih, inode, body);
1847}
1848
1849/*
1850 * stat data of object has been inserted, this inserts the item
1851 * containing the body of symlink
1852 */
1853static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th,
1854 struct inode *inode,
1855 struct item_head *ih,
1856 struct treepath *path, const char *symname,
1857 int item_len)
1858{
1859 struct super_block *sb = th->t_super;
1860 struct cpu_key key;
1861 int retval;
1862
1863 BUG_ON(!th->t_trans_id);
1864
1865 _make_cpu_key(&key, KEY_FORMAT_3_5,
1866 le32_to_cpu(ih->ih_key.k_dir_id),
1867 le32_to_cpu(ih->ih_key.k_objectid),
1868 1, TYPE_DIRECT, 3 /*key length */ );
1869
1870 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1871 0 /*free_space */ );
1872
1873 /* look for place in the tree for new item */
1874 retval = search_item(sb, &key, path);
1875 if (retval == IO_ERROR) {
1876 reiserfs_error(sb, "vs-13080",
1877 "i/o failure occurred creating new symlink");
1878 return -EIO;
1879 }
1880 if (retval == ITEM_FOUND) {
1881 pathrelse(path);
1882 reiserfs_warning(sb, "vs-13080",
1883 "object with this key exists (%k)",
1884 &(ih->ih_key));
1885 return -EEXIST;
1886 }
1887
1888 /* insert item, that is body of symlink */
1889 return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1890}
1891
1892/*
1893 * inserts the stat data into the tree, and then calls
1894 * reiserfs_new_directory (to insert ".", ".." item if new object is
1895 * directory) or reiserfs_new_symlink (to insert symlink body if new
1896 * object is symlink) or nothing (if new object is regular file)
1897
1898 * NOTE! uid and gid must already be set in the inode. If we return
1899 * non-zero due to an error, we have to drop the quota previously allocated
1900 * for the fresh inode. This can only be done outside a transaction, so
1901 * if we return non-zero, we also end the transaction.
1902 *
1903 * @th: active transaction handle
1904 * @dir: parent directory for new inode
1905 * @mode: mode of new inode
1906 * @symname: symlink contents if inode is symlink
1907 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for
1908 * symlinks
1909 * @inode: inode to be filled
1910 * @security: optional security context to associate with this inode
1911 */
1912int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1913 struct inode *dir, umode_t mode, const char *symname,
1914 /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1915 strlen (symname) for symlinks) */
1916 loff_t i_size, struct dentry *dentry,
1917 struct inode *inode,
1918 struct reiserfs_security_handle *security)
1919{
1920 struct super_block *sb = dir->i_sb;
1921 struct reiserfs_iget_args args;
1922 INITIALIZE_PATH(path_to_key);
1923 struct cpu_key key;
1924 struct item_head ih;
1925 struct stat_data sd;
1926 int retval;
1927 int err;
1928 int depth;
1929
1930 BUG_ON(!th->t_trans_id);
1931
1932 depth = reiserfs_write_unlock_nested(sb);
1933 err = dquot_alloc_inode(inode);
1934 reiserfs_write_lock_nested(sb, depth);
1935 if (err)
1936 goto out_end_trans;
1937 if (!dir->i_nlink) {
1938 err = -EPERM;
1939 goto out_bad_inode;
1940 }
1941
1942 /* item head of new item */
1943 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1944 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1945 if (!ih.ih_key.k_objectid) {
1946 err = -ENOMEM;
1947 goto out_bad_inode;
1948 }
1949 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1950 if (old_format_only(sb))
1951 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1952 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1953 else
1954 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1955 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1956 memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE);
1957 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1958
1959 depth = reiserfs_write_unlock_nested(inode->i_sb);
1960 err = insert_inode_locked4(inode, args.objectid,
1961 reiserfs_find_actor, &args);
1962 reiserfs_write_lock_nested(inode->i_sb, depth);
1963 if (err) {
1964 err = -EINVAL;
1965 goto out_bad_inode;
1966 }
1967
1968 if (old_format_only(sb))
1969 /*
1970 * not a perfect generation count, as object ids can be reused,
1971 * but this is as good as reiserfs can do right now.
1972 * note that the private part of inode isn't filled in yet,
1973 * we have to use the directory.
1974 */
1975 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1976 else
1977#if defined( USE_INODE_GENERATION_COUNTER )
1978 inode->i_generation =
1979 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1980#else
1981 inode->i_generation = ++event;
1982#endif
1983
1984 /* fill stat data */
1985 set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1986
1987 /* uid and gid must already be set by the caller for quota init */
1988
1989 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1990 inode->i_size = i_size;
1991 inode->i_blocks = 0;
1992 inode->i_bytes = 0;
1993 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1994 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1995
1996 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1997 REISERFS_I(inode)->i_flags = 0;
1998 REISERFS_I(inode)->i_prealloc_block = 0;
1999 REISERFS_I(inode)->i_prealloc_count = 0;
2000 REISERFS_I(inode)->i_trans_id = 0;
2001 REISERFS_I(inode)->i_jl = NULL;
2002 REISERFS_I(inode)->i_attrs =
2003 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
2004 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
2005 reiserfs_init_xattr_rwsem(inode);
2006
2007 /* key to search for correct place for new stat data */
2008 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
2009 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
2010 TYPE_STAT_DATA, 3 /*key length */ );
2011
2012 /* find proper place for inserting of stat data */
2013 retval = search_item(sb, &key, &path_to_key);
2014 if (retval == IO_ERROR) {
2015 err = -EIO;
2016 goto out_bad_inode;
2017 }
2018 if (retval == ITEM_FOUND) {
2019 pathrelse(&path_to_key);
2020 err = -EEXIST;
2021 goto out_bad_inode;
2022 }
2023 if (old_format_only(sb)) {
2024 /* i_uid or i_gid is too big to be stored in stat data v3.5 */
2025 if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
2026 pathrelse(&path_to_key);
2027 err = -EINVAL;
2028 goto out_bad_inode;
2029 }
2030 inode2sd_v1(&sd, inode, inode->i_size);
2031 } else {
2032 inode2sd(&sd, inode, inode->i_size);
2033 }
2034 /*
2035 * store in in-core inode the key of stat data and version all
2036 * object items will have (directory items will have old offset
2037 * format, other new objects will consist of new items)
2038 */
2039 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
2040 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
2041 else
2042 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
2043 if (old_format_only(sb))
2044 set_inode_sd_version(inode, STAT_DATA_V1);
2045 else
2046 set_inode_sd_version(inode, STAT_DATA_V2);
2047
2048 /* insert the stat data into the tree */
2049#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2050 if (REISERFS_I(dir)->new_packing_locality)
2051 th->displace_new_blocks = 1;
2052#endif
2053 retval =
2054 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
2055 (char *)(&sd));
2056 if (retval) {
2057 err = retval;
2058 reiserfs_check_path(&path_to_key);
2059 goto out_bad_inode;
2060 }
2061#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2062 if (!th->displace_new_blocks)
2063 REISERFS_I(dir)->new_packing_locality = 0;
2064#endif
2065 if (S_ISDIR(mode)) {
2066 /* insert item with "." and ".." */
2067 retval =
2068 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
2069 }
2070
2071 if (S_ISLNK(mode)) {
2072 /* insert body of symlink */
2073 if (!old_format_only(sb))
2074 i_size = ROUND_UP(i_size);
2075 retval =
2076 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
2077 i_size);
2078 }
2079 if (retval) {
2080 err = retval;
2081 reiserfs_check_path(&path_to_key);
2082 journal_end(th);
2083 goto out_inserted_sd;
2084 }
2085
2086 /*
2087 * Mark it private if we're creating the privroot
2088 * or something under it.
2089 */
2090 if (IS_PRIVATE(dir) || dentry == REISERFS_SB(sb)->priv_root) {
2091 inode->i_flags |= S_PRIVATE;
2092 inode->i_opflags &= ~IOP_XATTR;
2093 }
2094
2095 if (reiserfs_posixacl(inode->i_sb)) {
2096 reiserfs_write_unlock(inode->i_sb);
2097 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
2098 reiserfs_write_lock(inode->i_sb);
2099 if (retval) {
2100 err = retval;
2101 reiserfs_check_path(&path_to_key);
2102 journal_end(th);
2103 goto out_inserted_sd;
2104 }
2105 } else if (inode->i_sb->s_flags & SB_POSIXACL) {
2106 reiserfs_warning(inode->i_sb, "jdm-13090",
2107 "ACLs aren't enabled in the fs, "
2108 "but vfs thinks they are!");
2109 }
2110
2111 if (security->name) {
2112 reiserfs_write_unlock(inode->i_sb);
2113 retval = reiserfs_security_write(th, inode, security);
2114 reiserfs_write_lock(inode->i_sb);
2115 if (retval) {
2116 err = retval;
2117 reiserfs_check_path(&path_to_key);
2118 retval = journal_end(th);
2119 if (retval)
2120 err = retval;
2121 goto out_inserted_sd;
2122 }
2123 }
2124
2125 reiserfs_update_sd(th, inode);
2126 reiserfs_check_path(&path_to_key);
2127
2128 return 0;
2129
2130out_bad_inode:
2131 /* Invalidate the object, nothing was inserted yet */
2132 INODE_PKEY(inode)->k_objectid = 0;
2133
2134 /* Quota change must be inside a transaction for journaling */
2135 depth = reiserfs_write_unlock_nested(inode->i_sb);
2136 dquot_free_inode(inode);
2137 reiserfs_write_lock_nested(inode->i_sb, depth);
2138
2139out_end_trans:
2140 journal_end(th);
2141 /*
2142 * Drop can be outside and it needs more credits so it's better
2143 * to have it outside
2144 */
2145 depth = reiserfs_write_unlock_nested(inode->i_sb);
2146 dquot_drop(inode);
2147 reiserfs_write_lock_nested(inode->i_sb, depth);
2148 inode->i_flags |= S_NOQUOTA;
2149 make_bad_inode(inode);
2150
2151out_inserted_sd:
2152 clear_nlink(inode);
2153 th->t_trans_id = 0; /* so the caller can't use this handle later */
2154 if (inode->i_state & I_NEW)
2155 unlock_new_inode(inode);
2156 iput(inode);
2157 return err;
2158}
2159
2160/*
2161 * finds the tail page in the page cache,
2162 * reads the last block in.
2163 *
2164 * On success, page_result is set to a locked, pinned page, and bh_result
2165 * is set to an up to date buffer for the last block in the file. returns 0.
2166 *
2167 * tail conversion is not done, so bh_result might not be valid for writing
2168 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2169 * trying to write the block.
2170 *
2171 * on failure, nonzero is returned, page_result and bh_result are untouched.
2172 */
2173static int grab_tail_page(struct inode *inode,
2174 struct page **page_result,
2175 struct buffer_head **bh_result)
2176{
2177
2178 /*
2179 * we want the page with the last byte in the file,
2180 * not the page that will hold the next byte for appending
2181 */
2182 unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT;
2183 unsigned long pos = 0;
2184 unsigned long start = 0;
2185 unsigned long blocksize = inode->i_sb->s_blocksize;
2186 unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1);
2187 struct buffer_head *bh;
2188 struct buffer_head *head;
2189 struct page *page;
2190 int error;
2191
2192 /*
2193 * we know that we are only called with inode->i_size > 0.
2194 * we also know that a file tail can never be as big as a block
2195 * If i_size % blocksize == 0, our file is currently block aligned
2196 * and it won't need converting or zeroing after a truncate.
2197 */
2198 if ((offset & (blocksize - 1)) == 0) {
2199 return -ENOENT;
2200 }
2201 page = grab_cache_page(inode->i_mapping, index);
2202 error = -ENOMEM;
2203 if (!page) {
2204 goto out;
2205 }
2206 /* start within the page of the last block in the file */
2207 start = (offset / blocksize) * blocksize;
2208
2209 error = __block_write_begin(page, start, offset - start,
2210 reiserfs_get_block_create_0);
2211 if (error)
2212 goto unlock;
2213
2214 head = page_buffers(page);
2215 bh = head;
2216 do {
2217 if (pos >= start) {
2218 break;
2219 }
2220 bh = bh->b_this_page;
2221 pos += blocksize;
2222 } while (bh != head);
2223
2224 if (!buffer_uptodate(bh)) {
2225 /*
2226 * note, this should never happen, prepare_write should be
2227 * taking care of this for us. If the buffer isn't up to
2228 * date, I've screwed up the code to find the buffer, or the
2229 * code to call prepare_write
2230 */
2231 reiserfs_error(inode->i_sb, "clm-6000",
2232 "error reading block %lu", bh->b_blocknr);
2233 error = -EIO;
2234 goto unlock;
2235 }
2236 *bh_result = bh;
2237 *page_result = page;
2238
2239out:
2240 return error;
2241
2242unlock:
2243 unlock_page(page);
2244 put_page(page);
2245 return error;
2246}
2247
2248/*
2249 * vfs version of truncate file. Must NOT be called with
2250 * a transaction already started.
2251 *
2252 * some code taken from block_truncate_page
2253 */
2254int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2255{
2256 struct reiserfs_transaction_handle th;
2257 /* we want the offset for the first byte after the end of the file */
2258 unsigned long offset = inode->i_size & (PAGE_SIZE - 1);
2259 unsigned blocksize = inode->i_sb->s_blocksize;
2260 unsigned length;
2261 struct page *page = NULL;
2262 int error;
2263 struct buffer_head *bh = NULL;
2264 int err2;
2265
2266 reiserfs_write_lock(inode->i_sb);
2267
2268 if (inode->i_size > 0) {
2269 error = grab_tail_page(inode, &page, &bh);
2270 if (error) {
2271 /*
2272 * -ENOENT means we truncated past the end of the
2273 * file, and get_block_create_0 could not find a
2274 * block to read in, which is ok.
2275 */
2276 if (error != -ENOENT)
2277 reiserfs_error(inode->i_sb, "clm-6001",
2278 "grab_tail_page failed %d",
2279 error);
2280 page = NULL;
2281 bh = NULL;
2282 }
2283 }
2284
2285 /*
2286 * so, if page != NULL, we have a buffer head for the offset at
2287 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2288 * then we have an unformatted node. Otherwise, we have a direct item,
2289 * and no zeroing is required on disk. We zero after the truncate,
2290 * because the truncate might pack the item anyway
2291 * (it will unmap bh if it packs).
2292 *
2293 * it is enough to reserve space in transaction for 2 balancings:
2294 * one for "save" link adding and another for the first
2295 * cut_from_item. 1 is for update_sd
2296 */
2297 error = journal_begin(&th, inode->i_sb,
2298 JOURNAL_PER_BALANCE_CNT * 2 + 1);
2299 if (error)
2300 goto out;
2301 reiserfs_update_inode_transaction(inode);
2302 if (update_timestamps)
2303 /*
2304 * we are doing real truncate: if the system crashes
2305 * before the last transaction of truncating gets committed
2306 * - on reboot the file either appears truncated properly
2307 * or not truncated at all
2308 */
2309 add_save_link(&th, inode, 1);
2310 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2311 error = journal_end(&th);
2312 if (error)
2313 goto out;
2314
2315 /* check reiserfs_do_truncate after ending the transaction */
2316 if (err2) {
2317 error = err2;
2318 goto out;
2319 }
2320
2321 if (update_timestamps) {
2322 error = remove_save_link(inode, 1 /* truncate */);
2323 if (error)
2324 goto out;
2325 }
2326
2327 if (page) {
2328 length = offset & (blocksize - 1);
2329 /* if we are not on a block boundary */
2330 if (length) {
2331 length = blocksize - length;
2332 zero_user(page, offset, length);
2333 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2334 mark_buffer_dirty(bh);
2335 }
2336 }
2337 unlock_page(page);
2338 put_page(page);
2339 }
2340
2341 reiserfs_write_unlock(inode->i_sb);
2342
2343 return 0;
2344out:
2345 if (page) {
2346 unlock_page(page);
2347 put_page(page);
2348 }
2349
2350 reiserfs_write_unlock(inode->i_sb);
2351
2352 return error;
2353}
2354
2355static int map_block_for_writepage(struct inode *inode,
2356 struct buffer_head *bh_result,
2357 unsigned long block)
2358{
2359 struct reiserfs_transaction_handle th;
2360 int fs_gen;
2361 struct item_head tmp_ih;
2362 struct item_head *ih;
2363 struct buffer_head *bh;
2364 __le32 *item;
2365 struct cpu_key key;
2366 INITIALIZE_PATH(path);
2367 int pos_in_item;
2368 int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2369 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2370 int retval;
2371 int use_get_block = 0;
2372 int bytes_copied = 0;
2373 int copy_size;
2374 int trans_running = 0;
2375
2376 /*
2377 * catch places below that try to log something without
2378 * starting a trans
2379 */
2380 th.t_trans_id = 0;
2381
2382 if (!buffer_uptodate(bh_result)) {
2383 return -EIO;
2384 }
2385
2386 kmap(bh_result->b_page);
2387start_over:
2388 reiserfs_write_lock(inode->i_sb);
2389 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2390
2391research:
2392 retval = search_for_position_by_key(inode->i_sb, &key, &path);
2393 if (retval != POSITION_FOUND) {
2394 use_get_block = 1;
2395 goto out;
2396 }
2397
2398 bh = get_last_bh(&path);
2399 ih = tp_item_head(&path);
2400 item = tp_item_body(&path);
2401 pos_in_item = path.pos_in_item;
2402
2403 /* we've found an unformatted node */
2404 if (indirect_item_found(retval, ih)) {
2405 if (bytes_copied > 0) {
2406 reiserfs_warning(inode->i_sb, "clm-6002",
2407 "bytes_copied %d", bytes_copied);
2408 }
2409 if (!get_block_num(item, pos_in_item)) {
2410 /* crap, we are writing to a hole */
2411 use_get_block = 1;
2412 goto out;
2413 }
2414 set_block_dev_mapped(bh_result,
2415 get_block_num(item, pos_in_item), inode);
2416 } else if (is_direct_le_ih(ih)) {
2417 char *p;
2418 p = page_address(bh_result->b_page);
2419 p += (byte_offset - 1) & (PAGE_SIZE - 1);
2420 copy_size = ih_item_len(ih) - pos_in_item;
2421
2422 fs_gen = get_generation(inode->i_sb);
2423 copy_item_head(&tmp_ih, ih);
2424
2425 if (!trans_running) {
2426 /* vs-3050 is gone, no need to drop the path */
2427 retval = journal_begin(&th, inode->i_sb, jbegin_count);
2428 if (retval)
2429 goto out;
2430 reiserfs_update_inode_transaction(inode);
2431 trans_running = 1;
2432 if (fs_changed(fs_gen, inode->i_sb)
2433 && item_moved(&tmp_ih, &path)) {
2434 reiserfs_restore_prepared_buffer(inode->i_sb,
2435 bh);
2436 goto research;
2437 }
2438 }
2439
2440 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2441
2442 if (fs_changed(fs_gen, inode->i_sb)
2443 && item_moved(&tmp_ih, &path)) {
2444 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2445 goto research;
2446 }
2447
2448 memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied,
2449 copy_size);
2450
2451 journal_mark_dirty(&th, bh);
2452 bytes_copied += copy_size;
2453 set_block_dev_mapped(bh_result, 0, inode);
2454
2455 /* are there still bytes left? */
2456 if (bytes_copied < bh_result->b_size &&
2457 (byte_offset + bytes_copied) < inode->i_size) {
2458 set_cpu_key_k_offset(&key,
2459 cpu_key_k_offset(&key) +
2460 copy_size);
2461 goto research;
2462 }
2463 } else {
2464 reiserfs_warning(inode->i_sb, "clm-6003",
2465 "bad item inode %lu", inode->i_ino);
2466 retval = -EIO;
2467 goto out;
2468 }
2469 retval = 0;
2470
2471out:
2472 pathrelse(&path);
2473 if (trans_running) {
2474 int err = journal_end(&th);
2475 if (err)
2476 retval = err;
2477 trans_running = 0;
2478 }
2479 reiserfs_write_unlock(inode->i_sb);
2480
2481 /* this is where we fill in holes in the file. */
2482 if (use_get_block) {
2483 retval = reiserfs_get_block(inode, block, bh_result,
2484 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2485 | GET_BLOCK_NO_DANGLE);
2486 if (!retval) {
2487 if (!buffer_mapped(bh_result)
2488 || bh_result->b_blocknr == 0) {
2489 /* get_block failed to find a mapped unformatted node. */
2490 use_get_block = 0;
2491 goto start_over;
2492 }
2493 }
2494 }
2495 kunmap(bh_result->b_page);
2496
2497 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2498 /*
2499 * we've copied data from the page into the direct item, so the
2500 * buffer in the page is now clean, mark it to reflect that.
2501 */
2502 lock_buffer(bh_result);
2503 clear_buffer_dirty(bh_result);
2504 unlock_buffer(bh_result);
2505 }
2506 return retval;
2507}
2508
2509/*
2510 * mason@suse.com: updated in 2.5.54 to follow the same general io
2511 * start/recovery path as __block_write_full_page, along with special
2512 * code to handle reiserfs tails.
2513 */
2514static int reiserfs_write_full_page(struct page *page,
2515 struct writeback_control *wbc)
2516{
2517 struct inode *inode = page->mapping->host;
2518 unsigned long end_index = inode->i_size >> PAGE_SHIFT;
2519 int error = 0;
2520 unsigned long block;
2521 sector_t last_block;
2522 struct buffer_head *head, *bh;
2523 int partial = 0;
2524 int nr = 0;
2525 int checked = PageChecked(page);
2526 struct reiserfs_transaction_handle th;
2527 struct super_block *s = inode->i_sb;
2528 int bh_per_page = PAGE_SIZE / s->s_blocksize;
2529 th.t_trans_id = 0;
2530
2531 /* no logging allowed when nonblocking or from PF_MEMALLOC */
2532 if (checked && (current->flags & PF_MEMALLOC)) {
2533 redirty_page_for_writepage(wbc, page);
2534 unlock_page(page);
2535 return 0;
2536 }
2537
2538 /*
2539 * The page dirty bit is cleared before writepage is called, which
2540 * means we have to tell create_empty_buffers to make dirty buffers
2541 * The page really should be up to date at this point, so tossing
2542 * in the BH_Uptodate is just a sanity check.
2543 */
2544 if (!page_has_buffers(page)) {
2545 create_empty_buffers(page, s->s_blocksize,
2546 (1 << BH_Dirty) | (1 << BH_Uptodate));
2547 }
2548 head = page_buffers(page);
2549
2550 /*
2551 * last page in the file, zero out any contents past the
2552 * last byte in the file
2553 */
2554 if (page->index >= end_index) {
2555 unsigned last_offset;
2556
2557 last_offset = inode->i_size & (PAGE_SIZE - 1);
2558 /* no file contents in this page */
2559 if (page->index >= end_index + 1 || !last_offset) {
2560 unlock_page(page);
2561 return 0;
2562 }
2563 zero_user_segment(page, last_offset, PAGE_SIZE);
2564 }
2565 bh = head;
2566 block = page->index << (PAGE_SHIFT - s->s_blocksize_bits);
2567 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2568 /* first map all the buffers, logging any direct items we find */
2569 do {
2570 if (block > last_block) {
2571 /*
2572 * This can happen when the block size is less than
2573 * the page size. The corresponding bytes in the page
2574 * were zero filled above
2575 */
2576 clear_buffer_dirty(bh);
2577 set_buffer_uptodate(bh);
2578 } else if ((checked || buffer_dirty(bh)) &&
2579 (!buffer_mapped(bh) || bh->b_blocknr == 0)) {
2580 /*
2581 * not mapped yet, or it points to a direct item, search
2582 * the btree for the mapping info, and log any direct
2583 * items found
2584 */
2585 if ((error = map_block_for_writepage(inode, bh, block))) {
2586 goto fail;
2587 }
2588 }
2589 bh = bh->b_this_page;
2590 block++;
2591 } while (bh != head);
2592
2593 /*
2594 * we start the transaction after map_block_for_writepage,
2595 * because it can create holes in the file (an unbounded operation).
2596 * starting it here, we can make a reliable estimate for how many
2597 * blocks we're going to log
2598 */
2599 if (checked) {
2600 ClearPageChecked(page);
2601 reiserfs_write_lock(s);
2602 error = journal_begin(&th, s, bh_per_page + 1);
2603 if (error) {
2604 reiserfs_write_unlock(s);
2605 goto fail;
2606 }
2607 reiserfs_update_inode_transaction(inode);
2608 }
2609 /* now go through and lock any dirty buffers on the page */
2610 do {
2611 get_bh(bh);
2612 if (!buffer_mapped(bh))
2613 continue;
2614 if (buffer_mapped(bh) && bh->b_blocknr == 0)
2615 continue;
2616
2617 if (checked) {
2618 reiserfs_prepare_for_journal(s, bh, 1);
2619 journal_mark_dirty(&th, bh);
2620 continue;
2621 }
2622 /*
2623 * from this point on, we know the buffer is mapped to a
2624 * real block and not a direct item
2625 */
2626 if (wbc->sync_mode != WB_SYNC_NONE) {
2627 lock_buffer(bh);
2628 } else {
2629 if (!trylock_buffer(bh)) {
2630 redirty_page_for_writepage(wbc, page);
2631 continue;
2632 }
2633 }
2634 if (test_clear_buffer_dirty(bh)) {
2635 mark_buffer_async_write(bh);
2636 } else {
2637 unlock_buffer(bh);
2638 }
2639 } while ((bh = bh->b_this_page) != head);
2640
2641 if (checked) {
2642 error = journal_end(&th);
2643 reiserfs_write_unlock(s);
2644 if (error)
2645 goto fail;
2646 }
2647 BUG_ON(PageWriteback(page));
2648 set_page_writeback(page);
2649 unlock_page(page);
2650
2651 /*
2652 * since any buffer might be the only dirty buffer on the page,
2653 * the first submit_bh can bring the page out of writeback.
2654 * be careful with the buffers.
2655 */
2656 do {
2657 struct buffer_head *next = bh->b_this_page;
2658 if (buffer_async_write(bh)) {
2659 submit_bh(REQ_OP_WRITE, bh);
2660 nr++;
2661 }
2662 put_bh(bh);
2663 bh = next;
2664 } while (bh != head);
2665
2666 error = 0;
2667done:
2668 if (nr == 0) {
2669 /*
2670 * if this page only had a direct item, it is very possible for
2671 * no io to be required without there being an error. Or,
2672 * someone else could have locked them and sent them down the
2673 * pipe without locking the page
2674 */
2675 bh = head;
2676 do {
2677 if (!buffer_uptodate(bh)) {
2678 partial = 1;
2679 break;
2680 }
2681 bh = bh->b_this_page;
2682 } while (bh != head);
2683 if (!partial)
2684 SetPageUptodate(page);
2685 end_page_writeback(page);
2686 }
2687 return error;
2688
2689fail:
2690 /*
2691 * catches various errors, we need to make sure any valid dirty blocks
2692 * get to the media. The page is currently locked and not marked for
2693 * writeback
2694 */
2695 ClearPageUptodate(page);
2696 bh = head;
2697 do {
2698 get_bh(bh);
2699 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2700 lock_buffer(bh);
2701 mark_buffer_async_write(bh);
2702 } else {
2703 /*
2704 * clear any dirty bits that might have come from
2705 * getting attached to a dirty page
2706 */
2707 clear_buffer_dirty(bh);
2708 }
2709 bh = bh->b_this_page;
2710 } while (bh != head);
2711 SetPageError(page);
2712 BUG_ON(PageWriteback(page));
2713 set_page_writeback(page);
2714 unlock_page(page);
2715 do {
2716 struct buffer_head *next = bh->b_this_page;
2717 if (buffer_async_write(bh)) {
2718 clear_buffer_dirty(bh);
2719 submit_bh(REQ_OP_WRITE, bh);
2720 nr++;
2721 }
2722 put_bh(bh);
2723 bh = next;
2724 } while (bh != head);
2725 goto done;
2726}
2727
2728static int reiserfs_read_folio(struct file *f, struct folio *folio)
2729{
2730 return block_read_full_folio(folio, reiserfs_get_block);
2731}
2732
2733static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2734{
2735 struct inode *inode = page->mapping->host;
2736 reiserfs_wait_on_write_block(inode->i_sb);
2737 return reiserfs_write_full_page(page, wbc);
2738}
2739
2740static void reiserfs_truncate_failed_write(struct inode *inode)
2741{
2742 truncate_inode_pages(inode->i_mapping, inode->i_size);
2743 reiserfs_truncate_file(inode, 0);
2744}
2745
2746static int reiserfs_write_begin(struct file *file,
2747 struct address_space *mapping,
2748 loff_t pos, unsigned len,
2749 struct page **pagep, void **fsdata)
2750{
2751 struct inode *inode;
2752 struct page *page;
2753 pgoff_t index;
2754 int ret;
2755 int old_ref = 0;
2756
2757 inode = mapping->host;
2758 index = pos >> PAGE_SHIFT;
2759 page = grab_cache_page_write_begin(mapping, index);
2760 if (!page)
2761 return -ENOMEM;
2762 *pagep = page;
2763
2764 reiserfs_wait_on_write_block(inode->i_sb);
2765 fix_tail_page_for_writing(page);
2766 if (reiserfs_transaction_running(inode->i_sb)) {
2767 struct reiserfs_transaction_handle *th;
2768 th = (struct reiserfs_transaction_handle *)current->
2769 journal_info;
2770 BUG_ON(!th->t_refcount);
2771 BUG_ON(!th->t_trans_id);
2772 old_ref = th->t_refcount;
2773 th->t_refcount++;
2774 }
2775 ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2776 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2777 struct reiserfs_transaction_handle *th = current->journal_info;
2778 /*
2779 * this gets a little ugly. If reiserfs_get_block returned an
2780 * error and left a transacstion running, we've got to close
2781 * it, and we've got to free handle if it was a persistent
2782 * transaction.
2783 *
2784 * But, if we had nested into an existing transaction, we need
2785 * to just drop the ref count on the handle.
2786 *
2787 * If old_ref == 0, the transaction is from reiserfs_get_block,
2788 * and it was a persistent trans. Otherwise, it was nested
2789 * above.
2790 */
2791 if (th->t_refcount > old_ref) {
2792 if (old_ref)
2793 th->t_refcount--;
2794 else {
2795 int err;
2796 reiserfs_write_lock(inode->i_sb);
2797 err = reiserfs_end_persistent_transaction(th);
2798 reiserfs_write_unlock(inode->i_sb);
2799 if (err)
2800 ret = err;
2801 }
2802 }
2803 }
2804 if (ret) {
2805 unlock_page(page);
2806 put_page(page);
2807 /* Truncate allocated blocks */
2808 reiserfs_truncate_failed_write(inode);
2809 }
2810 return ret;
2811}
2812
2813int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2814{
2815 struct inode *inode = page->mapping->host;
2816 int ret;
2817 int old_ref = 0;
2818 int depth;
2819
2820 depth = reiserfs_write_unlock_nested(inode->i_sb);
2821 reiserfs_wait_on_write_block(inode->i_sb);
2822 reiserfs_write_lock_nested(inode->i_sb, depth);
2823
2824 fix_tail_page_for_writing(page);
2825 if (reiserfs_transaction_running(inode->i_sb)) {
2826 struct reiserfs_transaction_handle *th;
2827 th = (struct reiserfs_transaction_handle *)current->
2828 journal_info;
2829 BUG_ON(!th->t_refcount);
2830 BUG_ON(!th->t_trans_id);
2831 old_ref = th->t_refcount;
2832 th->t_refcount++;
2833 }
2834
2835 ret = __block_write_begin(page, from, len, reiserfs_get_block);
2836 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2837 struct reiserfs_transaction_handle *th = current->journal_info;
2838 /*
2839 * this gets a little ugly. If reiserfs_get_block returned an
2840 * error and left a transacstion running, we've got to close
2841 * it, and we've got to free handle if it was a persistent
2842 * transaction.
2843 *
2844 * But, if we had nested into an existing transaction, we need
2845 * to just drop the ref count on the handle.
2846 *
2847 * If old_ref == 0, the transaction is from reiserfs_get_block,
2848 * and it was a persistent trans. Otherwise, it was nested
2849 * above.
2850 */
2851 if (th->t_refcount > old_ref) {
2852 if (old_ref)
2853 th->t_refcount--;
2854 else {
2855 int err;
2856 reiserfs_write_lock(inode->i_sb);
2857 err = reiserfs_end_persistent_transaction(th);
2858 reiserfs_write_unlock(inode->i_sb);
2859 if (err)
2860 ret = err;
2861 }
2862 }
2863 }
2864 return ret;
2865
2866}
2867
2868static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2869{
2870 return generic_block_bmap(as, block, reiserfs_bmap);
2871}
2872
2873static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2874 loff_t pos, unsigned len, unsigned copied,
2875 struct page *page, void *fsdata)
2876{
2877 struct inode *inode = page->mapping->host;
2878 int ret = 0;
2879 int update_sd = 0;
2880 struct reiserfs_transaction_handle *th;
2881 unsigned start;
2882 bool locked = false;
2883
2884 reiserfs_wait_on_write_block(inode->i_sb);
2885 if (reiserfs_transaction_running(inode->i_sb))
2886 th = current->journal_info;
2887 else
2888 th = NULL;
2889
2890 start = pos & (PAGE_SIZE - 1);
2891 if (unlikely(copied < len)) {
2892 if (!PageUptodate(page))
2893 copied = 0;
2894
2895 page_zero_new_buffers(page, start + copied, start + len);
2896 }
2897 flush_dcache_page(page);
2898
2899 reiserfs_commit_page(inode, page, start, start + copied);
2900
2901 /*
2902 * generic_commit_write does this for us, but does not update the
2903 * transaction tracking stuff when the size changes. So, we have
2904 * to do the i_size updates here.
2905 */
2906 if (pos + copied > inode->i_size) {
2907 struct reiserfs_transaction_handle myth;
2908 reiserfs_write_lock(inode->i_sb);
2909 locked = true;
2910 /*
2911 * If the file have grown beyond the border where it
2912 * can have a tail, unmark it as needing a tail
2913 * packing
2914 */
2915 if ((have_large_tails(inode->i_sb)
2916 && inode->i_size > i_block_size(inode) * 4)
2917 || (have_small_tails(inode->i_sb)
2918 && inode->i_size > i_block_size(inode)))
2919 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2920
2921 ret = journal_begin(&myth, inode->i_sb, 1);
2922 if (ret)
2923 goto journal_error;
2924
2925 reiserfs_update_inode_transaction(inode);
2926 inode->i_size = pos + copied;
2927 /*
2928 * this will just nest into our transaction. It's important
2929 * to use mark_inode_dirty so the inode gets pushed around on
2930 * the dirty lists, and so that O_SYNC works as expected
2931 */
2932 mark_inode_dirty(inode);
2933 reiserfs_update_sd(&myth, inode);
2934 update_sd = 1;
2935 ret = journal_end(&myth);
2936 if (ret)
2937 goto journal_error;
2938 }
2939 if (th) {
2940 if (!locked) {
2941 reiserfs_write_lock(inode->i_sb);
2942 locked = true;
2943 }
2944 if (!update_sd)
2945 mark_inode_dirty(inode);
2946 ret = reiserfs_end_persistent_transaction(th);
2947 if (ret)
2948 goto out;
2949 }
2950
2951out:
2952 if (locked)
2953 reiserfs_write_unlock(inode->i_sb);
2954 unlock_page(page);
2955 put_page(page);
2956
2957 if (pos + len > inode->i_size)
2958 reiserfs_truncate_failed_write(inode);
2959
2960 return ret == 0 ? copied : ret;
2961
2962journal_error:
2963 reiserfs_write_unlock(inode->i_sb);
2964 locked = false;
2965 if (th) {
2966 if (!update_sd)
2967 reiserfs_update_sd(th, inode);
2968 ret = reiserfs_end_persistent_transaction(th);
2969 }
2970 goto out;
2971}
2972
2973int reiserfs_commit_write(struct file *f, struct page *page,
2974 unsigned from, unsigned to)
2975{
2976 struct inode *inode = page->mapping->host;
2977 loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to;
2978 int ret = 0;
2979 int update_sd = 0;
2980 struct reiserfs_transaction_handle *th = NULL;
2981 int depth;
2982
2983 depth = reiserfs_write_unlock_nested(inode->i_sb);
2984 reiserfs_wait_on_write_block(inode->i_sb);
2985 reiserfs_write_lock_nested(inode->i_sb, depth);
2986
2987 if (reiserfs_transaction_running(inode->i_sb)) {
2988 th = current->journal_info;
2989 }
2990 reiserfs_commit_page(inode, page, from, to);
2991
2992 /*
2993 * generic_commit_write does this for us, but does not update the
2994 * transaction tracking stuff when the size changes. So, we have
2995 * to do the i_size updates here.
2996 */
2997 if (pos > inode->i_size) {
2998 struct reiserfs_transaction_handle myth;
2999 /*
3000 * If the file have grown beyond the border where it
3001 * can have a tail, unmark it as needing a tail
3002 * packing
3003 */
3004 if ((have_large_tails(inode->i_sb)
3005 && inode->i_size > i_block_size(inode) * 4)
3006 || (have_small_tails(inode->i_sb)
3007 && inode->i_size > i_block_size(inode)))
3008 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
3009
3010 ret = journal_begin(&myth, inode->i_sb, 1);
3011 if (ret)
3012 goto journal_error;
3013
3014 reiserfs_update_inode_transaction(inode);
3015 inode->i_size = pos;
3016 /*
3017 * this will just nest into our transaction. It's important
3018 * to use mark_inode_dirty so the inode gets pushed around
3019 * on the dirty lists, and so that O_SYNC works as expected
3020 */
3021 mark_inode_dirty(inode);
3022 reiserfs_update_sd(&myth, inode);
3023 update_sd = 1;
3024 ret = journal_end(&myth);
3025 if (ret)
3026 goto journal_error;
3027 }
3028 if (th) {
3029 if (!update_sd)
3030 mark_inode_dirty(inode);
3031 ret = reiserfs_end_persistent_transaction(th);
3032 if (ret)
3033 goto out;
3034 }
3035
3036out:
3037 return ret;
3038
3039journal_error:
3040 if (th) {
3041 if (!update_sd)
3042 reiserfs_update_sd(th, inode);
3043 ret = reiserfs_end_persistent_transaction(th);
3044 }
3045
3046 return ret;
3047}
3048
3049void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
3050{
3051 if (reiserfs_attrs(inode->i_sb)) {
3052 if (sd_attrs & REISERFS_SYNC_FL)
3053 inode->i_flags |= S_SYNC;
3054 else
3055 inode->i_flags &= ~S_SYNC;
3056 if (sd_attrs & REISERFS_IMMUTABLE_FL)
3057 inode->i_flags |= S_IMMUTABLE;
3058 else
3059 inode->i_flags &= ~S_IMMUTABLE;
3060 if (sd_attrs & REISERFS_APPEND_FL)
3061 inode->i_flags |= S_APPEND;
3062 else
3063 inode->i_flags &= ~S_APPEND;
3064 if (sd_attrs & REISERFS_NOATIME_FL)
3065 inode->i_flags |= S_NOATIME;
3066 else
3067 inode->i_flags &= ~S_NOATIME;
3068 if (sd_attrs & REISERFS_NOTAIL_FL)
3069 REISERFS_I(inode)->i_flags |= i_nopack_mask;
3070 else
3071 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
3072 }
3073}
3074
3075/*
3076 * decide if this buffer needs to stay around for data logging or ordered
3077 * write purposes
3078 */
3079static int invalidate_folio_can_drop(struct inode *inode, struct buffer_head *bh)
3080{
3081 int ret = 1;
3082 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3083
3084 lock_buffer(bh);
3085 spin_lock(&j->j_dirty_buffers_lock);
3086 if (!buffer_mapped(bh)) {
3087 goto free_jh;
3088 }
3089 /*
3090 * the page is locked, and the only places that log a data buffer
3091 * also lock the page.
3092 */
3093 if (reiserfs_file_data_log(inode)) {
3094 /*
3095 * very conservative, leave the buffer pinned if
3096 * anyone might need it.
3097 */
3098 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
3099 ret = 0;
3100 }
3101 } else if (buffer_dirty(bh)) {
3102 struct reiserfs_journal_list *jl;
3103 struct reiserfs_jh *jh = bh->b_private;
3104
3105 /*
3106 * why is this safe?
3107 * reiserfs_setattr updates i_size in the on disk
3108 * stat data before allowing vmtruncate to be called.
3109 *
3110 * If buffer was put onto the ordered list for this
3111 * transaction, we know for sure either this transaction
3112 * or an older one already has updated i_size on disk,
3113 * and this ordered data won't be referenced in the file
3114 * if we crash.
3115 *
3116 * if the buffer was put onto the ordered list for an older
3117 * transaction, we need to leave it around
3118 */
3119 if (jh && (jl = jh->jl)
3120 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
3121 ret = 0;
3122 }
3123free_jh:
3124 if (ret && bh->b_private) {
3125 reiserfs_free_jh(bh);
3126 }
3127 spin_unlock(&j->j_dirty_buffers_lock);
3128 unlock_buffer(bh);
3129 return ret;
3130}
3131
3132/* clm -- taken from fs/buffer.c:block_invalidate_folio */
3133static void reiserfs_invalidate_folio(struct folio *folio, size_t offset,
3134 size_t length)
3135{
3136 struct buffer_head *head, *bh, *next;
3137 struct inode *inode = folio->mapping->host;
3138 unsigned int curr_off = 0;
3139 unsigned int stop = offset + length;
3140 int partial_page = (offset || length < folio_size(folio));
3141 int ret = 1;
3142
3143 BUG_ON(!folio_test_locked(folio));
3144
3145 if (!partial_page)
3146 folio_clear_checked(folio);
3147
3148 head = folio_buffers(folio);
3149 if (!head)
3150 goto out;
3151
3152 bh = head;
3153 do {
3154 unsigned int next_off = curr_off + bh->b_size;
3155 next = bh->b_this_page;
3156
3157 if (next_off > stop)
3158 goto out;
3159
3160 /*
3161 * is this block fully invalidated?
3162 */
3163 if (offset <= curr_off) {
3164 if (invalidate_folio_can_drop(inode, bh))
3165 reiserfs_unmap_buffer(bh);
3166 else
3167 ret = 0;
3168 }
3169 curr_off = next_off;
3170 bh = next;
3171 } while (bh != head);
3172
3173 /*
3174 * We release buffers only if the entire page is being invalidated.
3175 * The get_block cached value has been unconditionally invalidated,
3176 * so real IO is not possible anymore.
3177 */
3178 if (!partial_page && ret) {
3179 ret = filemap_release_folio(folio, 0);
3180 /* maybe should BUG_ON(!ret); - neilb */
3181 }
3182out:
3183 return;
3184}
3185
3186static bool reiserfs_dirty_folio(struct address_space *mapping,
3187 struct folio *folio)
3188{
3189 if (reiserfs_file_data_log(mapping->host)) {
3190 folio_set_checked(folio);
3191 return filemap_dirty_folio(mapping, folio);
3192 }
3193 return block_dirty_folio(mapping, folio);
3194}
3195
3196/*
3197 * Returns true if the folio's buffers were dropped. The folio is locked.
3198 *
3199 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3200 * in the buffers at folio_buffers(folio).
3201 *
3202 * even in -o notail mode, we can't be sure an old mount without -o notail
3203 * didn't create files with tails.
3204 */
3205static bool reiserfs_release_folio(struct folio *folio, gfp_t unused_gfp_flags)
3206{
3207 struct inode *inode = folio->mapping->host;
3208 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3209 struct buffer_head *head;
3210 struct buffer_head *bh;
3211 bool ret = true;
3212
3213 WARN_ON(folio_test_checked(folio));
3214 spin_lock(&j->j_dirty_buffers_lock);
3215 head = folio_buffers(folio);
3216 bh = head;
3217 do {
3218 if (bh->b_private) {
3219 if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3220 reiserfs_free_jh(bh);
3221 } else {
3222 ret = false;
3223 break;
3224 }
3225 }
3226 bh = bh->b_this_page;
3227 } while (bh != head);
3228 if (ret)
3229 ret = try_to_free_buffers(folio);
3230 spin_unlock(&j->j_dirty_buffers_lock);
3231 return ret;
3232}
3233
3234/*
3235 * We thank Mingming Cao for helping us understand in great detail what
3236 * to do in this section of the code.
3237 */
3238static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3239{
3240 struct file *file = iocb->ki_filp;
3241 struct inode *inode = file->f_mapping->host;
3242 size_t count = iov_iter_count(iter);
3243 ssize_t ret;
3244
3245 ret = blockdev_direct_IO(iocb, inode, iter,
3246 reiserfs_get_blocks_direct_io);
3247
3248 /*
3249 * In case of error extending write may have instantiated a few
3250 * blocks outside i_size. Trim these off again.
3251 */
3252 if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
3253 loff_t isize = i_size_read(inode);
3254 loff_t end = iocb->ki_pos + count;
3255
3256 if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3257 truncate_setsize(inode, isize);
3258 reiserfs_vfs_truncate_file(inode);
3259 }
3260 }
3261
3262 return ret;
3263}
3264
3265int reiserfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3266 struct iattr *attr)
3267{
3268 struct inode *inode = d_inode(dentry);
3269 unsigned int ia_valid;
3270 int error;
3271
3272 error = setattr_prepare(&init_user_ns, dentry, attr);
3273 if (error)
3274 return error;
3275
3276 /* must be turned off for recursive notify_change calls */
3277 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3278
3279 if (is_quota_modification(mnt_userns, inode, attr)) {
3280 error = dquot_initialize(inode);
3281 if (error)
3282 return error;
3283 }
3284 reiserfs_write_lock(inode->i_sb);
3285 if (attr->ia_valid & ATTR_SIZE) {
3286 /*
3287 * version 2 items will be caught by the s_maxbytes check
3288 * done for us in vmtruncate
3289 */
3290 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3291 attr->ia_size > MAX_NON_LFS) {
3292 reiserfs_write_unlock(inode->i_sb);
3293 error = -EFBIG;
3294 goto out;
3295 }
3296
3297 inode_dio_wait(inode);
3298
3299 /* fill in hole pointers in the expanding truncate case. */
3300 if (attr->ia_size > inode->i_size) {
3301 loff_t pos = attr->ia_size;
3302
3303 if ((pos & (inode->i_sb->s_blocksize - 1)) == 0)
3304 pos++;
3305 error = generic_cont_expand_simple(inode, pos);
3306 if (REISERFS_I(inode)->i_prealloc_count > 0) {
3307 int err;
3308 struct reiserfs_transaction_handle th;
3309 /* we're changing at most 2 bitmaps, inode + super */
3310 err = journal_begin(&th, inode->i_sb, 4);
3311 if (!err) {
3312 reiserfs_discard_prealloc(&th, inode);
3313 err = journal_end(&th);
3314 }
3315 if (err)
3316 error = err;
3317 }
3318 if (error) {
3319 reiserfs_write_unlock(inode->i_sb);
3320 goto out;
3321 }
3322 /*
3323 * file size is changed, ctime and mtime are
3324 * to be updated
3325 */
3326 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3327 }
3328 }
3329 reiserfs_write_unlock(inode->i_sb);
3330
3331 if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3332 ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3333 (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3334 /* stat data of format v3.5 has 16 bit uid and gid */
3335 error = -EINVAL;
3336 goto out;
3337 }
3338
3339 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3340 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3341 struct reiserfs_transaction_handle th;
3342 int jbegin_count =
3343 2 *
3344 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3345 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3346 2;
3347
3348 error = reiserfs_chown_xattrs(inode, attr);
3349
3350 if (error)
3351 return error;
3352
3353 /*
3354 * (user+group)*(old+new) structure - we count quota
3355 * info and , inode write (sb, inode)
3356 */
3357 reiserfs_write_lock(inode->i_sb);
3358 error = journal_begin(&th, inode->i_sb, jbegin_count);
3359 reiserfs_write_unlock(inode->i_sb);
3360 if (error)
3361 goto out;
3362 error = dquot_transfer(mnt_userns, inode, attr);
3363 reiserfs_write_lock(inode->i_sb);
3364 if (error) {
3365 journal_end(&th);
3366 reiserfs_write_unlock(inode->i_sb);
3367 goto out;
3368 }
3369
3370 /*
3371 * Update corresponding info in inode so that everything
3372 * is in one transaction
3373 */
3374 if (attr->ia_valid & ATTR_UID)
3375 inode->i_uid = attr->ia_uid;
3376 if (attr->ia_valid & ATTR_GID)
3377 inode->i_gid = attr->ia_gid;
3378 mark_inode_dirty(inode);
3379 error = journal_end(&th);
3380 reiserfs_write_unlock(inode->i_sb);
3381 if (error)
3382 goto out;
3383 }
3384
3385 if ((attr->ia_valid & ATTR_SIZE) &&
3386 attr->ia_size != i_size_read(inode)) {
3387 error = inode_newsize_ok(inode, attr->ia_size);
3388 if (!error) {
3389 /*
3390 * Could race against reiserfs_file_release
3391 * if called from NFS, so take tailpack mutex.
3392 */
3393 mutex_lock(&REISERFS_I(inode)->tailpack);
3394 truncate_setsize(inode, attr->ia_size);
3395 reiserfs_truncate_file(inode, 1);
3396 mutex_unlock(&REISERFS_I(inode)->tailpack);
3397 }
3398 }
3399
3400 if (!error) {
3401 setattr_copy(&init_user_ns, inode, attr);
3402 mark_inode_dirty(inode);
3403 }
3404
3405 if (!error && reiserfs_posixacl(inode->i_sb)) {
3406 if (attr->ia_valid & ATTR_MODE)
3407 error = reiserfs_acl_chmod(dentry);
3408 }
3409
3410out:
3411 return error;
3412}
3413
3414const struct address_space_operations reiserfs_address_space_operations = {
3415 .writepage = reiserfs_writepage,
3416 .read_folio = reiserfs_read_folio,
3417 .readahead = reiserfs_readahead,
3418 .release_folio = reiserfs_release_folio,
3419 .invalidate_folio = reiserfs_invalidate_folio,
3420 .write_begin = reiserfs_write_begin,
3421 .write_end = reiserfs_write_end,
3422 .bmap = reiserfs_aop_bmap,
3423 .direct_IO = reiserfs_direct_IO,
3424 .dirty_folio = reiserfs_dirty_folio,
3425};