Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 * Copyright (C) 2022 Christoph Hellwig.
  5 */
  6
  7#include <linux/bio.h>
  8#include "bio.h"
  9#include "ctree.h"
 10#include "volumes.h"
 11#include "raid56.h"
 12#include "async-thread.h"
 13#include "check-integrity.h"
 14#include "dev-replace.h"
 15#include "rcu-string.h"
 16#include "zoned.h"
 17
 18static struct bio_set btrfs_bioset;
 19
 20/*
 21 * Initialize a btrfs_bio structure.  This skips the embedded bio itself as it
 22 * is already initialized by the block layer.
 23 */
 24static inline void btrfs_bio_init(struct btrfs_bio *bbio,
 25				  btrfs_bio_end_io_t end_io, void *private)
 26{
 27	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
 28	bbio->end_io = end_io;
 29	bbio->private = private;
 30}
 31
 32/*
 33 * Allocate a btrfs_bio structure.  The btrfs_bio is the main I/O container for
 34 * btrfs, and is used for all I/O submitted through btrfs_submit_bio.
 35 *
 36 * Just like the underlying bio_alloc_bioset it will not fail as it is backed by
 37 * a mempool.
 38 */
 39struct bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
 40			    btrfs_bio_end_io_t end_io, void *private)
 41{
 42	struct bio *bio;
 43
 44	bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
 45	btrfs_bio_init(btrfs_bio(bio), end_io, private);
 46	return bio;
 47}
 48
 49struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size,
 50				    btrfs_bio_end_io_t end_io, void *private)
 51{
 52	struct bio *bio;
 53	struct btrfs_bio *bbio;
 54
 55	ASSERT(offset <= UINT_MAX && size <= UINT_MAX);
 56
 57	bio = bio_alloc_clone(orig->bi_bdev, orig, GFP_NOFS, &btrfs_bioset);
 58	bbio = btrfs_bio(bio);
 59	btrfs_bio_init(bbio, end_io, private);
 60
 61	bio_trim(bio, offset >> 9, size >> 9);
 62	bbio->iter = bio->bi_iter;
 63	return bio;
 64}
 65
 66static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
 67{
 68	if (!dev || !dev->bdev)
 69		return;
 70	if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
 71		return;
 72
 73	if (btrfs_op(bio) == BTRFS_MAP_WRITE)
 74		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
 75	if (!(bio->bi_opf & REQ_RAHEAD))
 76		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 77	if (bio->bi_opf & REQ_PREFLUSH)
 78		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
 79}
 80
 81static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
 82						struct bio *bio)
 83{
 84	if (bio->bi_opf & REQ_META)
 85		return fs_info->endio_meta_workers;
 86	return fs_info->endio_workers;
 87}
 88
 89static void btrfs_end_bio_work(struct work_struct *work)
 90{
 91	struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
 92
 93	bbio->end_io(bbio);
 94}
 95
 96static void btrfs_simple_end_io(struct bio *bio)
 97{
 98	struct btrfs_fs_info *fs_info = bio->bi_private;
 99	struct btrfs_bio *bbio = btrfs_bio(bio);
100
101	btrfs_bio_counter_dec(fs_info);
102
103	if (bio->bi_status)
104		btrfs_log_dev_io_error(bio, bbio->device);
105
106	if (bio_op(bio) == REQ_OP_READ) {
107		INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
108		queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
109	} else {
110		bbio->end_io(bbio);
111	}
112}
113
114static void btrfs_raid56_end_io(struct bio *bio)
115{
116	struct btrfs_io_context *bioc = bio->bi_private;
117	struct btrfs_bio *bbio = btrfs_bio(bio);
118
119	btrfs_bio_counter_dec(bioc->fs_info);
120	bbio->mirror_num = bioc->mirror_num;
121	bbio->end_io(bbio);
122
123	btrfs_put_bioc(bioc);
124}
125
126static void btrfs_orig_write_end_io(struct bio *bio)
127{
128	struct btrfs_io_stripe *stripe = bio->bi_private;
129	struct btrfs_io_context *bioc = stripe->bioc;
130	struct btrfs_bio *bbio = btrfs_bio(bio);
131
132	btrfs_bio_counter_dec(bioc->fs_info);
133
134	if (bio->bi_status) {
135		atomic_inc(&bioc->error);
136		btrfs_log_dev_io_error(bio, stripe->dev);
137	}
138
139	/*
140	 * Only send an error to the higher layers if it is beyond the tolerance
141	 * threshold.
142	 */
143	if (atomic_read(&bioc->error) > bioc->max_errors)
144		bio->bi_status = BLK_STS_IOERR;
145	else
146		bio->bi_status = BLK_STS_OK;
147
148	bbio->end_io(bbio);
149	btrfs_put_bioc(bioc);
150}
151
152static void btrfs_clone_write_end_io(struct bio *bio)
153{
154	struct btrfs_io_stripe *stripe = bio->bi_private;
155
156	if (bio->bi_status) {
157		atomic_inc(&stripe->bioc->error);
158		btrfs_log_dev_io_error(bio, stripe->dev);
159	}
160
161	/* Pass on control to the original bio this one was cloned from */
162	bio_endio(stripe->bioc->orig_bio);
163	bio_put(bio);
164}
165
166static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
167{
168	if (!dev || !dev->bdev ||
169	    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
170	    (btrfs_op(bio) == BTRFS_MAP_WRITE &&
171	     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
172		bio_io_error(bio);
173		return;
174	}
175
176	bio_set_dev(bio, dev->bdev);
177
178	/*
179	 * For zone append writing, bi_sector must point the beginning of the
180	 * zone
181	 */
182	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
183		u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
184
185		if (btrfs_dev_is_sequential(dev, physical)) {
186			u64 zone_start = round_down(physical,
187						    dev->fs_info->zone_size);
188
189			bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
190		} else {
191			bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
192			bio->bi_opf |= REQ_OP_WRITE;
193		}
194	}
195	btrfs_debug_in_rcu(dev->fs_info,
196	"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
197		__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
198		(unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
199		dev->devid, bio->bi_iter.bi_size);
200
201	btrfsic_check_bio(bio);
202	submit_bio(bio);
203}
204
205static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
206{
207	struct bio *orig_bio = bioc->orig_bio, *bio;
208
209	ASSERT(bio_op(orig_bio) != REQ_OP_READ);
210
211	/* Reuse the bio embedded into the btrfs_bio for the last mirror */
212	if (dev_nr == bioc->num_stripes - 1) {
213		bio = orig_bio;
214		bio->bi_end_io = btrfs_orig_write_end_io;
215	} else {
216		bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
217		bio_inc_remaining(orig_bio);
218		bio->bi_end_io = btrfs_clone_write_end_io;
219	}
220
221	bio->bi_private = &bioc->stripes[dev_nr];
222	bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
223	bioc->stripes[dev_nr].bioc = bioc;
224	btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
225}
226
227void btrfs_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, int mirror_num)
228{
229	u64 logical = bio->bi_iter.bi_sector << 9;
230	u64 length = bio->bi_iter.bi_size;
231	u64 map_length = length;
232	struct btrfs_io_context *bioc = NULL;
233	struct btrfs_io_stripe smap;
234	int ret;
235
236	btrfs_bio_counter_inc_blocked(fs_info);
237	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
238				&bioc, &smap, &mirror_num, 1);
239	if (ret) {
240		btrfs_bio_counter_dec(fs_info);
241		btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret));
242		return;
243	}
244
245	if (map_length < length) {
246		btrfs_crit(fs_info,
247			   "mapping failed logical %llu bio len %llu len %llu",
248			   logical, length, map_length);
249		BUG();
250	}
251
252	if (!bioc) {
253		/* Single mirror read/write fast path */
254		btrfs_bio(bio)->mirror_num = mirror_num;
255		btrfs_bio(bio)->device = smap.dev;
256		bio->bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
257		bio->bi_private = fs_info;
258		bio->bi_end_io = btrfs_simple_end_io;
259		btrfs_submit_dev_bio(smap.dev, bio);
260	} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
261		/* Parity RAID write or read recovery */
262		bio->bi_private = bioc;
263		bio->bi_end_io = btrfs_raid56_end_io;
264		if (bio_op(bio) == REQ_OP_READ)
265			raid56_parity_recover(bio, bioc, mirror_num);
266		else
267			raid56_parity_write(bio, bioc);
268	} else {
269		/* Write to multiple mirrors */
270		int total_devs = bioc->num_stripes;
271		int dev_nr;
272
273		bioc->orig_bio = bio;
274		for (dev_nr = 0; dev_nr < total_devs; dev_nr++)
275			btrfs_submit_mirrored_bio(bioc, dev_nr);
276	}
277}
278
279/*
280 * Submit a repair write.
281 *
282 * This bypasses btrfs_submit_bio deliberately, as that writes all copies in a
283 * RAID setup.  Here we only want to write the one bad copy, so we do the
284 * mapping ourselves and submit the bio directly.
285 *
286 * The I/O is issued sychronously to block the repair read completion from
287 * freeing the bio.
288 */
289int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
290			    u64 length, u64 logical, struct page *page,
291			    unsigned int pg_offset, int mirror_num)
292{
293	struct btrfs_device *dev;
294	struct bio_vec bvec;
295	struct bio bio;
296	u64 map_length = 0;
297	u64 sector;
298	struct btrfs_io_context *bioc = NULL;
299	int ret = 0;
300
301	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
302	BUG_ON(!mirror_num);
303
304	if (btrfs_repair_one_zone(fs_info, logical))
305		return 0;
306
307	map_length = length;
308
309	/*
310	 * Avoid races with device replace and make sure our bioc has devices
311	 * associated to its stripes that don't go away while we are doing the
312	 * read repair operation.
313	 */
314	btrfs_bio_counter_inc_blocked(fs_info);
315	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
316		/*
317		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
318		 * to update all raid stripes, but here we just want to correct
319		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
320		 * stripe's dev and sector.
321		 */
322		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
323				      &map_length, &bioc, 0);
324		if (ret)
325			goto out_counter_dec;
326		ASSERT(bioc->mirror_num == 1);
327	} else {
328		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
329				      &map_length, &bioc, mirror_num);
330		if (ret)
331			goto out_counter_dec;
332		/*
333		 * This happens when dev-replace is also running, and the
334		 * mirror_num indicates the dev-replace target.
335		 *
336		 * In this case, we don't need to do anything, as the read
337		 * error just means the replace progress hasn't reached our
338		 * read range, and later replace routine would handle it well.
339		 */
340		if (mirror_num != bioc->mirror_num)
341			goto out_counter_dec;
342	}
343
344	sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
345	dev = bioc->stripes[bioc->mirror_num - 1].dev;
346	btrfs_put_bioc(bioc);
347
348	if (!dev || !dev->bdev ||
349	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
350		ret = -EIO;
351		goto out_counter_dec;
352	}
353
354	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
355	bio.bi_iter.bi_sector = sector;
356	__bio_add_page(&bio, page, length, pg_offset);
357
358	btrfsic_check_bio(&bio);
359	ret = submit_bio_wait(&bio);
360	if (ret) {
361		/* try to remap that extent elsewhere? */
362		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
363		goto out_bio_uninit;
364	}
365
366	btrfs_info_rl_in_rcu(fs_info,
367		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
368			     ino, start, btrfs_dev_name(dev), sector);
369	ret = 0;
370
371out_bio_uninit:
372	bio_uninit(&bio);
373out_counter_dec:
374	btrfs_bio_counter_dec(fs_info);
375	return ret;
376}
377
378int __init btrfs_bioset_init(void)
379{
380	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
381			offsetof(struct btrfs_bio, bio),
382			BIOSET_NEED_BVECS))
383		return -ENOMEM;
384	return 0;
385}
386
387void __cold btrfs_bioset_exit(void)
388{
389	bioset_exit(&btrfs_bioset);
390}