Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * A power allocator to manage temperature
  4 *
  5 * Copyright (C) 2014 ARM Ltd.
  6 *
  7 */
  8
  9#define pr_fmt(fmt) "Power allocator: " fmt
 10
 11#include <linux/slab.h>
 12#include <linux/thermal.h>
 13
 14#define CREATE_TRACE_POINTS
 15#include <trace/events/thermal_power_allocator.h>
 16
 17#include "thermal_core.h"
 18
 19#define INVALID_TRIP -1
 20
 21#define FRAC_BITS 10
 22#define int_to_frac(x) ((x) << FRAC_BITS)
 23#define frac_to_int(x) ((x) >> FRAC_BITS)
 24
 25/**
 26 * mul_frac() - multiply two fixed-point numbers
 27 * @x:	first multiplicand
 28 * @y:	second multiplicand
 29 *
 30 * Return: the result of multiplying two fixed-point numbers.  The
 31 * result is also a fixed-point number.
 32 */
 33static inline s64 mul_frac(s64 x, s64 y)
 34{
 35	return (x * y) >> FRAC_BITS;
 36}
 37
 38/**
 39 * div_frac() - divide two fixed-point numbers
 40 * @x:	the dividend
 41 * @y:	the divisor
 42 *
 43 * Return: the result of dividing two fixed-point numbers.  The
 44 * result is also a fixed-point number.
 45 */
 46static inline s64 div_frac(s64 x, s64 y)
 47{
 48	return div_s64(x << FRAC_BITS, y);
 49}
 50
 51/**
 52 * struct power_allocator_params - parameters for the power allocator governor
 53 * @allocated_tzp:	whether we have allocated tzp for this thermal zone and
 54 *			it needs to be freed on unbind
 55 * @err_integral:	accumulated error in the PID controller.
 56 * @prev_err:	error in the previous iteration of the PID controller.
 57 *		Used to calculate the derivative term.
 58 * @trip_switch_on:	first passive trip point of the thermal zone.  The
 59 *			governor switches on when this trip point is crossed.
 60 *			If the thermal zone only has one passive trip point,
 61 *			@trip_switch_on should be INVALID_TRIP.
 62 * @trip_max_desired_temperature:	last passive trip point of the thermal
 63 *					zone.  The temperature we are
 64 *					controlling for.
 65 * @sustainable_power:	Sustainable power (heat) that this thermal zone can
 66 *			dissipate
 67 */
 68struct power_allocator_params {
 69	bool allocated_tzp;
 70	s64 err_integral;
 71	s32 prev_err;
 72	int trip_switch_on;
 73	int trip_max_desired_temperature;
 74	u32 sustainable_power;
 75};
 76
 77/**
 78 * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone
 79 * @tz: thermal zone we are operating in
 80 *
 81 * For thermal zones that don't provide a sustainable_power in their
 82 * thermal_zone_params, estimate one.  Calculate it using the minimum
 83 * power of all the cooling devices as that gives a valid value that
 84 * can give some degree of functionality.  For optimal performance of
 85 * this governor, provide a sustainable_power in the thermal zone's
 86 * thermal_zone_params.
 87 */
 88static u32 estimate_sustainable_power(struct thermal_zone_device *tz)
 89{
 90	u32 sustainable_power = 0;
 91	struct thermal_instance *instance;
 92	struct power_allocator_params *params = tz->governor_data;
 93
 94	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
 95		struct thermal_cooling_device *cdev = instance->cdev;
 96		u32 min_power;
 97
 98		if (instance->trip != params->trip_max_desired_temperature)
 99			continue;
100
101		if (!cdev_is_power_actor(cdev))
102			continue;
103
104		if (cdev->ops->state2power(cdev, instance->upper, &min_power))
105			continue;
106
107		sustainable_power += min_power;
108	}
109
110	return sustainable_power;
111}
112
113/**
114 * estimate_pid_constants() - Estimate the constants for the PID controller
115 * @tz:		thermal zone for which to estimate the constants
116 * @sustainable_power:	sustainable power for the thermal zone
117 * @trip_switch_on:	trip point number for the switch on temperature
118 * @control_temp:	target temperature for the power allocator governor
119 *
120 * This function is used to update the estimation of the PID
121 * controller constants in struct thermal_zone_parameters.
122 */
123static void estimate_pid_constants(struct thermal_zone_device *tz,
124				   u32 sustainable_power, int trip_switch_on,
125				   int control_temp)
126{
127	int ret;
128	int switch_on_temp;
129	u32 temperature_threshold;
130	s32 k_i;
131
132	ret = tz->ops->get_trip_temp(tz, trip_switch_on, &switch_on_temp);
133	if (ret)
134		switch_on_temp = 0;
135
136	temperature_threshold = control_temp - switch_on_temp;
137	/*
138	 * estimate_pid_constants() tries to find appropriate default
139	 * values for thermal zones that don't provide them. If a
140	 * system integrator has configured a thermal zone with two
141	 * passive trip points at the same temperature, that person
142	 * hasn't put any effort to set up the thermal zone properly
143	 * so just give up.
144	 */
145	if (!temperature_threshold)
146		return;
147
148	tz->tzp->k_po = int_to_frac(sustainable_power) /
149		temperature_threshold;
150
151	tz->tzp->k_pu = int_to_frac(2 * sustainable_power) /
152		temperature_threshold;
153
154	k_i = tz->tzp->k_pu / 10;
155	tz->tzp->k_i = k_i > 0 ? k_i : 1;
156
157	/*
158	 * The default for k_d and integral_cutoff is 0, so we can
159	 * leave them as they are.
160	 */
161}
162
163/**
164 * get_sustainable_power() - Get the right sustainable power
165 * @tz:		thermal zone for which to estimate the constants
166 * @params:	parameters for the power allocator governor
167 * @control_temp:	target temperature for the power allocator governor
168 *
169 * This function is used for getting the proper sustainable power value based
170 * on variables which might be updated by the user sysfs interface. If that
171 * happen the new value is going to be estimated and updated. It is also used
172 * after thermal zone binding, where the initial values where set to 0.
173 */
174static u32 get_sustainable_power(struct thermal_zone_device *tz,
175				 struct power_allocator_params *params,
176				 int control_temp)
177{
178	u32 sustainable_power;
179
180	if (!tz->tzp->sustainable_power)
181		sustainable_power = estimate_sustainable_power(tz);
182	else
183		sustainable_power = tz->tzp->sustainable_power;
184
185	/* Check if it's init value 0 or there was update via sysfs */
186	if (sustainable_power != params->sustainable_power) {
187		estimate_pid_constants(tz, sustainable_power,
188				       params->trip_switch_on, control_temp);
189
190		/* Do the estimation only once and make available in sysfs */
191		tz->tzp->sustainable_power = sustainable_power;
192		params->sustainable_power = sustainable_power;
193	}
194
195	return sustainable_power;
196}
197
198/**
199 * pid_controller() - PID controller
200 * @tz:	thermal zone we are operating in
201 * @control_temp:	the target temperature in millicelsius
202 * @max_allocatable_power:	maximum allocatable power for this thermal zone
203 *
204 * This PID controller increases the available power budget so that the
205 * temperature of the thermal zone gets as close as possible to
206 * @control_temp and limits the power if it exceeds it.  k_po is the
207 * proportional term when we are overshooting, k_pu is the
208 * proportional term when we are undershooting.  integral_cutoff is a
209 * threshold below which we stop accumulating the error.  The
210 * accumulated error is only valid if the requested power will make
211 * the system warmer.  If the system is mostly idle, there's no point
212 * in accumulating positive error.
213 *
214 * Return: The power budget for the next period.
215 */
216static u32 pid_controller(struct thermal_zone_device *tz,
217			  int control_temp,
218			  u32 max_allocatable_power)
219{
220	s64 p, i, d, power_range;
221	s32 err, max_power_frac;
222	u32 sustainable_power;
223	struct power_allocator_params *params = tz->governor_data;
224
225	max_power_frac = int_to_frac(max_allocatable_power);
226
227	sustainable_power = get_sustainable_power(tz, params, control_temp);
228
229	err = control_temp - tz->temperature;
230	err = int_to_frac(err);
231
232	/* Calculate the proportional term */
233	p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err);
234
235	/*
236	 * Calculate the integral term
237	 *
238	 * if the error is less than cut off allow integration (but
239	 * the integral is limited to max power)
240	 */
241	i = mul_frac(tz->tzp->k_i, params->err_integral);
242
243	if (err < int_to_frac(tz->tzp->integral_cutoff)) {
244		s64 i_next = i + mul_frac(tz->tzp->k_i, err);
245
246		if (abs(i_next) < max_power_frac) {
247			i = i_next;
248			params->err_integral += err;
249		}
250	}
251
252	/*
253	 * Calculate the derivative term
254	 *
255	 * We do err - prev_err, so with a positive k_d, a decreasing
256	 * error (i.e. driving closer to the line) results in less
257	 * power being applied, slowing down the controller)
258	 */
259	d = mul_frac(tz->tzp->k_d, err - params->prev_err);
260	d = div_frac(d, jiffies_to_msecs(tz->passive_delay_jiffies));
261	params->prev_err = err;
262
263	power_range = p + i + d;
264
265	/* feed-forward the known sustainable dissipatable power */
266	power_range = sustainable_power + frac_to_int(power_range);
267
268	power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power);
269
270	trace_thermal_power_allocator_pid(tz, frac_to_int(err),
271					  frac_to_int(params->err_integral),
272					  frac_to_int(p), frac_to_int(i),
273					  frac_to_int(d), power_range);
274
275	return power_range;
276}
277
278/**
279 * power_actor_set_power() - limit the maximum power a cooling device consumes
280 * @cdev:	pointer to &thermal_cooling_device
281 * @instance:	thermal instance to update
282 * @power:	the power in milliwatts
283 *
284 * Set the cooling device to consume at most @power milliwatts. The limit is
285 * expected to be a cap at the maximum power consumption.
286 *
287 * Return: 0 on success, -EINVAL if the cooling device does not
288 * implement the power actor API or -E* for other failures.
289 */
290static int
291power_actor_set_power(struct thermal_cooling_device *cdev,
292		      struct thermal_instance *instance, u32 power)
293{
294	unsigned long state;
295	int ret;
296
297	ret = cdev->ops->power2state(cdev, power, &state);
298	if (ret)
299		return ret;
300
301	instance->target = clamp_val(state, instance->lower, instance->upper);
302	mutex_lock(&cdev->lock);
303	__thermal_cdev_update(cdev);
304	mutex_unlock(&cdev->lock);
305
306	return 0;
307}
308
309/**
310 * divvy_up_power() - divvy the allocated power between the actors
311 * @req_power:	each actor's requested power
312 * @max_power:	each actor's maximum available power
313 * @num_actors:	size of the @req_power, @max_power and @granted_power's array
314 * @total_req_power: sum of @req_power
315 * @power_range:	total allocated power
316 * @granted_power:	output array: each actor's granted power
317 * @extra_actor_power:	an appropriately sized array to be used in the
318 *			function as temporary storage of the extra power given
319 *			to the actors
320 *
321 * This function divides the total allocated power (@power_range)
322 * fairly between the actors.  It first tries to give each actor a
323 * share of the @power_range according to how much power it requested
324 * compared to the rest of the actors.  For example, if only one actor
325 * requests power, then it receives all the @power_range.  If
326 * three actors each requests 1mW, each receives a third of the
327 * @power_range.
328 *
329 * If any actor received more than their maximum power, then that
330 * surplus is re-divvied among the actors based on how far they are
331 * from their respective maximums.
332 *
333 * Granted power for each actor is written to @granted_power, which
334 * should've been allocated by the calling function.
335 */
336static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors,
337			   u32 total_req_power, u32 power_range,
338			   u32 *granted_power, u32 *extra_actor_power)
339{
340	u32 extra_power, capped_extra_power;
341	int i;
342
343	/*
344	 * Prevent division by 0 if none of the actors request power.
345	 */
346	if (!total_req_power)
347		total_req_power = 1;
348
349	capped_extra_power = 0;
350	extra_power = 0;
351	for (i = 0; i < num_actors; i++) {
352		u64 req_range = (u64)req_power[i] * power_range;
353
354		granted_power[i] = DIV_ROUND_CLOSEST_ULL(req_range,
355							 total_req_power);
356
357		if (granted_power[i] > max_power[i]) {
358			extra_power += granted_power[i] - max_power[i];
359			granted_power[i] = max_power[i];
360		}
361
362		extra_actor_power[i] = max_power[i] - granted_power[i];
363		capped_extra_power += extra_actor_power[i];
364	}
365
366	if (!extra_power)
367		return;
368
369	/*
370	 * Re-divvy the reclaimed extra among actors based on
371	 * how far they are from the max
372	 */
373	extra_power = min(extra_power, capped_extra_power);
374	if (capped_extra_power > 0)
375		for (i = 0; i < num_actors; i++) {
376			u64 extra_range = (u64)extra_actor_power[i] * extra_power;
377			granted_power[i] += DIV_ROUND_CLOSEST_ULL(extra_range,
378							 capped_extra_power);
379		}
380}
381
382static int allocate_power(struct thermal_zone_device *tz,
383			  int control_temp)
384{
385	struct thermal_instance *instance;
386	struct power_allocator_params *params = tz->governor_data;
387	u32 *req_power, *max_power, *granted_power, *extra_actor_power;
388	u32 *weighted_req_power;
389	u32 total_req_power, max_allocatable_power, total_weighted_req_power;
390	u32 total_granted_power, power_range;
391	int i, num_actors, total_weight, ret = 0;
392	int trip_max_desired_temperature = params->trip_max_desired_temperature;
393
394	num_actors = 0;
395	total_weight = 0;
396	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
397		if ((instance->trip == trip_max_desired_temperature) &&
398		    cdev_is_power_actor(instance->cdev)) {
399			num_actors++;
400			total_weight += instance->weight;
401		}
402	}
403
404	if (!num_actors)
405		return -ENODEV;
406
407	/*
408	 * We need to allocate five arrays of the same size:
409	 * req_power, max_power, granted_power, extra_actor_power and
410	 * weighted_req_power.  They are going to be needed until this
411	 * function returns.  Allocate them all in one go to simplify
412	 * the allocation and deallocation logic.
413	 */
414	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power));
415	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power));
416	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power));
417	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*weighted_req_power));
418	req_power = kcalloc(num_actors * 5, sizeof(*req_power), GFP_KERNEL);
419	if (!req_power)
420		return -ENOMEM;
421
422	max_power = &req_power[num_actors];
423	granted_power = &req_power[2 * num_actors];
424	extra_actor_power = &req_power[3 * num_actors];
425	weighted_req_power = &req_power[4 * num_actors];
426
427	i = 0;
428	total_weighted_req_power = 0;
429	total_req_power = 0;
430	max_allocatable_power = 0;
431
432	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
433		int weight;
434		struct thermal_cooling_device *cdev = instance->cdev;
435
436		if (instance->trip != trip_max_desired_temperature)
437			continue;
438
439		if (!cdev_is_power_actor(cdev))
440			continue;
441
442		if (cdev->ops->get_requested_power(cdev, &req_power[i]))
443			continue;
444
445		if (!total_weight)
446			weight = 1 << FRAC_BITS;
447		else
448			weight = instance->weight;
449
450		weighted_req_power[i] = frac_to_int(weight * req_power[i]);
451
452		if (cdev->ops->state2power(cdev, instance->lower,
453					   &max_power[i]))
454			continue;
455
456		total_req_power += req_power[i];
457		max_allocatable_power += max_power[i];
458		total_weighted_req_power += weighted_req_power[i];
459
460		i++;
461	}
462
463	power_range = pid_controller(tz, control_temp, max_allocatable_power);
464
465	divvy_up_power(weighted_req_power, max_power, num_actors,
466		       total_weighted_req_power, power_range, granted_power,
467		       extra_actor_power);
468
469	total_granted_power = 0;
470	i = 0;
471	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
472		if (instance->trip != trip_max_desired_temperature)
473			continue;
474
475		if (!cdev_is_power_actor(instance->cdev))
476			continue;
477
478		power_actor_set_power(instance->cdev, instance,
479				      granted_power[i]);
480		total_granted_power += granted_power[i];
481
482		i++;
483	}
484
485	trace_thermal_power_allocator(tz, req_power, total_req_power,
486				      granted_power, total_granted_power,
487				      num_actors, power_range,
488				      max_allocatable_power, tz->temperature,
489				      control_temp - tz->temperature);
490
491	kfree(req_power);
492
493	return ret;
494}
495
496/**
497 * get_governor_trips() - get the number of the two trip points that are key for this governor
498 * @tz:	thermal zone to operate on
499 * @params:	pointer to private data for this governor
500 *
501 * The power allocator governor works optimally with two trips points:
502 * a "switch on" trip point and a "maximum desired temperature".  These
503 * are defined as the first and last passive trip points.
504 *
505 * If there is only one trip point, then that's considered to be the
506 * "maximum desired temperature" trip point and the governor is always
507 * on.  If there are no passive or active trip points, then the
508 * governor won't do anything.  In fact, its throttle function
509 * won't be called at all.
510 */
511static void get_governor_trips(struct thermal_zone_device *tz,
512			       struct power_allocator_params *params)
513{
514	int i, last_active, last_passive;
515	bool found_first_passive;
516
517	found_first_passive = false;
518	last_active = INVALID_TRIP;
519	last_passive = INVALID_TRIP;
520
521	for (i = 0; i < tz->num_trips; i++) {
522		enum thermal_trip_type type;
523		int ret;
524
525		ret = tz->ops->get_trip_type(tz, i, &type);
526		if (ret) {
527			dev_warn(&tz->device,
528				 "Failed to get trip point %d type: %d\n", i,
529				 ret);
530			continue;
531		}
532
533		if (type == THERMAL_TRIP_PASSIVE) {
534			if (!found_first_passive) {
535				params->trip_switch_on = i;
536				found_first_passive = true;
537			} else  {
538				last_passive = i;
539			}
540		} else if (type == THERMAL_TRIP_ACTIVE) {
541			last_active = i;
542		} else {
543			break;
544		}
545	}
546
547	if (last_passive != INVALID_TRIP) {
548		params->trip_max_desired_temperature = last_passive;
549	} else if (found_first_passive) {
550		params->trip_max_desired_temperature = params->trip_switch_on;
551		params->trip_switch_on = INVALID_TRIP;
552	} else {
553		params->trip_switch_on = INVALID_TRIP;
554		params->trip_max_desired_temperature = last_active;
555	}
556}
557
558static void reset_pid_controller(struct power_allocator_params *params)
559{
560	params->err_integral = 0;
561	params->prev_err = 0;
562}
563
564static void allow_maximum_power(struct thermal_zone_device *tz, bool update)
565{
566	struct thermal_instance *instance;
567	struct power_allocator_params *params = tz->governor_data;
568	u32 req_power;
569
570	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
571		struct thermal_cooling_device *cdev = instance->cdev;
572
573		if ((instance->trip != params->trip_max_desired_temperature) ||
574		    (!cdev_is_power_actor(instance->cdev)))
575			continue;
576
577		instance->target = 0;
578		mutex_lock(&instance->cdev->lock);
579		/*
580		 * Call for updating the cooling devices local stats and avoid
581		 * periods of dozen of seconds when those have not been
582		 * maintained.
583		 */
584		cdev->ops->get_requested_power(cdev, &req_power);
585
586		if (update)
587			__thermal_cdev_update(instance->cdev);
588
589		mutex_unlock(&instance->cdev->lock);
590	}
591}
592
593/**
594 * check_power_actors() - Check all cooling devices and warn when they are
595 *			not power actors
596 * @tz:		thermal zone to operate on
597 *
598 * Check all cooling devices in the @tz and warn every time they are missing
599 * power actor API. The warning should help to investigate the issue, which
600 * could be e.g. lack of Energy Model for a given device.
601 *
602 * Return: 0 on success, -EINVAL if any cooling device does not implement
603 * the power actor API.
604 */
605static int check_power_actors(struct thermal_zone_device *tz)
606{
607	struct thermal_instance *instance;
608	int ret = 0;
609
610	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
611		if (!cdev_is_power_actor(instance->cdev)) {
612			dev_warn(&tz->device, "power_allocator: %s is not a power actor\n",
613				 instance->cdev->type);
614			ret = -EINVAL;
615		}
616	}
617
618	return ret;
619}
620
621/**
622 * power_allocator_bind() - bind the power_allocator governor to a thermal zone
623 * @tz:	thermal zone to bind it to
624 *
625 * Initialize the PID controller parameters and bind it to the thermal
626 * zone.
627 *
628 * Return: 0 on success, or -ENOMEM if we ran out of memory, or -EINVAL
629 * when there are unsupported cooling devices in the @tz.
630 */
631static int power_allocator_bind(struct thermal_zone_device *tz)
632{
633	int ret;
634	struct power_allocator_params *params;
635	int control_temp;
636
637	ret = check_power_actors(tz);
638	if (ret)
639		return ret;
640
641	params = kzalloc(sizeof(*params), GFP_KERNEL);
642	if (!params)
643		return -ENOMEM;
644
645	if (!tz->tzp) {
646		tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL);
647		if (!tz->tzp) {
648			ret = -ENOMEM;
649			goto free_params;
650		}
651
652		params->allocated_tzp = true;
653	}
654
655	if (!tz->tzp->sustainable_power)
656		dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n");
657
658	get_governor_trips(tz, params);
659
660	if (tz->num_trips > 0) {
661		ret = tz->ops->get_trip_temp(tz,
662					params->trip_max_desired_temperature,
663					&control_temp);
664		if (!ret)
665			estimate_pid_constants(tz, tz->tzp->sustainable_power,
666					       params->trip_switch_on,
667					       control_temp);
668	}
669
670	reset_pid_controller(params);
671
672	tz->governor_data = params;
673
674	return 0;
675
676free_params:
677	kfree(params);
678
679	return ret;
680}
681
682static void power_allocator_unbind(struct thermal_zone_device *tz)
683{
684	struct power_allocator_params *params = tz->governor_data;
685
686	dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id);
687
688	if (params->allocated_tzp) {
689		kfree(tz->tzp);
690		tz->tzp = NULL;
691	}
692
693	kfree(tz->governor_data);
694	tz->governor_data = NULL;
695}
696
697static int power_allocator_throttle(struct thermal_zone_device *tz, int trip)
698{
699	int ret;
700	int switch_on_temp, control_temp;
701	struct power_allocator_params *params = tz->governor_data;
702	bool update;
703
704	lockdep_assert_held(&tz->lock);
705
706	/*
707	 * We get called for every trip point but we only need to do
708	 * our calculations once
709	 */
710	if (trip != params->trip_max_desired_temperature)
711		return 0;
712
713	ret = tz->ops->get_trip_temp(tz, params->trip_switch_on,
714				     &switch_on_temp);
715	if (!ret && (tz->temperature < switch_on_temp)) {
716		update = (tz->last_temperature >= switch_on_temp);
717		tz->passive = 0;
718		reset_pid_controller(params);
719		allow_maximum_power(tz, update);
720		return 0;
721	}
722
723	tz->passive = 1;
724
725	ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature,
726				&control_temp);
727	if (ret) {
728		dev_warn(&tz->device,
729			 "Failed to get the maximum desired temperature: %d\n",
730			 ret);
731		return ret;
732	}
733
734	return allocate_power(tz, control_temp);
735}
736
737static struct thermal_governor thermal_gov_power_allocator = {
738	.name		= "power_allocator",
739	.bind_to_tz	= power_allocator_bind,
740	.unbind_from_tz	= power_allocator_unbind,
741	.throttle	= power_allocator_throttle,
742};
743THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator);