Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2015 MediaTek Inc.
  4 * Author:
  5 *  Zhigang.Wei <zhigang.wei@mediatek.com>
  6 *  Chunfeng.Yun <chunfeng.yun@mediatek.com>
  7 */
  8
  9#include <linux/kernel.h>
 10#include <linux/module.h>
 11#include <linux/slab.h>
 12
 13#include "xhci.h"
 14#include "xhci-mtk.h"
 15
 16#define SSP_BW_BOUNDARY	130000
 17#define SS_BW_BOUNDARY	51000
 18/* table 5-5. High-speed Isoc Transaction Limits in usb_20 spec */
 19#define HS_BW_BOUNDARY	6144
 20/* usb2 spec section11.18.1: at most 188 FS bytes per microframe */
 21#define FS_PAYLOAD_MAX 188
 22
 23#define DBG_BUF_EN	64
 24
 25/* schedule error type */
 26#define ESCH_SS_Y6		1001
 27#define ESCH_SS_OVERLAP		1002
 28#define ESCH_CS_OVERFLOW	1003
 29#define ESCH_BW_OVERFLOW	1004
 30#define ESCH_FIXME		1005
 31
 32/* mtk scheduler bitmasks */
 33#define EP_BPKTS(p)	((p) & 0x7f)
 34#define EP_BCSCOUNT(p)	(((p) & 0x7) << 8)
 35#define EP_BBM(p)	((p) << 11)
 36#define EP_BOFFSET(p)	((p) & 0x3fff)
 37#define EP_BREPEAT(p)	(((p) & 0x7fff) << 16)
 38
 39static char *sch_error_string(int err_num)
 40{
 41	switch (err_num) {
 42	case ESCH_SS_Y6:
 43		return "Can't schedule Start-Split in Y6";
 44	case ESCH_SS_OVERLAP:
 45		return "Can't find a suitable Start-Split location";
 46	case ESCH_CS_OVERFLOW:
 47		return "The last Complete-Split is greater than 7";
 48	case ESCH_BW_OVERFLOW:
 49		return "Bandwidth exceeds the maximum limit";
 50	case ESCH_FIXME:
 51		return "FIXME, to be resolved";
 52	default:
 53		return "Unknown";
 54	}
 55}
 56
 57static int is_fs_or_ls(enum usb_device_speed speed)
 58{
 59	return speed == USB_SPEED_FULL || speed == USB_SPEED_LOW;
 60}
 61
 62static const char *
 63decode_ep(struct usb_host_endpoint *ep, enum usb_device_speed speed)
 64{
 65	static char buf[DBG_BUF_EN];
 66	struct usb_endpoint_descriptor *epd = &ep->desc;
 67	unsigned int interval;
 68	const char *unit;
 69
 70	interval = usb_decode_interval(epd, speed);
 71	if (interval % 1000) {
 72		unit = "us";
 73	} else {
 74		unit = "ms";
 75		interval /= 1000;
 76	}
 77
 78	snprintf(buf, DBG_BUF_EN, "%s ep%d%s %s, mpkt:%d, interval:%d/%d%s",
 79		 usb_speed_string(speed), usb_endpoint_num(epd),
 80		 usb_endpoint_dir_in(epd) ? "in" : "out",
 81		 usb_ep_type_string(usb_endpoint_type(epd)),
 82		 usb_endpoint_maxp(epd), epd->bInterval, interval, unit);
 83
 84	return buf;
 85}
 86
 87static u32 get_bw_boundary(enum usb_device_speed speed)
 88{
 89	u32 boundary;
 90
 91	switch (speed) {
 92	case USB_SPEED_SUPER_PLUS:
 93		boundary = SSP_BW_BOUNDARY;
 94		break;
 95	case USB_SPEED_SUPER:
 96		boundary = SS_BW_BOUNDARY;
 97		break;
 98	default:
 99		boundary = HS_BW_BOUNDARY;
100		break;
101	}
102
103	return boundary;
104}
105
106/*
107* get the bandwidth domain which @ep belongs to.
108*
109* the bandwidth domain array is saved to @sch_array of struct xhci_hcd_mtk,
110* each HS root port is treated as a single bandwidth domain,
111* but each SS root port is treated as two bandwidth domains, one for IN eps,
112* one for OUT eps.
113* @real_port value is defined as follow according to xHCI spec:
114* 1 for SSport0, ..., N+1 for SSportN, N+2 for HSport0, N+3 for HSport1, etc
115* so the bandwidth domain array is organized as follow for simplification:
116* SSport0-OUT, SSport0-IN, ..., SSportX-OUT, SSportX-IN, HSport0, ..., HSportY
117*/
118static struct mu3h_sch_bw_info *
119get_bw_info(struct xhci_hcd_mtk *mtk, struct usb_device *udev,
120	    struct usb_host_endpoint *ep)
121{
122	struct xhci_hcd *xhci = hcd_to_xhci(mtk->hcd);
123	struct xhci_virt_device *virt_dev;
124	int bw_index;
125
126	virt_dev = xhci->devs[udev->slot_id];
127	if (!virt_dev->real_port) {
128		WARN_ONCE(1, "%s invalid real_port\n", dev_name(&udev->dev));
129		return NULL;
130	}
131
132	if (udev->speed >= USB_SPEED_SUPER) {
133		if (usb_endpoint_dir_out(&ep->desc))
134			bw_index = (virt_dev->real_port - 1) * 2;
135		else
136			bw_index = (virt_dev->real_port - 1) * 2 + 1;
137	} else {
138		/* add one more for each SS port */
139		bw_index = virt_dev->real_port + xhci->usb3_rhub.num_ports - 1;
140	}
141
142	return &mtk->sch_array[bw_index];
143}
144
145static u32 get_esit(struct xhci_ep_ctx *ep_ctx)
146{
147	u32 esit;
148
149	esit = 1 << CTX_TO_EP_INTERVAL(le32_to_cpu(ep_ctx->ep_info));
150	if (esit > XHCI_MTK_MAX_ESIT)
151		esit = XHCI_MTK_MAX_ESIT;
152
153	return esit;
154}
155
156static struct mu3h_sch_tt *find_tt(struct usb_device *udev)
157{
158	struct usb_tt *utt = udev->tt;
159	struct mu3h_sch_tt *tt, **tt_index, **ptt;
160	bool allocated_index = false;
161
162	if (!utt)
163		return NULL;	/* Not below a TT */
164
165	/*
166	 * Find/create our data structure.
167	 * For hubs with a single TT, we get it directly.
168	 * For hubs with multiple TTs, there's an extra level of pointers.
169	 */
170	tt_index = NULL;
171	if (utt->multi) {
172		tt_index = utt->hcpriv;
173		if (!tt_index) {	/* Create the index array */
174			tt_index = kcalloc(utt->hub->maxchild,
175					sizeof(*tt_index), GFP_KERNEL);
176			if (!tt_index)
177				return ERR_PTR(-ENOMEM);
178			utt->hcpriv = tt_index;
179			allocated_index = true;
180		}
181		ptt = &tt_index[udev->ttport - 1];
182	} else {
183		ptt = (struct mu3h_sch_tt **) &utt->hcpriv;
184	}
185
186	tt = *ptt;
187	if (!tt) {	/* Create the mu3h_sch_tt */
188		tt = kzalloc(sizeof(*tt), GFP_KERNEL);
189		if (!tt) {
190			if (allocated_index) {
191				utt->hcpriv = NULL;
192				kfree(tt_index);
193			}
194			return ERR_PTR(-ENOMEM);
195		}
196		INIT_LIST_HEAD(&tt->ep_list);
197		*ptt = tt;
198	}
199
200	return tt;
201}
202
203/* Release the TT above udev, if it's not in use */
204static void drop_tt(struct usb_device *udev)
205{
206	struct usb_tt *utt = udev->tt;
207	struct mu3h_sch_tt *tt, **tt_index, **ptt;
208	int i, cnt;
209
210	if (!utt || !utt->hcpriv)
211		return;		/* Not below a TT, or never allocated */
212
213	cnt = 0;
214	if (utt->multi) {
215		tt_index = utt->hcpriv;
216		ptt = &tt_index[udev->ttport - 1];
217		/*  How many entries are left in tt_index? */
218		for (i = 0; i < utt->hub->maxchild; ++i)
219			cnt += !!tt_index[i];
220	} else {
221		tt_index = NULL;
222		ptt = (struct mu3h_sch_tt **)&utt->hcpriv;
223	}
224
225	tt = *ptt;
226	if (!tt || !list_empty(&tt->ep_list))
227		return;		/* never allocated , or still in use*/
228
229	*ptt = NULL;
230	kfree(tt);
231
232	if (cnt == 1) {
233		utt->hcpriv = NULL;
234		kfree(tt_index);
235	}
236}
237
238static struct mu3h_sch_ep_info *
239create_sch_ep(struct xhci_hcd_mtk *mtk, struct usb_device *udev,
240	      struct usb_host_endpoint *ep)
241{
242	struct mu3h_sch_ep_info *sch_ep;
243	struct mu3h_sch_bw_info *bw_info;
244	struct mu3h_sch_tt *tt = NULL;
245
246	bw_info = get_bw_info(mtk, udev, ep);
247	if (!bw_info)
248		return ERR_PTR(-ENODEV);
249
250	sch_ep = kzalloc(sizeof(*sch_ep), GFP_KERNEL);
251	if (!sch_ep)
252		return ERR_PTR(-ENOMEM);
253
254	if (is_fs_or_ls(udev->speed)) {
255		tt = find_tt(udev);
256		if (IS_ERR(tt)) {
257			kfree(sch_ep);
258			return ERR_PTR(-ENOMEM);
259		}
260	}
261
262	sch_ep->bw_info = bw_info;
263	sch_ep->sch_tt = tt;
264	sch_ep->ep = ep;
265	sch_ep->speed = udev->speed;
266	INIT_LIST_HEAD(&sch_ep->endpoint);
267	INIT_LIST_HEAD(&sch_ep->tt_endpoint);
268	INIT_HLIST_NODE(&sch_ep->hentry);
269
270	return sch_ep;
271}
272
273static void setup_sch_info(struct xhci_ep_ctx *ep_ctx,
274			   struct mu3h_sch_ep_info *sch_ep)
275{
276	u32 ep_type;
277	u32 maxpkt;
278	u32 max_burst;
279	u32 mult;
280	u32 esit_pkts;
281	u32 max_esit_payload;
282
283	ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
284	maxpkt = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
285	max_burst = CTX_TO_MAX_BURST(le32_to_cpu(ep_ctx->ep_info2));
286	mult = CTX_TO_EP_MULT(le32_to_cpu(ep_ctx->ep_info));
287	max_esit_payload =
288		(CTX_TO_MAX_ESIT_PAYLOAD_HI(
289			le32_to_cpu(ep_ctx->ep_info)) << 16) |
290		 CTX_TO_MAX_ESIT_PAYLOAD(le32_to_cpu(ep_ctx->tx_info));
291
292	sch_ep->esit = get_esit(ep_ctx);
293	sch_ep->num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit;
294	sch_ep->ep_type = ep_type;
295	sch_ep->maxpkt = maxpkt;
296	sch_ep->offset = 0;
297	sch_ep->burst_mode = 0;
298	sch_ep->repeat = 0;
299
300	if (sch_ep->speed == USB_SPEED_HIGH) {
301		sch_ep->cs_count = 0;
302
303		/*
304		 * usb_20 spec section5.9
305		 * a single microframe is enough for HS synchromous endpoints
306		 * in a interval
307		 */
308		sch_ep->num_budget_microframes = 1;
309
310		/*
311		 * xHCI spec section6.2.3.4
312		 * @max_burst is the number of additional transactions
313		 * opportunities per microframe
314		 */
315		sch_ep->pkts = max_burst + 1;
316		sch_ep->bw_cost_per_microframe = maxpkt * sch_ep->pkts;
317	} else if (sch_ep->speed >= USB_SPEED_SUPER) {
318		/* usb3_r1 spec section4.4.7 & 4.4.8 */
319		sch_ep->cs_count = 0;
320		sch_ep->burst_mode = 1;
321		/*
322		 * some device's (d)wBytesPerInterval is set as 0,
323		 * then max_esit_payload is 0, so evaluate esit_pkts from
324		 * mult and burst
325		 */
326		esit_pkts = DIV_ROUND_UP(max_esit_payload, maxpkt);
327		if (esit_pkts == 0)
328			esit_pkts = (mult + 1) * (max_burst + 1);
329
330		if (ep_type == INT_IN_EP || ep_type == INT_OUT_EP) {
331			sch_ep->pkts = esit_pkts;
332			sch_ep->num_budget_microframes = 1;
333		}
334
335		if (ep_type == ISOC_IN_EP || ep_type == ISOC_OUT_EP) {
336
337			if (sch_ep->esit == 1)
338				sch_ep->pkts = esit_pkts;
339			else if (esit_pkts <= sch_ep->esit)
340				sch_ep->pkts = 1;
341			else
342				sch_ep->pkts = roundup_pow_of_two(esit_pkts)
343					/ sch_ep->esit;
344
345			sch_ep->num_budget_microframes =
346				DIV_ROUND_UP(esit_pkts, sch_ep->pkts);
347
348			sch_ep->repeat = !!(sch_ep->num_budget_microframes > 1);
349		}
350		sch_ep->bw_cost_per_microframe = maxpkt * sch_ep->pkts;
351	} else if (is_fs_or_ls(sch_ep->speed)) {
352		sch_ep->pkts = 1; /* at most one packet for each microframe */
353
354		/*
355		 * num_budget_microframes and cs_count will be updated when
356		 * check TT for INT_OUT_EP, ISOC/INT_IN_EP type
357		 */
358		sch_ep->cs_count = DIV_ROUND_UP(maxpkt, FS_PAYLOAD_MAX);
359		sch_ep->num_budget_microframes = sch_ep->cs_count;
360		sch_ep->bw_cost_per_microframe = min_t(u32, maxpkt, FS_PAYLOAD_MAX);
361	}
362}
363
364/* Get maximum bandwidth when we schedule at offset slot. */
365static u32 get_max_bw(struct mu3h_sch_bw_info *sch_bw,
366	struct mu3h_sch_ep_info *sch_ep, u32 offset)
367{
368	u32 max_bw = 0;
369	u32 bw;
370	int i, j, k;
371
372	for (i = 0; i < sch_ep->num_esit; i++) {
373		u32 base = offset + i * sch_ep->esit;
374
375		for (j = 0; j < sch_ep->num_budget_microframes; j++) {
376			k = XHCI_MTK_BW_INDEX(base + j);
377			bw = sch_bw->bus_bw[k] + sch_ep->bw_cost_per_microframe;
378			if (bw > max_bw)
379				max_bw = bw;
380		}
381	}
382	return max_bw;
383}
384
385static void update_bus_bw(struct mu3h_sch_bw_info *sch_bw,
386	struct mu3h_sch_ep_info *sch_ep, bool used)
387{
388	int bw_updated;
389	u32 base;
390	int i, j;
391
392	bw_updated = sch_ep->bw_cost_per_microframe * (used ? 1 : -1);
393
394	for (i = 0; i < sch_ep->num_esit; i++) {
395		base = sch_ep->offset + i * sch_ep->esit;
396		for (j = 0; j < sch_ep->num_budget_microframes; j++)
397			sch_bw->bus_bw[XHCI_MTK_BW_INDEX(base + j)] += bw_updated;
398	}
399}
400
401static int check_fs_bus_bw(struct mu3h_sch_ep_info *sch_ep, int offset)
402{
403	struct mu3h_sch_tt *tt = sch_ep->sch_tt;
404	u32 tmp;
405	int base;
406	int i, j, k;
407
408	for (i = 0; i < sch_ep->num_esit; i++) {
409		base = offset + i * sch_ep->esit;
410
411		/*
412		 * Compared with hs bus, no matter what ep type,
413		 * the hub will always delay one uframe to send data
414		 */
415		for (j = 0; j < sch_ep->num_budget_microframes; j++) {
416			k = XHCI_MTK_BW_INDEX(base + j);
417			tmp = tt->fs_bus_bw[k] + sch_ep->bw_cost_per_microframe;
418			if (tmp > FS_PAYLOAD_MAX)
419				return -ESCH_BW_OVERFLOW;
420		}
421	}
422
423	return 0;
424}
425
426static int check_sch_tt(struct mu3h_sch_ep_info *sch_ep, u32 offset)
427{
428	u32 start_ss, last_ss;
429	u32 start_cs, last_cs;
430
431	if (!sch_ep->sch_tt)
432		return 0;
433
434	start_ss = offset % 8;
435
436	if (sch_ep->ep_type == ISOC_OUT_EP) {
437		last_ss = start_ss + sch_ep->cs_count - 1;
438
439		/*
440		 * usb_20 spec section11.18:
441		 * must never schedule Start-Split in Y6
442		 */
443		if (!(start_ss == 7 || last_ss < 6))
444			return -ESCH_SS_Y6;
445
446	} else {
447		u32 cs_count = DIV_ROUND_UP(sch_ep->maxpkt, FS_PAYLOAD_MAX);
448
449		/*
450		 * usb_20 spec section11.18:
451		 * must never schedule Start-Split in Y6
452		 */
453		if (start_ss == 6)
454			return -ESCH_SS_Y6;
455
456		/* one uframe for ss + one uframe for idle */
457		start_cs = (start_ss + 2) % 8;
458		last_cs = start_cs + cs_count - 1;
459
460		if (last_cs > 7)
461			return -ESCH_CS_OVERFLOW;
462
463		if (cs_count > 7)
464			cs_count = 7; /* HW limit */
465
466		sch_ep->cs_count = cs_count;
467		/* ss, idle are ignored */
468		sch_ep->num_budget_microframes = cs_count;
469
470		/*
471		 * if interval=1, maxp >752, num_budge_micoframe is larger
472		 * than sch_ep->esit, will overstep boundary
473		 */
474		if (sch_ep->num_budget_microframes > sch_ep->esit)
475			sch_ep->num_budget_microframes = sch_ep->esit;
476	}
477
478	return check_fs_bus_bw(sch_ep, offset);
479}
480
481static void update_sch_tt(struct mu3h_sch_ep_info *sch_ep, bool used)
482{
483	struct mu3h_sch_tt *tt = sch_ep->sch_tt;
484	int bw_updated;
485	u32 base;
486	int i, j;
487
488	bw_updated = sch_ep->bw_cost_per_microframe * (used ? 1 : -1);
489
490	for (i = 0; i < sch_ep->num_esit; i++) {
491		base = sch_ep->offset + i * sch_ep->esit;
492
493		for (j = 0; j < sch_ep->num_budget_microframes; j++)
494			tt->fs_bus_bw[XHCI_MTK_BW_INDEX(base + j)] += bw_updated;
495	}
496
497	if (used)
498		list_add_tail(&sch_ep->tt_endpoint, &tt->ep_list);
499	else
500		list_del(&sch_ep->tt_endpoint);
501}
502
503static int load_ep_bw(struct mu3h_sch_bw_info *sch_bw,
504		      struct mu3h_sch_ep_info *sch_ep, bool loaded)
505{
506	if (sch_ep->sch_tt)
507		update_sch_tt(sch_ep, loaded);
508
509	/* update bus bandwidth info */
510	update_bus_bw(sch_bw, sch_ep, loaded);
511	sch_ep->allocated = loaded;
512
513	return 0;
514}
515
516static int check_sch_bw(struct mu3h_sch_ep_info *sch_ep)
517{
518	struct mu3h_sch_bw_info *sch_bw = sch_ep->bw_info;
519	const u32 bw_boundary = get_bw_boundary(sch_ep->speed);
520	u32 offset;
521	u32 worst_bw;
522	u32 min_bw = ~0;
523	int min_index = -1;
524	int ret = 0;
525
526	/*
527	 * Search through all possible schedule microframes.
528	 * and find a microframe where its worst bandwidth is minimum.
529	 */
530	for (offset = 0; offset < sch_ep->esit; offset++) {
531		ret = check_sch_tt(sch_ep, offset);
532		if (ret)
533			continue;
534
535		worst_bw = get_max_bw(sch_bw, sch_ep, offset);
536		if (worst_bw > bw_boundary)
537			continue;
538
539		if (min_bw > worst_bw) {
540			min_bw = worst_bw;
541			min_index = offset;
542		}
543
544		/* use first-fit for LS/FS */
545		if (sch_ep->sch_tt && min_index >= 0)
546			break;
547
548		if (min_bw == 0)
549			break;
550	}
551
552	if (min_index < 0)
553		return ret ? ret : -ESCH_BW_OVERFLOW;
554
555	sch_ep->offset = min_index;
556
557	return load_ep_bw(sch_bw, sch_ep, true);
558}
559
560static void destroy_sch_ep(struct xhci_hcd_mtk *mtk, struct usb_device *udev,
561			   struct mu3h_sch_ep_info *sch_ep)
562{
563	/* only release ep bw check passed by check_sch_bw() */
564	if (sch_ep->allocated)
565		load_ep_bw(sch_ep->bw_info, sch_ep, false);
566
567	if (sch_ep->sch_tt)
568		drop_tt(udev);
569
570	list_del(&sch_ep->endpoint);
571	hlist_del(&sch_ep->hentry);
572	kfree(sch_ep);
573}
574
575static bool need_bw_sch(struct usb_device *udev,
576			struct usb_host_endpoint *ep)
577{
578	bool has_tt = udev->tt && udev->tt->hub->parent;
579
580	/* only for periodic endpoints */
581	if (usb_endpoint_xfer_control(&ep->desc)
582		|| usb_endpoint_xfer_bulk(&ep->desc))
583		return false;
584
585	/*
586	 * for LS & FS periodic endpoints which its device is not behind
587	 * a TT are also ignored, root-hub will schedule them directly,
588	 * but need set @bpkts field of endpoint context to 1.
589	 */
590	if (is_fs_or_ls(udev->speed) && !has_tt)
591		return false;
592
593	/* skip endpoint with zero maxpkt */
594	if (usb_endpoint_maxp(&ep->desc) == 0)
595		return false;
596
597	return true;
598}
599
600int xhci_mtk_sch_init(struct xhci_hcd_mtk *mtk)
601{
602	struct xhci_hcd *xhci = hcd_to_xhci(mtk->hcd);
603	struct mu3h_sch_bw_info *sch_array;
604	int num_usb_bus;
605
606	/* ss IN and OUT are separated */
607	num_usb_bus = xhci->usb3_rhub.num_ports * 2 + xhci->usb2_rhub.num_ports;
608
609	sch_array = kcalloc(num_usb_bus, sizeof(*sch_array), GFP_KERNEL);
610	if (sch_array == NULL)
611		return -ENOMEM;
612
613	mtk->sch_array = sch_array;
614
615	INIT_LIST_HEAD(&mtk->bw_ep_chk_list);
616	hash_init(mtk->sch_ep_hash);
617
618	return 0;
619}
620
621void xhci_mtk_sch_exit(struct xhci_hcd_mtk *mtk)
622{
623	kfree(mtk->sch_array);
624}
625
626static int add_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev,
627			struct usb_host_endpoint *ep)
628{
629	struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
630	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
631	struct xhci_ep_ctx *ep_ctx;
632	struct xhci_virt_device *virt_dev;
633	struct mu3h_sch_ep_info *sch_ep;
634	unsigned int ep_index;
635
636	virt_dev = xhci->devs[udev->slot_id];
637	ep_index = xhci_get_endpoint_index(&ep->desc);
638	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
639
640	if (!need_bw_sch(udev, ep)) {
641		/*
642		 * set @bpkts to 1 if it is LS or FS periodic endpoint, and its
643		 * device does not connected through an external HS hub
644		 */
645		if (usb_endpoint_xfer_int(&ep->desc)
646			|| usb_endpoint_xfer_isoc(&ep->desc))
647			ep_ctx->reserved[0] = cpu_to_le32(EP_BPKTS(1));
648
649		return 0;
650	}
651
652	xhci_dbg(xhci, "%s %s\n", __func__, decode_ep(ep, udev->speed));
653
654	sch_ep = create_sch_ep(mtk, udev, ep);
655	if (IS_ERR_OR_NULL(sch_ep))
656		return -ENOMEM;
657
658	setup_sch_info(ep_ctx, sch_ep);
659
660	list_add_tail(&sch_ep->endpoint, &mtk->bw_ep_chk_list);
661	hash_add(mtk->sch_ep_hash, &sch_ep->hentry, (unsigned long)ep);
662
663	return 0;
664}
665
666static void drop_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev,
667			  struct usb_host_endpoint *ep)
668{
669	struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
670	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
671	struct mu3h_sch_ep_info *sch_ep;
672	struct hlist_node *hn;
673
674	if (!need_bw_sch(udev, ep))
675		return;
676
677	xhci_dbg(xhci, "%s %s\n", __func__, decode_ep(ep, udev->speed));
678
679	hash_for_each_possible_safe(mtk->sch_ep_hash, sch_ep,
680				    hn, hentry, (unsigned long)ep) {
681		if (sch_ep->ep == ep) {
682			destroy_sch_ep(mtk, udev, sch_ep);
683			break;
684		}
685	}
686}
687
688int xhci_mtk_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
689{
690	struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
691	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
692	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
693	struct mu3h_sch_ep_info *sch_ep;
694	int ret;
695
696	xhci_dbg(xhci, "%s() udev %s\n", __func__, dev_name(&udev->dev));
697
698	list_for_each_entry(sch_ep, &mtk->bw_ep_chk_list, endpoint) {
699		struct xhci_ep_ctx *ep_ctx;
700		struct usb_host_endpoint *ep = sch_ep->ep;
701		unsigned int ep_index = xhci_get_endpoint_index(&ep->desc);
702
703		ret = check_sch_bw(sch_ep);
704		if (ret) {
705			xhci_err(xhci, "Not enough bandwidth! (%s)\n",
706				 sch_error_string(-ret));
707			return -ENOSPC;
708		}
709
710		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
711		ep_ctx->reserved[0] = cpu_to_le32(EP_BPKTS(sch_ep->pkts)
712			| EP_BCSCOUNT(sch_ep->cs_count)
713			| EP_BBM(sch_ep->burst_mode));
714		ep_ctx->reserved[1] = cpu_to_le32(EP_BOFFSET(sch_ep->offset)
715			| EP_BREPEAT(sch_ep->repeat));
716
717		xhci_dbg(xhci, " PKTS:%x, CSCOUNT:%x, BM:%x, OFFSET:%x, REPEAT:%x\n",
718			sch_ep->pkts, sch_ep->cs_count, sch_ep->burst_mode,
719			sch_ep->offset, sch_ep->repeat);
720	}
721
722	ret = xhci_check_bandwidth(hcd, udev);
723	if (!ret)
724		list_del_init(&mtk->bw_ep_chk_list);
725
726	return ret;
727}
728
729void xhci_mtk_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
730{
731	struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
732	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
733	struct mu3h_sch_ep_info *sch_ep, *tmp;
734
735	xhci_dbg(xhci, "%s() udev %s\n", __func__, dev_name(&udev->dev));
736
737	list_for_each_entry_safe(sch_ep, tmp, &mtk->bw_ep_chk_list, endpoint)
738		destroy_sch_ep(mtk, udev, sch_ep);
739
740	xhci_reset_bandwidth(hcd, udev);
741}
742
743int xhci_mtk_add_ep(struct usb_hcd *hcd, struct usb_device *udev,
744		    struct usb_host_endpoint *ep)
745{
746	int ret;
747
748	ret = xhci_add_endpoint(hcd, udev, ep);
749	if (ret)
750		return ret;
751
752	if (ep->hcpriv)
753		ret = add_ep_quirk(hcd, udev, ep);
754
755	return ret;
756}
757
758int xhci_mtk_drop_ep(struct usb_hcd *hcd, struct usb_device *udev,
759		     struct usb_host_endpoint *ep)
760{
761	int ret;
762
763	ret = xhci_drop_endpoint(hcd, udev, ep);
764	if (ret)
765		return ret;
766
767	/* needn't check @ep->hcpriv, xhci_endpoint_disable set it NULL */
768	drop_ep_quirk(hcd, udev, ep);
769
770	return 0;
771}