Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Volume Management Device driver
   4 * Copyright (c) 2015, Intel Corporation.
   5 */
   6
   7#include <linux/device.h>
   8#include <linux/interrupt.h>
   9#include <linux/irq.h>
  10#include <linux/kernel.h>
  11#include <linux/module.h>
  12#include <linux/msi.h>
  13#include <linux/pci.h>
  14#include <linux/pci-acpi.h>
  15#include <linux/pci-ecam.h>
  16#include <linux/srcu.h>
  17#include <linux/rculist.h>
  18#include <linux/rcupdate.h>
  19
  20#include <asm/irqdomain.h>
  21
  22#define VMD_CFGBAR	0
  23#define VMD_MEMBAR1	2
  24#define VMD_MEMBAR2	4
  25
  26#define PCI_REG_VMCAP		0x40
  27#define BUS_RESTRICT_CAP(vmcap)	(vmcap & 0x1)
  28#define PCI_REG_VMCONFIG	0x44
  29#define BUS_RESTRICT_CFG(vmcfg)	((vmcfg >> 8) & 0x3)
  30#define VMCONFIG_MSI_REMAP	0x2
  31#define PCI_REG_VMLOCK		0x70
  32#define MB2_SHADOW_EN(vmlock)	(vmlock & 0x2)
  33
  34#define MB2_SHADOW_OFFSET	0x2000
  35#define MB2_SHADOW_SIZE		16
  36
  37enum vmd_features {
  38	/*
  39	 * Device may contain registers which hint the physical location of the
  40	 * membars, in order to allow proper address translation during
  41	 * resource assignment to enable guest virtualization
  42	 */
  43	VMD_FEAT_HAS_MEMBAR_SHADOW		= (1 << 0),
  44
  45	/*
  46	 * Device may provide root port configuration information which limits
  47	 * bus numbering
  48	 */
  49	VMD_FEAT_HAS_BUS_RESTRICTIONS		= (1 << 1),
  50
  51	/*
  52	 * Device contains physical location shadow registers in
  53	 * vendor-specific capability space
  54	 */
  55	VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP	= (1 << 2),
  56
  57	/*
  58	 * Device may use MSI-X vector 0 for software triggering and will not
  59	 * be used for MSI remapping
  60	 */
  61	VMD_FEAT_OFFSET_FIRST_VECTOR		= (1 << 3),
  62
  63	/*
  64	 * Device can bypass remapping MSI-X transactions into its MSI-X table,
  65	 * avoiding the requirement of a VMD MSI domain for child device
  66	 * interrupt handling.
  67	 */
  68	VMD_FEAT_CAN_BYPASS_MSI_REMAP		= (1 << 4),
  69};
  70
  71static DEFINE_IDA(vmd_instance_ida);
  72
  73/*
  74 * Lock for manipulating VMD IRQ lists.
  75 */
  76static DEFINE_RAW_SPINLOCK(list_lock);
  77
  78/**
  79 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
  80 * @node:	list item for parent traversal.
  81 * @irq:	back pointer to parent.
  82 * @enabled:	true if driver enabled IRQ
  83 * @virq:	the virtual IRQ value provided to the requesting driver.
  84 *
  85 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
  86 * a VMD IRQ using this structure.
  87 */
  88struct vmd_irq {
  89	struct list_head	node;
  90	struct vmd_irq_list	*irq;
  91	bool			enabled;
  92	unsigned int		virq;
  93};
  94
  95/**
  96 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
  97 * @irq_list:	the list of irq's the VMD one demuxes to.
  98 * @srcu:	SRCU struct for local synchronization.
  99 * @count:	number of child IRQs assigned to this vector; used to track
 100 *		sharing.
 101 * @virq:	The underlying VMD Linux interrupt number
 102 */
 103struct vmd_irq_list {
 104	struct list_head	irq_list;
 105	struct srcu_struct	srcu;
 106	unsigned int		count;
 107	unsigned int		virq;
 108};
 109
 110struct vmd_dev {
 111	struct pci_dev		*dev;
 112
 113	spinlock_t		cfg_lock;
 114	void __iomem		*cfgbar;
 115
 116	int msix_count;
 117	struct vmd_irq_list	*irqs;
 118
 119	struct pci_sysdata	sysdata;
 120	struct resource		resources[3];
 121	struct irq_domain	*irq_domain;
 122	struct pci_bus		*bus;
 123	u8			busn_start;
 124	u8			first_vec;
 125	char			*name;
 126	int			instance;
 127};
 128
 129static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
 130{
 131	return container_of(bus->sysdata, struct vmd_dev, sysdata);
 132}
 133
 134static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
 135					   struct vmd_irq_list *irqs)
 136{
 137	return irqs - vmd->irqs;
 138}
 139
 140/*
 141 * Drivers managing a device in a VMD domain allocate their own IRQs as before,
 142 * but the MSI entry for the hardware it's driving will be programmed with a
 143 * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
 144 * domain into one of its own, and the VMD driver de-muxes these for the
 145 * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
 146 * and irq_chip to set this up.
 147 */
 148static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
 149{
 150	struct vmd_irq *vmdirq = data->chip_data;
 151	struct vmd_irq_list *irq = vmdirq->irq;
 152	struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
 153
 154	memset(msg, 0, sizeof(*msg));
 155	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
 156	msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
 157	msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq);
 158}
 159
 160/*
 161 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
 162 */
 163static void vmd_irq_enable(struct irq_data *data)
 164{
 165	struct vmd_irq *vmdirq = data->chip_data;
 166	unsigned long flags;
 167
 168	raw_spin_lock_irqsave(&list_lock, flags);
 169	WARN_ON(vmdirq->enabled);
 170	list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
 171	vmdirq->enabled = true;
 172	raw_spin_unlock_irqrestore(&list_lock, flags);
 173
 174	data->chip->irq_unmask(data);
 175}
 176
 177static void vmd_irq_disable(struct irq_data *data)
 178{
 179	struct vmd_irq *vmdirq = data->chip_data;
 180	unsigned long flags;
 181
 182	data->chip->irq_mask(data);
 183
 184	raw_spin_lock_irqsave(&list_lock, flags);
 185	if (vmdirq->enabled) {
 186		list_del_rcu(&vmdirq->node);
 187		vmdirq->enabled = false;
 188	}
 189	raw_spin_unlock_irqrestore(&list_lock, flags);
 190}
 191
 192/*
 193 * XXX: Stubbed until we develop acceptable way to not create conflicts with
 194 * other devices sharing the same vector.
 195 */
 196static int vmd_irq_set_affinity(struct irq_data *data,
 197				const struct cpumask *dest, bool force)
 198{
 199	return -EINVAL;
 200}
 201
 202static struct irq_chip vmd_msi_controller = {
 203	.name			= "VMD-MSI",
 204	.irq_enable		= vmd_irq_enable,
 205	.irq_disable		= vmd_irq_disable,
 206	.irq_compose_msi_msg	= vmd_compose_msi_msg,
 207	.irq_set_affinity	= vmd_irq_set_affinity,
 208};
 209
 210static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
 211				     msi_alloc_info_t *arg)
 212{
 213	return 0;
 214}
 215
 216/*
 217 * XXX: We can be even smarter selecting the best IRQ once we solve the
 218 * affinity problem.
 219 */
 220static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
 221{
 222	unsigned long flags;
 223	int i, best;
 224
 225	if (vmd->msix_count == 1 + vmd->first_vec)
 226		return &vmd->irqs[vmd->first_vec];
 227
 228	/*
 229	 * White list for fast-interrupt handlers. All others will share the
 230	 * "slow" interrupt vector.
 231	 */
 232	switch (msi_desc_to_pci_dev(desc)->class) {
 233	case PCI_CLASS_STORAGE_EXPRESS:
 234		break;
 235	default:
 236		return &vmd->irqs[vmd->first_vec];
 237	}
 238
 239	raw_spin_lock_irqsave(&list_lock, flags);
 240	best = vmd->first_vec + 1;
 241	for (i = best; i < vmd->msix_count; i++)
 242		if (vmd->irqs[i].count < vmd->irqs[best].count)
 243			best = i;
 244	vmd->irqs[best].count++;
 245	raw_spin_unlock_irqrestore(&list_lock, flags);
 246
 247	return &vmd->irqs[best];
 248}
 249
 250static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
 251			unsigned int virq, irq_hw_number_t hwirq,
 252			msi_alloc_info_t *arg)
 253{
 254	struct msi_desc *desc = arg->desc;
 255	struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
 256	struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
 257
 258	if (!vmdirq)
 259		return -ENOMEM;
 260
 261	INIT_LIST_HEAD(&vmdirq->node);
 262	vmdirq->irq = vmd_next_irq(vmd, desc);
 263	vmdirq->virq = virq;
 264
 265	irq_domain_set_info(domain, virq, vmdirq->irq->virq, info->chip, vmdirq,
 266			    handle_untracked_irq, vmd, NULL);
 267	return 0;
 268}
 269
 270static void vmd_msi_free(struct irq_domain *domain,
 271			struct msi_domain_info *info, unsigned int virq)
 272{
 273	struct vmd_irq *vmdirq = irq_get_chip_data(virq);
 274	unsigned long flags;
 275
 276	synchronize_srcu(&vmdirq->irq->srcu);
 277
 278	/* XXX: Potential optimization to rebalance */
 279	raw_spin_lock_irqsave(&list_lock, flags);
 280	vmdirq->irq->count--;
 281	raw_spin_unlock_irqrestore(&list_lock, flags);
 282
 283	kfree(vmdirq);
 284}
 285
 286static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
 287			   int nvec, msi_alloc_info_t *arg)
 288{
 289	struct pci_dev *pdev = to_pci_dev(dev);
 290	struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
 291
 292	if (nvec > vmd->msix_count)
 293		return vmd->msix_count;
 294
 295	memset(arg, 0, sizeof(*arg));
 296	return 0;
 297}
 298
 299static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
 300{
 301	arg->desc = desc;
 302}
 303
 304static struct msi_domain_ops vmd_msi_domain_ops = {
 305	.get_hwirq	= vmd_get_hwirq,
 306	.msi_init	= vmd_msi_init,
 307	.msi_free	= vmd_msi_free,
 308	.msi_prepare	= vmd_msi_prepare,
 309	.set_desc	= vmd_set_desc,
 310};
 311
 312static struct msi_domain_info vmd_msi_domain_info = {
 313	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
 314			  MSI_FLAG_PCI_MSIX,
 315	.ops		= &vmd_msi_domain_ops,
 316	.chip		= &vmd_msi_controller,
 317};
 318
 319static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable)
 320{
 321	u16 reg;
 322
 323	pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, &reg);
 324	reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) :
 325		       (reg | VMCONFIG_MSI_REMAP);
 326	pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg);
 327}
 328
 329static int vmd_create_irq_domain(struct vmd_dev *vmd)
 330{
 331	struct fwnode_handle *fn;
 332
 333	fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
 334	if (!fn)
 335		return -ENODEV;
 336
 337	vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL);
 338	if (!vmd->irq_domain) {
 339		irq_domain_free_fwnode(fn);
 340		return -ENODEV;
 341	}
 342
 343	return 0;
 344}
 345
 346static void vmd_remove_irq_domain(struct vmd_dev *vmd)
 347{
 348	/*
 349	 * Some production BIOS won't enable remapping between soft reboots.
 350	 * Ensure remapping is restored before unloading the driver.
 351	 */
 352	if (!vmd->msix_count)
 353		vmd_set_msi_remapping(vmd, true);
 354
 355	if (vmd->irq_domain) {
 356		struct fwnode_handle *fn = vmd->irq_domain->fwnode;
 357
 358		irq_domain_remove(vmd->irq_domain);
 359		irq_domain_free_fwnode(fn);
 360	}
 361}
 362
 363static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
 364				  unsigned int devfn, int reg, int len)
 365{
 366	unsigned int busnr_ecam = bus->number - vmd->busn_start;
 367	u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg);
 368
 369	if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR]))
 370		return NULL;
 371
 372	return vmd->cfgbar + offset;
 373}
 374
 375/*
 376 * CPU may deadlock if config space is not serialized on some versions of this
 377 * hardware, so all config space access is done under a spinlock.
 378 */
 379static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
 380			int len, u32 *value)
 381{
 382	struct vmd_dev *vmd = vmd_from_bus(bus);
 383	void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
 384	unsigned long flags;
 385	int ret = 0;
 386
 387	if (!addr)
 388		return -EFAULT;
 389
 390	spin_lock_irqsave(&vmd->cfg_lock, flags);
 391	switch (len) {
 392	case 1:
 393		*value = readb(addr);
 394		break;
 395	case 2:
 396		*value = readw(addr);
 397		break;
 398	case 4:
 399		*value = readl(addr);
 400		break;
 401	default:
 402		ret = -EINVAL;
 403		break;
 404	}
 405	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
 406	return ret;
 407}
 408
 409/*
 410 * VMD h/w converts non-posted config writes to posted memory writes. The
 411 * read-back in this function forces the completion so it returns only after
 412 * the config space was written, as expected.
 413 */
 414static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
 415			 int len, u32 value)
 416{
 417	struct vmd_dev *vmd = vmd_from_bus(bus);
 418	void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
 419	unsigned long flags;
 420	int ret = 0;
 421
 422	if (!addr)
 423		return -EFAULT;
 424
 425	spin_lock_irqsave(&vmd->cfg_lock, flags);
 426	switch (len) {
 427	case 1:
 428		writeb(value, addr);
 429		readb(addr);
 430		break;
 431	case 2:
 432		writew(value, addr);
 433		readw(addr);
 434		break;
 435	case 4:
 436		writel(value, addr);
 437		readl(addr);
 438		break;
 439	default:
 440		ret = -EINVAL;
 441		break;
 442	}
 443	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
 444	return ret;
 445}
 446
 447static struct pci_ops vmd_ops = {
 448	.read		= vmd_pci_read,
 449	.write		= vmd_pci_write,
 450};
 451
 452#ifdef CONFIG_ACPI
 453static struct acpi_device *vmd_acpi_find_companion(struct pci_dev *pci_dev)
 454{
 455	struct pci_host_bridge *bridge;
 456	u32 busnr, addr;
 457
 458	if (pci_dev->bus->ops != &vmd_ops)
 459		return NULL;
 460
 461	bridge = pci_find_host_bridge(pci_dev->bus);
 462	busnr = pci_dev->bus->number - bridge->bus->number;
 463	/*
 464	 * The address computation below is only applicable to relative bus
 465	 * numbers below 32.
 466	 */
 467	if (busnr > 31)
 468		return NULL;
 469
 470	addr = (busnr << 24) | ((u32)pci_dev->devfn << 16) | 0x8000FFFFU;
 471
 472	dev_dbg(&pci_dev->dev, "Looking for ACPI companion (address 0x%x)\n",
 473		addr);
 474
 475	return acpi_find_child_device(ACPI_COMPANION(bridge->dev.parent), addr,
 476				      false);
 477}
 478
 479static bool hook_installed;
 480
 481static void vmd_acpi_begin(void)
 482{
 483	if (pci_acpi_set_companion_lookup_hook(vmd_acpi_find_companion))
 484		return;
 485
 486	hook_installed = true;
 487}
 488
 489static void vmd_acpi_end(void)
 490{
 491	if (!hook_installed)
 492		return;
 493
 494	pci_acpi_clear_companion_lookup_hook();
 495	hook_installed = false;
 496}
 497#else
 498static inline void vmd_acpi_begin(void) { }
 499static inline void vmd_acpi_end(void) { }
 500#endif /* CONFIG_ACPI */
 501
 502static void vmd_domain_reset(struct vmd_dev *vmd)
 503{
 504	u16 bus, max_buses = resource_size(&vmd->resources[0]);
 505	u8 dev, functions, fn, hdr_type;
 506	char __iomem *base;
 507
 508	for (bus = 0; bus < max_buses; bus++) {
 509		for (dev = 0; dev < 32; dev++) {
 510			base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
 511						PCI_DEVFN(dev, 0), 0);
 512
 513			hdr_type = readb(base + PCI_HEADER_TYPE) &
 514					 PCI_HEADER_TYPE_MASK;
 515
 516			functions = (hdr_type & 0x80) ? 8 : 1;
 517			for (fn = 0; fn < functions; fn++) {
 518				base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
 519						PCI_DEVFN(dev, fn), 0);
 520
 521				hdr_type = readb(base + PCI_HEADER_TYPE) &
 522						PCI_HEADER_TYPE_MASK;
 523
 524				if (hdr_type != PCI_HEADER_TYPE_BRIDGE ||
 525				    (readw(base + PCI_CLASS_DEVICE) !=
 526				     PCI_CLASS_BRIDGE_PCI))
 527					continue;
 528
 529				memset_io(base + PCI_IO_BASE, 0,
 530					  PCI_ROM_ADDRESS1 - PCI_IO_BASE);
 531			}
 532		}
 533	}
 534}
 535
 536static void vmd_attach_resources(struct vmd_dev *vmd)
 537{
 538	vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
 539	vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
 540}
 541
 542static void vmd_detach_resources(struct vmd_dev *vmd)
 543{
 544	vmd->dev->resource[VMD_MEMBAR1].child = NULL;
 545	vmd->dev->resource[VMD_MEMBAR2].child = NULL;
 546}
 547
 548/*
 549 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
 550 * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
 551 * 16 bits are the PCI Segment Group (domain) number.  Other bits are
 552 * currently reserved.
 553 */
 554static int vmd_find_free_domain(void)
 555{
 556	int domain = 0xffff;
 557	struct pci_bus *bus = NULL;
 558
 559	while ((bus = pci_find_next_bus(bus)) != NULL)
 560		domain = max_t(int, domain, pci_domain_nr(bus));
 561	return domain + 1;
 562}
 563
 564static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
 565				resource_size_t *offset1,
 566				resource_size_t *offset2)
 567{
 568	struct pci_dev *dev = vmd->dev;
 569	u64 phys1, phys2;
 570
 571	if (native_hint) {
 572		u32 vmlock;
 573		int ret;
 574
 575		ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
 576		if (ret || PCI_POSSIBLE_ERROR(vmlock))
 577			return -ENODEV;
 578
 579		if (MB2_SHADOW_EN(vmlock)) {
 580			void __iomem *membar2;
 581
 582			membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
 583			if (!membar2)
 584				return -ENOMEM;
 585			phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
 586			phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
 587			pci_iounmap(dev, membar2);
 588		} else
 589			return 0;
 590	} else {
 591		/* Hypervisor-Emulated Vendor-Specific Capability */
 592		int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
 593		u32 reg, regu;
 594
 595		pci_read_config_dword(dev, pos + 4, &reg);
 596
 597		/* "SHDW" */
 598		if (pos && reg == 0x53484457) {
 599			pci_read_config_dword(dev, pos + 8, &reg);
 600			pci_read_config_dword(dev, pos + 12, &regu);
 601			phys1 = (u64) regu << 32 | reg;
 602
 603			pci_read_config_dword(dev, pos + 16, &reg);
 604			pci_read_config_dword(dev, pos + 20, &regu);
 605			phys2 = (u64) regu << 32 | reg;
 606		} else
 607			return 0;
 608	}
 609
 610	*offset1 = dev->resource[VMD_MEMBAR1].start -
 611			(phys1 & PCI_BASE_ADDRESS_MEM_MASK);
 612	*offset2 = dev->resource[VMD_MEMBAR2].start -
 613			(phys2 & PCI_BASE_ADDRESS_MEM_MASK);
 614
 615	return 0;
 616}
 617
 618static int vmd_get_bus_number_start(struct vmd_dev *vmd)
 619{
 620	struct pci_dev *dev = vmd->dev;
 621	u16 reg;
 622
 623	pci_read_config_word(dev, PCI_REG_VMCAP, &reg);
 624	if (BUS_RESTRICT_CAP(reg)) {
 625		pci_read_config_word(dev, PCI_REG_VMCONFIG, &reg);
 626
 627		switch (BUS_RESTRICT_CFG(reg)) {
 628		case 0:
 629			vmd->busn_start = 0;
 630			break;
 631		case 1:
 632			vmd->busn_start = 128;
 633			break;
 634		case 2:
 635			vmd->busn_start = 224;
 636			break;
 637		default:
 638			pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
 639				BUS_RESTRICT_CFG(reg));
 640			return -ENODEV;
 641		}
 642	}
 643
 644	return 0;
 645}
 646
 647static irqreturn_t vmd_irq(int irq, void *data)
 648{
 649	struct vmd_irq_list *irqs = data;
 650	struct vmd_irq *vmdirq;
 651	int idx;
 652
 653	idx = srcu_read_lock(&irqs->srcu);
 654	list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
 655		generic_handle_irq(vmdirq->virq);
 656	srcu_read_unlock(&irqs->srcu, idx);
 657
 658	return IRQ_HANDLED;
 659}
 660
 661static int vmd_alloc_irqs(struct vmd_dev *vmd)
 662{
 663	struct pci_dev *dev = vmd->dev;
 664	int i, err;
 665
 666	vmd->msix_count = pci_msix_vec_count(dev);
 667	if (vmd->msix_count < 0)
 668		return -ENODEV;
 669
 670	vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1,
 671						vmd->msix_count, PCI_IRQ_MSIX);
 672	if (vmd->msix_count < 0)
 673		return vmd->msix_count;
 674
 675	vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
 676				 GFP_KERNEL);
 677	if (!vmd->irqs)
 678		return -ENOMEM;
 679
 680	for (i = 0; i < vmd->msix_count; i++) {
 681		err = init_srcu_struct(&vmd->irqs[i].srcu);
 682		if (err)
 683			return err;
 684
 685		INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
 686		vmd->irqs[i].virq = pci_irq_vector(dev, i);
 687		err = devm_request_irq(&dev->dev, vmd->irqs[i].virq,
 688				       vmd_irq, IRQF_NO_THREAD,
 689				       vmd->name, &vmd->irqs[i]);
 690		if (err)
 691			return err;
 692	}
 693
 694	return 0;
 695}
 696
 697/*
 698 * Since VMD is an aperture to regular PCIe root ports, only allow it to
 699 * control features that the OS is allowed to control on the physical PCI bus.
 700 */
 701static void vmd_copy_host_bridge_flags(struct pci_host_bridge *root_bridge,
 702				       struct pci_host_bridge *vmd_bridge)
 703{
 704	vmd_bridge->native_pcie_hotplug = root_bridge->native_pcie_hotplug;
 705	vmd_bridge->native_shpc_hotplug = root_bridge->native_shpc_hotplug;
 706	vmd_bridge->native_aer = root_bridge->native_aer;
 707	vmd_bridge->native_pme = root_bridge->native_pme;
 708	vmd_bridge->native_ltr = root_bridge->native_ltr;
 709	vmd_bridge->native_dpc = root_bridge->native_dpc;
 710}
 711
 712static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
 713{
 714	struct pci_sysdata *sd = &vmd->sysdata;
 715	struct resource *res;
 716	u32 upper_bits;
 717	unsigned long flags;
 718	LIST_HEAD(resources);
 719	resource_size_t offset[2] = {0};
 720	resource_size_t membar2_offset = 0x2000;
 721	struct pci_bus *child;
 722	struct pci_dev *dev;
 723	int ret;
 724
 725	/*
 726	 * Shadow registers may exist in certain VMD device ids which allow
 727	 * guests to correctly assign host physical addresses to the root ports
 728	 * and child devices. These registers will either return the host value
 729	 * or 0, depending on an enable bit in the VMD device.
 730	 */
 731	if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
 732		membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
 733		ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
 734		if (ret)
 735			return ret;
 736	} else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
 737		ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
 738		if (ret)
 739			return ret;
 740	}
 741
 742	/*
 743	 * Certain VMD devices may have a root port configuration option which
 744	 * limits the bus range to between 0-127, 128-255, or 224-255
 745	 */
 746	if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
 747		ret = vmd_get_bus_number_start(vmd);
 748		if (ret)
 749			return ret;
 750	}
 751
 752	res = &vmd->dev->resource[VMD_CFGBAR];
 753	vmd->resources[0] = (struct resource) {
 754		.name  = "VMD CFGBAR",
 755		.start = vmd->busn_start,
 756		.end   = vmd->busn_start + (resource_size(res) >> 20) - 1,
 757		.flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
 758	};
 759
 760	/*
 761	 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
 762	 * put 32-bit resources in the window.
 763	 *
 764	 * There's no hardware reason why a 64-bit window *couldn't*
 765	 * contain a 32-bit resource, but pbus_size_mem() computes the
 766	 * bridge window size assuming a 64-bit window will contain no
 767	 * 32-bit resources.  __pci_assign_resource() enforces that
 768	 * artificial restriction to make sure everything will fit.
 769	 *
 770	 * The only way we could use a 64-bit non-prefetchable MEMBAR is
 771	 * if its address is <4GB so that we can convert it to a 32-bit
 772	 * resource.  To be visible to the host OS, all VMD endpoints must
 773	 * be initially configured by platform BIOS, which includes setting
 774	 * up these resources.  We can assume the device is configured
 775	 * according to the platform needs.
 776	 */
 777	res = &vmd->dev->resource[VMD_MEMBAR1];
 778	upper_bits = upper_32_bits(res->end);
 779	flags = res->flags & ~IORESOURCE_SIZEALIGN;
 780	if (!upper_bits)
 781		flags &= ~IORESOURCE_MEM_64;
 782	vmd->resources[1] = (struct resource) {
 783		.name  = "VMD MEMBAR1",
 784		.start = res->start,
 785		.end   = res->end,
 786		.flags = flags,
 787		.parent = res,
 788	};
 789
 790	res = &vmd->dev->resource[VMD_MEMBAR2];
 791	upper_bits = upper_32_bits(res->end);
 792	flags = res->flags & ~IORESOURCE_SIZEALIGN;
 793	if (!upper_bits)
 794		flags &= ~IORESOURCE_MEM_64;
 795	vmd->resources[2] = (struct resource) {
 796		.name  = "VMD MEMBAR2",
 797		.start = res->start + membar2_offset,
 798		.end   = res->end,
 799		.flags = flags,
 800		.parent = res,
 801	};
 802
 803	sd->vmd_dev = vmd->dev;
 804	sd->domain = vmd_find_free_domain();
 805	if (sd->domain < 0)
 806		return sd->domain;
 807
 808	sd->node = pcibus_to_node(vmd->dev->bus);
 809
 810	/*
 811	 * Currently MSI remapping must be enabled in guest passthrough mode
 812	 * due to some missing interrupt remapping plumbing. This is probably
 813	 * acceptable because the guest is usually CPU-limited and MSI
 814	 * remapping doesn't become a performance bottleneck.
 815	 */
 816	if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) ||
 817	    offset[0] || offset[1]) {
 818		ret = vmd_alloc_irqs(vmd);
 819		if (ret)
 820			return ret;
 821
 822		vmd_set_msi_remapping(vmd, true);
 823
 824		ret = vmd_create_irq_domain(vmd);
 825		if (ret)
 826			return ret;
 827
 828		/*
 829		 * Override the IRQ domain bus token so the domain can be
 830		 * distinguished from a regular PCI/MSI domain.
 831		 */
 832		irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI);
 833	} else {
 834		vmd_set_msi_remapping(vmd, false);
 835	}
 836
 837	pci_add_resource(&resources, &vmd->resources[0]);
 838	pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
 839	pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
 840
 841	vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
 842				       &vmd_ops, sd, &resources);
 843	if (!vmd->bus) {
 844		pci_free_resource_list(&resources);
 845		vmd_remove_irq_domain(vmd);
 846		return -ENODEV;
 847	}
 848
 849	vmd_copy_host_bridge_flags(pci_find_host_bridge(vmd->dev->bus),
 850				   to_pci_host_bridge(vmd->bus->bridge));
 851
 852	vmd_attach_resources(vmd);
 853	if (vmd->irq_domain)
 854		dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
 855	else
 856		dev_set_msi_domain(&vmd->bus->dev,
 857				   dev_get_msi_domain(&vmd->dev->dev));
 858
 859	vmd_acpi_begin();
 860
 861	pci_scan_child_bus(vmd->bus);
 862	vmd_domain_reset(vmd);
 863
 864	/* When Intel VMD is enabled, the OS does not discover the Root Ports
 865	 * owned by Intel VMD within the MMCFG space. pci_reset_bus() applies
 866	 * a reset to the parent of the PCI device supplied as argument. This
 867	 * is why we pass a child device, so the reset can be triggered at
 868	 * the Intel bridge level and propagated to all the children in the
 869	 * hierarchy.
 870	 */
 871	list_for_each_entry(child, &vmd->bus->children, node) {
 872		if (!list_empty(&child->devices)) {
 873			dev = list_first_entry(&child->devices,
 874					       struct pci_dev, bus_list);
 875			if (pci_reset_bus(dev))
 876				pci_warn(dev, "can't reset device: %d\n", ret);
 877
 878			break;
 879		}
 880	}
 881
 882	pci_assign_unassigned_bus_resources(vmd->bus);
 883
 884	/*
 885	 * VMD root buses are virtual and don't return true on pci_is_pcie()
 886	 * and will fail pcie_bus_configure_settings() early. It can instead be
 887	 * run on each of the real root ports.
 888	 */
 889	list_for_each_entry(child, &vmd->bus->children, node)
 890		pcie_bus_configure_settings(child);
 891
 892	pci_bus_add_devices(vmd->bus);
 893
 894	vmd_acpi_end();
 895
 896	WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
 897			       "domain"), "Can't create symlink to domain\n");
 898	return 0;
 899}
 900
 901static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
 902{
 903	unsigned long features = (unsigned long) id->driver_data;
 904	struct vmd_dev *vmd;
 905	int err;
 906
 907	if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
 908		return -ENOMEM;
 909
 910	vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
 911	if (!vmd)
 912		return -ENOMEM;
 913
 914	vmd->dev = dev;
 915	vmd->instance = ida_simple_get(&vmd_instance_ida, 0, 0, GFP_KERNEL);
 916	if (vmd->instance < 0)
 917		return vmd->instance;
 918
 919	vmd->name = devm_kasprintf(&dev->dev, GFP_KERNEL, "vmd%d",
 920				   vmd->instance);
 921	if (!vmd->name) {
 922		err = -ENOMEM;
 923		goto out_release_instance;
 924	}
 925
 926	err = pcim_enable_device(dev);
 927	if (err < 0)
 928		goto out_release_instance;
 929
 930	vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
 931	if (!vmd->cfgbar) {
 932		err = -ENOMEM;
 933		goto out_release_instance;
 934	}
 935
 936	pci_set_master(dev);
 937	if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
 938	    dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) {
 939		err = -ENODEV;
 940		goto out_release_instance;
 941	}
 942
 943	if (features & VMD_FEAT_OFFSET_FIRST_VECTOR)
 944		vmd->first_vec = 1;
 945
 946	spin_lock_init(&vmd->cfg_lock);
 947	pci_set_drvdata(dev, vmd);
 948	err = vmd_enable_domain(vmd, features);
 949	if (err)
 950		goto out_release_instance;
 951
 952	dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
 953		 vmd->sysdata.domain);
 954	return 0;
 955
 956 out_release_instance:
 957	ida_simple_remove(&vmd_instance_ida, vmd->instance);
 958	return err;
 959}
 960
 961static void vmd_cleanup_srcu(struct vmd_dev *vmd)
 962{
 963	int i;
 964
 965	for (i = 0; i < vmd->msix_count; i++)
 966		cleanup_srcu_struct(&vmd->irqs[i].srcu);
 967}
 968
 969static void vmd_remove(struct pci_dev *dev)
 970{
 971	struct vmd_dev *vmd = pci_get_drvdata(dev);
 972
 973	sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
 974	pci_stop_root_bus(vmd->bus);
 975	pci_remove_root_bus(vmd->bus);
 976	vmd_cleanup_srcu(vmd);
 977	vmd_detach_resources(vmd);
 978	vmd_remove_irq_domain(vmd);
 979	ida_simple_remove(&vmd_instance_ida, vmd->instance);
 980}
 981
 982#ifdef CONFIG_PM_SLEEP
 983static int vmd_suspend(struct device *dev)
 984{
 985	struct pci_dev *pdev = to_pci_dev(dev);
 986	struct vmd_dev *vmd = pci_get_drvdata(pdev);
 987	int i;
 988
 989	for (i = 0; i < vmd->msix_count; i++)
 990		devm_free_irq(dev, vmd->irqs[i].virq, &vmd->irqs[i]);
 991
 992	return 0;
 993}
 994
 995static int vmd_resume(struct device *dev)
 996{
 997	struct pci_dev *pdev = to_pci_dev(dev);
 998	struct vmd_dev *vmd = pci_get_drvdata(pdev);
 999	int err, i;
1000
1001       if (vmd->irq_domain)
1002               vmd_set_msi_remapping(vmd, true);
1003       else
1004               vmd_set_msi_remapping(vmd, false);
1005
1006	for (i = 0; i < vmd->msix_count; i++) {
1007		err = devm_request_irq(dev, vmd->irqs[i].virq,
1008				       vmd_irq, IRQF_NO_THREAD,
1009				       vmd->name, &vmd->irqs[i]);
1010		if (err)
1011			return err;
1012	}
1013
1014	return 0;
1015}
1016#endif
1017static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
1018
1019static const struct pci_device_id vmd_ids[] = {
1020	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
1021		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
1022	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
1023		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
1024				VMD_FEAT_HAS_BUS_RESTRICTIONS |
1025				VMD_FEAT_CAN_BYPASS_MSI_REMAP,},
1026	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x467f),
1027		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
1028				VMD_FEAT_HAS_BUS_RESTRICTIONS |
1029				VMD_FEAT_OFFSET_FIRST_VECTOR,},
1030	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x4c3d),
1031		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
1032				VMD_FEAT_HAS_BUS_RESTRICTIONS |
1033				VMD_FEAT_OFFSET_FIRST_VECTOR,},
1034	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0xa77f),
1035		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
1036				VMD_FEAT_HAS_BUS_RESTRICTIONS |
1037				VMD_FEAT_OFFSET_FIRST_VECTOR,},
1038	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x7d0b),
1039		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
1040				VMD_FEAT_HAS_BUS_RESTRICTIONS |
1041				VMD_FEAT_OFFSET_FIRST_VECTOR,},
1042	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0xad0b),
1043		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
1044				VMD_FEAT_HAS_BUS_RESTRICTIONS |
1045				VMD_FEAT_OFFSET_FIRST_VECTOR,},
1046	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
1047		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
1048				VMD_FEAT_HAS_BUS_RESTRICTIONS |
1049				VMD_FEAT_OFFSET_FIRST_VECTOR,},
1050	{0,}
1051};
1052MODULE_DEVICE_TABLE(pci, vmd_ids);
1053
1054static struct pci_driver vmd_drv = {
1055	.name		= "vmd",
1056	.id_table	= vmd_ids,
1057	.probe		= vmd_probe,
1058	.remove		= vmd_remove,
1059	.driver		= {
1060		.pm	= &vmd_dev_pm_ops,
1061	},
1062};
1063module_pci_driver(vmd_drv);
1064
1065MODULE_AUTHOR("Intel Corporation");
1066MODULE_LICENSE("GPL v2");
1067MODULE_VERSION("0.6");