Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2012 Google, Inc.
  4 */
  5
  6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  7
  8#include <linux/device.h>
  9#include <linux/err.h>
 10#include <linux/errno.h>
 11#include <linux/init.h>
 12#include <linux/io.h>
 13#include <linux/kernel.h>
 14#include <linux/list.h>
 15#include <linux/memblock.h>
 16#include <linux/rslib.h>
 17#include <linux/slab.h>
 18#include <linux/uaccess.h>
 19#include <linux/vmalloc.h>
 20#include <asm/page.h>
 21
 22#include "ram_internal.h"
 23
 24/**
 25 * struct persistent_ram_buffer - persistent circular RAM buffer
 26 *
 27 * @sig:
 28 *	signature to indicate header (PERSISTENT_RAM_SIG xor PRZ-type value)
 29 * @start:
 30 *	offset into @data where the beginning of the stored bytes begin
 31 * @size:
 32 *	number of valid bytes stored in @data
 33 */
 34struct persistent_ram_buffer {
 35	uint32_t    sig;
 36	atomic_t    start;
 37	atomic_t    size;
 38	uint8_t     data[];
 39};
 40
 41#define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */
 42
 43static inline size_t buffer_size(struct persistent_ram_zone *prz)
 44{
 45	return atomic_read(&prz->buffer->size);
 46}
 47
 48static inline size_t buffer_start(struct persistent_ram_zone *prz)
 49{
 50	return atomic_read(&prz->buffer->start);
 51}
 52
 53/* increase and wrap the start pointer, returning the old value */
 54static size_t buffer_start_add(struct persistent_ram_zone *prz, size_t a)
 55{
 56	int old;
 57	int new;
 58	unsigned long flags = 0;
 59
 60	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 61		raw_spin_lock_irqsave(&prz->buffer_lock, flags);
 62
 63	old = atomic_read(&prz->buffer->start);
 64	new = old + a;
 65	while (unlikely(new >= prz->buffer_size))
 66		new -= prz->buffer_size;
 67	atomic_set(&prz->buffer->start, new);
 68
 69	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 70		raw_spin_unlock_irqrestore(&prz->buffer_lock, flags);
 71
 72	return old;
 73}
 74
 75/* increase the size counter until it hits the max size */
 76static void buffer_size_add(struct persistent_ram_zone *prz, size_t a)
 77{
 78	size_t old;
 79	size_t new;
 80	unsigned long flags = 0;
 81
 82	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 83		raw_spin_lock_irqsave(&prz->buffer_lock, flags);
 84
 85	old = atomic_read(&prz->buffer->size);
 86	if (old == prz->buffer_size)
 87		goto exit;
 88
 89	new = old + a;
 90	if (new > prz->buffer_size)
 91		new = prz->buffer_size;
 92	atomic_set(&prz->buffer->size, new);
 93
 94exit:
 95	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 96		raw_spin_unlock_irqrestore(&prz->buffer_lock, flags);
 97}
 98
 99static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
100	uint8_t *data, size_t len, uint8_t *ecc)
101{
102	int i;
103
104	/* Initialize the parity buffer */
105	memset(prz->ecc_info.par, 0,
106	       prz->ecc_info.ecc_size * sizeof(prz->ecc_info.par[0]));
107	encode_rs8(prz->rs_decoder, data, len, prz->ecc_info.par, 0);
108	for (i = 0; i < prz->ecc_info.ecc_size; i++)
109		ecc[i] = prz->ecc_info.par[i];
110}
111
112static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
113	void *data, size_t len, uint8_t *ecc)
114{
115	int i;
116
117	for (i = 0; i < prz->ecc_info.ecc_size; i++)
118		prz->ecc_info.par[i] = ecc[i];
119	return decode_rs8(prz->rs_decoder, data, prz->ecc_info.par, len,
120				NULL, 0, NULL, 0, NULL);
121}
122
123static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
124	unsigned int start, unsigned int count)
125{
126	struct persistent_ram_buffer *buffer = prz->buffer;
127	uint8_t *buffer_end = buffer->data + prz->buffer_size;
128	uint8_t *block;
129	uint8_t *par;
130	int ecc_block_size = prz->ecc_info.block_size;
131	int ecc_size = prz->ecc_info.ecc_size;
132	int size = ecc_block_size;
133
134	if (!ecc_size)
135		return;
136
137	block = buffer->data + (start & ~(ecc_block_size - 1));
138	par = prz->par_buffer + (start / ecc_block_size) * ecc_size;
139
140	do {
141		if (block + ecc_block_size > buffer_end)
142			size = buffer_end - block;
143		persistent_ram_encode_rs8(prz, block, size, par);
144		block += ecc_block_size;
145		par += ecc_size;
146	} while (block < buffer->data + start + count);
147}
148
149static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
150{
151	struct persistent_ram_buffer *buffer = prz->buffer;
152
153	if (!prz->ecc_info.ecc_size)
154		return;
155
156	persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
157				  prz->par_header);
158}
159
160static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
161{
162	struct persistent_ram_buffer *buffer = prz->buffer;
163	uint8_t *block;
164	uint8_t *par;
165
166	if (!prz->ecc_info.ecc_size)
167		return;
168
169	block = buffer->data;
170	par = prz->par_buffer;
171	while (block < buffer->data + buffer_size(prz)) {
172		int numerr;
173		int size = prz->ecc_info.block_size;
174		if (block + size > buffer->data + prz->buffer_size)
175			size = buffer->data + prz->buffer_size - block;
176		numerr = persistent_ram_decode_rs8(prz, block, size, par);
177		if (numerr > 0) {
178			pr_devel("error in block %p, %d\n", block, numerr);
179			prz->corrected_bytes += numerr;
180		} else if (numerr < 0) {
181			pr_devel("uncorrectable error in block %p\n", block);
182			prz->bad_blocks++;
183		}
184		block += prz->ecc_info.block_size;
185		par += prz->ecc_info.ecc_size;
186	}
187}
188
189static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
190				   struct persistent_ram_ecc_info *ecc_info)
191{
192	int numerr;
193	struct persistent_ram_buffer *buffer = prz->buffer;
194	int ecc_blocks;
195	size_t ecc_total;
196
197	if (!ecc_info || !ecc_info->ecc_size)
198		return 0;
199
200	prz->ecc_info.block_size = ecc_info->block_size ?: 128;
201	prz->ecc_info.ecc_size = ecc_info->ecc_size ?: 16;
202	prz->ecc_info.symsize = ecc_info->symsize ?: 8;
203	prz->ecc_info.poly = ecc_info->poly ?: 0x11d;
204
205	ecc_blocks = DIV_ROUND_UP(prz->buffer_size - prz->ecc_info.ecc_size,
206				  prz->ecc_info.block_size +
207				  prz->ecc_info.ecc_size);
208	ecc_total = (ecc_blocks + 1) * prz->ecc_info.ecc_size;
209	if (ecc_total >= prz->buffer_size) {
210		pr_err("%s: invalid ecc_size %u (total %zu, buffer size %zu)\n",
211		       __func__, prz->ecc_info.ecc_size,
212		       ecc_total, prz->buffer_size);
213		return -EINVAL;
214	}
215
216	prz->buffer_size -= ecc_total;
217	prz->par_buffer = buffer->data + prz->buffer_size;
218	prz->par_header = prz->par_buffer +
219			  ecc_blocks * prz->ecc_info.ecc_size;
220
221	/*
222	 * first consecutive root is 0
223	 * primitive element to generate roots = 1
224	 */
225	prz->rs_decoder = init_rs(prz->ecc_info.symsize, prz->ecc_info.poly,
226				  0, 1, prz->ecc_info.ecc_size);
227	if (prz->rs_decoder == NULL) {
228		pr_info("init_rs failed\n");
229		return -EINVAL;
230	}
231
232	/* allocate workspace instead of using stack VLA */
233	prz->ecc_info.par = kmalloc_array(prz->ecc_info.ecc_size,
234					  sizeof(*prz->ecc_info.par),
235					  GFP_KERNEL);
236	if (!prz->ecc_info.par) {
237		pr_err("cannot allocate ECC parity workspace\n");
238		return -ENOMEM;
239	}
240
241	prz->corrected_bytes = 0;
242	prz->bad_blocks = 0;
243
244	numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
245					   prz->par_header);
246	if (numerr > 0) {
247		pr_info("error in header, %d\n", numerr);
248		prz->corrected_bytes += numerr;
249	} else if (numerr < 0) {
250		pr_info_ratelimited("uncorrectable error in header\n");
251		prz->bad_blocks++;
252	}
253
254	return 0;
255}
256
257ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
258	char *str, size_t len)
259{
260	ssize_t ret;
261
262	if (!prz->ecc_info.ecc_size)
263		return 0;
264
265	if (prz->corrected_bytes || prz->bad_blocks)
266		ret = snprintf(str, len, ""
267			"\nECC: %d Corrected bytes, %d unrecoverable blocks\n",
268			prz->corrected_bytes, prz->bad_blocks);
269	else
270		ret = snprintf(str, len, "\nECC: No errors detected\n");
271
272	return ret;
273}
274
275static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
276	const void *s, unsigned int start, unsigned int count)
277{
278	struct persistent_ram_buffer *buffer = prz->buffer;
279	memcpy_toio(buffer->data + start, s, count);
280	persistent_ram_update_ecc(prz, start, count);
281}
282
283static int notrace persistent_ram_update_user(struct persistent_ram_zone *prz,
284	const void __user *s, unsigned int start, unsigned int count)
285{
286	struct persistent_ram_buffer *buffer = prz->buffer;
287	int ret = unlikely(copy_from_user(buffer->data + start, s, count)) ?
288		-EFAULT : 0;
289	persistent_ram_update_ecc(prz, start, count);
290	return ret;
291}
292
293void persistent_ram_save_old(struct persistent_ram_zone *prz)
294{
295	struct persistent_ram_buffer *buffer = prz->buffer;
296	size_t size = buffer_size(prz);
297	size_t start = buffer_start(prz);
298
299	if (!size)
300		return;
301
302	if (!prz->old_log) {
303		persistent_ram_ecc_old(prz);
304		prz->old_log = kmalloc(size, GFP_KERNEL);
305	}
306	if (!prz->old_log) {
307		pr_err("failed to allocate buffer\n");
308		return;
309	}
310
311	prz->old_log_size = size;
312	memcpy_fromio(prz->old_log, &buffer->data[start], size - start);
313	memcpy_fromio(prz->old_log + size - start, &buffer->data[0], start);
314}
315
316int notrace persistent_ram_write(struct persistent_ram_zone *prz,
317	const void *s, unsigned int count)
318{
319	int rem;
320	int c = count;
321	size_t start;
322
323	if (unlikely(c > prz->buffer_size)) {
324		s += c - prz->buffer_size;
325		c = prz->buffer_size;
326	}
327
328	buffer_size_add(prz, c);
329
330	start = buffer_start_add(prz, c);
331
332	rem = prz->buffer_size - start;
333	if (unlikely(rem < c)) {
334		persistent_ram_update(prz, s, start, rem);
335		s += rem;
336		c -= rem;
337		start = 0;
338	}
339	persistent_ram_update(prz, s, start, c);
340
341	persistent_ram_update_header_ecc(prz);
342
343	return count;
344}
345
346int notrace persistent_ram_write_user(struct persistent_ram_zone *prz,
347	const void __user *s, unsigned int count)
348{
349	int rem, ret = 0, c = count;
350	size_t start;
351
352	if (unlikely(c > prz->buffer_size)) {
353		s += c - prz->buffer_size;
354		c = prz->buffer_size;
355	}
356
357	buffer_size_add(prz, c);
358
359	start = buffer_start_add(prz, c);
360
361	rem = prz->buffer_size - start;
362	if (unlikely(rem < c)) {
363		ret = persistent_ram_update_user(prz, s, start, rem);
364		s += rem;
365		c -= rem;
366		start = 0;
367	}
368	if (likely(!ret))
369		ret = persistent_ram_update_user(prz, s, start, c);
370
371	persistent_ram_update_header_ecc(prz);
372
373	return unlikely(ret) ? ret : count;
374}
375
376size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
377{
378	return prz->old_log_size;
379}
380
381void *persistent_ram_old(struct persistent_ram_zone *prz)
382{
383	return prz->old_log;
384}
385
386void persistent_ram_free_old(struct persistent_ram_zone *prz)
387{
388	kfree(prz->old_log);
389	prz->old_log = NULL;
390	prz->old_log_size = 0;
391}
392
393void persistent_ram_zap(struct persistent_ram_zone *prz)
394{
395	atomic_set(&prz->buffer->start, 0);
396	atomic_set(&prz->buffer->size, 0);
397	persistent_ram_update_header_ecc(prz);
398}
399
400#define MEM_TYPE_WCOMBINE	0
401#define MEM_TYPE_NONCACHED	1
402#define MEM_TYPE_NORMAL		2
403
404static void *persistent_ram_vmap(phys_addr_t start, size_t size,
405		unsigned int memtype)
406{
407	struct page **pages;
408	phys_addr_t page_start;
409	unsigned int page_count;
410	pgprot_t prot;
411	unsigned int i;
412	void *vaddr;
413
414	page_start = start - offset_in_page(start);
415	page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);
416
417	switch (memtype) {
418	case MEM_TYPE_NORMAL:
419		prot = PAGE_KERNEL;
420		break;
421	case MEM_TYPE_NONCACHED:
422		prot = pgprot_noncached(PAGE_KERNEL);
423		break;
424	case MEM_TYPE_WCOMBINE:
425		prot = pgprot_writecombine(PAGE_KERNEL);
426		break;
427	default:
428		pr_err("invalid mem_type=%d\n", memtype);
429		return NULL;
430	}
431
432	pages = kmalloc_array(page_count, sizeof(struct page *), GFP_KERNEL);
433	if (!pages) {
434		pr_err("%s: Failed to allocate array for %u pages\n",
435		       __func__, page_count);
436		return NULL;
437	}
438
439	for (i = 0; i < page_count; i++) {
440		phys_addr_t addr = page_start + i * PAGE_SIZE;
441		pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
442	}
443	/*
444	 * VM_IOREMAP used here to bypass this region during vread()
445	 * and kmap_atomic() (i.e. kcore) to avoid __va() failures.
446	 */
447	vaddr = vmap(pages, page_count, VM_MAP | VM_IOREMAP, prot);
448	kfree(pages);
449
450	/*
451	 * Since vmap() uses page granularity, we must add the offset
452	 * into the page here, to get the byte granularity address
453	 * into the mapping to represent the actual "start" location.
454	 */
455	return vaddr + offset_in_page(start);
456}
457
458static void *persistent_ram_iomap(phys_addr_t start, size_t size,
459		unsigned int memtype, char *label)
460{
461	void *va;
462
463	if (!request_mem_region(start, size, label ?: "ramoops")) {
464		pr_err("request mem region (%s 0x%llx@0x%llx) failed\n",
465			label ?: "ramoops",
466			(unsigned long long)size, (unsigned long long)start);
467		return NULL;
468	}
469
470	if (memtype)
471		va = ioremap(start, size);
472	else
473		va = ioremap_wc(start, size);
474
475	/*
476	 * Since request_mem_region() and ioremap() are byte-granularity
477	 * there is no need handle anything special like we do when the
478	 * vmap() case in persistent_ram_vmap() above.
479	 */
480	return va;
481}
482
483static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
484		struct persistent_ram_zone *prz, int memtype)
485{
486	prz->paddr = start;
487	prz->size = size;
488
489	if (pfn_valid(start >> PAGE_SHIFT))
490		prz->vaddr = persistent_ram_vmap(start, size, memtype);
491	else
492		prz->vaddr = persistent_ram_iomap(start, size, memtype,
493						  prz->label);
494
495	if (!prz->vaddr) {
496		pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
497			(unsigned long long)size, (unsigned long long)start);
498		return -ENOMEM;
499	}
500
501	prz->buffer = prz->vaddr;
502	prz->buffer_size = size - sizeof(struct persistent_ram_buffer);
503
504	return 0;
505}
506
507static int persistent_ram_post_init(struct persistent_ram_zone *prz, u32 sig,
508				    struct persistent_ram_ecc_info *ecc_info)
509{
510	int ret;
511	bool zap = !!(prz->flags & PRZ_FLAG_ZAP_OLD);
512
513	ret = persistent_ram_init_ecc(prz, ecc_info);
514	if (ret) {
515		pr_warn("ECC failed %s\n", prz->label);
516		return ret;
517	}
518
519	sig ^= PERSISTENT_RAM_SIG;
520
521	if (prz->buffer->sig == sig) {
522		if (buffer_size(prz) == 0) {
523			pr_debug("found existing empty buffer\n");
524			return 0;
525		}
526
527		if (buffer_size(prz) > prz->buffer_size ||
528		    buffer_start(prz) > buffer_size(prz)) {
529			pr_info("found existing invalid buffer, size %zu, start %zu\n",
530				buffer_size(prz), buffer_start(prz));
531			zap = true;
532		} else {
533			pr_debug("found existing buffer, size %zu, start %zu\n",
534				 buffer_size(prz), buffer_start(prz));
535			persistent_ram_save_old(prz);
536		}
537	} else {
538		pr_debug("no valid data in buffer (sig = 0x%08x)\n",
539			 prz->buffer->sig);
540		prz->buffer->sig = sig;
541		zap = true;
542	}
543
544	/* Reset missing, invalid, or single-use memory area. */
545	if (zap)
546		persistent_ram_zap(prz);
547
548	return 0;
549}
550
551void persistent_ram_free(struct persistent_ram_zone **_prz)
552{
553	struct persistent_ram_zone *prz;
554
555	if (!_prz)
556		return;
557
558	prz = *_prz;
559	if (!prz)
560		return;
561
562	if (prz->vaddr) {
563		if (pfn_valid(prz->paddr >> PAGE_SHIFT)) {
564			/* We must vunmap() at page-granularity. */
565			vunmap(prz->vaddr - offset_in_page(prz->paddr));
566		} else {
567			iounmap(prz->vaddr);
568			release_mem_region(prz->paddr, prz->size);
569		}
570		prz->vaddr = NULL;
571	}
572	if (prz->rs_decoder) {
573		free_rs(prz->rs_decoder);
574		prz->rs_decoder = NULL;
575	}
576	kfree(prz->ecc_info.par);
577	prz->ecc_info.par = NULL;
578
579	persistent_ram_free_old(prz);
580	kfree(prz->label);
581	kfree(prz);
582	*_prz = NULL;
583}
584
585struct persistent_ram_zone *persistent_ram_new(phys_addr_t start, size_t size,
586			u32 sig, struct persistent_ram_ecc_info *ecc_info,
587			unsigned int memtype, u32 flags, char *label)
588{
589	struct persistent_ram_zone *prz;
590	int ret = -ENOMEM;
591
592	prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
593	if (!prz) {
594		pr_err("failed to allocate persistent ram zone\n");
595		goto err;
596	}
597
598	/* Initialize general buffer state. */
599	raw_spin_lock_init(&prz->buffer_lock);
600	prz->flags = flags;
601	prz->label = kstrdup(label, GFP_KERNEL);
602
603	ret = persistent_ram_buffer_map(start, size, prz, memtype);
604	if (ret)
605		goto err;
606
607	ret = persistent_ram_post_init(prz, sig, ecc_info);
608	if (ret)
609		goto err;
610
611	pr_debug("attached %s 0x%zx@0x%llx: %zu header, %zu data, %zu ecc (%d/%d)\n",
612		prz->label, prz->size, (unsigned long long)prz->paddr,
613		sizeof(*prz->buffer), prz->buffer_size,
614		prz->size - sizeof(*prz->buffer) - prz->buffer_size,
615		prz->ecc_info.ecc_size, prz->ecc_info.block_size);
616
617	return prz;
618err:
619	persistent_ram_free(&prz);
620	return ERR_PTR(ret);
621}