Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*******************************************************************************
   3  This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
   4  ST Ethernet IPs are built around a Synopsys IP Core.
   5
   6	Copyright(C) 2007-2011 STMicroelectronics Ltd
   7
   8
   9  Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
  10
  11  Documentation available at:
  12	http://www.stlinux.com
  13  Support available at:
  14	https://bugzilla.stlinux.com/
  15*******************************************************************************/
  16
  17#include <linux/clk.h>
  18#include <linux/kernel.h>
  19#include <linux/interrupt.h>
  20#include <linux/ip.h>
  21#include <linux/tcp.h>
  22#include <linux/skbuff.h>
  23#include <linux/ethtool.h>
  24#include <linux/if_ether.h>
  25#include <linux/crc32.h>
  26#include <linux/mii.h>
  27#include <linux/if.h>
  28#include <linux/if_vlan.h>
  29#include <linux/dma-mapping.h>
  30#include <linux/slab.h>
  31#include <linux/pm_runtime.h>
  32#include <linux/prefetch.h>
  33#include <linux/pinctrl/consumer.h>
  34#ifdef CONFIG_DEBUG_FS
  35#include <linux/debugfs.h>
  36#include <linux/seq_file.h>
  37#endif /* CONFIG_DEBUG_FS */
  38#include <linux/net_tstamp.h>
  39#include <linux/phylink.h>
  40#include <linux/udp.h>
  41#include <linux/bpf_trace.h>
  42#include <net/pkt_cls.h>
  43#include <net/xdp_sock_drv.h>
  44#include "stmmac_ptp.h"
  45#include "stmmac.h"
  46#include "stmmac_xdp.h"
  47#include <linux/reset.h>
  48#include <linux/of_mdio.h>
  49#include "dwmac1000.h"
  50#include "dwxgmac2.h"
  51#include "hwif.h"
  52
  53/* As long as the interface is active, we keep the timestamping counter enabled
  54 * with fine resolution and binary rollover. This avoid non-monotonic behavior
  55 * (clock jumps) when changing timestamping settings at runtime.
  56 */
  57#define STMMAC_HWTS_ACTIVE	(PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
  58				 PTP_TCR_TSCTRLSSR)
  59
  60#define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
  61#define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
  62
  63/* Module parameters */
  64#define TX_TIMEO	5000
  65static int watchdog = TX_TIMEO;
  66module_param(watchdog, int, 0644);
  67MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
  68
  69static int debug = -1;
  70module_param(debug, int, 0644);
  71MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
  72
  73static int phyaddr = -1;
  74module_param(phyaddr, int, 0444);
  75MODULE_PARM_DESC(phyaddr, "Physical device address");
  76
  77#define STMMAC_TX_THRESH(x)	((x)->dma_conf.dma_tx_size / 4)
  78#define STMMAC_RX_THRESH(x)	((x)->dma_conf.dma_rx_size / 4)
  79
  80/* Limit to make sure XDP TX and slow path can coexist */
  81#define STMMAC_XSK_TX_BUDGET_MAX	256
  82#define STMMAC_TX_XSK_AVAIL		16
  83#define STMMAC_RX_FILL_BATCH		16
  84
  85#define STMMAC_XDP_PASS		0
  86#define STMMAC_XDP_CONSUMED	BIT(0)
  87#define STMMAC_XDP_TX		BIT(1)
  88#define STMMAC_XDP_REDIRECT	BIT(2)
  89
  90static int flow_ctrl = FLOW_AUTO;
  91module_param(flow_ctrl, int, 0644);
  92MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
  93
  94static int pause = PAUSE_TIME;
  95module_param(pause, int, 0644);
  96MODULE_PARM_DESC(pause, "Flow Control Pause Time");
  97
  98#define TC_DEFAULT 64
  99static int tc = TC_DEFAULT;
 100module_param(tc, int, 0644);
 101MODULE_PARM_DESC(tc, "DMA threshold control value");
 102
 103#define	DEFAULT_BUFSIZE	1536
 104static int buf_sz = DEFAULT_BUFSIZE;
 105module_param(buf_sz, int, 0644);
 106MODULE_PARM_DESC(buf_sz, "DMA buffer size");
 107
 108#define	STMMAC_RX_COPYBREAK	256
 109
 110static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
 111				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
 112				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
 113
 114#define STMMAC_DEFAULT_LPI_TIMER	1000
 115static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
 116module_param(eee_timer, int, 0644);
 117MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
 118#define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
 119
 120/* By default the driver will use the ring mode to manage tx and rx descriptors,
 121 * but allow user to force to use the chain instead of the ring
 122 */
 123static unsigned int chain_mode;
 124module_param(chain_mode, int, 0444);
 125MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
 126
 127static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
 128/* For MSI interrupts handling */
 129static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
 130static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
 131static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
 132static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
 133static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue);
 134static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue);
 135static void stmmac_reset_queues_param(struct stmmac_priv *priv);
 136static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
 137static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
 138static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
 139					  u32 rxmode, u32 chan);
 140
 141#ifdef CONFIG_DEBUG_FS
 142static const struct net_device_ops stmmac_netdev_ops;
 143static void stmmac_init_fs(struct net_device *dev);
 144static void stmmac_exit_fs(struct net_device *dev);
 145#endif
 146
 147#define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
 148
 149int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
 150{
 151	int ret = 0;
 152
 153	if (enabled) {
 154		ret = clk_prepare_enable(priv->plat->stmmac_clk);
 155		if (ret)
 156			return ret;
 157		ret = clk_prepare_enable(priv->plat->pclk);
 158		if (ret) {
 159			clk_disable_unprepare(priv->plat->stmmac_clk);
 160			return ret;
 161		}
 162		if (priv->plat->clks_config) {
 163			ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
 164			if (ret) {
 165				clk_disable_unprepare(priv->plat->stmmac_clk);
 166				clk_disable_unprepare(priv->plat->pclk);
 167				return ret;
 168			}
 169		}
 170	} else {
 171		clk_disable_unprepare(priv->plat->stmmac_clk);
 172		clk_disable_unprepare(priv->plat->pclk);
 173		if (priv->plat->clks_config)
 174			priv->plat->clks_config(priv->plat->bsp_priv, enabled);
 175	}
 176
 177	return ret;
 178}
 179EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
 180
 181/**
 182 * stmmac_verify_args - verify the driver parameters.
 183 * Description: it checks the driver parameters and set a default in case of
 184 * errors.
 185 */
 186static void stmmac_verify_args(void)
 187{
 188	if (unlikely(watchdog < 0))
 189		watchdog = TX_TIMEO;
 190	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
 191		buf_sz = DEFAULT_BUFSIZE;
 192	if (unlikely(flow_ctrl > 1))
 193		flow_ctrl = FLOW_AUTO;
 194	else if (likely(flow_ctrl < 0))
 195		flow_ctrl = FLOW_OFF;
 196	if (unlikely((pause < 0) || (pause > 0xffff)))
 197		pause = PAUSE_TIME;
 198	if (eee_timer < 0)
 199		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
 200}
 201
 202static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
 203{
 204	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
 205	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
 206	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
 207	u32 queue;
 208
 209	for (queue = 0; queue < maxq; queue++) {
 210		struct stmmac_channel *ch = &priv->channel[queue];
 211
 212		if (stmmac_xdp_is_enabled(priv) &&
 213		    test_bit(queue, priv->af_xdp_zc_qps)) {
 214			napi_disable(&ch->rxtx_napi);
 215			continue;
 216		}
 217
 218		if (queue < rx_queues_cnt)
 219			napi_disable(&ch->rx_napi);
 220		if (queue < tx_queues_cnt)
 221			napi_disable(&ch->tx_napi);
 222	}
 223}
 224
 225/**
 226 * stmmac_disable_all_queues - Disable all queues
 227 * @priv: driver private structure
 228 */
 229static void stmmac_disable_all_queues(struct stmmac_priv *priv)
 230{
 231	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
 232	struct stmmac_rx_queue *rx_q;
 233	u32 queue;
 234
 235	/* synchronize_rcu() needed for pending XDP buffers to drain */
 236	for (queue = 0; queue < rx_queues_cnt; queue++) {
 237		rx_q = &priv->dma_conf.rx_queue[queue];
 238		if (rx_q->xsk_pool) {
 239			synchronize_rcu();
 240			break;
 241		}
 242	}
 243
 244	__stmmac_disable_all_queues(priv);
 245}
 246
 247/**
 248 * stmmac_enable_all_queues - Enable all queues
 249 * @priv: driver private structure
 250 */
 251static void stmmac_enable_all_queues(struct stmmac_priv *priv)
 252{
 253	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
 254	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
 255	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
 256	u32 queue;
 257
 258	for (queue = 0; queue < maxq; queue++) {
 259		struct stmmac_channel *ch = &priv->channel[queue];
 260
 261		if (stmmac_xdp_is_enabled(priv) &&
 262		    test_bit(queue, priv->af_xdp_zc_qps)) {
 263			napi_enable(&ch->rxtx_napi);
 264			continue;
 265		}
 266
 267		if (queue < rx_queues_cnt)
 268			napi_enable(&ch->rx_napi);
 269		if (queue < tx_queues_cnt)
 270			napi_enable(&ch->tx_napi);
 271	}
 272}
 273
 274static void stmmac_service_event_schedule(struct stmmac_priv *priv)
 275{
 276	if (!test_bit(STMMAC_DOWN, &priv->state) &&
 277	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
 278		queue_work(priv->wq, &priv->service_task);
 279}
 280
 281static void stmmac_global_err(struct stmmac_priv *priv)
 282{
 283	netif_carrier_off(priv->dev);
 284	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
 285	stmmac_service_event_schedule(priv);
 286}
 287
 288/**
 289 * stmmac_clk_csr_set - dynamically set the MDC clock
 290 * @priv: driver private structure
 291 * Description: this is to dynamically set the MDC clock according to the csr
 292 * clock input.
 293 * Note:
 294 *	If a specific clk_csr value is passed from the platform
 295 *	this means that the CSR Clock Range selection cannot be
 296 *	changed at run-time and it is fixed (as reported in the driver
 297 *	documentation). Viceversa the driver will try to set the MDC
 298 *	clock dynamically according to the actual clock input.
 299 */
 300static void stmmac_clk_csr_set(struct stmmac_priv *priv)
 301{
 302	u32 clk_rate;
 303
 304	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
 305
 306	/* Platform provided default clk_csr would be assumed valid
 307	 * for all other cases except for the below mentioned ones.
 308	 * For values higher than the IEEE 802.3 specified frequency
 309	 * we can not estimate the proper divider as it is not known
 310	 * the frequency of clk_csr_i. So we do not change the default
 311	 * divider.
 312	 */
 313	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
 314		if (clk_rate < CSR_F_35M)
 315			priv->clk_csr = STMMAC_CSR_20_35M;
 316		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
 317			priv->clk_csr = STMMAC_CSR_35_60M;
 318		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
 319			priv->clk_csr = STMMAC_CSR_60_100M;
 320		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
 321			priv->clk_csr = STMMAC_CSR_100_150M;
 322		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
 323			priv->clk_csr = STMMAC_CSR_150_250M;
 324		else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
 325			priv->clk_csr = STMMAC_CSR_250_300M;
 326	}
 327
 328	if (priv->plat->has_sun8i) {
 329		if (clk_rate > 160000000)
 330			priv->clk_csr = 0x03;
 331		else if (clk_rate > 80000000)
 332			priv->clk_csr = 0x02;
 333		else if (clk_rate > 40000000)
 334			priv->clk_csr = 0x01;
 335		else
 336			priv->clk_csr = 0;
 337	}
 338
 339	if (priv->plat->has_xgmac) {
 340		if (clk_rate > 400000000)
 341			priv->clk_csr = 0x5;
 342		else if (clk_rate > 350000000)
 343			priv->clk_csr = 0x4;
 344		else if (clk_rate > 300000000)
 345			priv->clk_csr = 0x3;
 346		else if (clk_rate > 250000000)
 347			priv->clk_csr = 0x2;
 348		else if (clk_rate > 150000000)
 349			priv->clk_csr = 0x1;
 350		else
 351			priv->clk_csr = 0x0;
 352	}
 353}
 354
 355static void print_pkt(unsigned char *buf, int len)
 356{
 357	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
 358	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
 359}
 360
 361static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
 362{
 363	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
 364	u32 avail;
 365
 366	if (tx_q->dirty_tx > tx_q->cur_tx)
 367		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
 368	else
 369		avail = priv->dma_conf.dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
 370
 371	return avail;
 372}
 373
 374/**
 375 * stmmac_rx_dirty - Get RX queue dirty
 376 * @priv: driver private structure
 377 * @queue: RX queue index
 378 */
 379static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
 380{
 381	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
 382	u32 dirty;
 383
 384	if (rx_q->dirty_rx <= rx_q->cur_rx)
 385		dirty = rx_q->cur_rx - rx_q->dirty_rx;
 386	else
 387		dirty = priv->dma_conf.dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
 388
 389	return dirty;
 390}
 391
 392static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
 393{
 394	int tx_lpi_timer;
 395
 396	/* Clear/set the SW EEE timer flag based on LPI ET enablement */
 397	priv->eee_sw_timer_en = en ? 0 : 1;
 398	tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
 399	stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
 400}
 401
 402/**
 403 * stmmac_enable_eee_mode - check and enter in LPI mode
 404 * @priv: driver private structure
 405 * Description: this function is to verify and enter in LPI mode in case of
 406 * EEE.
 407 */
 408static int stmmac_enable_eee_mode(struct stmmac_priv *priv)
 409{
 410	u32 tx_cnt = priv->plat->tx_queues_to_use;
 411	u32 queue;
 412
 413	/* check if all TX queues have the work finished */
 414	for (queue = 0; queue < tx_cnt; queue++) {
 415		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
 416
 417		if (tx_q->dirty_tx != tx_q->cur_tx)
 418			return -EBUSY; /* still unfinished work */
 419	}
 420
 421	/* Check and enter in LPI mode */
 422	if (!priv->tx_path_in_lpi_mode)
 423		stmmac_set_eee_mode(priv, priv->hw,
 424				priv->plat->en_tx_lpi_clockgating);
 425	return 0;
 426}
 427
 428/**
 429 * stmmac_disable_eee_mode - disable and exit from LPI mode
 430 * @priv: driver private structure
 431 * Description: this function is to exit and disable EEE in case of
 432 * LPI state is true. This is called by the xmit.
 433 */
 434void stmmac_disable_eee_mode(struct stmmac_priv *priv)
 435{
 436	if (!priv->eee_sw_timer_en) {
 437		stmmac_lpi_entry_timer_config(priv, 0);
 438		return;
 439	}
 440
 441	stmmac_reset_eee_mode(priv, priv->hw);
 442	del_timer_sync(&priv->eee_ctrl_timer);
 443	priv->tx_path_in_lpi_mode = false;
 444}
 445
 446/**
 447 * stmmac_eee_ctrl_timer - EEE TX SW timer.
 448 * @t:  timer_list struct containing private info
 449 * Description:
 450 *  if there is no data transfer and if we are not in LPI state,
 451 *  then MAC Transmitter can be moved to LPI state.
 452 */
 453static void stmmac_eee_ctrl_timer(struct timer_list *t)
 454{
 455	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
 456
 457	if (stmmac_enable_eee_mode(priv))
 458		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
 459}
 460
 461/**
 462 * stmmac_eee_init - init EEE
 463 * @priv: driver private structure
 464 * Description:
 465 *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
 466 *  can also manage EEE, this function enable the LPI state and start related
 467 *  timer.
 468 */
 469bool stmmac_eee_init(struct stmmac_priv *priv)
 470{
 471	int eee_tw_timer = priv->eee_tw_timer;
 472
 473	/* Using PCS we cannot dial with the phy registers at this stage
 474	 * so we do not support extra feature like EEE.
 475	 */
 476	if (priv->hw->pcs == STMMAC_PCS_TBI ||
 477	    priv->hw->pcs == STMMAC_PCS_RTBI)
 478		return false;
 479
 480	/* Check if MAC core supports the EEE feature. */
 481	if (!priv->dma_cap.eee)
 482		return false;
 483
 484	mutex_lock(&priv->lock);
 485
 486	/* Check if it needs to be deactivated */
 487	if (!priv->eee_active) {
 488		if (priv->eee_enabled) {
 489			netdev_dbg(priv->dev, "disable EEE\n");
 490			stmmac_lpi_entry_timer_config(priv, 0);
 491			del_timer_sync(&priv->eee_ctrl_timer);
 492			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
 493			if (priv->hw->xpcs)
 494				xpcs_config_eee(priv->hw->xpcs,
 495						priv->plat->mult_fact_100ns,
 496						false);
 497		}
 498		mutex_unlock(&priv->lock);
 499		return false;
 500	}
 501
 502	if (priv->eee_active && !priv->eee_enabled) {
 503		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
 504		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
 505				     eee_tw_timer);
 506		if (priv->hw->xpcs)
 507			xpcs_config_eee(priv->hw->xpcs,
 508					priv->plat->mult_fact_100ns,
 509					true);
 510	}
 511
 512	if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
 513		del_timer_sync(&priv->eee_ctrl_timer);
 514		priv->tx_path_in_lpi_mode = false;
 515		stmmac_lpi_entry_timer_config(priv, 1);
 516	} else {
 517		stmmac_lpi_entry_timer_config(priv, 0);
 518		mod_timer(&priv->eee_ctrl_timer,
 519			  STMMAC_LPI_T(priv->tx_lpi_timer));
 520	}
 521
 522	mutex_unlock(&priv->lock);
 523	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
 524	return true;
 525}
 526
 527/* stmmac_get_tx_hwtstamp - get HW TX timestamps
 528 * @priv: driver private structure
 529 * @p : descriptor pointer
 530 * @skb : the socket buffer
 531 * Description :
 532 * This function will read timestamp from the descriptor & pass it to stack.
 533 * and also perform some sanity checks.
 534 */
 535static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
 536				   struct dma_desc *p, struct sk_buff *skb)
 537{
 538	struct skb_shared_hwtstamps shhwtstamp;
 539	bool found = false;
 540	u64 ns = 0;
 541
 542	if (!priv->hwts_tx_en)
 543		return;
 544
 545	/* exit if skb doesn't support hw tstamp */
 546	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
 547		return;
 548
 549	/* check tx tstamp status */
 550	if (stmmac_get_tx_timestamp_status(priv, p)) {
 551		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
 552		found = true;
 553	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
 554		found = true;
 555	}
 556
 557	if (found) {
 558		ns -= priv->plat->cdc_error_adj;
 559
 560		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
 561		shhwtstamp.hwtstamp = ns_to_ktime(ns);
 562
 563		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
 564		/* pass tstamp to stack */
 565		skb_tstamp_tx(skb, &shhwtstamp);
 566	}
 567}
 568
 569/* stmmac_get_rx_hwtstamp - get HW RX timestamps
 570 * @priv: driver private structure
 571 * @p : descriptor pointer
 572 * @np : next descriptor pointer
 573 * @skb : the socket buffer
 574 * Description :
 575 * This function will read received packet's timestamp from the descriptor
 576 * and pass it to stack. It also perform some sanity checks.
 577 */
 578static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
 579				   struct dma_desc *np, struct sk_buff *skb)
 580{
 581	struct skb_shared_hwtstamps *shhwtstamp = NULL;
 582	struct dma_desc *desc = p;
 583	u64 ns = 0;
 584
 585	if (!priv->hwts_rx_en)
 586		return;
 587	/* For GMAC4, the valid timestamp is from CTX next desc. */
 588	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
 589		desc = np;
 590
 591	/* Check if timestamp is available */
 592	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
 593		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
 594
 595		ns -= priv->plat->cdc_error_adj;
 596
 597		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
 598		shhwtstamp = skb_hwtstamps(skb);
 599		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
 600		shhwtstamp->hwtstamp = ns_to_ktime(ns);
 601	} else  {
 602		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
 603	}
 604}
 605
 606/**
 607 *  stmmac_hwtstamp_set - control hardware timestamping.
 608 *  @dev: device pointer.
 609 *  @ifr: An IOCTL specific structure, that can contain a pointer to
 610 *  a proprietary structure used to pass information to the driver.
 611 *  Description:
 612 *  This function configures the MAC to enable/disable both outgoing(TX)
 613 *  and incoming(RX) packets time stamping based on user input.
 614 *  Return Value:
 615 *  0 on success and an appropriate -ve integer on failure.
 616 */
 617static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
 618{
 619	struct stmmac_priv *priv = netdev_priv(dev);
 620	struct hwtstamp_config config;
 621	u32 ptp_v2 = 0;
 622	u32 tstamp_all = 0;
 623	u32 ptp_over_ipv4_udp = 0;
 624	u32 ptp_over_ipv6_udp = 0;
 625	u32 ptp_over_ethernet = 0;
 626	u32 snap_type_sel = 0;
 627	u32 ts_master_en = 0;
 628	u32 ts_event_en = 0;
 629
 630	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
 631		netdev_alert(priv->dev, "No support for HW time stamping\n");
 632		priv->hwts_tx_en = 0;
 633		priv->hwts_rx_en = 0;
 634
 635		return -EOPNOTSUPP;
 636	}
 637
 638	if (copy_from_user(&config, ifr->ifr_data,
 639			   sizeof(config)))
 640		return -EFAULT;
 641
 642	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
 643		   __func__, config.flags, config.tx_type, config.rx_filter);
 644
 645	if (config.tx_type != HWTSTAMP_TX_OFF &&
 646	    config.tx_type != HWTSTAMP_TX_ON)
 647		return -ERANGE;
 648
 649	if (priv->adv_ts) {
 650		switch (config.rx_filter) {
 651		case HWTSTAMP_FILTER_NONE:
 652			/* time stamp no incoming packet at all */
 653			config.rx_filter = HWTSTAMP_FILTER_NONE;
 654			break;
 655
 656		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
 657			/* PTP v1, UDP, any kind of event packet */
 658			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
 659			/* 'xmac' hardware can support Sync, Pdelay_Req and
 660			 * Pdelay_resp by setting bit14 and bits17/16 to 01
 661			 * This leaves Delay_Req timestamps out.
 662			 * Enable all events *and* general purpose message
 663			 * timestamping
 664			 */
 665			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
 666			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
 667			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
 668			break;
 669
 670		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
 671			/* PTP v1, UDP, Sync packet */
 672			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
 673			/* take time stamp for SYNC messages only */
 674			ts_event_en = PTP_TCR_TSEVNTENA;
 675
 676			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
 677			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
 678			break;
 679
 680		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
 681			/* PTP v1, UDP, Delay_req packet */
 682			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
 683			/* take time stamp for Delay_Req messages only */
 684			ts_master_en = PTP_TCR_TSMSTRENA;
 685			ts_event_en = PTP_TCR_TSEVNTENA;
 686
 687			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
 688			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
 689			break;
 690
 691		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
 692			/* PTP v2, UDP, any kind of event packet */
 693			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
 694			ptp_v2 = PTP_TCR_TSVER2ENA;
 695			/* take time stamp for all event messages */
 696			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
 697
 698			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
 699			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
 700			break;
 701
 702		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
 703			/* PTP v2, UDP, Sync packet */
 704			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
 705			ptp_v2 = PTP_TCR_TSVER2ENA;
 706			/* take time stamp for SYNC messages only */
 707			ts_event_en = PTP_TCR_TSEVNTENA;
 708
 709			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
 710			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
 711			break;
 712
 713		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
 714			/* PTP v2, UDP, Delay_req packet */
 715			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
 716			ptp_v2 = PTP_TCR_TSVER2ENA;
 717			/* take time stamp for Delay_Req messages only */
 718			ts_master_en = PTP_TCR_TSMSTRENA;
 719			ts_event_en = PTP_TCR_TSEVNTENA;
 720
 721			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
 722			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
 723			break;
 724
 725		case HWTSTAMP_FILTER_PTP_V2_EVENT:
 726			/* PTP v2/802.AS1 any layer, any kind of event packet */
 727			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
 728			ptp_v2 = PTP_TCR_TSVER2ENA;
 729			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
 730			if (priv->synopsys_id < DWMAC_CORE_4_10)
 731				ts_event_en = PTP_TCR_TSEVNTENA;
 732			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
 733			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
 734			ptp_over_ethernet = PTP_TCR_TSIPENA;
 735			break;
 736
 737		case HWTSTAMP_FILTER_PTP_V2_SYNC:
 738			/* PTP v2/802.AS1, any layer, Sync packet */
 739			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
 740			ptp_v2 = PTP_TCR_TSVER2ENA;
 741			/* take time stamp for SYNC messages only */
 742			ts_event_en = PTP_TCR_TSEVNTENA;
 743
 744			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
 745			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
 746			ptp_over_ethernet = PTP_TCR_TSIPENA;
 747			break;
 748
 749		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
 750			/* PTP v2/802.AS1, any layer, Delay_req packet */
 751			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
 752			ptp_v2 = PTP_TCR_TSVER2ENA;
 753			/* take time stamp for Delay_Req messages only */
 754			ts_master_en = PTP_TCR_TSMSTRENA;
 755			ts_event_en = PTP_TCR_TSEVNTENA;
 756
 757			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
 758			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
 759			ptp_over_ethernet = PTP_TCR_TSIPENA;
 760			break;
 761
 762		case HWTSTAMP_FILTER_NTP_ALL:
 763		case HWTSTAMP_FILTER_ALL:
 764			/* time stamp any incoming packet */
 765			config.rx_filter = HWTSTAMP_FILTER_ALL;
 766			tstamp_all = PTP_TCR_TSENALL;
 767			break;
 768
 769		default:
 770			return -ERANGE;
 771		}
 772	} else {
 773		switch (config.rx_filter) {
 774		case HWTSTAMP_FILTER_NONE:
 775			config.rx_filter = HWTSTAMP_FILTER_NONE;
 776			break;
 777		default:
 778			/* PTP v1, UDP, any kind of event packet */
 779			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
 780			break;
 781		}
 782	}
 783	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
 784	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
 785
 786	priv->systime_flags = STMMAC_HWTS_ACTIVE;
 787
 788	if (priv->hwts_tx_en || priv->hwts_rx_en) {
 789		priv->systime_flags |= tstamp_all | ptp_v2 |
 790				       ptp_over_ethernet | ptp_over_ipv6_udp |
 791				       ptp_over_ipv4_udp | ts_event_en |
 792				       ts_master_en | snap_type_sel;
 793	}
 794
 795	stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
 796
 797	memcpy(&priv->tstamp_config, &config, sizeof(config));
 798
 799	return copy_to_user(ifr->ifr_data, &config,
 800			    sizeof(config)) ? -EFAULT : 0;
 801}
 802
 803/**
 804 *  stmmac_hwtstamp_get - read hardware timestamping.
 805 *  @dev: device pointer.
 806 *  @ifr: An IOCTL specific structure, that can contain a pointer to
 807 *  a proprietary structure used to pass information to the driver.
 808 *  Description:
 809 *  This function obtain the current hardware timestamping settings
 810 *  as requested.
 811 */
 812static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
 813{
 814	struct stmmac_priv *priv = netdev_priv(dev);
 815	struct hwtstamp_config *config = &priv->tstamp_config;
 816
 817	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
 818		return -EOPNOTSUPP;
 819
 820	return copy_to_user(ifr->ifr_data, config,
 821			    sizeof(*config)) ? -EFAULT : 0;
 822}
 823
 824/**
 825 * stmmac_init_tstamp_counter - init hardware timestamping counter
 826 * @priv: driver private structure
 827 * @systime_flags: timestamping flags
 828 * Description:
 829 * Initialize hardware counter for packet timestamping.
 830 * This is valid as long as the interface is open and not suspended.
 831 * Will be rerun after resuming from suspend, case in which the timestamping
 832 * flags updated by stmmac_hwtstamp_set() also need to be restored.
 833 */
 834int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
 835{
 836	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
 837	struct timespec64 now;
 838	u32 sec_inc = 0;
 839	u64 temp = 0;
 840
 841	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
 842		return -EOPNOTSUPP;
 843
 844	stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
 845	priv->systime_flags = systime_flags;
 846
 847	/* program Sub Second Increment reg */
 848	stmmac_config_sub_second_increment(priv, priv->ptpaddr,
 849					   priv->plat->clk_ptp_rate,
 850					   xmac, &sec_inc);
 851	temp = div_u64(1000000000ULL, sec_inc);
 852
 853	/* Store sub second increment for later use */
 854	priv->sub_second_inc = sec_inc;
 855
 856	/* calculate default added value:
 857	 * formula is :
 858	 * addend = (2^32)/freq_div_ratio;
 859	 * where, freq_div_ratio = 1e9ns/sec_inc
 860	 */
 861	temp = (u64)(temp << 32);
 862	priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
 863	stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
 864
 865	/* initialize system time */
 866	ktime_get_real_ts64(&now);
 867
 868	/* lower 32 bits of tv_sec are safe until y2106 */
 869	stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
 870
 871	return 0;
 872}
 873EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
 874
 875/**
 876 * stmmac_init_ptp - init PTP
 877 * @priv: driver private structure
 878 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
 879 * This is done by looking at the HW cap. register.
 880 * This function also registers the ptp driver.
 881 */
 882static int stmmac_init_ptp(struct stmmac_priv *priv)
 883{
 884	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
 885	int ret;
 886
 887	if (priv->plat->ptp_clk_freq_config)
 888		priv->plat->ptp_clk_freq_config(priv);
 889
 890	ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
 891	if (ret)
 892		return ret;
 893
 894	priv->adv_ts = 0;
 895	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
 896	if (xmac && priv->dma_cap.atime_stamp)
 897		priv->adv_ts = 1;
 898	/* Dwmac 3.x core with extend_desc can support adv_ts */
 899	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
 900		priv->adv_ts = 1;
 901
 902	if (priv->dma_cap.time_stamp)
 903		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
 904
 905	if (priv->adv_ts)
 906		netdev_info(priv->dev,
 907			    "IEEE 1588-2008 Advanced Timestamp supported\n");
 908
 909	priv->hwts_tx_en = 0;
 910	priv->hwts_rx_en = 0;
 911
 912	return 0;
 913}
 914
 915static void stmmac_release_ptp(struct stmmac_priv *priv)
 916{
 917	clk_disable_unprepare(priv->plat->clk_ptp_ref);
 918	stmmac_ptp_unregister(priv);
 919}
 920
 921/**
 922 *  stmmac_mac_flow_ctrl - Configure flow control in all queues
 923 *  @priv: driver private structure
 924 *  @duplex: duplex passed to the next function
 925 *  Description: It is used for configuring the flow control in all queues
 926 */
 927static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
 928{
 929	u32 tx_cnt = priv->plat->tx_queues_to_use;
 930
 931	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
 932			priv->pause, tx_cnt);
 933}
 934
 935static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config,
 936						 phy_interface_t interface)
 937{
 938	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
 939
 940	if (!priv->hw->xpcs)
 941		return NULL;
 942
 943	return &priv->hw->xpcs->pcs;
 944}
 945
 946static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
 947			      const struct phylink_link_state *state)
 948{
 949	/* Nothing to do, xpcs_config() handles everything */
 950}
 951
 952static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
 953{
 954	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
 955	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
 956	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
 957	bool *hs_enable = &fpe_cfg->hs_enable;
 958
 959	if (is_up && *hs_enable) {
 960		stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
 961	} else {
 962		*lo_state = FPE_STATE_OFF;
 963		*lp_state = FPE_STATE_OFF;
 964	}
 965}
 966
 967static void stmmac_mac_link_down(struct phylink_config *config,
 968				 unsigned int mode, phy_interface_t interface)
 969{
 970	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
 971
 972	stmmac_mac_set(priv, priv->ioaddr, false);
 973	priv->eee_active = false;
 974	priv->tx_lpi_enabled = false;
 975	priv->eee_enabled = stmmac_eee_init(priv);
 976	stmmac_set_eee_pls(priv, priv->hw, false);
 977
 978	if (priv->dma_cap.fpesel)
 979		stmmac_fpe_link_state_handle(priv, false);
 980}
 981
 982static void stmmac_mac_link_up(struct phylink_config *config,
 983			       struct phy_device *phy,
 984			       unsigned int mode, phy_interface_t interface,
 985			       int speed, int duplex,
 986			       bool tx_pause, bool rx_pause)
 987{
 988	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
 989	u32 old_ctrl, ctrl;
 990
 991	if (priv->plat->serdes_up_after_phy_linkup && priv->plat->serdes_powerup)
 992		priv->plat->serdes_powerup(priv->dev, priv->plat->bsp_priv);
 993
 994	old_ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
 995	ctrl = old_ctrl & ~priv->hw->link.speed_mask;
 996
 997	if (interface == PHY_INTERFACE_MODE_USXGMII) {
 998		switch (speed) {
 999		case SPEED_10000:
1000			ctrl |= priv->hw->link.xgmii.speed10000;
1001			break;
1002		case SPEED_5000:
1003			ctrl |= priv->hw->link.xgmii.speed5000;
1004			break;
1005		case SPEED_2500:
1006			ctrl |= priv->hw->link.xgmii.speed2500;
1007			break;
1008		default:
1009			return;
1010		}
1011	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1012		switch (speed) {
1013		case SPEED_100000:
1014			ctrl |= priv->hw->link.xlgmii.speed100000;
1015			break;
1016		case SPEED_50000:
1017			ctrl |= priv->hw->link.xlgmii.speed50000;
1018			break;
1019		case SPEED_40000:
1020			ctrl |= priv->hw->link.xlgmii.speed40000;
1021			break;
1022		case SPEED_25000:
1023			ctrl |= priv->hw->link.xlgmii.speed25000;
1024			break;
1025		case SPEED_10000:
1026			ctrl |= priv->hw->link.xgmii.speed10000;
1027			break;
1028		case SPEED_2500:
1029			ctrl |= priv->hw->link.speed2500;
1030			break;
1031		case SPEED_1000:
1032			ctrl |= priv->hw->link.speed1000;
1033			break;
1034		default:
1035			return;
1036		}
1037	} else {
1038		switch (speed) {
1039		case SPEED_2500:
1040			ctrl |= priv->hw->link.speed2500;
1041			break;
1042		case SPEED_1000:
1043			ctrl |= priv->hw->link.speed1000;
1044			break;
1045		case SPEED_100:
1046			ctrl |= priv->hw->link.speed100;
1047			break;
1048		case SPEED_10:
1049			ctrl |= priv->hw->link.speed10;
1050			break;
1051		default:
1052			return;
1053		}
1054	}
1055
1056	priv->speed = speed;
1057
1058	if (priv->plat->fix_mac_speed)
1059		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1060
1061	if (!duplex)
1062		ctrl &= ~priv->hw->link.duplex;
1063	else
1064		ctrl |= priv->hw->link.duplex;
1065
1066	/* Flow Control operation */
1067	if (rx_pause && tx_pause)
1068		priv->flow_ctrl = FLOW_AUTO;
1069	else if (rx_pause && !tx_pause)
1070		priv->flow_ctrl = FLOW_RX;
1071	else if (!rx_pause && tx_pause)
1072		priv->flow_ctrl = FLOW_TX;
1073	else
1074		priv->flow_ctrl = FLOW_OFF;
1075
1076	stmmac_mac_flow_ctrl(priv, duplex);
1077
1078	if (ctrl != old_ctrl)
1079		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1080
1081	stmmac_mac_set(priv, priv->ioaddr, true);
1082	if (phy && priv->dma_cap.eee) {
1083		priv->eee_active =
1084			phy_init_eee(phy, !priv->plat->rx_clk_runs_in_lpi) >= 0;
1085		priv->eee_enabled = stmmac_eee_init(priv);
1086		priv->tx_lpi_enabled = priv->eee_enabled;
1087		stmmac_set_eee_pls(priv, priv->hw, true);
1088	}
1089
1090	if (priv->dma_cap.fpesel)
1091		stmmac_fpe_link_state_handle(priv, true);
1092}
1093
1094static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1095	.mac_select_pcs = stmmac_mac_select_pcs,
1096	.mac_config = stmmac_mac_config,
1097	.mac_link_down = stmmac_mac_link_down,
1098	.mac_link_up = stmmac_mac_link_up,
1099};
1100
1101/**
1102 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1103 * @priv: driver private structure
1104 * Description: this is to verify if the HW supports the PCS.
1105 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1106 * configured for the TBI, RTBI, or SGMII PHY interface.
1107 */
1108static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1109{
1110	int interface = priv->plat->interface;
1111
1112	if (priv->dma_cap.pcs) {
1113		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1114		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1115		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1116		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1117			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1118			priv->hw->pcs = STMMAC_PCS_RGMII;
1119		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1120			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1121			priv->hw->pcs = STMMAC_PCS_SGMII;
1122		}
1123	}
1124}
1125
1126/**
1127 * stmmac_init_phy - PHY initialization
1128 * @dev: net device structure
1129 * Description: it initializes the driver's PHY state, and attaches the PHY
1130 * to the mac driver.
1131 *  Return value:
1132 *  0 on success
1133 */
1134static int stmmac_init_phy(struct net_device *dev)
1135{
1136	struct stmmac_priv *priv = netdev_priv(dev);
1137	struct fwnode_handle *fwnode;
1138	int ret;
1139
1140	fwnode = of_fwnode_handle(priv->plat->phylink_node);
1141	if (!fwnode)
1142		fwnode = dev_fwnode(priv->device);
1143
1144	if (fwnode)
1145		ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0);
1146
1147	/* Some DT bindings do not set-up the PHY handle. Let's try to
1148	 * manually parse it
1149	 */
1150	if (!fwnode || ret) {
1151		int addr = priv->plat->phy_addr;
1152		struct phy_device *phydev;
1153
1154		if (addr < 0) {
1155			netdev_err(priv->dev, "no phy found\n");
1156			return -ENODEV;
1157		}
1158
1159		phydev = mdiobus_get_phy(priv->mii, addr);
1160		if (!phydev) {
1161			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1162			return -ENODEV;
1163		}
1164
1165		ret = phylink_connect_phy(priv->phylink, phydev);
1166	}
1167
1168	if (!priv->plat->pmt) {
1169		struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1170
1171		phylink_ethtool_get_wol(priv->phylink, &wol);
1172		device_set_wakeup_capable(priv->device, !!wol.supported);
1173	}
1174
1175	return ret;
1176}
1177
1178static int stmmac_phy_setup(struct stmmac_priv *priv)
1179{
1180	struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1181	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1182	int max_speed = priv->plat->max_speed;
1183	int mode = priv->plat->phy_interface;
1184	struct phylink *phylink;
1185
1186	priv->phylink_config.dev = &priv->dev->dev;
1187	priv->phylink_config.type = PHYLINK_NETDEV;
1188	if (priv->plat->mdio_bus_data)
1189		priv->phylink_config.ovr_an_inband =
1190			mdio_bus_data->xpcs_an_inband;
1191
1192	if (!fwnode)
1193		fwnode = dev_fwnode(priv->device);
1194
1195	/* Set the platform/firmware specified interface mode */
1196	__set_bit(mode, priv->phylink_config.supported_interfaces);
1197
1198	/* If we have an xpcs, it defines which PHY interfaces are supported. */
1199	if (priv->hw->xpcs)
1200		xpcs_get_interfaces(priv->hw->xpcs,
1201				    priv->phylink_config.supported_interfaces);
1202
1203	priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1204		MAC_10 | MAC_100;
1205
1206	if (!max_speed || max_speed >= 1000)
1207		priv->phylink_config.mac_capabilities |= MAC_1000;
1208
1209	if (priv->plat->has_gmac4) {
1210		if (!max_speed || max_speed >= 2500)
1211			priv->phylink_config.mac_capabilities |= MAC_2500FD;
1212	} else if (priv->plat->has_xgmac) {
1213		if (!max_speed || max_speed >= 2500)
1214			priv->phylink_config.mac_capabilities |= MAC_2500FD;
1215		if (!max_speed || max_speed >= 5000)
1216			priv->phylink_config.mac_capabilities |= MAC_5000FD;
1217		if (!max_speed || max_speed >= 10000)
1218			priv->phylink_config.mac_capabilities |= MAC_10000FD;
1219		if (!max_speed || max_speed >= 25000)
1220			priv->phylink_config.mac_capabilities |= MAC_25000FD;
1221		if (!max_speed || max_speed >= 40000)
1222			priv->phylink_config.mac_capabilities |= MAC_40000FD;
1223		if (!max_speed || max_speed >= 50000)
1224			priv->phylink_config.mac_capabilities |= MAC_50000FD;
1225		if (!max_speed || max_speed >= 100000)
1226			priv->phylink_config.mac_capabilities |= MAC_100000FD;
1227	}
1228
1229	/* Half-Duplex can only work with single queue */
1230	if (priv->plat->tx_queues_to_use > 1)
1231		priv->phylink_config.mac_capabilities &=
1232			~(MAC_10HD | MAC_100HD | MAC_1000HD);
1233	priv->phylink_config.mac_managed_pm = true;
1234
1235	phylink = phylink_create(&priv->phylink_config, fwnode,
1236				 mode, &stmmac_phylink_mac_ops);
1237	if (IS_ERR(phylink))
1238		return PTR_ERR(phylink);
1239
1240	priv->phylink = phylink;
1241	return 0;
1242}
1243
1244static void stmmac_display_rx_rings(struct stmmac_priv *priv,
1245				    struct stmmac_dma_conf *dma_conf)
1246{
1247	u32 rx_cnt = priv->plat->rx_queues_to_use;
1248	unsigned int desc_size;
1249	void *head_rx;
1250	u32 queue;
1251
1252	/* Display RX rings */
1253	for (queue = 0; queue < rx_cnt; queue++) {
1254		struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1255
1256		pr_info("\tRX Queue %u rings\n", queue);
1257
1258		if (priv->extend_desc) {
1259			head_rx = (void *)rx_q->dma_erx;
1260			desc_size = sizeof(struct dma_extended_desc);
1261		} else {
1262			head_rx = (void *)rx_q->dma_rx;
1263			desc_size = sizeof(struct dma_desc);
1264		}
1265
1266		/* Display RX ring */
1267		stmmac_display_ring(priv, head_rx, dma_conf->dma_rx_size, true,
1268				    rx_q->dma_rx_phy, desc_size);
1269	}
1270}
1271
1272static void stmmac_display_tx_rings(struct stmmac_priv *priv,
1273				    struct stmmac_dma_conf *dma_conf)
1274{
1275	u32 tx_cnt = priv->plat->tx_queues_to_use;
1276	unsigned int desc_size;
1277	void *head_tx;
1278	u32 queue;
1279
1280	/* Display TX rings */
1281	for (queue = 0; queue < tx_cnt; queue++) {
1282		struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1283
1284		pr_info("\tTX Queue %d rings\n", queue);
1285
1286		if (priv->extend_desc) {
1287			head_tx = (void *)tx_q->dma_etx;
1288			desc_size = sizeof(struct dma_extended_desc);
1289		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1290			head_tx = (void *)tx_q->dma_entx;
1291			desc_size = sizeof(struct dma_edesc);
1292		} else {
1293			head_tx = (void *)tx_q->dma_tx;
1294			desc_size = sizeof(struct dma_desc);
1295		}
1296
1297		stmmac_display_ring(priv, head_tx, dma_conf->dma_tx_size, false,
1298				    tx_q->dma_tx_phy, desc_size);
1299	}
1300}
1301
1302static void stmmac_display_rings(struct stmmac_priv *priv,
1303				 struct stmmac_dma_conf *dma_conf)
1304{
1305	/* Display RX ring */
1306	stmmac_display_rx_rings(priv, dma_conf);
1307
1308	/* Display TX ring */
1309	stmmac_display_tx_rings(priv, dma_conf);
1310}
1311
1312static int stmmac_set_bfsize(int mtu, int bufsize)
1313{
1314	int ret = bufsize;
1315
1316	if (mtu >= BUF_SIZE_8KiB)
1317		ret = BUF_SIZE_16KiB;
1318	else if (mtu >= BUF_SIZE_4KiB)
1319		ret = BUF_SIZE_8KiB;
1320	else if (mtu >= BUF_SIZE_2KiB)
1321		ret = BUF_SIZE_4KiB;
1322	else if (mtu > DEFAULT_BUFSIZE)
1323		ret = BUF_SIZE_2KiB;
1324	else
1325		ret = DEFAULT_BUFSIZE;
1326
1327	return ret;
1328}
1329
1330/**
1331 * stmmac_clear_rx_descriptors - clear RX descriptors
1332 * @priv: driver private structure
1333 * @dma_conf: structure to take the dma data
1334 * @queue: RX queue index
1335 * Description: this function is called to clear the RX descriptors
1336 * in case of both basic and extended descriptors are used.
1337 */
1338static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv,
1339					struct stmmac_dma_conf *dma_conf,
1340					u32 queue)
1341{
1342	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1343	int i;
1344
1345	/* Clear the RX descriptors */
1346	for (i = 0; i < dma_conf->dma_rx_size; i++)
1347		if (priv->extend_desc)
1348			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1349					priv->use_riwt, priv->mode,
1350					(i == dma_conf->dma_rx_size - 1),
1351					dma_conf->dma_buf_sz);
1352		else
1353			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1354					priv->use_riwt, priv->mode,
1355					(i == dma_conf->dma_rx_size - 1),
1356					dma_conf->dma_buf_sz);
1357}
1358
1359/**
1360 * stmmac_clear_tx_descriptors - clear tx descriptors
1361 * @priv: driver private structure
1362 * @dma_conf: structure to take the dma data
1363 * @queue: TX queue index.
1364 * Description: this function is called to clear the TX descriptors
1365 * in case of both basic and extended descriptors are used.
1366 */
1367static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv,
1368					struct stmmac_dma_conf *dma_conf,
1369					u32 queue)
1370{
1371	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1372	int i;
1373
1374	/* Clear the TX descriptors */
1375	for (i = 0; i < dma_conf->dma_tx_size; i++) {
1376		int last = (i == (dma_conf->dma_tx_size - 1));
1377		struct dma_desc *p;
1378
1379		if (priv->extend_desc)
1380			p = &tx_q->dma_etx[i].basic;
1381		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1382			p = &tx_q->dma_entx[i].basic;
1383		else
1384			p = &tx_q->dma_tx[i];
1385
1386		stmmac_init_tx_desc(priv, p, priv->mode, last);
1387	}
1388}
1389
1390/**
1391 * stmmac_clear_descriptors - clear descriptors
1392 * @priv: driver private structure
1393 * @dma_conf: structure to take the dma data
1394 * Description: this function is called to clear the TX and RX descriptors
1395 * in case of both basic and extended descriptors are used.
1396 */
1397static void stmmac_clear_descriptors(struct stmmac_priv *priv,
1398				     struct stmmac_dma_conf *dma_conf)
1399{
1400	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1401	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1402	u32 queue;
1403
1404	/* Clear the RX descriptors */
1405	for (queue = 0; queue < rx_queue_cnt; queue++)
1406		stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1407
1408	/* Clear the TX descriptors */
1409	for (queue = 0; queue < tx_queue_cnt; queue++)
1410		stmmac_clear_tx_descriptors(priv, dma_conf, queue);
1411}
1412
1413/**
1414 * stmmac_init_rx_buffers - init the RX descriptor buffer.
1415 * @priv: driver private structure
1416 * @dma_conf: structure to take the dma data
1417 * @p: descriptor pointer
1418 * @i: descriptor index
1419 * @flags: gfp flag
1420 * @queue: RX queue index
1421 * Description: this function is called to allocate a receive buffer, perform
1422 * the DMA mapping and init the descriptor.
1423 */
1424static int stmmac_init_rx_buffers(struct stmmac_priv *priv,
1425				  struct stmmac_dma_conf *dma_conf,
1426				  struct dma_desc *p,
1427				  int i, gfp_t flags, u32 queue)
1428{
1429	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1430	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1431	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1432
1433	if (priv->dma_cap.addr64 <= 32)
1434		gfp |= GFP_DMA32;
1435
1436	if (!buf->page) {
1437		buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1438		if (!buf->page)
1439			return -ENOMEM;
1440		buf->page_offset = stmmac_rx_offset(priv);
1441	}
1442
1443	if (priv->sph && !buf->sec_page) {
1444		buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1445		if (!buf->sec_page)
1446			return -ENOMEM;
1447
1448		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1449		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1450	} else {
1451		buf->sec_page = NULL;
1452		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1453	}
1454
1455	buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1456
1457	stmmac_set_desc_addr(priv, p, buf->addr);
1458	if (dma_conf->dma_buf_sz == BUF_SIZE_16KiB)
1459		stmmac_init_desc3(priv, p);
1460
1461	return 0;
1462}
1463
1464/**
1465 * stmmac_free_rx_buffer - free RX dma buffers
1466 * @priv: private structure
1467 * @rx_q: RX queue
1468 * @i: buffer index.
1469 */
1470static void stmmac_free_rx_buffer(struct stmmac_priv *priv,
1471				  struct stmmac_rx_queue *rx_q,
1472				  int i)
1473{
1474	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1475
1476	if (buf->page)
1477		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1478	buf->page = NULL;
1479
1480	if (buf->sec_page)
1481		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1482	buf->sec_page = NULL;
1483}
1484
1485/**
1486 * stmmac_free_tx_buffer - free RX dma buffers
1487 * @priv: private structure
1488 * @dma_conf: structure to take the dma data
1489 * @queue: RX queue index
1490 * @i: buffer index.
1491 */
1492static void stmmac_free_tx_buffer(struct stmmac_priv *priv,
1493				  struct stmmac_dma_conf *dma_conf,
1494				  u32 queue, int i)
1495{
1496	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1497
1498	if (tx_q->tx_skbuff_dma[i].buf &&
1499	    tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1500		if (tx_q->tx_skbuff_dma[i].map_as_page)
1501			dma_unmap_page(priv->device,
1502				       tx_q->tx_skbuff_dma[i].buf,
1503				       tx_q->tx_skbuff_dma[i].len,
1504				       DMA_TO_DEVICE);
1505		else
1506			dma_unmap_single(priv->device,
1507					 tx_q->tx_skbuff_dma[i].buf,
1508					 tx_q->tx_skbuff_dma[i].len,
1509					 DMA_TO_DEVICE);
1510	}
1511
1512	if (tx_q->xdpf[i] &&
1513	    (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1514	     tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1515		xdp_return_frame(tx_q->xdpf[i]);
1516		tx_q->xdpf[i] = NULL;
1517	}
1518
1519	if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1520		tx_q->xsk_frames_done++;
1521
1522	if (tx_q->tx_skbuff[i] &&
1523	    tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1524		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1525		tx_q->tx_skbuff[i] = NULL;
1526	}
1527
1528	tx_q->tx_skbuff_dma[i].buf = 0;
1529	tx_q->tx_skbuff_dma[i].map_as_page = false;
1530}
1531
1532/**
1533 * dma_free_rx_skbufs - free RX dma buffers
1534 * @priv: private structure
1535 * @dma_conf: structure to take the dma data
1536 * @queue: RX queue index
1537 */
1538static void dma_free_rx_skbufs(struct stmmac_priv *priv,
1539			       struct stmmac_dma_conf *dma_conf,
1540			       u32 queue)
1541{
1542	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1543	int i;
1544
1545	for (i = 0; i < dma_conf->dma_rx_size; i++)
1546		stmmac_free_rx_buffer(priv, rx_q, i);
1547}
1548
1549static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv,
1550				   struct stmmac_dma_conf *dma_conf,
1551				   u32 queue, gfp_t flags)
1552{
1553	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1554	int i;
1555
1556	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1557		struct dma_desc *p;
1558		int ret;
1559
1560		if (priv->extend_desc)
1561			p = &((rx_q->dma_erx + i)->basic);
1562		else
1563			p = rx_q->dma_rx + i;
1564
1565		ret = stmmac_init_rx_buffers(priv, dma_conf, p, i, flags,
1566					     queue);
1567		if (ret)
1568			return ret;
1569
1570		rx_q->buf_alloc_num++;
1571	}
1572
1573	return 0;
1574}
1575
1576/**
1577 * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1578 * @priv: private structure
1579 * @dma_conf: structure to take the dma data
1580 * @queue: RX queue index
1581 */
1582static void dma_free_rx_xskbufs(struct stmmac_priv *priv,
1583				struct stmmac_dma_conf *dma_conf,
1584				u32 queue)
1585{
1586	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1587	int i;
1588
1589	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1590		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1591
1592		if (!buf->xdp)
1593			continue;
1594
1595		xsk_buff_free(buf->xdp);
1596		buf->xdp = NULL;
1597	}
1598}
1599
1600static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv,
1601				      struct stmmac_dma_conf *dma_conf,
1602				      u32 queue)
1603{
1604	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1605	int i;
1606
1607	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1608		struct stmmac_rx_buffer *buf;
1609		dma_addr_t dma_addr;
1610		struct dma_desc *p;
1611
1612		if (priv->extend_desc)
1613			p = (struct dma_desc *)(rx_q->dma_erx + i);
1614		else
1615			p = rx_q->dma_rx + i;
1616
1617		buf = &rx_q->buf_pool[i];
1618
1619		buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1620		if (!buf->xdp)
1621			return -ENOMEM;
1622
1623		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1624		stmmac_set_desc_addr(priv, p, dma_addr);
1625		rx_q->buf_alloc_num++;
1626	}
1627
1628	return 0;
1629}
1630
1631static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1632{
1633	if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1634		return NULL;
1635
1636	return xsk_get_pool_from_qid(priv->dev, queue);
1637}
1638
1639/**
1640 * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1641 * @priv: driver private structure
1642 * @dma_conf: structure to take the dma data
1643 * @queue: RX queue index
1644 * @flags: gfp flag.
1645 * Description: this function initializes the DMA RX descriptors
1646 * and allocates the socket buffers. It supports the chained and ring
1647 * modes.
1648 */
1649static int __init_dma_rx_desc_rings(struct stmmac_priv *priv,
1650				    struct stmmac_dma_conf *dma_conf,
1651				    u32 queue, gfp_t flags)
1652{
1653	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1654	int ret;
1655
1656	netif_dbg(priv, probe, priv->dev,
1657		  "(%s) dma_rx_phy=0x%08x\n", __func__,
1658		  (u32)rx_q->dma_rx_phy);
1659
1660	stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1661
1662	xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1663
1664	rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1665
1666	if (rx_q->xsk_pool) {
1667		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1668						   MEM_TYPE_XSK_BUFF_POOL,
1669						   NULL));
1670		netdev_info(priv->dev,
1671			    "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1672			    rx_q->queue_index);
1673		xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1674	} else {
1675		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1676						   MEM_TYPE_PAGE_POOL,
1677						   rx_q->page_pool));
1678		netdev_info(priv->dev,
1679			    "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1680			    rx_q->queue_index);
1681	}
1682
1683	if (rx_q->xsk_pool) {
1684		/* RX XDP ZC buffer pool may not be populated, e.g.
1685		 * xdpsock TX-only.
1686		 */
1687		stmmac_alloc_rx_buffers_zc(priv, dma_conf, queue);
1688	} else {
1689		ret = stmmac_alloc_rx_buffers(priv, dma_conf, queue, flags);
1690		if (ret < 0)
1691			return -ENOMEM;
1692	}
1693
1694	/* Setup the chained descriptor addresses */
1695	if (priv->mode == STMMAC_CHAIN_MODE) {
1696		if (priv->extend_desc)
1697			stmmac_mode_init(priv, rx_q->dma_erx,
1698					 rx_q->dma_rx_phy,
1699					 dma_conf->dma_rx_size, 1);
1700		else
1701			stmmac_mode_init(priv, rx_q->dma_rx,
1702					 rx_q->dma_rx_phy,
1703					 dma_conf->dma_rx_size, 0);
1704	}
1705
1706	return 0;
1707}
1708
1709static int init_dma_rx_desc_rings(struct net_device *dev,
1710				  struct stmmac_dma_conf *dma_conf,
1711				  gfp_t flags)
1712{
1713	struct stmmac_priv *priv = netdev_priv(dev);
1714	u32 rx_count = priv->plat->rx_queues_to_use;
1715	int queue;
1716	int ret;
1717
1718	/* RX INITIALIZATION */
1719	netif_dbg(priv, probe, priv->dev,
1720		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1721
1722	for (queue = 0; queue < rx_count; queue++) {
1723		ret = __init_dma_rx_desc_rings(priv, dma_conf, queue, flags);
1724		if (ret)
1725			goto err_init_rx_buffers;
1726	}
1727
1728	return 0;
1729
1730err_init_rx_buffers:
1731	while (queue >= 0) {
1732		struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1733
1734		if (rx_q->xsk_pool)
1735			dma_free_rx_xskbufs(priv, dma_conf, queue);
1736		else
1737			dma_free_rx_skbufs(priv, dma_conf, queue);
1738
1739		rx_q->buf_alloc_num = 0;
1740		rx_q->xsk_pool = NULL;
1741
1742		queue--;
1743	}
1744
1745	return ret;
1746}
1747
1748/**
1749 * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1750 * @priv: driver private structure
1751 * @dma_conf: structure to take the dma data
1752 * @queue: TX queue index
1753 * Description: this function initializes the DMA TX descriptors
1754 * and allocates the socket buffers. It supports the chained and ring
1755 * modes.
1756 */
1757static int __init_dma_tx_desc_rings(struct stmmac_priv *priv,
1758				    struct stmmac_dma_conf *dma_conf,
1759				    u32 queue)
1760{
1761	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1762	int i;
1763
1764	netif_dbg(priv, probe, priv->dev,
1765		  "(%s) dma_tx_phy=0x%08x\n", __func__,
1766		  (u32)tx_q->dma_tx_phy);
1767
1768	/* Setup the chained descriptor addresses */
1769	if (priv->mode == STMMAC_CHAIN_MODE) {
1770		if (priv->extend_desc)
1771			stmmac_mode_init(priv, tx_q->dma_etx,
1772					 tx_q->dma_tx_phy,
1773					 dma_conf->dma_tx_size, 1);
1774		else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1775			stmmac_mode_init(priv, tx_q->dma_tx,
1776					 tx_q->dma_tx_phy,
1777					 dma_conf->dma_tx_size, 0);
1778	}
1779
1780	tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1781
1782	for (i = 0; i < dma_conf->dma_tx_size; i++) {
1783		struct dma_desc *p;
1784
1785		if (priv->extend_desc)
1786			p = &((tx_q->dma_etx + i)->basic);
1787		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1788			p = &((tx_q->dma_entx + i)->basic);
1789		else
1790			p = tx_q->dma_tx + i;
1791
1792		stmmac_clear_desc(priv, p);
1793
1794		tx_q->tx_skbuff_dma[i].buf = 0;
1795		tx_q->tx_skbuff_dma[i].map_as_page = false;
1796		tx_q->tx_skbuff_dma[i].len = 0;
1797		tx_q->tx_skbuff_dma[i].last_segment = false;
1798		tx_q->tx_skbuff[i] = NULL;
1799	}
1800
1801	return 0;
1802}
1803
1804static int init_dma_tx_desc_rings(struct net_device *dev,
1805				  struct stmmac_dma_conf *dma_conf)
1806{
1807	struct stmmac_priv *priv = netdev_priv(dev);
1808	u32 tx_queue_cnt;
1809	u32 queue;
1810
1811	tx_queue_cnt = priv->plat->tx_queues_to_use;
1812
1813	for (queue = 0; queue < tx_queue_cnt; queue++)
1814		__init_dma_tx_desc_rings(priv, dma_conf, queue);
1815
1816	return 0;
1817}
1818
1819/**
1820 * init_dma_desc_rings - init the RX/TX descriptor rings
1821 * @dev: net device structure
1822 * @dma_conf: structure to take the dma data
1823 * @flags: gfp flag.
1824 * Description: this function initializes the DMA RX/TX descriptors
1825 * and allocates the socket buffers. It supports the chained and ring
1826 * modes.
1827 */
1828static int init_dma_desc_rings(struct net_device *dev,
1829			       struct stmmac_dma_conf *dma_conf,
1830			       gfp_t flags)
1831{
1832	struct stmmac_priv *priv = netdev_priv(dev);
1833	int ret;
1834
1835	ret = init_dma_rx_desc_rings(dev, dma_conf, flags);
1836	if (ret)
1837		return ret;
1838
1839	ret = init_dma_tx_desc_rings(dev, dma_conf);
1840
1841	stmmac_clear_descriptors(priv, dma_conf);
1842
1843	if (netif_msg_hw(priv))
1844		stmmac_display_rings(priv, dma_conf);
1845
1846	return ret;
1847}
1848
1849/**
1850 * dma_free_tx_skbufs - free TX dma buffers
1851 * @priv: private structure
1852 * @dma_conf: structure to take the dma data
1853 * @queue: TX queue index
1854 */
1855static void dma_free_tx_skbufs(struct stmmac_priv *priv,
1856			       struct stmmac_dma_conf *dma_conf,
1857			       u32 queue)
1858{
1859	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1860	int i;
1861
1862	tx_q->xsk_frames_done = 0;
1863
1864	for (i = 0; i < dma_conf->dma_tx_size; i++)
1865		stmmac_free_tx_buffer(priv, dma_conf, queue, i);
1866
1867	if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1868		xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1869		tx_q->xsk_frames_done = 0;
1870		tx_q->xsk_pool = NULL;
1871	}
1872}
1873
1874/**
1875 * stmmac_free_tx_skbufs - free TX skb buffers
1876 * @priv: private structure
1877 */
1878static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1879{
1880	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1881	u32 queue;
1882
1883	for (queue = 0; queue < tx_queue_cnt; queue++)
1884		dma_free_tx_skbufs(priv, &priv->dma_conf, queue);
1885}
1886
1887/**
1888 * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1889 * @priv: private structure
1890 * @dma_conf: structure to take the dma data
1891 * @queue: RX queue index
1892 */
1893static void __free_dma_rx_desc_resources(struct stmmac_priv *priv,
1894					 struct stmmac_dma_conf *dma_conf,
1895					 u32 queue)
1896{
1897	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1898
1899	/* Release the DMA RX socket buffers */
1900	if (rx_q->xsk_pool)
1901		dma_free_rx_xskbufs(priv, dma_conf, queue);
1902	else
1903		dma_free_rx_skbufs(priv, dma_conf, queue);
1904
1905	rx_q->buf_alloc_num = 0;
1906	rx_q->xsk_pool = NULL;
1907
1908	/* Free DMA regions of consistent memory previously allocated */
1909	if (!priv->extend_desc)
1910		dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1911				  sizeof(struct dma_desc),
1912				  rx_q->dma_rx, rx_q->dma_rx_phy);
1913	else
1914		dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1915				  sizeof(struct dma_extended_desc),
1916				  rx_q->dma_erx, rx_q->dma_rx_phy);
1917
1918	if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1919		xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1920
1921	kfree(rx_q->buf_pool);
1922	if (rx_q->page_pool)
1923		page_pool_destroy(rx_q->page_pool);
1924}
1925
1926static void free_dma_rx_desc_resources(struct stmmac_priv *priv,
1927				       struct stmmac_dma_conf *dma_conf)
1928{
1929	u32 rx_count = priv->plat->rx_queues_to_use;
1930	u32 queue;
1931
1932	/* Free RX queue resources */
1933	for (queue = 0; queue < rx_count; queue++)
1934		__free_dma_rx_desc_resources(priv, dma_conf, queue);
1935}
1936
1937/**
1938 * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1939 * @priv: private structure
1940 * @dma_conf: structure to take the dma data
1941 * @queue: TX queue index
1942 */
1943static void __free_dma_tx_desc_resources(struct stmmac_priv *priv,
1944					 struct stmmac_dma_conf *dma_conf,
1945					 u32 queue)
1946{
1947	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1948	size_t size;
1949	void *addr;
1950
1951	/* Release the DMA TX socket buffers */
1952	dma_free_tx_skbufs(priv, dma_conf, queue);
1953
1954	if (priv->extend_desc) {
1955		size = sizeof(struct dma_extended_desc);
1956		addr = tx_q->dma_etx;
1957	} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1958		size = sizeof(struct dma_edesc);
1959		addr = tx_q->dma_entx;
1960	} else {
1961		size = sizeof(struct dma_desc);
1962		addr = tx_q->dma_tx;
1963	}
1964
1965	size *= dma_conf->dma_tx_size;
1966
1967	dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1968
1969	kfree(tx_q->tx_skbuff_dma);
1970	kfree(tx_q->tx_skbuff);
1971}
1972
1973static void free_dma_tx_desc_resources(struct stmmac_priv *priv,
1974				       struct stmmac_dma_conf *dma_conf)
1975{
1976	u32 tx_count = priv->plat->tx_queues_to_use;
1977	u32 queue;
1978
1979	/* Free TX queue resources */
1980	for (queue = 0; queue < tx_count; queue++)
1981		__free_dma_tx_desc_resources(priv, dma_conf, queue);
1982}
1983
1984/**
1985 * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1986 * @priv: private structure
1987 * @dma_conf: structure to take the dma data
1988 * @queue: RX queue index
1989 * Description: according to which descriptor can be used (extend or basic)
1990 * this function allocates the resources for TX and RX paths. In case of
1991 * reception, for example, it pre-allocated the RX socket buffer in order to
1992 * allow zero-copy mechanism.
1993 */
1994static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
1995					 struct stmmac_dma_conf *dma_conf,
1996					 u32 queue)
1997{
1998	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1999	struct stmmac_channel *ch = &priv->channel[queue];
2000	bool xdp_prog = stmmac_xdp_is_enabled(priv);
2001	struct page_pool_params pp_params = { 0 };
2002	unsigned int num_pages;
2003	unsigned int napi_id;
2004	int ret;
2005
2006	rx_q->queue_index = queue;
2007	rx_q->priv_data = priv;
2008
2009	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
2010	pp_params.pool_size = dma_conf->dma_rx_size;
2011	num_pages = DIV_ROUND_UP(dma_conf->dma_buf_sz, PAGE_SIZE);
2012	pp_params.order = ilog2(num_pages);
2013	pp_params.nid = dev_to_node(priv->device);
2014	pp_params.dev = priv->device;
2015	pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
2016	pp_params.offset = stmmac_rx_offset(priv);
2017	pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
2018
2019	rx_q->page_pool = page_pool_create(&pp_params);
2020	if (IS_ERR(rx_q->page_pool)) {
2021		ret = PTR_ERR(rx_q->page_pool);
2022		rx_q->page_pool = NULL;
2023		return ret;
2024	}
2025
2026	rx_q->buf_pool = kcalloc(dma_conf->dma_rx_size,
2027				 sizeof(*rx_q->buf_pool),
2028				 GFP_KERNEL);
2029	if (!rx_q->buf_pool)
2030		return -ENOMEM;
2031
2032	if (priv->extend_desc) {
2033		rx_q->dma_erx = dma_alloc_coherent(priv->device,
2034						   dma_conf->dma_rx_size *
2035						   sizeof(struct dma_extended_desc),
2036						   &rx_q->dma_rx_phy,
2037						   GFP_KERNEL);
2038		if (!rx_q->dma_erx)
2039			return -ENOMEM;
2040
2041	} else {
2042		rx_q->dma_rx = dma_alloc_coherent(priv->device,
2043						  dma_conf->dma_rx_size *
2044						  sizeof(struct dma_desc),
2045						  &rx_q->dma_rx_phy,
2046						  GFP_KERNEL);
2047		if (!rx_q->dma_rx)
2048			return -ENOMEM;
2049	}
2050
2051	if (stmmac_xdp_is_enabled(priv) &&
2052	    test_bit(queue, priv->af_xdp_zc_qps))
2053		napi_id = ch->rxtx_napi.napi_id;
2054	else
2055		napi_id = ch->rx_napi.napi_id;
2056
2057	ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2058			       rx_q->queue_index,
2059			       napi_id);
2060	if (ret) {
2061		netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2062		return -EINVAL;
2063	}
2064
2065	return 0;
2066}
2067
2068static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
2069				       struct stmmac_dma_conf *dma_conf)
2070{
2071	u32 rx_count = priv->plat->rx_queues_to_use;
2072	u32 queue;
2073	int ret;
2074
2075	/* RX queues buffers and DMA */
2076	for (queue = 0; queue < rx_count; queue++) {
2077		ret = __alloc_dma_rx_desc_resources(priv, dma_conf, queue);
2078		if (ret)
2079			goto err_dma;
2080	}
2081
2082	return 0;
2083
2084err_dma:
2085	free_dma_rx_desc_resources(priv, dma_conf);
2086
2087	return ret;
2088}
2089
2090/**
2091 * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2092 * @priv: private structure
2093 * @dma_conf: structure to take the dma data
2094 * @queue: TX queue index
2095 * Description: according to which descriptor can be used (extend or basic)
2096 * this function allocates the resources for TX and RX paths. In case of
2097 * reception, for example, it pre-allocated the RX socket buffer in order to
2098 * allow zero-copy mechanism.
2099 */
2100static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2101					 struct stmmac_dma_conf *dma_conf,
2102					 u32 queue)
2103{
2104	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
2105	size_t size;
2106	void *addr;
2107
2108	tx_q->queue_index = queue;
2109	tx_q->priv_data = priv;
2110
2111	tx_q->tx_skbuff_dma = kcalloc(dma_conf->dma_tx_size,
2112				      sizeof(*tx_q->tx_skbuff_dma),
2113				      GFP_KERNEL);
2114	if (!tx_q->tx_skbuff_dma)
2115		return -ENOMEM;
2116
2117	tx_q->tx_skbuff = kcalloc(dma_conf->dma_tx_size,
2118				  sizeof(struct sk_buff *),
2119				  GFP_KERNEL);
2120	if (!tx_q->tx_skbuff)
2121		return -ENOMEM;
2122
2123	if (priv->extend_desc)
2124		size = sizeof(struct dma_extended_desc);
2125	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2126		size = sizeof(struct dma_edesc);
2127	else
2128		size = sizeof(struct dma_desc);
2129
2130	size *= dma_conf->dma_tx_size;
2131
2132	addr = dma_alloc_coherent(priv->device, size,
2133				  &tx_q->dma_tx_phy, GFP_KERNEL);
2134	if (!addr)
2135		return -ENOMEM;
2136
2137	if (priv->extend_desc)
2138		tx_q->dma_etx = addr;
2139	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2140		tx_q->dma_entx = addr;
2141	else
2142		tx_q->dma_tx = addr;
2143
2144	return 0;
2145}
2146
2147static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2148				       struct stmmac_dma_conf *dma_conf)
2149{
2150	u32 tx_count = priv->plat->tx_queues_to_use;
2151	u32 queue;
2152	int ret;
2153
2154	/* TX queues buffers and DMA */
2155	for (queue = 0; queue < tx_count; queue++) {
2156		ret = __alloc_dma_tx_desc_resources(priv, dma_conf, queue);
2157		if (ret)
2158			goto err_dma;
2159	}
2160
2161	return 0;
2162
2163err_dma:
2164	free_dma_tx_desc_resources(priv, dma_conf);
2165	return ret;
2166}
2167
2168/**
2169 * alloc_dma_desc_resources - alloc TX/RX resources.
2170 * @priv: private structure
2171 * @dma_conf: structure to take the dma data
2172 * Description: according to which descriptor can be used (extend or basic)
2173 * this function allocates the resources for TX and RX paths. In case of
2174 * reception, for example, it pre-allocated the RX socket buffer in order to
2175 * allow zero-copy mechanism.
2176 */
2177static int alloc_dma_desc_resources(struct stmmac_priv *priv,
2178				    struct stmmac_dma_conf *dma_conf)
2179{
2180	/* RX Allocation */
2181	int ret = alloc_dma_rx_desc_resources(priv, dma_conf);
2182
2183	if (ret)
2184		return ret;
2185
2186	ret = alloc_dma_tx_desc_resources(priv, dma_conf);
2187
2188	return ret;
2189}
2190
2191/**
2192 * free_dma_desc_resources - free dma desc resources
2193 * @priv: private structure
2194 * @dma_conf: structure to take the dma data
2195 */
2196static void free_dma_desc_resources(struct stmmac_priv *priv,
2197				    struct stmmac_dma_conf *dma_conf)
2198{
2199	/* Release the DMA TX socket buffers */
2200	free_dma_tx_desc_resources(priv, dma_conf);
2201
2202	/* Release the DMA RX socket buffers later
2203	 * to ensure all pending XDP_TX buffers are returned.
2204	 */
2205	free_dma_rx_desc_resources(priv, dma_conf);
2206}
2207
2208/**
2209 *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2210 *  @priv: driver private structure
2211 *  Description: It is used for enabling the rx queues in the MAC
2212 */
2213static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2214{
2215	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2216	int queue;
2217	u8 mode;
2218
2219	for (queue = 0; queue < rx_queues_count; queue++) {
2220		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2221		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2222	}
2223}
2224
2225/**
2226 * stmmac_start_rx_dma - start RX DMA channel
2227 * @priv: driver private structure
2228 * @chan: RX channel index
2229 * Description:
2230 * This starts a RX DMA channel
2231 */
2232static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2233{
2234	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2235	stmmac_start_rx(priv, priv->ioaddr, chan);
2236}
2237
2238/**
2239 * stmmac_start_tx_dma - start TX DMA channel
2240 * @priv: driver private structure
2241 * @chan: TX channel index
2242 * Description:
2243 * This starts a TX DMA channel
2244 */
2245static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2246{
2247	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2248	stmmac_start_tx(priv, priv->ioaddr, chan);
2249}
2250
2251/**
2252 * stmmac_stop_rx_dma - stop RX DMA channel
2253 * @priv: driver private structure
2254 * @chan: RX channel index
2255 * Description:
2256 * This stops a RX DMA channel
2257 */
2258static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2259{
2260	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2261	stmmac_stop_rx(priv, priv->ioaddr, chan);
2262}
2263
2264/**
2265 * stmmac_stop_tx_dma - stop TX DMA channel
2266 * @priv: driver private structure
2267 * @chan: TX channel index
2268 * Description:
2269 * This stops a TX DMA channel
2270 */
2271static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2272{
2273	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2274	stmmac_stop_tx(priv, priv->ioaddr, chan);
2275}
2276
2277static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv)
2278{
2279	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2280	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2281	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2282	u32 chan;
2283
2284	for (chan = 0; chan < dma_csr_ch; chan++) {
2285		struct stmmac_channel *ch = &priv->channel[chan];
2286		unsigned long flags;
2287
2288		spin_lock_irqsave(&ch->lock, flags);
2289		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2290		spin_unlock_irqrestore(&ch->lock, flags);
2291	}
2292}
2293
2294/**
2295 * stmmac_start_all_dma - start all RX and TX DMA channels
2296 * @priv: driver private structure
2297 * Description:
2298 * This starts all the RX and TX DMA channels
2299 */
2300static void stmmac_start_all_dma(struct stmmac_priv *priv)
2301{
2302	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2303	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2304	u32 chan = 0;
2305
2306	for (chan = 0; chan < rx_channels_count; chan++)
2307		stmmac_start_rx_dma(priv, chan);
2308
2309	for (chan = 0; chan < tx_channels_count; chan++)
2310		stmmac_start_tx_dma(priv, chan);
2311}
2312
2313/**
2314 * stmmac_stop_all_dma - stop all RX and TX DMA channels
2315 * @priv: driver private structure
2316 * Description:
2317 * This stops the RX and TX DMA channels
2318 */
2319static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2320{
2321	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2322	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2323	u32 chan = 0;
2324
2325	for (chan = 0; chan < rx_channels_count; chan++)
2326		stmmac_stop_rx_dma(priv, chan);
2327
2328	for (chan = 0; chan < tx_channels_count; chan++)
2329		stmmac_stop_tx_dma(priv, chan);
2330}
2331
2332/**
2333 *  stmmac_dma_operation_mode - HW DMA operation mode
2334 *  @priv: driver private structure
2335 *  Description: it is used for configuring the DMA operation mode register in
2336 *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2337 */
2338static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2339{
2340	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2341	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2342	int rxfifosz = priv->plat->rx_fifo_size;
2343	int txfifosz = priv->plat->tx_fifo_size;
2344	u32 txmode = 0;
2345	u32 rxmode = 0;
2346	u32 chan = 0;
2347	u8 qmode = 0;
2348
2349	if (rxfifosz == 0)
2350		rxfifosz = priv->dma_cap.rx_fifo_size;
2351	if (txfifosz == 0)
2352		txfifosz = priv->dma_cap.tx_fifo_size;
2353
2354	/* Adjust for real per queue fifo size */
2355	rxfifosz /= rx_channels_count;
2356	txfifosz /= tx_channels_count;
2357
2358	if (priv->plat->force_thresh_dma_mode) {
2359		txmode = tc;
2360		rxmode = tc;
2361	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2362		/*
2363		 * In case of GMAC, SF mode can be enabled
2364		 * to perform the TX COE in HW. This depends on:
2365		 * 1) TX COE if actually supported
2366		 * 2) There is no bugged Jumbo frame support
2367		 *    that needs to not insert csum in the TDES.
2368		 */
2369		txmode = SF_DMA_MODE;
2370		rxmode = SF_DMA_MODE;
2371		priv->xstats.threshold = SF_DMA_MODE;
2372	} else {
2373		txmode = tc;
2374		rxmode = SF_DMA_MODE;
2375	}
2376
2377	/* configure all channels */
2378	for (chan = 0; chan < rx_channels_count; chan++) {
2379		struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2380		u32 buf_size;
2381
2382		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2383
2384		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2385				rxfifosz, qmode);
2386
2387		if (rx_q->xsk_pool) {
2388			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2389			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2390					      buf_size,
2391					      chan);
2392		} else {
2393			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2394					      priv->dma_conf.dma_buf_sz,
2395					      chan);
2396		}
2397	}
2398
2399	for (chan = 0; chan < tx_channels_count; chan++) {
2400		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2401
2402		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2403				txfifosz, qmode);
2404	}
2405}
2406
2407static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2408{
2409	struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2410	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2411	struct xsk_buff_pool *pool = tx_q->xsk_pool;
2412	unsigned int entry = tx_q->cur_tx;
2413	struct dma_desc *tx_desc = NULL;
2414	struct xdp_desc xdp_desc;
2415	bool work_done = true;
2416
2417	/* Avoids TX time-out as we are sharing with slow path */
2418	txq_trans_cond_update(nq);
2419
2420	budget = min(budget, stmmac_tx_avail(priv, queue));
2421
2422	while (budget-- > 0) {
2423		dma_addr_t dma_addr;
2424		bool set_ic;
2425
2426		/* We are sharing with slow path and stop XSK TX desc submission when
2427		 * available TX ring is less than threshold.
2428		 */
2429		if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2430		    !netif_carrier_ok(priv->dev)) {
2431			work_done = false;
2432			break;
2433		}
2434
2435		if (!xsk_tx_peek_desc(pool, &xdp_desc))
2436			break;
2437
2438		if (likely(priv->extend_desc))
2439			tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2440		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2441			tx_desc = &tx_q->dma_entx[entry].basic;
2442		else
2443			tx_desc = tx_q->dma_tx + entry;
2444
2445		dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2446		xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2447
2448		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2449
2450		/* To return XDP buffer to XSK pool, we simple call
2451		 * xsk_tx_completed(), so we don't need to fill up
2452		 * 'buf' and 'xdpf'.
2453		 */
2454		tx_q->tx_skbuff_dma[entry].buf = 0;
2455		tx_q->xdpf[entry] = NULL;
2456
2457		tx_q->tx_skbuff_dma[entry].map_as_page = false;
2458		tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2459		tx_q->tx_skbuff_dma[entry].last_segment = true;
2460		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2461
2462		stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2463
2464		tx_q->tx_count_frames++;
2465
2466		if (!priv->tx_coal_frames[queue])
2467			set_ic = false;
2468		else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2469			set_ic = true;
2470		else
2471			set_ic = false;
2472
2473		if (set_ic) {
2474			tx_q->tx_count_frames = 0;
2475			stmmac_set_tx_ic(priv, tx_desc);
2476			priv->xstats.tx_set_ic_bit++;
2477		}
2478
2479		stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2480				       true, priv->mode, true, true,
2481				       xdp_desc.len);
2482
2483		stmmac_enable_dma_transmission(priv, priv->ioaddr);
2484
2485		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
2486		entry = tx_q->cur_tx;
2487	}
2488
2489	if (tx_desc) {
2490		stmmac_flush_tx_descriptors(priv, queue);
2491		xsk_tx_release(pool);
2492	}
2493
2494	/* Return true if all of the 3 conditions are met
2495	 *  a) TX Budget is still available
2496	 *  b) work_done = true when XSK TX desc peek is empty (no more
2497	 *     pending XSK TX for transmission)
2498	 */
2499	return !!budget && work_done;
2500}
2501
2502static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
2503{
2504	if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
2505		tc += 64;
2506
2507		if (priv->plat->force_thresh_dma_mode)
2508			stmmac_set_dma_operation_mode(priv, tc, tc, chan);
2509		else
2510			stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
2511						      chan);
2512
2513		priv->xstats.threshold = tc;
2514	}
2515}
2516
2517/**
2518 * stmmac_tx_clean - to manage the transmission completion
2519 * @priv: driver private structure
2520 * @budget: napi budget limiting this functions packet handling
2521 * @queue: TX queue index
2522 * Description: it reclaims the transmit resources after transmission completes.
2523 */
2524static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2525{
2526	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2527	unsigned int bytes_compl = 0, pkts_compl = 0;
2528	unsigned int entry, xmits = 0, count = 0;
2529
2530	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2531
2532	priv->xstats.tx_clean++;
2533
2534	tx_q->xsk_frames_done = 0;
2535
2536	entry = tx_q->dirty_tx;
2537
2538	/* Try to clean all TX complete frame in 1 shot */
2539	while ((entry != tx_q->cur_tx) && count < priv->dma_conf.dma_tx_size) {
2540		struct xdp_frame *xdpf;
2541		struct sk_buff *skb;
2542		struct dma_desc *p;
2543		int status;
2544
2545		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2546		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2547			xdpf = tx_q->xdpf[entry];
2548			skb = NULL;
2549		} else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2550			xdpf = NULL;
2551			skb = tx_q->tx_skbuff[entry];
2552		} else {
2553			xdpf = NULL;
2554			skb = NULL;
2555		}
2556
2557		if (priv->extend_desc)
2558			p = (struct dma_desc *)(tx_q->dma_etx + entry);
2559		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2560			p = &tx_q->dma_entx[entry].basic;
2561		else
2562			p = tx_q->dma_tx + entry;
2563
2564		status = stmmac_tx_status(priv, &priv->dev->stats,
2565				&priv->xstats, p, priv->ioaddr);
2566		/* Check if the descriptor is owned by the DMA */
2567		if (unlikely(status & tx_dma_own))
2568			break;
2569
2570		count++;
2571
2572		/* Make sure descriptor fields are read after reading
2573		 * the own bit.
2574		 */
2575		dma_rmb();
2576
2577		/* Just consider the last segment and ...*/
2578		if (likely(!(status & tx_not_ls))) {
2579			/* ... verify the status error condition */
2580			if (unlikely(status & tx_err)) {
2581				priv->dev->stats.tx_errors++;
2582				if (unlikely(status & tx_err_bump_tc))
2583					stmmac_bump_dma_threshold(priv, queue);
2584			} else {
2585				priv->dev->stats.tx_packets++;
2586				priv->xstats.tx_pkt_n++;
2587				priv->xstats.txq_stats[queue].tx_pkt_n++;
2588			}
2589			if (skb)
2590				stmmac_get_tx_hwtstamp(priv, p, skb);
2591		}
2592
2593		if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2594			   tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2595			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2596				dma_unmap_page(priv->device,
2597					       tx_q->tx_skbuff_dma[entry].buf,
2598					       tx_q->tx_skbuff_dma[entry].len,
2599					       DMA_TO_DEVICE);
2600			else
2601				dma_unmap_single(priv->device,
2602						 tx_q->tx_skbuff_dma[entry].buf,
2603						 tx_q->tx_skbuff_dma[entry].len,
2604						 DMA_TO_DEVICE);
2605			tx_q->tx_skbuff_dma[entry].buf = 0;
2606			tx_q->tx_skbuff_dma[entry].len = 0;
2607			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2608		}
2609
2610		stmmac_clean_desc3(priv, tx_q, p);
2611
2612		tx_q->tx_skbuff_dma[entry].last_segment = false;
2613		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2614
2615		if (xdpf &&
2616		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2617			xdp_return_frame_rx_napi(xdpf);
2618			tx_q->xdpf[entry] = NULL;
2619		}
2620
2621		if (xdpf &&
2622		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2623			xdp_return_frame(xdpf);
2624			tx_q->xdpf[entry] = NULL;
2625		}
2626
2627		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2628			tx_q->xsk_frames_done++;
2629
2630		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2631			if (likely(skb)) {
2632				pkts_compl++;
2633				bytes_compl += skb->len;
2634				dev_consume_skb_any(skb);
2635				tx_q->tx_skbuff[entry] = NULL;
2636			}
2637		}
2638
2639		stmmac_release_tx_desc(priv, p, priv->mode);
2640
2641		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
2642	}
2643	tx_q->dirty_tx = entry;
2644
2645	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2646				  pkts_compl, bytes_compl);
2647
2648	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2649								queue))) &&
2650	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2651
2652		netif_dbg(priv, tx_done, priv->dev,
2653			  "%s: restart transmit\n", __func__);
2654		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2655	}
2656
2657	if (tx_q->xsk_pool) {
2658		bool work_done;
2659
2660		if (tx_q->xsk_frames_done)
2661			xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2662
2663		if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2664			xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2665
2666		/* For XSK TX, we try to send as many as possible.
2667		 * If XSK work done (XSK TX desc empty and budget still
2668		 * available), return "budget - 1" to reenable TX IRQ.
2669		 * Else, return "budget" to make NAPI continue polling.
2670		 */
2671		work_done = stmmac_xdp_xmit_zc(priv, queue,
2672					       STMMAC_XSK_TX_BUDGET_MAX);
2673		if (work_done)
2674			xmits = budget - 1;
2675		else
2676			xmits = budget;
2677	}
2678
2679	if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2680	    priv->eee_sw_timer_en) {
2681		if (stmmac_enable_eee_mode(priv))
2682			mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2683	}
2684
2685	/* We still have pending packets, let's call for a new scheduling */
2686	if (tx_q->dirty_tx != tx_q->cur_tx)
2687		hrtimer_start(&tx_q->txtimer,
2688			      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2689			      HRTIMER_MODE_REL);
2690
2691	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2692
2693	/* Combine decisions from TX clean and XSK TX */
2694	return max(count, xmits);
2695}
2696
2697/**
2698 * stmmac_tx_err - to manage the tx error
2699 * @priv: driver private structure
2700 * @chan: channel index
2701 * Description: it cleans the descriptors and restarts the transmission
2702 * in case of transmission errors.
2703 */
2704static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2705{
2706	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2707
2708	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2709
2710	stmmac_stop_tx_dma(priv, chan);
2711	dma_free_tx_skbufs(priv, &priv->dma_conf, chan);
2712	stmmac_clear_tx_descriptors(priv, &priv->dma_conf, chan);
2713	stmmac_reset_tx_queue(priv, chan);
2714	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2715			    tx_q->dma_tx_phy, chan);
2716	stmmac_start_tx_dma(priv, chan);
2717
2718	priv->dev->stats.tx_errors++;
2719	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2720}
2721
2722/**
2723 *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2724 *  @priv: driver private structure
2725 *  @txmode: TX operating mode
2726 *  @rxmode: RX operating mode
2727 *  @chan: channel index
2728 *  Description: it is used for configuring of the DMA operation mode in
2729 *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2730 *  mode.
2731 */
2732static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2733					  u32 rxmode, u32 chan)
2734{
2735	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2736	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2737	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2738	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2739	int rxfifosz = priv->plat->rx_fifo_size;
2740	int txfifosz = priv->plat->tx_fifo_size;
2741
2742	if (rxfifosz == 0)
2743		rxfifosz = priv->dma_cap.rx_fifo_size;
2744	if (txfifosz == 0)
2745		txfifosz = priv->dma_cap.tx_fifo_size;
2746
2747	/* Adjust for real per queue fifo size */
2748	rxfifosz /= rx_channels_count;
2749	txfifosz /= tx_channels_count;
2750
2751	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2752	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2753}
2754
2755static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2756{
2757	int ret;
2758
2759	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2760			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2761	if (ret && (ret != -EINVAL)) {
2762		stmmac_global_err(priv);
2763		return true;
2764	}
2765
2766	return false;
2767}
2768
2769static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2770{
2771	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2772						 &priv->xstats, chan, dir);
2773	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2774	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2775	struct stmmac_channel *ch = &priv->channel[chan];
2776	struct napi_struct *rx_napi;
2777	struct napi_struct *tx_napi;
2778	unsigned long flags;
2779
2780	rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2781	tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2782
2783	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2784		if (napi_schedule_prep(rx_napi)) {
2785			spin_lock_irqsave(&ch->lock, flags);
2786			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2787			spin_unlock_irqrestore(&ch->lock, flags);
2788			__napi_schedule(rx_napi);
2789		}
2790	}
2791
2792	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2793		if (napi_schedule_prep(tx_napi)) {
2794			spin_lock_irqsave(&ch->lock, flags);
2795			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2796			spin_unlock_irqrestore(&ch->lock, flags);
2797			__napi_schedule(tx_napi);
2798		}
2799	}
2800
2801	return status;
2802}
2803
2804/**
2805 * stmmac_dma_interrupt - DMA ISR
2806 * @priv: driver private structure
2807 * Description: this is the DMA ISR. It is called by the main ISR.
2808 * It calls the dwmac dma routine and schedule poll method in case of some
2809 * work can be done.
2810 */
2811static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2812{
2813	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2814	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2815	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2816				tx_channel_count : rx_channel_count;
2817	u32 chan;
2818	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2819
2820	/* Make sure we never check beyond our status buffer. */
2821	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2822		channels_to_check = ARRAY_SIZE(status);
2823
2824	for (chan = 0; chan < channels_to_check; chan++)
2825		status[chan] = stmmac_napi_check(priv, chan,
2826						 DMA_DIR_RXTX);
2827
2828	for (chan = 0; chan < tx_channel_count; chan++) {
2829		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2830			/* Try to bump up the dma threshold on this failure */
2831			stmmac_bump_dma_threshold(priv, chan);
2832		} else if (unlikely(status[chan] == tx_hard_error)) {
2833			stmmac_tx_err(priv, chan);
2834		}
2835	}
2836}
2837
2838/**
2839 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2840 * @priv: driver private structure
2841 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2842 */
2843static void stmmac_mmc_setup(struct stmmac_priv *priv)
2844{
2845	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2846			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2847
2848	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2849
2850	if (priv->dma_cap.rmon) {
2851		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2852		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2853	} else
2854		netdev_info(priv->dev, "No MAC Management Counters available\n");
2855}
2856
2857/**
2858 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2859 * @priv: driver private structure
2860 * Description:
2861 *  new GMAC chip generations have a new register to indicate the
2862 *  presence of the optional feature/functions.
2863 *  This can be also used to override the value passed through the
2864 *  platform and necessary for old MAC10/100 and GMAC chips.
2865 */
2866static int stmmac_get_hw_features(struct stmmac_priv *priv)
2867{
2868	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2869}
2870
2871/**
2872 * stmmac_check_ether_addr - check if the MAC addr is valid
2873 * @priv: driver private structure
2874 * Description:
2875 * it is to verify if the MAC address is valid, in case of failures it
2876 * generates a random MAC address
2877 */
2878static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2879{
2880	u8 addr[ETH_ALEN];
2881
2882	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2883		stmmac_get_umac_addr(priv, priv->hw, addr, 0);
2884		if (is_valid_ether_addr(addr))
2885			eth_hw_addr_set(priv->dev, addr);
2886		else
2887			eth_hw_addr_random(priv->dev);
2888		dev_info(priv->device, "device MAC address %pM\n",
2889			 priv->dev->dev_addr);
2890	}
2891}
2892
2893/**
2894 * stmmac_init_dma_engine - DMA init.
2895 * @priv: driver private structure
2896 * Description:
2897 * It inits the DMA invoking the specific MAC/GMAC callback.
2898 * Some DMA parameters can be passed from the platform;
2899 * in case of these are not passed a default is kept for the MAC or GMAC.
2900 */
2901static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2902{
2903	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2904	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2905	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2906	struct stmmac_rx_queue *rx_q;
2907	struct stmmac_tx_queue *tx_q;
2908	u32 chan = 0;
2909	int atds = 0;
2910	int ret = 0;
2911
2912	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2913		dev_err(priv->device, "Invalid DMA configuration\n");
2914		return -EINVAL;
2915	}
2916
2917	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2918		atds = 1;
2919
2920	ret = stmmac_reset(priv, priv->ioaddr);
2921	if (ret) {
2922		dev_err(priv->device, "Failed to reset the dma\n");
2923		return ret;
2924	}
2925
2926	/* DMA Configuration */
2927	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2928
2929	if (priv->plat->axi)
2930		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2931
2932	/* DMA CSR Channel configuration */
2933	for (chan = 0; chan < dma_csr_ch; chan++) {
2934		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2935		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2936	}
2937
2938	/* DMA RX Channel Configuration */
2939	for (chan = 0; chan < rx_channels_count; chan++) {
2940		rx_q = &priv->dma_conf.rx_queue[chan];
2941
2942		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2943				    rx_q->dma_rx_phy, chan);
2944
2945		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2946				     (rx_q->buf_alloc_num *
2947				      sizeof(struct dma_desc));
2948		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2949				       rx_q->rx_tail_addr, chan);
2950	}
2951
2952	/* DMA TX Channel Configuration */
2953	for (chan = 0; chan < tx_channels_count; chan++) {
2954		tx_q = &priv->dma_conf.tx_queue[chan];
2955
2956		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2957				    tx_q->dma_tx_phy, chan);
2958
2959		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2960		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2961				       tx_q->tx_tail_addr, chan);
2962	}
2963
2964	return ret;
2965}
2966
2967static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2968{
2969	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2970
2971	hrtimer_start(&tx_q->txtimer,
2972		      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2973		      HRTIMER_MODE_REL);
2974}
2975
2976/**
2977 * stmmac_tx_timer - mitigation sw timer for tx.
2978 * @t: data pointer
2979 * Description:
2980 * This is the timer handler to directly invoke the stmmac_tx_clean.
2981 */
2982static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2983{
2984	struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2985	struct stmmac_priv *priv = tx_q->priv_data;
2986	struct stmmac_channel *ch;
2987	struct napi_struct *napi;
2988
2989	ch = &priv->channel[tx_q->queue_index];
2990	napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2991
2992	if (likely(napi_schedule_prep(napi))) {
2993		unsigned long flags;
2994
2995		spin_lock_irqsave(&ch->lock, flags);
2996		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2997		spin_unlock_irqrestore(&ch->lock, flags);
2998		__napi_schedule(napi);
2999	}
3000
3001	return HRTIMER_NORESTART;
3002}
3003
3004/**
3005 * stmmac_init_coalesce - init mitigation options.
3006 * @priv: driver private structure
3007 * Description:
3008 * This inits the coalesce parameters: i.e. timer rate,
3009 * timer handler and default threshold used for enabling the
3010 * interrupt on completion bit.
3011 */
3012static void stmmac_init_coalesce(struct stmmac_priv *priv)
3013{
3014	u32 tx_channel_count = priv->plat->tx_queues_to_use;
3015	u32 rx_channel_count = priv->plat->rx_queues_to_use;
3016	u32 chan;
3017
3018	for (chan = 0; chan < tx_channel_count; chan++) {
3019		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3020
3021		priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
3022		priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
3023
3024		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3025		tx_q->txtimer.function = stmmac_tx_timer;
3026	}
3027
3028	for (chan = 0; chan < rx_channel_count; chan++)
3029		priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
3030}
3031
3032static void stmmac_set_rings_length(struct stmmac_priv *priv)
3033{
3034	u32 rx_channels_count = priv->plat->rx_queues_to_use;
3035	u32 tx_channels_count = priv->plat->tx_queues_to_use;
3036	u32 chan;
3037
3038	/* set TX ring length */
3039	for (chan = 0; chan < tx_channels_count; chan++)
3040		stmmac_set_tx_ring_len(priv, priv->ioaddr,
3041				       (priv->dma_conf.dma_tx_size - 1), chan);
3042
3043	/* set RX ring length */
3044	for (chan = 0; chan < rx_channels_count; chan++)
3045		stmmac_set_rx_ring_len(priv, priv->ioaddr,
3046				       (priv->dma_conf.dma_rx_size - 1), chan);
3047}
3048
3049/**
3050 *  stmmac_set_tx_queue_weight - Set TX queue weight
3051 *  @priv: driver private structure
3052 *  Description: It is used for setting TX queues weight
3053 */
3054static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
3055{
3056	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3057	u32 weight;
3058	u32 queue;
3059
3060	for (queue = 0; queue < tx_queues_count; queue++) {
3061		weight = priv->plat->tx_queues_cfg[queue].weight;
3062		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
3063	}
3064}
3065
3066/**
3067 *  stmmac_configure_cbs - Configure CBS in TX queue
3068 *  @priv: driver private structure
3069 *  Description: It is used for configuring CBS in AVB TX queues
3070 */
3071static void stmmac_configure_cbs(struct stmmac_priv *priv)
3072{
3073	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3074	u32 mode_to_use;
3075	u32 queue;
3076
3077	/* queue 0 is reserved for legacy traffic */
3078	for (queue = 1; queue < tx_queues_count; queue++) {
3079		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3080		if (mode_to_use == MTL_QUEUE_DCB)
3081			continue;
3082
3083		stmmac_config_cbs(priv, priv->hw,
3084				priv->plat->tx_queues_cfg[queue].send_slope,
3085				priv->plat->tx_queues_cfg[queue].idle_slope,
3086				priv->plat->tx_queues_cfg[queue].high_credit,
3087				priv->plat->tx_queues_cfg[queue].low_credit,
3088				queue);
3089	}
3090}
3091
3092/**
3093 *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3094 *  @priv: driver private structure
3095 *  Description: It is used for mapping RX queues to RX dma channels
3096 */
3097static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3098{
3099	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3100	u32 queue;
3101	u32 chan;
3102
3103	for (queue = 0; queue < rx_queues_count; queue++) {
3104		chan = priv->plat->rx_queues_cfg[queue].chan;
3105		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3106	}
3107}
3108
3109/**
3110 *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3111 *  @priv: driver private structure
3112 *  Description: It is used for configuring the RX Queue Priority
3113 */
3114static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3115{
3116	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3117	u32 queue;
3118	u32 prio;
3119
3120	for (queue = 0; queue < rx_queues_count; queue++) {
3121		if (!priv->plat->rx_queues_cfg[queue].use_prio)
3122			continue;
3123
3124		prio = priv->plat->rx_queues_cfg[queue].prio;
3125		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3126	}
3127}
3128
3129/**
3130 *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3131 *  @priv: driver private structure
3132 *  Description: It is used for configuring the TX Queue Priority
3133 */
3134static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3135{
3136	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3137	u32 queue;
3138	u32 prio;
3139
3140	for (queue = 0; queue < tx_queues_count; queue++) {
3141		if (!priv->plat->tx_queues_cfg[queue].use_prio)
3142			continue;
3143
3144		prio = priv->plat->tx_queues_cfg[queue].prio;
3145		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3146	}
3147}
3148
3149/**
3150 *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3151 *  @priv: driver private structure
3152 *  Description: It is used for configuring the RX queue routing
3153 */
3154static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3155{
3156	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3157	u32 queue;
3158	u8 packet;
3159
3160	for (queue = 0; queue < rx_queues_count; queue++) {
3161		/* no specific packet type routing specified for the queue */
3162		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3163			continue;
3164
3165		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3166		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3167	}
3168}
3169
3170static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3171{
3172	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3173		priv->rss.enable = false;
3174		return;
3175	}
3176
3177	if (priv->dev->features & NETIF_F_RXHASH)
3178		priv->rss.enable = true;
3179	else
3180		priv->rss.enable = false;
3181
3182	stmmac_rss_configure(priv, priv->hw, &priv->rss,
3183			     priv->plat->rx_queues_to_use);
3184}
3185
3186/**
3187 *  stmmac_mtl_configuration - Configure MTL
3188 *  @priv: driver private structure
3189 *  Description: It is used for configurring MTL
3190 */
3191static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3192{
3193	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3194	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3195
3196	if (tx_queues_count > 1)
3197		stmmac_set_tx_queue_weight(priv);
3198
3199	/* Configure MTL RX algorithms */
3200	if (rx_queues_count > 1)
3201		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3202				priv->plat->rx_sched_algorithm);
3203
3204	/* Configure MTL TX algorithms */
3205	if (tx_queues_count > 1)
3206		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3207				priv->plat->tx_sched_algorithm);
3208
3209	/* Configure CBS in AVB TX queues */
3210	if (tx_queues_count > 1)
3211		stmmac_configure_cbs(priv);
3212
3213	/* Map RX MTL to DMA channels */
3214	stmmac_rx_queue_dma_chan_map(priv);
3215
3216	/* Enable MAC RX Queues */
3217	stmmac_mac_enable_rx_queues(priv);
3218
3219	/* Set RX priorities */
3220	if (rx_queues_count > 1)
3221		stmmac_mac_config_rx_queues_prio(priv);
3222
3223	/* Set TX priorities */
3224	if (tx_queues_count > 1)
3225		stmmac_mac_config_tx_queues_prio(priv);
3226
3227	/* Set RX routing */
3228	if (rx_queues_count > 1)
3229		stmmac_mac_config_rx_queues_routing(priv);
3230
3231	/* Receive Side Scaling */
3232	if (rx_queues_count > 1)
3233		stmmac_mac_config_rss(priv);
3234}
3235
3236static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3237{
3238	if (priv->dma_cap.asp) {
3239		netdev_info(priv->dev, "Enabling Safety Features\n");
3240		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3241					  priv->plat->safety_feat_cfg);
3242	} else {
3243		netdev_info(priv->dev, "No Safety Features support found\n");
3244	}
3245}
3246
3247static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3248{
3249	char *name;
3250
3251	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3252	clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3253
3254	name = priv->wq_name;
3255	sprintf(name, "%s-fpe", priv->dev->name);
3256
3257	priv->fpe_wq = create_singlethread_workqueue(name);
3258	if (!priv->fpe_wq) {
3259		netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3260
3261		return -ENOMEM;
3262	}
3263	netdev_info(priv->dev, "FPE workqueue start");
3264
3265	return 0;
3266}
3267
3268/**
3269 * stmmac_hw_setup - setup mac in a usable state.
3270 *  @dev : pointer to the device structure.
3271 *  @ptp_register: register PTP if set
3272 *  Description:
3273 *  this is the main function to setup the HW in a usable state because the
3274 *  dma engine is reset, the core registers are configured (e.g. AXI,
3275 *  Checksum features, timers). The DMA is ready to start receiving and
3276 *  transmitting.
3277 *  Return value:
3278 *  0 on success and an appropriate (-)ve integer as defined in errno.h
3279 *  file on failure.
3280 */
3281static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
3282{
3283	struct stmmac_priv *priv = netdev_priv(dev);
3284	u32 rx_cnt = priv->plat->rx_queues_to_use;
3285	u32 tx_cnt = priv->plat->tx_queues_to_use;
3286	bool sph_en;
3287	u32 chan;
3288	int ret;
3289
3290	/* DMA initialization and SW reset */
3291	ret = stmmac_init_dma_engine(priv);
3292	if (ret < 0) {
3293		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3294			   __func__);
3295		return ret;
3296	}
3297
3298	/* Copy the MAC addr into the HW  */
3299	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3300
3301	/* PS and related bits will be programmed according to the speed */
3302	if (priv->hw->pcs) {
3303		int speed = priv->plat->mac_port_sel_speed;
3304
3305		if ((speed == SPEED_10) || (speed == SPEED_100) ||
3306		    (speed == SPEED_1000)) {
3307			priv->hw->ps = speed;
3308		} else {
3309			dev_warn(priv->device, "invalid port speed\n");
3310			priv->hw->ps = 0;
3311		}
3312	}
3313
3314	/* Initialize the MAC Core */
3315	stmmac_core_init(priv, priv->hw, dev);
3316
3317	/* Initialize MTL*/
3318	stmmac_mtl_configuration(priv);
3319
3320	/* Initialize Safety Features */
3321	stmmac_safety_feat_configuration(priv);
3322
3323	ret = stmmac_rx_ipc(priv, priv->hw);
3324	if (!ret) {
3325		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3326		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3327		priv->hw->rx_csum = 0;
3328	}
3329
3330	/* Enable the MAC Rx/Tx */
3331	stmmac_mac_set(priv, priv->ioaddr, true);
3332
3333	/* Set the HW DMA mode and the COE */
3334	stmmac_dma_operation_mode(priv);
3335
3336	stmmac_mmc_setup(priv);
3337
3338	if (ptp_register) {
3339		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3340		if (ret < 0)
3341			netdev_warn(priv->dev,
3342				    "failed to enable PTP reference clock: %pe\n",
3343				    ERR_PTR(ret));
3344	}
3345
3346	ret = stmmac_init_ptp(priv);
3347	if (ret == -EOPNOTSUPP)
3348		netdev_info(priv->dev, "PTP not supported by HW\n");
3349	else if (ret)
3350		netdev_warn(priv->dev, "PTP init failed\n");
3351	else if (ptp_register)
3352		stmmac_ptp_register(priv);
3353
3354	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3355
3356	/* Convert the timer from msec to usec */
3357	if (!priv->tx_lpi_timer)
3358		priv->tx_lpi_timer = eee_timer * 1000;
3359
3360	if (priv->use_riwt) {
3361		u32 queue;
3362
3363		for (queue = 0; queue < rx_cnt; queue++) {
3364			if (!priv->rx_riwt[queue])
3365				priv->rx_riwt[queue] = DEF_DMA_RIWT;
3366
3367			stmmac_rx_watchdog(priv, priv->ioaddr,
3368					   priv->rx_riwt[queue], queue);
3369		}
3370	}
3371
3372	if (priv->hw->pcs)
3373		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3374
3375	/* set TX and RX rings length */
3376	stmmac_set_rings_length(priv);
3377
3378	/* Enable TSO */
3379	if (priv->tso) {
3380		for (chan = 0; chan < tx_cnt; chan++) {
3381			struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3382
3383			/* TSO and TBS cannot co-exist */
3384			if (tx_q->tbs & STMMAC_TBS_AVAIL)
3385				continue;
3386
3387			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3388		}
3389	}
3390
3391	/* Enable Split Header */
3392	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3393	for (chan = 0; chan < rx_cnt; chan++)
3394		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3395
3396
3397	/* VLAN Tag Insertion */
3398	if (priv->dma_cap.vlins)
3399		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3400
3401	/* TBS */
3402	for (chan = 0; chan < tx_cnt; chan++) {
3403		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3404		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3405
3406		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3407	}
3408
3409	/* Configure real RX and TX queues */
3410	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3411	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3412
3413	/* Start the ball rolling... */
3414	stmmac_start_all_dma(priv);
3415
3416	if (priv->dma_cap.fpesel) {
3417		stmmac_fpe_start_wq(priv);
3418
3419		if (priv->plat->fpe_cfg->enable)
3420			stmmac_fpe_handshake(priv, true);
3421	}
3422
3423	return 0;
3424}
3425
3426static void stmmac_hw_teardown(struct net_device *dev)
3427{
3428	struct stmmac_priv *priv = netdev_priv(dev);
3429
3430	clk_disable_unprepare(priv->plat->clk_ptp_ref);
3431}
3432
3433static void stmmac_free_irq(struct net_device *dev,
3434			    enum request_irq_err irq_err, int irq_idx)
3435{
3436	struct stmmac_priv *priv = netdev_priv(dev);
3437	int j;
3438
3439	switch (irq_err) {
3440	case REQ_IRQ_ERR_ALL:
3441		irq_idx = priv->plat->tx_queues_to_use;
3442		fallthrough;
3443	case REQ_IRQ_ERR_TX:
3444		for (j = irq_idx - 1; j >= 0; j--) {
3445			if (priv->tx_irq[j] > 0) {
3446				irq_set_affinity_hint(priv->tx_irq[j], NULL);
3447				free_irq(priv->tx_irq[j], &priv->dma_conf.tx_queue[j]);
3448			}
3449		}
3450		irq_idx = priv->plat->rx_queues_to_use;
3451		fallthrough;
3452	case REQ_IRQ_ERR_RX:
3453		for (j = irq_idx - 1; j >= 0; j--) {
3454			if (priv->rx_irq[j] > 0) {
3455				irq_set_affinity_hint(priv->rx_irq[j], NULL);
3456				free_irq(priv->rx_irq[j], &priv->dma_conf.rx_queue[j]);
3457			}
3458		}
3459
3460		if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3461			free_irq(priv->sfty_ue_irq, dev);
3462		fallthrough;
3463	case REQ_IRQ_ERR_SFTY_UE:
3464		if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3465			free_irq(priv->sfty_ce_irq, dev);
3466		fallthrough;
3467	case REQ_IRQ_ERR_SFTY_CE:
3468		if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3469			free_irq(priv->lpi_irq, dev);
3470		fallthrough;
3471	case REQ_IRQ_ERR_LPI:
3472		if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3473			free_irq(priv->wol_irq, dev);
3474		fallthrough;
3475	case REQ_IRQ_ERR_WOL:
3476		free_irq(dev->irq, dev);
3477		fallthrough;
3478	case REQ_IRQ_ERR_MAC:
3479	case REQ_IRQ_ERR_NO:
3480		/* If MAC IRQ request error, no more IRQ to free */
3481		break;
3482	}
3483}
3484
3485static int stmmac_request_irq_multi_msi(struct net_device *dev)
3486{
3487	struct stmmac_priv *priv = netdev_priv(dev);
3488	enum request_irq_err irq_err;
3489	cpumask_t cpu_mask;
3490	int irq_idx = 0;
3491	char *int_name;
3492	int ret;
3493	int i;
3494
3495	/* For common interrupt */
3496	int_name = priv->int_name_mac;
3497	sprintf(int_name, "%s:%s", dev->name, "mac");
3498	ret = request_irq(dev->irq, stmmac_mac_interrupt,
3499			  0, int_name, dev);
3500	if (unlikely(ret < 0)) {
3501		netdev_err(priv->dev,
3502			   "%s: alloc mac MSI %d (error: %d)\n",
3503			   __func__, dev->irq, ret);
3504		irq_err = REQ_IRQ_ERR_MAC;
3505		goto irq_error;
3506	}
3507
3508	/* Request the Wake IRQ in case of another line
3509	 * is used for WoL
3510	 */
3511	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3512		int_name = priv->int_name_wol;
3513		sprintf(int_name, "%s:%s", dev->name, "wol");
3514		ret = request_irq(priv->wol_irq,
3515				  stmmac_mac_interrupt,
3516				  0, int_name, dev);
3517		if (unlikely(ret < 0)) {
3518			netdev_err(priv->dev,
3519				   "%s: alloc wol MSI %d (error: %d)\n",
3520				   __func__, priv->wol_irq, ret);
3521			irq_err = REQ_IRQ_ERR_WOL;
3522			goto irq_error;
3523		}
3524	}
3525
3526	/* Request the LPI IRQ in case of another line
3527	 * is used for LPI
3528	 */
3529	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3530		int_name = priv->int_name_lpi;
3531		sprintf(int_name, "%s:%s", dev->name, "lpi");
3532		ret = request_irq(priv->lpi_irq,
3533				  stmmac_mac_interrupt,
3534				  0, int_name, dev);
3535		if (unlikely(ret < 0)) {
3536			netdev_err(priv->dev,
3537				   "%s: alloc lpi MSI %d (error: %d)\n",
3538				   __func__, priv->lpi_irq, ret);
3539			irq_err = REQ_IRQ_ERR_LPI;
3540			goto irq_error;
3541		}
3542	}
3543
3544	/* Request the Safety Feature Correctible Error line in
3545	 * case of another line is used
3546	 */
3547	if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3548		int_name = priv->int_name_sfty_ce;
3549		sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3550		ret = request_irq(priv->sfty_ce_irq,
3551				  stmmac_safety_interrupt,
3552				  0, int_name, dev);
3553		if (unlikely(ret < 0)) {
3554			netdev_err(priv->dev,
3555				   "%s: alloc sfty ce MSI %d (error: %d)\n",
3556				   __func__, priv->sfty_ce_irq, ret);
3557			irq_err = REQ_IRQ_ERR_SFTY_CE;
3558			goto irq_error;
3559		}
3560	}
3561
3562	/* Request the Safety Feature Uncorrectible Error line in
3563	 * case of another line is used
3564	 */
3565	if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3566		int_name = priv->int_name_sfty_ue;
3567		sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3568		ret = request_irq(priv->sfty_ue_irq,
3569				  stmmac_safety_interrupt,
3570				  0, int_name, dev);
3571		if (unlikely(ret < 0)) {
3572			netdev_err(priv->dev,
3573				   "%s: alloc sfty ue MSI %d (error: %d)\n",
3574				   __func__, priv->sfty_ue_irq, ret);
3575			irq_err = REQ_IRQ_ERR_SFTY_UE;
3576			goto irq_error;
3577		}
3578	}
3579
3580	/* Request Rx MSI irq */
3581	for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3582		if (i >= MTL_MAX_RX_QUEUES)
3583			break;
3584		if (priv->rx_irq[i] == 0)
3585			continue;
3586
3587		int_name = priv->int_name_rx_irq[i];
3588		sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3589		ret = request_irq(priv->rx_irq[i],
3590				  stmmac_msi_intr_rx,
3591				  0, int_name, &priv->dma_conf.rx_queue[i]);
3592		if (unlikely(ret < 0)) {
3593			netdev_err(priv->dev,
3594				   "%s: alloc rx-%d  MSI %d (error: %d)\n",
3595				   __func__, i, priv->rx_irq[i], ret);
3596			irq_err = REQ_IRQ_ERR_RX;
3597			irq_idx = i;
3598			goto irq_error;
3599		}
3600		cpumask_clear(&cpu_mask);
3601		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3602		irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3603	}
3604
3605	/* Request Tx MSI irq */
3606	for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3607		if (i >= MTL_MAX_TX_QUEUES)
3608			break;
3609		if (priv->tx_irq[i] == 0)
3610			continue;
3611
3612		int_name = priv->int_name_tx_irq[i];
3613		sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3614		ret = request_irq(priv->tx_irq[i],
3615				  stmmac_msi_intr_tx,
3616				  0, int_name, &priv->dma_conf.tx_queue[i]);
3617		if (unlikely(ret < 0)) {
3618			netdev_err(priv->dev,
3619				   "%s: alloc tx-%d  MSI %d (error: %d)\n",
3620				   __func__, i, priv->tx_irq[i], ret);
3621			irq_err = REQ_IRQ_ERR_TX;
3622			irq_idx = i;
3623			goto irq_error;
3624		}
3625		cpumask_clear(&cpu_mask);
3626		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3627		irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3628	}
3629
3630	return 0;
3631
3632irq_error:
3633	stmmac_free_irq(dev, irq_err, irq_idx);
3634	return ret;
3635}
3636
3637static int stmmac_request_irq_single(struct net_device *dev)
3638{
3639	struct stmmac_priv *priv = netdev_priv(dev);
3640	enum request_irq_err irq_err;
3641	int ret;
3642
3643	ret = request_irq(dev->irq, stmmac_interrupt,
3644			  IRQF_SHARED, dev->name, dev);
3645	if (unlikely(ret < 0)) {
3646		netdev_err(priv->dev,
3647			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3648			   __func__, dev->irq, ret);
3649		irq_err = REQ_IRQ_ERR_MAC;
3650		goto irq_error;
3651	}
3652
3653	/* Request the Wake IRQ in case of another line
3654	 * is used for WoL
3655	 */
3656	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3657		ret = request_irq(priv->wol_irq, stmmac_interrupt,
3658				  IRQF_SHARED, dev->name, dev);
3659		if (unlikely(ret < 0)) {
3660			netdev_err(priv->dev,
3661				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3662				   __func__, priv->wol_irq, ret);
3663			irq_err = REQ_IRQ_ERR_WOL;
3664			goto irq_error;
3665		}
3666	}
3667
3668	/* Request the IRQ lines */
3669	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3670		ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3671				  IRQF_SHARED, dev->name, dev);
3672		if (unlikely(ret < 0)) {
3673			netdev_err(priv->dev,
3674				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3675				   __func__, priv->lpi_irq, ret);
3676			irq_err = REQ_IRQ_ERR_LPI;
3677			goto irq_error;
3678		}
3679	}
3680
3681	return 0;
3682
3683irq_error:
3684	stmmac_free_irq(dev, irq_err, 0);
3685	return ret;
3686}
3687
3688static int stmmac_request_irq(struct net_device *dev)
3689{
3690	struct stmmac_priv *priv = netdev_priv(dev);
3691	int ret;
3692
3693	/* Request the IRQ lines */
3694	if (priv->plat->multi_msi_en)
3695		ret = stmmac_request_irq_multi_msi(dev);
3696	else
3697		ret = stmmac_request_irq_single(dev);
3698
3699	return ret;
3700}
3701
3702/**
3703 *  stmmac_setup_dma_desc - Generate a dma_conf and allocate DMA queue
3704 *  @priv: driver private structure
3705 *  @mtu: MTU to setup the dma queue and buf with
3706 *  Description: Allocate and generate a dma_conf based on the provided MTU.
3707 *  Allocate the Tx/Rx DMA queue and init them.
3708 *  Return value:
3709 *  the dma_conf allocated struct on success and an appropriate ERR_PTR on failure.
3710 */
3711static struct stmmac_dma_conf *
3712stmmac_setup_dma_desc(struct stmmac_priv *priv, unsigned int mtu)
3713{
3714	struct stmmac_dma_conf *dma_conf;
3715	int chan, bfsize, ret;
3716
3717	dma_conf = kzalloc(sizeof(*dma_conf), GFP_KERNEL);
3718	if (!dma_conf) {
3719		netdev_err(priv->dev, "%s: DMA conf allocation failed\n",
3720			   __func__);
3721		return ERR_PTR(-ENOMEM);
3722	}
3723
3724	bfsize = stmmac_set_16kib_bfsize(priv, mtu);
3725	if (bfsize < 0)
3726		bfsize = 0;
3727
3728	if (bfsize < BUF_SIZE_16KiB)
3729		bfsize = stmmac_set_bfsize(mtu, 0);
3730
3731	dma_conf->dma_buf_sz = bfsize;
3732	/* Chose the tx/rx size from the already defined one in the
3733	 * priv struct. (if defined)
3734	 */
3735	dma_conf->dma_tx_size = priv->dma_conf.dma_tx_size;
3736	dma_conf->dma_rx_size = priv->dma_conf.dma_rx_size;
3737
3738	if (!dma_conf->dma_tx_size)
3739		dma_conf->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3740	if (!dma_conf->dma_rx_size)
3741		dma_conf->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3742
3743	/* Earlier check for TBS */
3744	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3745		struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[chan];
3746		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3747
3748		/* Setup per-TXQ tbs flag before TX descriptor alloc */
3749		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3750	}
3751
3752	ret = alloc_dma_desc_resources(priv, dma_conf);
3753	if (ret < 0) {
3754		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3755			   __func__);
3756		goto alloc_error;
3757	}
3758
3759	ret = init_dma_desc_rings(priv->dev, dma_conf, GFP_KERNEL);
3760	if (ret < 0) {
3761		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3762			   __func__);
3763		goto init_error;
3764	}
3765
3766	return dma_conf;
3767
3768init_error:
3769	free_dma_desc_resources(priv, dma_conf);
3770alloc_error:
3771	kfree(dma_conf);
3772	return ERR_PTR(ret);
3773}
3774
3775/**
3776 *  __stmmac_open - open entry point of the driver
3777 *  @dev : pointer to the device structure.
3778 *  @dma_conf :  structure to take the dma data
3779 *  Description:
3780 *  This function is the open entry point of the driver.
3781 *  Return value:
3782 *  0 on success and an appropriate (-)ve integer as defined in errno.h
3783 *  file on failure.
3784 */
3785static int __stmmac_open(struct net_device *dev,
3786			 struct stmmac_dma_conf *dma_conf)
3787{
3788	struct stmmac_priv *priv = netdev_priv(dev);
3789	int mode = priv->plat->phy_interface;
3790	u32 chan;
3791	int ret;
3792
3793	ret = pm_runtime_resume_and_get(priv->device);
3794	if (ret < 0)
3795		return ret;
3796
3797	if (priv->hw->pcs != STMMAC_PCS_TBI &&
3798	    priv->hw->pcs != STMMAC_PCS_RTBI &&
3799	    (!priv->hw->xpcs ||
3800	     xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
3801		ret = stmmac_init_phy(dev);
3802		if (ret) {
3803			netdev_err(priv->dev,
3804				   "%s: Cannot attach to PHY (error: %d)\n",
3805				   __func__, ret);
3806			goto init_phy_error;
3807		}
3808	}
3809
3810	/* Extra statistics */
3811	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3812	priv->xstats.threshold = tc;
3813
3814	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3815
3816	buf_sz = dma_conf->dma_buf_sz;
3817	memcpy(&priv->dma_conf, dma_conf, sizeof(*dma_conf));
3818
3819	stmmac_reset_queues_param(priv);
3820
3821	if (!priv->plat->serdes_up_after_phy_linkup && priv->plat->serdes_powerup) {
3822		ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv);
3823		if (ret < 0) {
3824			netdev_err(priv->dev, "%s: Serdes powerup failed\n",
3825				   __func__);
3826			goto init_error;
3827		}
3828	}
3829
3830	ret = stmmac_hw_setup(dev, true);
3831	if (ret < 0) {
3832		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3833		goto init_error;
3834	}
3835
3836	stmmac_init_coalesce(priv);
3837
3838	phylink_start(priv->phylink);
3839	/* We may have called phylink_speed_down before */
3840	phylink_speed_up(priv->phylink);
3841
3842	ret = stmmac_request_irq(dev);
3843	if (ret)
3844		goto irq_error;
3845
3846	stmmac_enable_all_queues(priv);
3847	netif_tx_start_all_queues(priv->dev);
3848	stmmac_enable_all_dma_irq(priv);
3849
3850	return 0;
3851
3852irq_error:
3853	phylink_stop(priv->phylink);
3854
3855	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3856		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3857
3858	stmmac_hw_teardown(dev);
3859init_error:
3860	free_dma_desc_resources(priv, &priv->dma_conf);
3861	phylink_disconnect_phy(priv->phylink);
3862init_phy_error:
3863	pm_runtime_put(priv->device);
3864	return ret;
3865}
3866
3867static int stmmac_open(struct net_device *dev)
3868{
3869	struct stmmac_priv *priv = netdev_priv(dev);
3870	struct stmmac_dma_conf *dma_conf;
3871	int ret;
3872
3873	dma_conf = stmmac_setup_dma_desc(priv, dev->mtu);
3874	if (IS_ERR(dma_conf))
3875		return PTR_ERR(dma_conf);
3876
3877	ret = __stmmac_open(dev, dma_conf);
3878	kfree(dma_conf);
3879	return ret;
3880}
3881
3882static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3883{
3884	set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3885
3886	if (priv->fpe_wq)
3887		destroy_workqueue(priv->fpe_wq);
3888
3889	netdev_info(priv->dev, "FPE workqueue stop");
3890}
3891
3892/**
3893 *  stmmac_release - close entry point of the driver
3894 *  @dev : device pointer.
3895 *  Description:
3896 *  This is the stop entry point of the driver.
3897 */
3898static int stmmac_release(struct net_device *dev)
3899{
3900	struct stmmac_priv *priv = netdev_priv(dev);
3901	u32 chan;
3902
3903	if (device_may_wakeup(priv->device))
3904		phylink_speed_down(priv->phylink, false);
3905	/* Stop and disconnect the PHY */
3906	phylink_stop(priv->phylink);
3907	phylink_disconnect_phy(priv->phylink);
3908
3909	stmmac_disable_all_queues(priv);
3910
3911	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3912		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3913
3914	netif_tx_disable(dev);
3915
3916	/* Free the IRQ lines */
3917	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3918
3919	if (priv->eee_enabled) {
3920		priv->tx_path_in_lpi_mode = false;
3921		del_timer_sync(&priv->eee_ctrl_timer);
3922	}
3923
3924	/* Stop TX/RX DMA and clear the descriptors */
3925	stmmac_stop_all_dma(priv);
3926
3927	/* Release and free the Rx/Tx resources */
3928	free_dma_desc_resources(priv, &priv->dma_conf);
3929
3930	/* Disable the MAC Rx/Tx */
3931	stmmac_mac_set(priv, priv->ioaddr, false);
3932
3933	/* Powerdown Serdes if there is */
3934	if (priv->plat->serdes_powerdown)
3935		priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv);
3936
3937	netif_carrier_off(dev);
3938
3939	stmmac_release_ptp(priv);
3940
3941	pm_runtime_put(priv->device);
3942
3943	if (priv->dma_cap.fpesel)
3944		stmmac_fpe_stop_wq(priv);
3945
3946	return 0;
3947}
3948
3949static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3950			       struct stmmac_tx_queue *tx_q)
3951{
3952	u16 tag = 0x0, inner_tag = 0x0;
3953	u32 inner_type = 0x0;
3954	struct dma_desc *p;
3955
3956	if (!priv->dma_cap.vlins)
3957		return false;
3958	if (!skb_vlan_tag_present(skb))
3959		return false;
3960	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3961		inner_tag = skb_vlan_tag_get(skb);
3962		inner_type = STMMAC_VLAN_INSERT;
3963	}
3964
3965	tag = skb_vlan_tag_get(skb);
3966
3967	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3968		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3969	else
3970		p = &tx_q->dma_tx[tx_q->cur_tx];
3971
3972	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3973		return false;
3974
3975	stmmac_set_tx_owner(priv, p);
3976	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
3977	return true;
3978}
3979
3980/**
3981 *  stmmac_tso_allocator - close entry point of the driver
3982 *  @priv: driver private structure
3983 *  @des: buffer start address
3984 *  @total_len: total length to fill in descriptors
3985 *  @last_segment: condition for the last descriptor
3986 *  @queue: TX queue index
3987 *  Description:
3988 *  This function fills descriptor and request new descriptors according to
3989 *  buffer length to fill
3990 */
3991static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3992				 int total_len, bool last_segment, u32 queue)
3993{
3994	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
3995	struct dma_desc *desc;
3996	u32 buff_size;
3997	int tmp_len;
3998
3999	tmp_len = total_len;
4000
4001	while (tmp_len > 0) {
4002		dma_addr_t curr_addr;
4003
4004		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4005						priv->dma_conf.dma_tx_size);
4006		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4007
4008		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4009			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4010		else
4011			desc = &tx_q->dma_tx[tx_q->cur_tx];
4012
4013		curr_addr = des + (total_len - tmp_len);
4014		if (priv->dma_cap.addr64 <= 32)
4015			desc->des0 = cpu_to_le32(curr_addr);
4016		else
4017			stmmac_set_desc_addr(priv, desc, curr_addr);
4018
4019		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
4020			    TSO_MAX_BUFF_SIZE : tmp_len;
4021
4022		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
4023				0, 1,
4024				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
4025				0, 0);
4026
4027		tmp_len -= TSO_MAX_BUFF_SIZE;
4028	}
4029}
4030
4031static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
4032{
4033	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4034	int desc_size;
4035
4036	if (likely(priv->extend_desc))
4037		desc_size = sizeof(struct dma_extended_desc);
4038	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4039		desc_size = sizeof(struct dma_edesc);
4040	else
4041		desc_size = sizeof(struct dma_desc);
4042
4043	/* The own bit must be the latest setting done when prepare the
4044	 * descriptor and then barrier is needed to make sure that
4045	 * all is coherent before granting the DMA engine.
4046	 */
4047	wmb();
4048
4049	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
4050	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
4051}
4052
4053/**
4054 *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
4055 *  @skb : the socket buffer
4056 *  @dev : device pointer
4057 *  Description: this is the transmit function that is called on TSO frames
4058 *  (support available on GMAC4 and newer chips).
4059 *  Diagram below show the ring programming in case of TSO frames:
4060 *
4061 *  First Descriptor
4062 *   --------
4063 *   | DES0 |---> buffer1 = L2/L3/L4 header
4064 *   | DES1 |---> TCP Payload (can continue on next descr...)
4065 *   | DES2 |---> buffer 1 and 2 len
4066 *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
4067 *   --------
4068 *	|
4069 *     ...
4070 *	|
4071 *   --------
4072 *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
4073 *   | DES1 | --|
4074 *   | DES2 | --> buffer 1 and 2 len
4075 *   | DES3 |
4076 *   --------
4077 *
4078 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
4079 */
4080static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
4081{
4082	struct dma_desc *desc, *first, *mss_desc = NULL;
4083	struct stmmac_priv *priv = netdev_priv(dev);
4084	int nfrags = skb_shinfo(skb)->nr_frags;
4085	u32 queue = skb_get_queue_mapping(skb);
4086	unsigned int first_entry, tx_packets;
4087	int tmp_pay_len = 0, first_tx;
4088	struct stmmac_tx_queue *tx_q;
4089	bool has_vlan, set_ic;
4090	u8 proto_hdr_len, hdr;
4091	u32 pay_len, mss;
4092	dma_addr_t des;
4093	int i;
4094
4095	tx_q = &priv->dma_conf.tx_queue[queue];
4096	first_tx = tx_q->cur_tx;
4097
4098	/* Compute header lengths */
4099	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
4100		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
4101		hdr = sizeof(struct udphdr);
4102	} else {
4103		proto_hdr_len = skb_tcp_all_headers(skb);
4104		hdr = tcp_hdrlen(skb);
4105	}
4106
4107	/* Desc availability based on threshold should be enough safe */
4108	if (unlikely(stmmac_tx_avail(priv, queue) <
4109		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
4110		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4111			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4112								queue));
4113			/* This is a hard error, log it. */
4114			netdev_err(priv->dev,
4115				   "%s: Tx Ring full when queue awake\n",
4116				   __func__);
4117		}
4118		return NETDEV_TX_BUSY;
4119	}
4120
4121	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
4122
4123	mss = skb_shinfo(skb)->gso_size;
4124
4125	/* set new MSS value if needed */
4126	if (mss != tx_q->mss) {
4127		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4128			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4129		else
4130			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
4131
4132		stmmac_set_mss(priv, mss_desc, mss);
4133		tx_q->mss = mss;
4134		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4135						priv->dma_conf.dma_tx_size);
4136		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4137	}
4138
4139	if (netif_msg_tx_queued(priv)) {
4140		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
4141			__func__, hdr, proto_hdr_len, pay_len, mss);
4142		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4143			skb->data_len);
4144	}
4145
4146	/* Check if VLAN can be inserted by HW */
4147	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4148
4149	first_entry = tx_q->cur_tx;
4150	WARN_ON(tx_q->tx_skbuff[first_entry]);
4151
4152	if (tx_q->tbs & STMMAC_TBS_AVAIL)
4153		desc = &tx_q->dma_entx[first_entry].basic;
4154	else
4155		desc = &tx_q->dma_tx[first_entry];
4156	first = desc;
4157
4158	if (has_vlan)
4159		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4160
4161	/* first descriptor: fill Headers on Buf1 */
4162	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4163			     DMA_TO_DEVICE);
4164	if (dma_mapping_error(priv->device, des))
4165		goto dma_map_err;
4166
4167	tx_q->tx_skbuff_dma[first_entry].buf = des;
4168	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4169	tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4170	tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4171
4172	if (priv->dma_cap.addr64 <= 32) {
4173		first->des0 = cpu_to_le32(des);
4174
4175		/* Fill start of payload in buff2 of first descriptor */
4176		if (pay_len)
4177			first->des1 = cpu_to_le32(des + proto_hdr_len);
4178
4179		/* If needed take extra descriptors to fill the remaining payload */
4180		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4181	} else {
4182		stmmac_set_desc_addr(priv, first, des);
4183		tmp_pay_len = pay_len;
4184		des += proto_hdr_len;
4185		pay_len = 0;
4186	}
4187
4188	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4189
4190	/* Prepare fragments */
4191	for (i = 0; i < nfrags; i++) {
4192		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4193
4194		des = skb_frag_dma_map(priv->device, frag, 0,
4195				       skb_frag_size(frag),
4196				       DMA_TO_DEVICE);
4197		if (dma_mapping_error(priv->device, des))
4198			goto dma_map_err;
4199
4200		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4201				     (i == nfrags - 1), queue);
4202
4203		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4204		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4205		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4206		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4207	}
4208
4209	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4210
4211	/* Only the last descriptor gets to point to the skb. */
4212	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4213	tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4214
4215	/* Manage tx mitigation */
4216	tx_packets = (tx_q->cur_tx + 1) - first_tx;
4217	tx_q->tx_count_frames += tx_packets;
4218
4219	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4220		set_ic = true;
4221	else if (!priv->tx_coal_frames[queue])
4222		set_ic = false;
4223	else if (tx_packets > priv->tx_coal_frames[queue])
4224		set_ic = true;
4225	else if ((tx_q->tx_count_frames %
4226		  priv->tx_coal_frames[queue]) < tx_packets)
4227		set_ic = true;
4228	else
4229		set_ic = false;
4230
4231	if (set_ic) {
4232		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4233			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4234		else
4235			desc = &tx_q->dma_tx[tx_q->cur_tx];
4236
4237		tx_q->tx_count_frames = 0;
4238		stmmac_set_tx_ic(priv, desc);
4239		priv->xstats.tx_set_ic_bit++;
4240	}
4241
4242	/* We've used all descriptors we need for this skb, however,
4243	 * advance cur_tx so that it references a fresh descriptor.
4244	 * ndo_start_xmit will fill this descriptor the next time it's
4245	 * called and stmmac_tx_clean may clean up to this descriptor.
4246	 */
4247	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
4248
4249	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4250		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4251			  __func__);
4252		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4253	}
4254
4255	dev->stats.tx_bytes += skb->len;
4256	priv->xstats.tx_tso_frames++;
4257	priv->xstats.tx_tso_nfrags += nfrags;
4258
4259	if (priv->sarc_type)
4260		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4261
4262	skb_tx_timestamp(skb);
4263
4264	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4265		     priv->hwts_tx_en)) {
4266		/* declare that device is doing timestamping */
4267		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4268		stmmac_enable_tx_timestamp(priv, first);
4269	}
4270
4271	/* Complete the first descriptor before granting the DMA */
4272	stmmac_prepare_tso_tx_desc(priv, first, 1,
4273			proto_hdr_len,
4274			pay_len,
4275			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4276			hdr / 4, (skb->len - proto_hdr_len));
4277
4278	/* If context desc is used to change MSS */
4279	if (mss_desc) {
4280		/* Make sure that first descriptor has been completely
4281		 * written, including its own bit. This is because MSS is
4282		 * actually before first descriptor, so we need to make
4283		 * sure that MSS's own bit is the last thing written.
4284		 */
4285		dma_wmb();
4286		stmmac_set_tx_owner(priv, mss_desc);
4287	}
4288
4289	if (netif_msg_pktdata(priv)) {
4290		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4291			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4292			tx_q->cur_tx, first, nfrags);
4293		pr_info(">>> frame to be transmitted: ");
4294		print_pkt(skb->data, skb_headlen(skb));
4295	}
4296
4297	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4298
4299	stmmac_flush_tx_descriptors(priv, queue);
4300	stmmac_tx_timer_arm(priv, queue);
4301
4302	return NETDEV_TX_OK;
4303
4304dma_map_err:
4305	dev_err(priv->device, "Tx dma map failed\n");
4306	dev_kfree_skb(skb);
4307	priv->dev->stats.tx_dropped++;
4308	return NETDEV_TX_OK;
4309}
4310
4311/**
4312 *  stmmac_xmit - Tx entry point of the driver
4313 *  @skb : the socket buffer
4314 *  @dev : device pointer
4315 *  Description : this is the tx entry point of the driver.
4316 *  It programs the chain or the ring and supports oversized frames
4317 *  and SG feature.
4318 */
4319static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4320{
4321	unsigned int first_entry, tx_packets, enh_desc;
4322	struct stmmac_priv *priv = netdev_priv(dev);
4323	unsigned int nopaged_len = skb_headlen(skb);
4324	int i, csum_insertion = 0, is_jumbo = 0;
4325	u32 queue = skb_get_queue_mapping(skb);
4326	int nfrags = skb_shinfo(skb)->nr_frags;
4327	int gso = skb_shinfo(skb)->gso_type;
4328	struct dma_edesc *tbs_desc = NULL;
4329	struct dma_desc *desc, *first;
4330	struct stmmac_tx_queue *tx_q;
4331	bool has_vlan, set_ic;
4332	int entry, first_tx;
4333	dma_addr_t des;
4334
4335	tx_q = &priv->dma_conf.tx_queue[queue];
4336	first_tx = tx_q->cur_tx;
4337
4338	if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4339		stmmac_disable_eee_mode(priv);
4340
4341	/* Manage oversized TCP frames for GMAC4 device */
4342	if (skb_is_gso(skb) && priv->tso) {
4343		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4344			return stmmac_tso_xmit(skb, dev);
4345		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4346			return stmmac_tso_xmit(skb, dev);
4347	}
4348
4349	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4350		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4351			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4352								queue));
4353			/* This is a hard error, log it. */
4354			netdev_err(priv->dev,
4355				   "%s: Tx Ring full when queue awake\n",
4356				   __func__);
4357		}
4358		return NETDEV_TX_BUSY;
4359	}
4360
4361	/* Check if VLAN can be inserted by HW */
4362	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4363
4364	entry = tx_q->cur_tx;
4365	first_entry = entry;
4366	WARN_ON(tx_q->tx_skbuff[first_entry]);
4367
4368	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4369
4370	if (likely(priv->extend_desc))
4371		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4372	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4373		desc = &tx_q->dma_entx[entry].basic;
4374	else
4375		desc = tx_q->dma_tx + entry;
4376
4377	first = desc;
4378
4379	if (has_vlan)
4380		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4381
4382	enh_desc = priv->plat->enh_desc;
4383	/* To program the descriptors according to the size of the frame */
4384	if (enh_desc)
4385		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4386
4387	if (unlikely(is_jumbo)) {
4388		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4389		if (unlikely(entry < 0) && (entry != -EINVAL))
4390			goto dma_map_err;
4391	}
4392
4393	for (i = 0; i < nfrags; i++) {
4394		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4395		int len = skb_frag_size(frag);
4396		bool last_segment = (i == (nfrags - 1));
4397
4398		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4399		WARN_ON(tx_q->tx_skbuff[entry]);
4400
4401		if (likely(priv->extend_desc))
4402			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4403		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4404			desc = &tx_q->dma_entx[entry].basic;
4405		else
4406			desc = tx_q->dma_tx + entry;
4407
4408		des = skb_frag_dma_map(priv->device, frag, 0, len,
4409				       DMA_TO_DEVICE);
4410		if (dma_mapping_error(priv->device, des))
4411			goto dma_map_err; /* should reuse desc w/o issues */
4412
4413		tx_q->tx_skbuff_dma[entry].buf = des;
4414
4415		stmmac_set_desc_addr(priv, desc, des);
4416
4417		tx_q->tx_skbuff_dma[entry].map_as_page = true;
4418		tx_q->tx_skbuff_dma[entry].len = len;
4419		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4420		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4421
4422		/* Prepare the descriptor and set the own bit too */
4423		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4424				priv->mode, 1, last_segment, skb->len);
4425	}
4426
4427	/* Only the last descriptor gets to point to the skb. */
4428	tx_q->tx_skbuff[entry] = skb;
4429	tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4430
4431	/* According to the coalesce parameter the IC bit for the latest
4432	 * segment is reset and the timer re-started to clean the tx status.
4433	 * This approach takes care about the fragments: desc is the first
4434	 * element in case of no SG.
4435	 */
4436	tx_packets = (entry + 1) - first_tx;
4437	tx_q->tx_count_frames += tx_packets;
4438
4439	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4440		set_ic = true;
4441	else if (!priv->tx_coal_frames[queue])
4442		set_ic = false;
4443	else if (tx_packets > priv->tx_coal_frames[queue])
4444		set_ic = true;
4445	else if ((tx_q->tx_count_frames %
4446		  priv->tx_coal_frames[queue]) < tx_packets)
4447		set_ic = true;
4448	else
4449		set_ic = false;
4450
4451	if (set_ic) {
4452		if (likely(priv->extend_desc))
4453			desc = &tx_q->dma_etx[entry].basic;
4454		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4455			desc = &tx_q->dma_entx[entry].basic;
4456		else
4457			desc = &tx_q->dma_tx[entry];
4458
4459		tx_q->tx_count_frames = 0;
4460		stmmac_set_tx_ic(priv, desc);
4461		priv->xstats.tx_set_ic_bit++;
4462	}
4463
4464	/* We've used all descriptors we need for this skb, however,
4465	 * advance cur_tx so that it references a fresh descriptor.
4466	 * ndo_start_xmit will fill this descriptor the next time it's
4467	 * called and stmmac_tx_clean may clean up to this descriptor.
4468	 */
4469	entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4470	tx_q->cur_tx = entry;
4471
4472	if (netif_msg_pktdata(priv)) {
4473		netdev_dbg(priv->dev,
4474			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4475			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4476			   entry, first, nfrags);
4477
4478		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4479		print_pkt(skb->data, skb->len);
4480	}
4481
4482	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4483		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4484			  __func__);
4485		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4486	}
4487
4488	dev->stats.tx_bytes += skb->len;
4489
4490	if (priv->sarc_type)
4491		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4492
4493	skb_tx_timestamp(skb);
4494
4495	/* Ready to fill the first descriptor and set the OWN bit w/o any
4496	 * problems because all the descriptors are actually ready to be
4497	 * passed to the DMA engine.
4498	 */
4499	if (likely(!is_jumbo)) {
4500		bool last_segment = (nfrags == 0);
4501
4502		des = dma_map_single(priv->device, skb->data,
4503				     nopaged_len, DMA_TO_DEVICE);
4504		if (dma_mapping_error(priv->device, des))
4505			goto dma_map_err;
4506
4507		tx_q->tx_skbuff_dma[first_entry].buf = des;
4508		tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4509		tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4510
4511		stmmac_set_desc_addr(priv, first, des);
4512
4513		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4514		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4515
4516		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4517			     priv->hwts_tx_en)) {
4518			/* declare that device is doing timestamping */
4519			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4520			stmmac_enable_tx_timestamp(priv, first);
4521		}
4522
4523		/* Prepare the first descriptor setting the OWN bit too */
4524		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4525				csum_insertion, priv->mode, 0, last_segment,
4526				skb->len);
4527	}
4528
4529	if (tx_q->tbs & STMMAC_TBS_EN) {
4530		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4531
4532		tbs_desc = &tx_q->dma_entx[first_entry];
4533		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4534	}
4535
4536	stmmac_set_tx_owner(priv, first);
4537
4538	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4539
4540	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4541
4542	stmmac_flush_tx_descriptors(priv, queue);
4543	stmmac_tx_timer_arm(priv, queue);
4544
4545	return NETDEV_TX_OK;
4546
4547dma_map_err:
4548	netdev_err(priv->dev, "Tx DMA map failed\n");
4549	dev_kfree_skb(skb);
4550	priv->dev->stats.tx_dropped++;
4551	return NETDEV_TX_OK;
4552}
4553
4554static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4555{
4556	struct vlan_ethhdr *veth;
4557	__be16 vlan_proto;
4558	u16 vlanid;
4559
4560	veth = (struct vlan_ethhdr *)skb->data;
4561	vlan_proto = veth->h_vlan_proto;
4562
4563	if ((vlan_proto == htons(ETH_P_8021Q) &&
4564	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4565	    (vlan_proto == htons(ETH_P_8021AD) &&
4566	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4567		/* pop the vlan tag */
4568		vlanid = ntohs(veth->h_vlan_TCI);
4569		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4570		skb_pull(skb, VLAN_HLEN);
4571		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4572	}
4573}
4574
4575/**
4576 * stmmac_rx_refill - refill used skb preallocated buffers
4577 * @priv: driver private structure
4578 * @queue: RX queue index
4579 * Description : this is to reallocate the skb for the reception process
4580 * that is based on zero-copy.
4581 */
4582static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4583{
4584	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4585	int dirty = stmmac_rx_dirty(priv, queue);
4586	unsigned int entry = rx_q->dirty_rx;
4587	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
4588
4589	if (priv->dma_cap.addr64 <= 32)
4590		gfp |= GFP_DMA32;
4591
4592	while (dirty-- > 0) {
4593		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4594		struct dma_desc *p;
4595		bool use_rx_wd;
4596
4597		if (priv->extend_desc)
4598			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4599		else
4600			p = rx_q->dma_rx + entry;
4601
4602		if (!buf->page) {
4603			buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4604			if (!buf->page)
4605				break;
4606		}
4607
4608		if (priv->sph && !buf->sec_page) {
4609			buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4610			if (!buf->sec_page)
4611				break;
4612
4613			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4614		}
4615
4616		buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4617
4618		stmmac_set_desc_addr(priv, p, buf->addr);
4619		if (priv->sph)
4620			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4621		else
4622			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4623		stmmac_refill_desc3(priv, rx_q, p);
4624
4625		rx_q->rx_count_frames++;
4626		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4627		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4628			rx_q->rx_count_frames = 0;
4629
4630		use_rx_wd = !priv->rx_coal_frames[queue];
4631		use_rx_wd |= rx_q->rx_count_frames > 0;
4632		if (!priv->use_riwt)
4633			use_rx_wd = false;
4634
4635		dma_wmb();
4636		stmmac_set_rx_owner(priv, p, use_rx_wd);
4637
4638		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4639	}
4640	rx_q->dirty_rx = entry;
4641	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4642			    (rx_q->dirty_rx * sizeof(struct dma_desc));
4643	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4644}
4645
4646static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4647				       struct dma_desc *p,
4648				       int status, unsigned int len)
4649{
4650	unsigned int plen = 0, hlen = 0;
4651	int coe = priv->hw->rx_csum;
4652
4653	/* Not first descriptor, buffer is always zero */
4654	if (priv->sph && len)
4655		return 0;
4656
4657	/* First descriptor, get split header length */
4658	stmmac_get_rx_header_len(priv, p, &hlen);
4659	if (priv->sph && hlen) {
4660		priv->xstats.rx_split_hdr_pkt_n++;
4661		return hlen;
4662	}
4663
4664	/* First descriptor, not last descriptor and not split header */
4665	if (status & rx_not_ls)
4666		return priv->dma_conf.dma_buf_sz;
4667
4668	plen = stmmac_get_rx_frame_len(priv, p, coe);
4669
4670	/* First descriptor and last descriptor and not split header */
4671	return min_t(unsigned int, priv->dma_conf.dma_buf_sz, plen);
4672}
4673
4674static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4675				       struct dma_desc *p,
4676				       int status, unsigned int len)
4677{
4678	int coe = priv->hw->rx_csum;
4679	unsigned int plen = 0;
4680
4681	/* Not split header, buffer is not available */
4682	if (!priv->sph)
4683		return 0;
4684
4685	/* Not last descriptor */
4686	if (status & rx_not_ls)
4687		return priv->dma_conf.dma_buf_sz;
4688
4689	plen = stmmac_get_rx_frame_len(priv, p, coe);
4690
4691	/* Last descriptor */
4692	return plen - len;
4693}
4694
4695static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4696				struct xdp_frame *xdpf, bool dma_map)
4697{
4698	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4699	unsigned int entry = tx_q->cur_tx;
4700	struct dma_desc *tx_desc;
4701	dma_addr_t dma_addr;
4702	bool set_ic;
4703
4704	if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4705		return STMMAC_XDP_CONSUMED;
4706
4707	if (likely(priv->extend_desc))
4708		tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4709	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4710		tx_desc = &tx_q->dma_entx[entry].basic;
4711	else
4712		tx_desc = tx_q->dma_tx + entry;
4713
4714	if (dma_map) {
4715		dma_addr = dma_map_single(priv->device, xdpf->data,
4716					  xdpf->len, DMA_TO_DEVICE);
4717		if (dma_mapping_error(priv->device, dma_addr))
4718			return STMMAC_XDP_CONSUMED;
4719
4720		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4721	} else {
4722		struct page *page = virt_to_page(xdpf->data);
4723
4724		dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4725			   xdpf->headroom;
4726		dma_sync_single_for_device(priv->device, dma_addr,
4727					   xdpf->len, DMA_BIDIRECTIONAL);
4728
4729		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4730	}
4731
4732	tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4733	tx_q->tx_skbuff_dma[entry].map_as_page = false;
4734	tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4735	tx_q->tx_skbuff_dma[entry].last_segment = true;
4736	tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4737
4738	tx_q->xdpf[entry] = xdpf;
4739
4740	stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4741
4742	stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4743			       true, priv->mode, true, true,
4744			       xdpf->len);
4745
4746	tx_q->tx_count_frames++;
4747
4748	if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4749		set_ic = true;
4750	else
4751		set_ic = false;
4752
4753	if (set_ic) {
4754		tx_q->tx_count_frames = 0;
4755		stmmac_set_tx_ic(priv, tx_desc);
4756		priv->xstats.tx_set_ic_bit++;
4757	}
4758
4759	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4760
4761	entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4762	tx_q->cur_tx = entry;
4763
4764	return STMMAC_XDP_TX;
4765}
4766
4767static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4768				   int cpu)
4769{
4770	int index = cpu;
4771
4772	if (unlikely(index < 0))
4773		index = 0;
4774
4775	while (index >= priv->plat->tx_queues_to_use)
4776		index -= priv->plat->tx_queues_to_use;
4777
4778	return index;
4779}
4780
4781static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4782				struct xdp_buff *xdp)
4783{
4784	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4785	int cpu = smp_processor_id();
4786	struct netdev_queue *nq;
4787	int queue;
4788	int res;
4789
4790	if (unlikely(!xdpf))
4791		return STMMAC_XDP_CONSUMED;
4792
4793	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4794	nq = netdev_get_tx_queue(priv->dev, queue);
4795
4796	__netif_tx_lock(nq, cpu);
4797	/* Avoids TX time-out as we are sharing with slow path */
4798	txq_trans_cond_update(nq);
4799
4800	res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4801	if (res == STMMAC_XDP_TX)
4802		stmmac_flush_tx_descriptors(priv, queue);
4803
4804	__netif_tx_unlock(nq);
4805
4806	return res;
4807}
4808
4809static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4810				 struct bpf_prog *prog,
4811				 struct xdp_buff *xdp)
4812{
4813	u32 act;
4814	int res;
4815
4816	act = bpf_prog_run_xdp(prog, xdp);
4817	switch (act) {
4818	case XDP_PASS:
4819		res = STMMAC_XDP_PASS;
4820		break;
4821	case XDP_TX:
4822		res = stmmac_xdp_xmit_back(priv, xdp);
4823		break;
4824	case XDP_REDIRECT:
4825		if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4826			res = STMMAC_XDP_CONSUMED;
4827		else
4828			res = STMMAC_XDP_REDIRECT;
4829		break;
4830	default:
4831		bpf_warn_invalid_xdp_action(priv->dev, prog, act);
4832		fallthrough;
4833	case XDP_ABORTED:
4834		trace_xdp_exception(priv->dev, prog, act);
4835		fallthrough;
4836	case XDP_DROP:
4837		res = STMMAC_XDP_CONSUMED;
4838		break;
4839	}
4840
4841	return res;
4842}
4843
4844static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4845					   struct xdp_buff *xdp)
4846{
4847	struct bpf_prog *prog;
4848	int res;
4849
4850	prog = READ_ONCE(priv->xdp_prog);
4851	if (!prog) {
4852		res = STMMAC_XDP_PASS;
4853		goto out;
4854	}
4855
4856	res = __stmmac_xdp_run_prog(priv, prog, xdp);
4857out:
4858	return ERR_PTR(-res);
4859}
4860
4861static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4862				   int xdp_status)
4863{
4864	int cpu = smp_processor_id();
4865	int queue;
4866
4867	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4868
4869	if (xdp_status & STMMAC_XDP_TX)
4870		stmmac_tx_timer_arm(priv, queue);
4871
4872	if (xdp_status & STMMAC_XDP_REDIRECT)
4873		xdp_do_flush();
4874}
4875
4876static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4877					       struct xdp_buff *xdp)
4878{
4879	unsigned int metasize = xdp->data - xdp->data_meta;
4880	unsigned int datasize = xdp->data_end - xdp->data;
4881	struct sk_buff *skb;
4882
4883	skb = __napi_alloc_skb(&ch->rxtx_napi,
4884			       xdp->data_end - xdp->data_hard_start,
4885			       GFP_ATOMIC | __GFP_NOWARN);
4886	if (unlikely(!skb))
4887		return NULL;
4888
4889	skb_reserve(skb, xdp->data - xdp->data_hard_start);
4890	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4891	if (metasize)
4892		skb_metadata_set(skb, metasize);
4893
4894	return skb;
4895}
4896
4897static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4898				   struct dma_desc *p, struct dma_desc *np,
4899				   struct xdp_buff *xdp)
4900{
4901	struct stmmac_channel *ch = &priv->channel[queue];
4902	unsigned int len = xdp->data_end - xdp->data;
4903	enum pkt_hash_types hash_type;
4904	int coe = priv->hw->rx_csum;
4905	struct sk_buff *skb;
4906	u32 hash;
4907
4908	skb = stmmac_construct_skb_zc(ch, xdp);
4909	if (!skb) {
4910		priv->dev->stats.rx_dropped++;
4911		return;
4912	}
4913
4914	stmmac_get_rx_hwtstamp(priv, p, np, skb);
4915	stmmac_rx_vlan(priv->dev, skb);
4916	skb->protocol = eth_type_trans(skb, priv->dev);
4917
4918	if (unlikely(!coe))
4919		skb_checksum_none_assert(skb);
4920	else
4921		skb->ip_summed = CHECKSUM_UNNECESSARY;
4922
4923	if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4924		skb_set_hash(skb, hash, hash_type);
4925
4926	skb_record_rx_queue(skb, queue);
4927	napi_gro_receive(&ch->rxtx_napi, skb);
4928
4929	priv->dev->stats.rx_packets++;
4930	priv->dev->stats.rx_bytes += len;
4931}
4932
4933static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4934{
4935	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4936	unsigned int entry = rx_q->dirty_rx;
4937	struct dma_desc *rx_desc = NULL;
4938	bool ret = true;
4939
4940	budget = min(budget, stmmac_rx_dirty(priv, queue));
4941
4942	while (budget-- > 0 && entry != rx_q->cur_rx) {
4943		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4944		dma_addr_t dma_addr;
4945		bool use_rx_wd;
4946
4947		if (!buf->xdp) {
4948			buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4949			if (!buf->xdp) {
4950				ret = false;
4951				break;
4952			}
4953		}
4954
4955		if (priv->extend_desc)
4956			rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4957		else
4958			rx_desc = rx_q->dma_rx + entry;
4959
4960		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4961		stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4962		stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4963		stmmac_refill_desc3(priv, rx_q, rx_desc);
4964
4965		rx_q->rx_count_frames++;
4966		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4967		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4968			rx_q->rx_count_frames = 0;
4969
4970		use_rx_wd = !priv->rx_coal_frames[queue];
4971		use_rx_wd |= rx_q->rx_count_frames > 0;
4972		if (!priv->use_riwt)
4973			use_rx_wd = false;
4974
4975		dma_wmb();
4976		stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4977
4978		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4979	}
4980
4981	if (rx_desc) {
4982		rx_q->dirty_rx = entry;
4983		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4984				     (rx_q->dirty_rx * sizeof(struct dma_desc));
4985		stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4986	}
4987
4988	return ret;
4989}
4990
4991static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
4992{
4993	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4994	unsigned int count = 0, error = 0, len = 0;
4995	int dirty = stmmac_rx_dirty(priv, queue);
4996	unsigned int next_entry = rx_q->cur_rx;
4997	unsigned int desc_size;
4998	struct bpf_prog *prog;
4999	bool failure = false;
5000	int xdp_status = 0;
5001	int status = 0;
5002
5003	if (netif_msg_rx_status(priv)) {
5004		void *rx_head;
5005
5006		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5007		if (priv->extend_desc) {
5008			rx_head = (void *)rx_q->dma_erx;
5009			desc_size = sizeof(struct dma_extended_desc);
5010		} else {
5011			rx_head = (void *)rx_q->dma_rx;
5012			desc_size = sizeof(struct dma_desc);
5013		}
5014
5015		stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5016				    rx_q->dma_rx_phy, desc_size);
5017	}
5018	while (count < limit) {
5019		struct stmmac_rx_buffer *buf;
5020		unsigned int buf1_len = 0;
5021		struct dma_desc *np, *p;
5022		int entry;
5023		int res;
5024
5025		if (!count && rx_q->state_saved) {
5026			error = rx_q->state.error;
5027			len = rx_q->state.len;
5028		} else {
5029			rx_q->state_saved = false;
5030			error = 0;
5031			len = 0;
5032		}
5033
5034		if (count >= limit)
5035			break;
5036
5037read_again:
5038		buf1_len = 0;
5039		entry = next_entry;
5040		buf = &rx_q->buf_pool[entry];
5041
5042		if (dirty >= STMMAC_RX_FILL_BATCH) {
5043			failure = failure ||
5044				  !stmmac_rx_refill_zc(priv, queue, dirty);
5045			dirty = 0;
5046		}
5047
5048		if (priv->extend_desc)
5049			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5050		else
5051			p = rx_q->dma_rx + entry;
5052
5053		/* read the status of the incoming frame */
5054		status = stmmac_rx_status(priv, &priv->dev->stats,
5055					  &priv->xstats, p);
5056		/* check if managed by the DMA otherwise go ahead */
5057		if (unlikely(status & dma_own))
5058			break;
5059
5060		/* Prefetch the next RX descriptor */
5061		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5062						priv->dma_conf.dma_rx_size);
5063		next_entry = rx_q->cur_rx;
5064
5065		if (priv->extend_desc)
5066			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5067		else
5068			np = rx_q->dma_rx + next_entry;
5069
5070		prefetch(np);
5071
5072		/* Ensure a valid XSK buffer before proceed */
5073		if (!buf->xdp)
5074			break;
5075
5076		if (priv->extend_desc)
5077			stmmac_rx_extended_status(priv, &priv->dev->stats,
5078						  &priv->xstats,
5079						  rx_q->dma_erx + entry);
5080		if (unlikely(status == discard_frame)) {
5081			xsk_buff_free(buf->xdp);
5082			buf->xdp = NULL;
5083			dirty++;
5084			error = 1;
5085			if (!priv->hwts_rx_en)
5086				priv->dev->stats.rx_errors++;
5087		}
5088
5089		if (unlikely(error && (status & rx_not_ls)))
5090			goto read_again;
5091		if (unlikely(error)) {
5092			count++;
5093			continue;
5094		}
5095
5096		/* XSK pool expects RX frame 1:1 mapped to XSK buffer */
5097		if (likely(status & rx_not_ls)) {
5098			xsk_buff_free(buf->xdp);
5099			buf->xdp = NULL;
5100			dirty++;
5101			count++;
5102			goto read_again;
5103		}
5104
5105		/* XDP ZC Frame only support primary buffers for now */
5106		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5107		len += buf1_len;
5108
5109		/* ACS is disabled; strip manually. */
5110		if (likely(!(status & rx_not_ls))) {
5111			buf1_len -= ETH_FCS_LEN;
5112			len -= ETH_FCS_LEN;
5113		}
5114
5115		/* RX buffer is good and fit into a XSK pool buffer */
5116		buf->xdp->data_end = buf->xdp->data + buf1_len;
5117		xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
5118
5119		prog = READ_ONCE(priv->xdp_prog);
5120		res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
5121
5122		switch (res) {
5123		case STMMAC_XDP_PASS:
5124			stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
5125			xsk_buff_free(buf->xdp);
5126			break;
5127		case STMMAC_XDP_CONSUMED:
5128			xsk_buff_free(buf->xdp);
5129			priv->dev->stats.rx_dropped++;
5130			break;
5131		case STMMAC_XDP_TX:
5132		case STMMAC_XDP_REDIRECT:
5133			xdp_status |= res;
5134			break;
5135		}
5136
5137		buf->xdp = NULL;
5138		dirty++;
5139		count++;
5140	}
5141
5142	if (status & rx_not_ls) {
5143		rx_q->state_saved = true;
5144		rx_q->state.error = error;
5145		rx_q->state.len = len;
5146	}
5147
5148	stmmac_finalize_xdp_rx(priv, xdp_status);
5149
5150	priv->xstats.rx_pkt_n += count;
5151	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5152
5153	if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5154		if (failure || stmmac_rx_dirty(priv, queue) > 0)
5155			xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5156		else
5157			xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5158
5159		return (int)count;
5160	}
5161
5162	return failure ? limit : (int)count;
5163}
5164
5165/**
5166 * stmmac_rx - manage the receive process
5167 * @priv: driver private structure
5168 * @limit: napi bugget
5169 * @queue: RX queue index.
5170 * Description :  this the function called by the napi poll method.
5171 * It gets all the frames inside the ring.
5172 */
5173static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5174{
5175	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5176	struct stmmac_channel *ch = &priv->channel[queue];
5177	unsigned int count = 0, error = 0, len = 0;
5178	int status = 0, coe = priv->hw->rx_csum;
5179	unsigned int next_entry = rx_q->cur_rx;
5180	enum dma_data_direction dma_dir;
5181	unsigned int desc_size;
5182	struct sk_buff *skb = NULL;
5183	struct xdp_buff xdp;
5184	int xdp_status = 0;
5185	int buf_sz;
5186
5187	dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5188	buf_sz = DIV_ROUND_UP(priv->dma_conf.dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5189
5190	if (netif_msg_rx_status(priv)) {
5191		void *rx_head;
5192
5193		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5194		if (priv->extend_desc) {
5195			rx_head = (void *)rx_q->dma_erx;
5196			desc_size = sizeof(struct dma_extended_desc);
5197		} else {
5198			rx_head = (void *)rx_q->dma_rx;
5199			desc_size = sizeof(struct dma_desc);
5200		}
5201
5202		stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5203				    rx_q->dma_rx_phy, desc_size);
5204	}
5205	while (count < limit) {
5206		unsigned int buf1_len = 0, buf2_len = 0;
5207		enum pkt_hash_types hash_type;
5208		struct stmmac_rx_buffer *buf;
5209		struct dma_desc *np, *p;
5210		int entry;
5211		u32 hash;
5212
5213		if (!count && rx_q->state_saved) {
5214			skb = rx_q->state.skb;
5215			error = rx_q->state.error;
5216			len = rx_q->state.len;
5217		} else {
5218			rx_q->state_saved = false;
5219			skb = NULL;
5220			error = 0;
5221			len = 0;
5222		}
5223
5224		if (count >= limit)
5225			break;
5226
5227read_again:
5228		buf1_len = 0;
5229		buf2_len = 0;
5230		entry = next_entry;
5231		buf = &rx_q->buf_pool[entry];
5232
5233		if (priv->extend_desc)
5234			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5235		else
5236			p = rx_q->dma_rx + entry;
5237
5238		/* read the status of the incoming frame */
5239		status = stmmac_rx_status(priv, &priv->dev->stats,
5240				&priv->xstats, p);
5241		/* check if managed by the DMA otherwise go ahead */
5242		if (unlikely(status & dma_own))
5243			break;
5244
5245		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5246						priv->dma_conf.dma_rx_size);
5247		next_entry = rx_q->cur_rx;
5248
5249		if (priv->extend_desc)
5250			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5251		else
5252			np = rx_q->dma_rx + next_entry;
5253
5254		prefetch(np);
5255
5256		if (priv->extend_desc)
5257			stmmac_rx_extended_status(priv, &priv->dev->stats,
5258					&priv->xstats, rx_q->dma_erx + entry);
5259		if (unlikely(status == discard_frame)) {
5260			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5261			buf->page = NULL;
5262			error = 1;
5263			if (!priv->hwts_rx_en)
5264				priv->dev->stats.rx_errors++;
5265		}
5266
5267		if (unlikely(error && (status & rx_not_ls)))
5268			goto read_again;
5269		if (unlikely(error)) {
5270			dev_kfree_skb(skb);
5271			skb = NULL;
5272			count++;
5273			continue;
5274		}
5275
5276		/* Buffer is good. Go on. */
5277
5278		prefetch(page_address(buf->page) + buf->page_offset);
5279		if (buf->sec_page)
5280			prefetch(page_address(buf->sec_page));
5281
5282		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5283		len += buf1_len;
5284		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5285		len += buf2_len;
5286
5287		/* ACS is disabled; strip manually. */
5288		if (likely(!(status & rx_not_ls))) {
5289			if (buf2_len) {
5290				buf2_len -= ETH_FCS_LEN;
5291				len -= ETH_FCS_LEN;
5292			} else if (buf1_len) {
5293				buf1_len -= ETH_FCS_LEN;
5294				len -= ETH_FCS_LEN;
5295			}
5296		}
5297
5298		if (!skb) {
5299			unsigned int pre_len, sync_len;
5300
5301			dma_sync_single_for_cpu(priv->device, buf->addr,
5302						buf1_len, dma_dir);
5303
5304			xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
5305			xdp_prepare_buff(&xdp, page_address(buf->page),
5306					 buf->page_offset, buf1_len, false);
5307
5308			pre_len = xdp.data_end - xdp.data_hard_start -
5309				  buf->page_offset;
5310			skb = stmmac_xdp_run_prog(priv, &xdp);
5311			/* Due xdp_adjust_tail: DMA sync for_device
5312			 * cover max len CPU touch
5313			 */
5314			sync_len = xdp.data_end - xdp.data_hard_start -
5315				   buf->page_offset;
5316			sync_len = max(sync_len, pre_len);
5317
5318			/* For Not XDP_PASS verdict */
5319			if (IS_ERR(skb)) {
5320				unsigned int xdp_res = -PTR_ERR(skb);
5321
5322				if (xdp_res & STMMAC_XDP_CONSUMED) {
5323					page_pool_put_page(rx_q->page_pool,
5324							   virt_to_head_page(xdp.data),
5325							   sync_len, true);
5326					buf->page = NULL;
5327					priv->dev->stats.rx_dropped++;
5328
5329					/* Clear skb as it was set as
5330					 * status by XDP program.
5331					 */
5332					skb = NULL;
5333
5334					if (unlikely((status & rx_not_ls)))
5335						goto read_again;
5336
5337					count++;
5338					continue;
5339				} else if (xdp_res & (STMMAC_XDP_TX |
5340						      STMMAC_XDP_REDIRECT)) {
5341					xdp_status |= xdp_res;
5342					buf->page = NULL;
5343					skb = NULL;
5344					count++;
5345					continue;
5346				}
5347			}
5348		}
5349
5350		if (!skb) {
5351			/* XDP program may expand or reduce tail */
5352			buf1_len = xdp.data_end - xdp.data;
5353
5354			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5355			if (!skb) {
5356				priv->dev->stats.rx_dropped++;
5357				count++;
5358				goto drain_data;
5359			}
5360
5361			/* XDP program may adjust header */
5362			skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5363			skb_put(skb, buf1_len);
5364
5365			/* Data payload copied into SKB, page ready for recycle */
5366			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5367			buf->page = NULL;
5368		} else if (buf1_len) {
5369			dma_sync_single_for_cpu(priv->device, buf->addr,
5370						buf1_len, dma_dir);
5371			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5372					buf->page, buf->page_offset, buf1_len,
5373					priv->dma_conf.dma_buf_sz);
5374
5375			/* Data payload appended into SKB */
5376			page_pool_release_page(rx_q->page_pool, buf->page);
5377			buf->page = NULL;
5378		}
5379
5380		if (buf2_len) {
5381			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5382						buf2_len, dma_dir);
5383			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5384					buf->sec_page, 0, buf2_len,
5385					priv->dma_conf.dma_buf_sz);
5386
5387			/* Data payload appended into SKB */
5388			page_pool_release_page(rx_q->page_pool, buf->sec_page);
5389			buf->sec_page = NULL;
5390		}
5391
5392drain_data:
5393		if (likely(status & rx_not_ls))
5394			goto read_again;
5395		if (!skb)
5396			continue;
5397
5398		/* Got entire packet into SKB. Finish it. */
5399
5400		stmmac_get_rx_hwtstamp(priv, p, np, skb);
5401		stmmac_rx_vlan(priv->dev, skb);
5402		skb->protocol = eth_type_trans(skb, priv->dev);
5403
5404		if (unlikely(!coe))
5405			skb_checksum_none_assert(skb);
5406		else
5407			skb->ip_summed = CHECKSUM_UNNECESSARY;
5408
5409		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5410			skb_set_hash(skb, hash, hash_type);
5411
5412		skb_record_rx_queue(skb, queue);
5413		napi_gro_receive(&ch->rx_napi, skb);
5414		skb = NULL;
5415
5416		priv->dev->stats.rx_packets++;
5417		priv->dev->stats.rx_bytes += len;
5418		count++;
5419	}
5420
5421	if (status & rx_not_ls || skb) {
5422		rx_q->state_saved = true;
5423		rx_q->state.skb = skb;
5424		rx_q->state.error = error;
5425		rx_q->state.len = len;
5426	}
5427
5428	stmmac_finalize_xdp_rx(priv, xdp_status);
5429
5430	stmmac_rx_refill(priv, queue);
5431
5432	priv->xstats.rx_pkt_n += count;
5433	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5434
5435	return count;
5436}
5437
5438static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5439{
5440	struct stmmac_channel *ch =
5441		container_of(napi, struct stmmac_channel, rx_napi);
5442	struct stmmac_priv *priv = ch->priv_data;
5443	u32 chan = ch->index;
5444	int work_done;
5445
5446	priv->xstats.napi_poll++;
5447
5448	work_done = stmmac_rx(priv, budget, chan);
5449	if (work_done < budget && napi_complete_done(napi, work_done)) {
5450		unsigned long flags;
5451
5452		spin_lock_irqsave(&ch->lock, flags);
5453		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5454		spin_unlock_irqrestore(&ch->lock, flags);
5455	}
5456
5457	return work_done;
5458}
5459
5460static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5461{
5462	struct stmmac_channel *ch =
5463		container_of(napi, struct stmmac_channel, tx_napi);
5464	struct stmmac_priv *priv = ch->priv_data;
5465	u32 chan = ch->index;
5466	int work_done;
5467
5468	priv->xstats.napi_poll++;
5469
5470	work_done = stmmac_tx_clean(priv, budget, chan);
5471	work_done = min(work_done, budget);
5472
5473	if (work_done < budget && napi_complete_done(napi, work_done)) {
5474		unsigned long flags;
5475
5476		spin_lock_irqsave(&ch->lock, flags);
5477		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5478		spin_unlock_irqrestore(&ch->lock, flags);
5479	}
5480
5481	return work_done;
5482}
5483
5484static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5485{
5486	struct stmmac_channel *ch =
5487		container_of(napi, struct stmmac_channel, rxtx_napi);
5488	struct stmmac_priv *priv = ch->priv_data;
5489	int rx_done, tx_done, rxtx_done;
5490	u32 chan = ch->index;
5491
5492	priv->xstats.napi_poll++;
5493
5494	tx_done = stmmac_tx_clean(priv, budget, chan);
5495	tx_done = min(tx_done, budget);
5496
5497	rx_done = stmmac_rx_zc(priv, budget, chan);
5498
5499	rxtx_done = max(tx_done, rx_done);
5500
5501	/* If either TX or RX work is not complete, return budget
5502	 * and keep pooling
5503	 */
5504	if (rxtx_done >= budget)
5505		return budget;
5506
5507	/* all work done, exit the polling mode */
5508	if (napi_complete_done(napi, rxtx_done)) {
5509		unsigned long flags;
5510
5511		spin_lock_irqsave(&ch->lock, flags);
5512		/* Both RX and TX work done are compelte,
5513		 * so enable both RX & TX IRQs.
5514		 */
5515		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5516		spin_unlock_irqrestore(&ch->lock, flags);
5517	}
5518
5519	return min(rxtx_done, budget - 1);
5520}
5521
5522/**
5523 *  stmmac_tx_timeout
5524 *  @dev : Pointer to net device structure
5525 *  @txqueue: the index of the hanging transmit queue
5526 *  Description: this function is called when a packet transmission fails to
5527 *   complete within a reasonable time. The driver will mark the error in the
5528 *   netdev structure and arrange for the device to be reset to a sane state
5529 *   in order to transmit a new packet.
5530 */
5531static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5532{
5533	struct stmmac_priv *priv = netdev_priv(dev);
5534
5535	stmmac_global_err(priv);
5536}
5537
5538/**
5539 *  stmmac_set_rx_mode - entry point for multicast addressing
5540 *  @dev : pointer to the device structure
5541 *  Description:
5542 *  This function is a driver entry point which gets called by the kernel
5543 *  whenever multicast addresses must be enabled/disabled.
5544 *  Return value:
5545 *  void.
5546 */
5547static void stmmac_set_rx_mode(struct net_device *dev)
5548{
5549	struct stmmac_priv *priv = netdev_priv(dev);
5550
5551	stmmac_set_filter(priv, priv->hw, dev);
5552}
5553
5554/**
5555 *  stmmac_change_mtu - entry point to change MTU size for the device.
5556 *  @dev : device pointer.
5557 *  @new_mtu : the new MTU size for the device.
5558 *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5559 *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5560 *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5561 *  Return value:
5562 *  0 on success and an appropriate (-)ve integer as defined in errno.h
5563 *  file on failure.
5564 */
5565static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5566{
5567	struct stmmac_priv *priv = netdev_priv(dev);
5568	int txfifosz = priv->plat->tx_fifo_size;
5569	struct stmmac_dma_conf *dma_conf;
5570	const int mtu = new_mtu;
5571	int ret;
5572
5573	if (txfifosz == 0)
5574		txfifosz = priv->dma_cap.tx_fifo_size;
5575
5576	txfifosz /= priv->plat->tx_queues_to_use;
5577
5578	if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5579		netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5580		return -EINVAL;
5581	}
5582
5583	new_mtu = STMMAC_ALIGN(new_mtu);
5584
5585	/* If condition true, FIFO is too small or MTU too large */
5586	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5587		return -EINVAL;
5588
5589	if (netif_running(dev)) {
5590		netdev_dbg(priv->dev, "restarting interface to change its MTU\n");
5591		/* Try to allocate the new DMA conf with the new mtu */
5592		dma_conf = stmmac_setup_dma_desc(priv, mtu);
5593		if (IS_ERR(dma_conf)) {
5594			netdev_err(priv->dev, "failed allocating new dma conf for new MTU %d\n",
5595				   mtu);
5596			return PTR_ERR(dma_conf);
5597		}
5598
5599		stmmac_release(dev);
5600
5601		ret = __stmmac_open(dev, dma_conf);
5602		kfree(dma_conf);
5603		if (ret) {
5604			netdev_err(priv->dev, "failed reopening the interface after MTU change\n");
5605			return ret;
5606		}
5607
5608		stmmac_set_rx_mode(dev);
5609	}
5610
5611	dev->mtu = mtu;
5612	netdev_update_features(dev);
5613
5614	return 0;
5615}
5616
5617static netdev_features_t stmmac_fix_features(struct net_device *dev,
5618					     netdev_features_t features)
5619{
5620	struct stmmac_priv *priv = netdev_priv(dev);
5621
5622	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5623		features &= ~NETIF_F_RXCSUM;
5624
5625	if (!priv->plat->tx_coe)
5626		features &= ~NETIF_F_CSUM_MASK;
5627
5628	/* Some GMAC devices have a bugged Jumbo frame support that
5629	 * needs to have the Tx COE disabled for oversized frames
5630	 * (due to limited buffer sizes). In this case we disable
5631	 * the TX csum insertion in the TDES and not use SF.
5632	 */
5633	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5634		features &= ~NETIF_F_CSUM_MASK;
5635
5636	/* Disable tso if asked by ethtool */
5637	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5638		if (features & NETIF_F_TSO)
5639			priv->tso = true;
5640		else
5641			priv->tso = false;
5642	}
5643
5644	return features;
5645}
5646
5647static int stmmac_set_features(struct net_device *netdev,
5648			       netdev_features_t features)
5649{
5650	struct stmmac_priv *priv = netdev_priv(netdev);
5651
5652	/* Keep the COE Type in case of csum is supporting */
5653	if (features & NETIF_F_RXCSUM)
5654		priv->hw->rx_csum = priv->plat->rx_coe;
5655	else
5656		priv->hw->rx_csum = 0;
5657	/* No check needed because rx_coe has been set before and it will be
5658	 * fixed in case of issue.
5659	 */
5660	stmmac_rx_ipc(priv, priv->hw);
5661
5662	if (priv->sph_cap) {
5663		bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5664		u32 chan;
5665
5666		for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5667			stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5668	}
5669
5670	return 0;
5671}
5672
5673static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5674{
5675	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5676	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5677	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5678	bool *hs_enable = &fpe_cfg->hs_enable;
5679
5680	if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5681		return;
5682
5683	/* If LP has sent verify mPacket, LP is FPE capable */
5684	if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5685		if (*lp_state < FPE_STATE_CAPABLE)
5686			*lp_state = FPE_STATE_CAPABLE;
5687
5688		/* If user has requested FPE enable, quickly response */
5689		if (*hs_enable)
5690			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5691						MPACKET_RESPONSE);
5692	}
5693
5694	/* If Local has sent verify mPacket, Local is FPE capable */
5695	if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5696		if (*lo_state < FPE_STATE_CAPABLE)
5697			*lo_state = FPE_STATE_CAPABLE;
5698	}
5699
5700	/* If LP has sent response mPacket, LP is entering FPE ON */
5701	if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5702		*lp_state = FPE_STATE_ENTERING_ON;
5703
5704	/* If Local has sent response mPacket, Local is entering FPE ON */
5705	if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5706		*lo_state = FPE_STATE_ENTERING_ON;
5707
5708	if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5709	    !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5710	    priv->fpe_wq) {
5711		queue_work(priv->fpe_wq, &priv->fpe_task);
5712	}
5713}
5714
5715static void stmmac_common_interrupt(struct stmmac_priv *priv)
5716{
5717	u32 rx_cnt = priv->plat->rx_queues_to_use;
5718	u32 tx_cnt = priv->plat->tx_queues_to_use;
5719	u32 queues_count;
5720	u32 queue;
5721	bool xmac;
5722
5723	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5724	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5725
5726	if (priv->irq_wake)
5727		pm_wakeup_event(priv->device, 0);
5728
5729	if (priv->dma_cap.estsel)
5730		stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5731				      &priv->xstats, tx_cnt);
5732
5733	if (priv->dma_cap.fpesel) {
5734		int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5735						   priv->dev);
5736
5737		stmmac_fpe_event_status(priv, status);
5738	}
5739
5740	/* To handle GMAC own interrupts */
5741	if ((priv->plat->has_gmac) || xmac) {
5742		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5743
5744		if (unlikely(status)) {
5745			/* For LPI we need to save the tx status */
5746			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5747				priv->tx_path_in_lpi_mode = true;
5748			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5749				priv->tx_path_in_lpi_mode = false;
5750		}
5751
5752		for (queue = 0; queue < queues_count; queue++) {
5753			status = stmmac_host_mtl_irq_status(priv, priv->hw,
5754							    queue);
5755		}
5756
5757		/* PCS link status */
5758		if (priv->hw->pcs) {
5759			if (priv->xstats.pcs_link)
5760				netif_carrier_on(priv->dev);
5761			else
5762				netif_carrier_off(priv->dev);
5763		}
5764
5765		stmmac_timestamp_interrupt(priv, priv);
5766	}
5767}
5768
5769/**
5770 *  stmmac_interrupt - main ISR
5771 *  @irq: interrupt number.
5772 *  @dev_id: to pass the net device pointer.
5773 *  Description: this is the main driver interrupt service routine.
5774 *  It can call:
5775 *  o DMA service routine (to manage incoming frame reception and transmission
5776 *    status)
5777 *  o Core interrupts to manage: remote wake-up, management counter, LPI
5778 *    interrupts.
5779 */
5780static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5781{
5782	struct net_device *dev = (struct net_device *)dev_id;
5783	struct stmmac_priv *priv = netdev_priv(dev);
5784
5785	/* Check if adapter is up */
5786	if (test_bit(STMMAC_DOWN, &priv->state))
5787		return IRQ_HANDLED;
5788
5789	/* Check if a fatal error happened */
5790	if (stmmac_safety_feat_interrupt(priv))
5791		return IRQ_HANDLED;
5792
5793	/* To handle Common interrupts */
5794	stmmac_common_interrupt(priv);
5795
5796	/* To handle DMA interrupts */
5797	stmmac_dma_interrupt(priv);
5798
5799	return IRQ_HANDLED;
5800}
5801
5802static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5803{
5804	struct net_device *dev = (struct net_device *)dev_id;
5805	struct stmmac_priv *priv = netdev_priv(dev);
5806
5807	if (unlikely(!dev)) {
5808		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5809		return IRQ_NONE;
5810	}
5811
5812	/* Check if adapter is up */
5813	if (test_bit(STMMAC_DOWN, &priv->state))
5814		return IRQ_HANDLED;
5815
5816	/* To handle Common interrupts */
5817	stmmac_common_interrupt(priv);
5818
5819	return IRQ_HANDLED;
5820}
5821
5822static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5823{
5824	struct net_device *dev = (struct net_device *)dev_id;
5825	struct stmmac_priv *priv = netdev_priv(dev);
5826
5827	if (unlikely(!dev)) {
5828		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5829		return IRQ_NONE;
5830	}
5831
5832	/* Check if adapter is up */
5833	if (test_bit(STMMAC_DOWN, &priv->state))
5834		return IRQ_HANDLED;
5835
5836	/* Check if a fatal error happened */
5837	stmmac_safety_feat_interrupt(priv);
5838
5839	return IRQ_HANDLED;
5840}
5841
5842static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5843{
5844	struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5845	struct stmmac_dma_conf *dma_conf;
5846	int chan = tx_q->queue_index;
5847	struct stmmac_priv *priv;
5848	int status;
5849
5850	dma_conf = container_of(tx_q, struct stmmac_dma_conf, tx_queue[chan]);
5851	priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5852
5853	if (unlikely(!data)) {
5854		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5855		return IRQ_NONE;
5856	}
5857
5858	/* Check if adapter is up */
5859	if (test_bit(STMMAC_DOWN, &priv->state))
5860		return IRQ_HANDLED;
5861
5862	status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5863
5864	if (unlikely(status & tx_hard_error_bump_tc)) {
5865		/* Try to bump up the dma threshold on this failure */
5866		stmmac_bump_dma_threshold(priv, chan);
5867	} else if (unlikely(status == tx_hard_error)) {
5868		stmmac_tx_err(priv, chan);
5869	}
5870
5871	return IRQ_HANDLED;
5872}
5873
5874static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5875{
5876	struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5877	struct stmmac_dma_conf *dma_conf;
5878	int chan = rx_q->queue_index;
5879	struct stmmac_priv *priv;
5880
5881	dma_conf = container_of(rx_q, struct stmmac_dma_conf, rx_queue[chan]);
5882	priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5883
5884	if (unlikely(!data)) {
5885		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5886		return IRQ_NONE;
5887	}
5888
5889	/* Check if adapter is up */
5890	if (test_bit(STMMAC_DOWN, &priv->state))
5891		return IRQ_HANDLED;
5892
5893	stmmac_napi_check(priv, chan, DMA_DIR_RX);
5894
5895	return IRQ_HANDLED;
5896}
5897
5898#ifdef CONFIG_NET_POLL_CONTROLLER
5899/* Polling receive - used by NETCONSOLE and other diagnostic tools
5900 * to allow network I/O with interrupts disabled.
5901 */
5902static void stmmac_poll_controller(struct net_device *dev)
5903{
5904	struct stmmac_priv *priv = netdev_priv(dev);
5905	int i;
5906
5907	/* If adapter is down, do nothing */
5908	if (test_bit(STMMAC_DOWN, &priv->state))
5909		return;
5910
5911	if (priv->plat->multi_msi_en) {
5912		for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5913			stmmac_msi_intr_rx(0, &priv->dma_conf.rx_queue[i]);
5914
5915		for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5916			stmmac_msi_intr_tx(0, &priv->dma_conf.tx_queue[i]);
5917	} else {
5918		disable_irq(dev->irq);
5919		stmmac_interrupt(dev->irq, dev);
5920		enable_irq(dev->irq);
5921	}
5922}
5923#endif
5924
5925/**
5926 *  stmmac_ioctl - Entry point for the Ioctl
5927 *  @dev: Device pointer.
5928 *  @rq: An IOCTL specefic structure, that can contain a pointer to
5929 *  a proprietary structure used to pass information to the driver.
5930 *  @cmd: IOCTL command
5931 *  Description:
5932 *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5933 */
5934static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5935{
5936	struct stmmac_priv *priv = netdev_priv (dev);
5937	int ret = -EOPNOTSUPP;
5938
5939	if (!netif_running(dev))
5940		return -EINVAL;
5941
5942	switch (cmd) {
5943	case SIOCGMIIPHY:
5944	case SIOCGMIIREG:
5945	case SIOCSMIIREG:
5946		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5947		break;
5948	case SIOCSHWTSTAMP:
5949		ret = stmmac_hwtstamp_set(dev, rq);
5950		break;
5951	case SIOCGHWTSTAMP:
5952		ret = stmmac_hwtstamp_get(dev, rq);
5953		break;
5954	default:
5955		break;
5956	}
5957
5958	return ret;
5959}
5960
5961static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5962				    void *cb_priv)
5963{
5964	struct stmmac_priv *priv = cb_priv;
5965	int ret = -EOPNOTSUPP;
5966
5967	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5968		return ret;
5969
5970	__stmmac_disable_all_queues(priv);
5971
5972	switch (type) {
5973	case TC_SETUP_CLSU32:
5974		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5975		break;
5976	case TC_SETUP_CLSFLOWER:
5977		ret = stmmac_tc_setup_cls(priv, priv, type_data);
5978		break;
5979	default:
5980		break;
5981	}
5982
5983	stmmac_enable_all_queues(priv);
5984	return ret;
5985}
5986
5987static LIST_HEAD(stmmac_block_cb_list);
5988
5989static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
5990			   void *type_data)
5991{
5992	struct stmmac_priv *priv = netdev_priv(ndev);
5993
5994	switch (type) {
5995	case TC_SETUP_BLOCK:
5996		return flow_block_cb_setup_simple(type_data,
5997						  &stmmac_block_cb_list,
5998						  stmmac_setup_tc_block_cb,
5999						  priv, priv, true);
6000	case TC_SETUP_QDISC_CBS:
6001		return stmmac_tc_setup_cbs(priv, priv, type_data);
6002	case TC_SETUP_QDISC_TAPRIO:
6003		return stmmac_tc_setup_taprio(priv, priv, type_data);
6004	case TC_SETUP_QDISC_ETF:
6005		return stmmac_tc_setup_etf(priv, priv, type_data);
6006	default:
6007		return -EOPNOTSUPP;
6008	}
6009}
6010
6011static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
6012			       struct net_device *sb_dev)
6013{
6014	int gso = skb_shinfo(skb)->gso_type;
6015
6016	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
6017		/*
6018		 * There is no way to determine the number of TSO/USO
6019		 * capable Queues. Let's use always the Queue 0
6020		 * because if TSO/USO is supported then at least this
6021		 * one will be capable.
6022		 */
6023		return 0;
6024	}
6025
6026	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
6027}
6028
6029static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
6030{
6031	struct stmmac_priv *priv = netdev_priv(ndev);
6032	int ret = 0;
6033
6034	ret = pm_runtime_resume_and_get(priv->device);
6035	if (ret < 0)
6036		return ret;
6037
6038	ret = eth_mac_addr(ndev, addr);
6039	if (ret)
6040		goto set_mac_error;
6041
6042	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
6043
6044set_mac_error:
6045	pm_runtime_put(priv->device);
6046
6047	return ret;
6048}
6049
6050#ifdef CONFIG_DEBUG_FS
6051static struct dentry *stmmac_fs_dir;
6052
6053static void sysfs_display_ring(void *head, int size, int extend_desc,
6054			       struct seq_file *seq, dma_addr_t dma_phy_addr)
6055{
6056	int i;
6057	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
6058	struct dma_desc *p = (struct dma_desc *)head;
6059	dma_addr_t dma_addr;
6060
6061	for (i = 0; i < size; i++) {
6062		if (extend_desc) {
6063			dma_addr = dma_phy_addr + i * sizeof(*ep);
6064			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6065				   i, &dma_addr,
6066				   le32_to_cpu(ep->basic.des0),
6067				   le32_to_cpu(ep->basic.des1),
6068				   le32_to_cpu(ep->basic.des2),
6069				   le32_to_cpu(ep->basic.des3));
6070			ep++;
6071		} else {
6072			dma_addr = dma_phy_addr + i * sizeof(*p);
6073			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6074				   i, &dma_addr,
6075				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
6076				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
6077			p++;
6078		}
6079		seq_printf(seq, "\n");
6080	}
6081}
6082
6083static int stmmac_rings_status_show(struct seq_file *seq, void *v)
6084{
6085	struct net_device *dev = seq->private;
6086	struct stmmac_priv *priv = netdev_priv(dev);
6087	u32 rx_count = priv->plat->rx_queues_to_use;
6088	u32 tx_count = priv->plat->tx_queues_to_use;
6089	u32 queue;
6090
6091	if ((dev->flags & IFF_UP) == 0)
6092		return 0;
6093
6094	for (queue = 0; queue < rx_count; queue++) {
6095		struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6096
6097		seq_printf(seq, "RX Queue %d:\n", queue);
6098
6099		if (priv->extend_desc) {
6100			seq_printf(seq, "Extended descriptor ring:\n");
6101			sysfs_display_ring((void *)rx_q->dma_erx,
6102					   priv->dma_conf.dma_rx_size, 1, seq, rx_q->dma_rx_phy);
6103		} else {
6104			seq_printf(seq, "Descriptor ring:\n");
6105			sysfs_display_ring((void *)rx_q->dma_rx,
6106					   priv->dma_conf.dma_rx_size, 0, seq, rx_q->dma_rx_phy);
6107		}
6108	}
6109
6110	for (queue = 0; queue < tx_count; queue++) {
6111		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6112
6113		seq_printf(seq, "TX Queue %d:\n", queue);
6114
6115		if (priv->extend_desc) {
6116			seq_printf(seq, "Extended descriptor ring:\n");
6117			sysfs_display_ring((void *)tx_q->dma_etx,
6118					   priv->dma_conf.dma_tx_size, 1, seq, tx_q->dma_tx_phy);
6119		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
6120			seq_printf(seq, "Descriptor ring:\n");
6121			sysfs_display_ring((void *)tx_q->dma_tx,
6122					   priv->dma_conf.dma_tx_size, 0, seq, tx_q->dma_tx_phy);
6123		}
6124	}
6125
6126	return 0;
6127}
6128DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
6129
6130static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
6131{
6132	struct net_device *dev = seq->private;
6133	struct stmmac_priv *priv = netdev_priv(dev);
6134
6135	if (!priv->hw_cap_support) {
6136		seq_printf(seq, "DMA HW features not supported\n");
6137		return 0;
6138	}
6139
6140	seq_printf(seq, "==============================\n");
6141	seq_printf(seq, "\tDMA HW features\n");
6142	seq_printf(seq, "==============================\n");
6143
6144	seq_printf(seq, "\t10/100 Mbps: %s\n",
6145		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6146	seq_printf(seq, "\t1000 Mbps: %s\n",
6147		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
6148	seq_printf(seq, "\tHalf duplex: %s\n",
6149		   (priv->dma_cap.half_duplex) ? "Y" : "N");
6150	seq_printf(seq, "\tHash Filter: %s\n",
6151		   (priv->dma_cap.hash_filter) ? "Y" : "N");
6152	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6153		   (priv->dma_cap.multi_addr) ? "Y" : "N");
6154	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6155		   (priv->dma_cap.pcs) ? "Y" : "N");
6156	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6157		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
6158	seq_printf(seq, "\tPMT Remote wake up: %s\n",
6159		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6160	seq_printf(seq, "\tPMT Magic Frame: %s\n",
6161		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6162	seq_printf(seq, "\tRMON module: %s\n",
6163		   (priv->dma_cap.rmon) ? "Y" : "N");
6164	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6165		   (priv->dma_cap.time_stamp) ? "Y" : "N");
6166	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6167		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
6168	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6169		   (priv->dma_cap.eee) ? "Y" : "N");
6170	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6171	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6172		   (priv->dma_cap.tx_coe) ? "Y" : "N");
6173	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6174		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6175			   (priv->dma_cap.rx_coe) ? "Y" : "N");
6176	} else {
6177		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6178			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6179		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6180			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6181	}
6182	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6183		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6184	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6185		   priv->dma_cap.number_rx_channel);
6186	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6187		   priv->dma_cap.number_tx_channel);
6188	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6189		   priv->dma_cap.number_rx_queues);
6190	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6191		   priv->dma_cap.number_tx_queues);
6192	seq_printf(seq, "\tEnhanced descriptors: %s\n",
6193		   (priv->dma_cap.enh_desc) ? "Y" : "N");
6194	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6195	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6196	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6197	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6198	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6199		   priv->dma_cap.pps_out_num);
6200	seq_printf(seq, "\tSafety Features: %s\n",
6201		   priv->dma_cap.asp ? "Y" : "N");
6202	seq_printf(seq, "\tFlexible RX Parser: %s\n",
6203		   priv->dma_cap.frpsel ? "Y" : "N");
6204	seq_printf(seq, "\tEnhanced Addressing: %d\n",
6205		   priv->dma_cap.addr64);
6206	seq_printf(seq, "\tReceive Side Scaling: %s\n",
6207		   priv->dma_cap.rssen ? "Y" : "N");
6208	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6209		   priv->dma_cap.vlhash ? "Y" : "N");
6210	seq_printf(seq, "\tSplit Header: %s\n",
6211		   priv->dma_cap.sphen ? "Y" : "N");
6212	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6213		   priv->dma_cap.vlins ? "Y" : "N");
6214	seq_printf(seq, "\tDouble VLAN: %s\n",
6215		   priv->dma_cap.dvlan ? "Y" : "N");
6216	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6217		   priv->dma_cap.l3l4fnum);
6218	seq_printf(seq, "\tARP Offloading: %s\n",
6219		   priv->dma_cap.arpoffsel ? "Y" : "N");
6220	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6221		   priv->dma_cap.estsel ? "Y" : "N");
6222	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6223		   priv->dma_cap.fpesel ? "Y" : "N");
6224	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6225		   priv->dma_cap.tbssel ? "Y" : "N");
6226	return 0;
6227}
6228DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6229
6230/* Use network device events to rename debugfs file entries.
6231 */
6232static int stmmac_device_event(struct notifier_block *unused,
6233			       unsigned long event, void *ptr)
6234{
6235	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6236	struct stmmac_priv *priv = netdev_priv(dev);
6237
6238	if (dev->netdev_ops != &stmmac_netdev_ops)
6239		goto done;
6240
6241	switch (event) {
6242	case NETDEV_CHANGENAME:
6243		if (priv->dbgfs_dir)
6244			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6245							 priv->dbgfs_dir,
6246							 stmmac_fs_dir,
6247							 dev->name);
6248		break;
6249	}
6250done:
6251	return NOTIFY_DONE;
6252}
6253
6254static struct notifier_block stmmac_notifier = {
6255	.notifier_call = stmmac_device_event,
6256};
6257
6258static void stmmac_init_fs(struct net_device *dev)
6259{
6260	struct stmmac_priv *priv = netdev_priv(dev);
6261
6262	rtnl_lock();
6263
6264	/* Create per netdev entries */
6265	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6266
6267	/* Entry to report DMA RX/TX rings */
6268	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6269			    &stmmac_rings_status_fops);
6270
6271	/* Entry to report the DMA HW features */
6272	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6273			    &stmmac_dma_cap_fops);
6274
6275	rtnl_unlock();
6276}
6277
6278static void stmmac_exit_fs(struct net_device *dev)
6279{
6280	struct stmmac_priv *priv = netdev_priv(dev);
6281
6282	debugfs_remove_recursive(priv->dbgfs_dir);
6283}
6284#endif /* CONFIG_DEBUG_FS */
6285
6286static u32 stmmac_vid_crc32_le(__le16 vid_le)
6287{
6288	unsigned char *data = (unsigned char *)&vid_le;
6289	unsigned char data_byte = 0;
6290	u32 crc = ~0x0;
6291	u32 temp = 0;
6292	int i, bits;
6293
6294	bits = get_bitmask_order(VLAN_VID_MASK);
6295	for (i = 0; i < bits; i++) {
6296		if ((i % 8) == 0)
6297			data_byte = data[i / 8];
6298
6299		temp = ((crc & 1) ^ data_byte) & 1;
6300		crc >>= 1;
6301		data_byte >>= 1;
6302
6303		if (temp)
6304			crc ^= 0xedb88320;
6305	}
6306
6307	return crc;
6308}
6309
6310static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6311{
6312	u32 crc, hash = 0;
6313	__le16 pmatch = 0;
6314	int count = 0;
6315	u16 vid = 0;
6316
6317	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6318		__le16 vid_le = cpu_to_le16(vid);
6319		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6320		hash |= (1 << crc);
6321		count++;
6322	}
6323
6324	if (!priv->dma_cap.vlhash) {
6325		if (count > 2) /* VID = 0 always passes filter */
6326			return -EOPNOTSUPP;
6327
6328		pmatch = cpu_to_le16(vid);
6329		hash = 0;
6330	}
6331
6332	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6333}
6334
6335static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6336{
6337	struct stmmac_priv *priv = netdev_priv(ndev);
6338	bool is_double = false;
6339	int ret;
6340
6341	if (be16_to_cpu(proto) == ETH_P_8021AD)
6342		is_double = true;
6343
6344	set_bit(vid, priv->active_vlans);
6345	ret = stmmac_vlan_update(priv, is_double);
6346	if (ret) {
6347		clear_bit(vid, priv->active_vlans);
6348		return ret;
6349	}
6350
6351	if (priv->hw->num_vlan) {
6352		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6353		if (ret)
6354			return ret;
6355	}
6356
6357	return 0;
6358}
6359
6360static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6361{
6362	struct stmmac_priv *priv = netdev_priv(ndev);
6363	bool is_double = false;
6364	int ret;
6365
6366	ret = pm_runtime_resume_and_get(priv->device);
6367	if (ret < 0)
6368		return ret;
6369
6370	if (be16_to_cpu(proto) == ETH_P_8021AD)
6371		is_double = true;
6372
6373	clear_bit(vid, priv->active_vlans);
6374
6375	if (priv->hw->num_vlan) {
6376		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6377		if (ret)
6378			goto del_vlan_error;
6379	}
6380
6381	ret = stmmac_vlan_update(priv, is_double);
6382
6383del_vlan_error:
6384	pm_runtime_put(priv->device);
6385
6386	return ret;
6387}
6388
6389static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6390{
6391	struct stmmac_priv *priv = netdev_priv(dev);
6392
6393	switch (bpf->command) {
6394	case XDP_SETUP_PROG:
6395		return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6396	case XDP_SETUP_XSK_POOL:
6397		return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6398					     bpf->xsk.queue_id);
6399	default:
6400		return -EOPNOTSUPP;
6401	}
6402}
6403
6404static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6405			   struct xdp_frame **frames, u32 flags)
6406{
6407	struct stmmac_priv *priv = netdev_priv(dev);
6408	int cpu = smp_processor_id();
6409	struct netdev_queue *nq;
6410	int i, nxmit = 0;
6411	int queue;
6412
6413	if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6414		return -ENETDOWN;
6415
6416	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6417		return -EINVAL;
6418
6419	queue = stmmac_xdp_get_tx_queue(priv, cpu);
6420	nq = netdev_get_tx_queue(priv->dev, queue);
6421
6422	__netif_tx_lock(nq, cpu);
6423	/* Avoids TX time-out as we are sharing with slow path */
6424	txq_trans_cond_update(nq);
6425
6426	for (i = 0; i < num_frames; i++) {
6427		int res;
6428
6429		res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6430		if (res == STMMAC_XDP_CONSUMED)
6431			break;
6432
6433		nxmit++;
6434	}
6435
6436	if (flags & XDP_XMIT_FLUSH) {
6437		stmmac_flush_tx_descriptors(priv, queue);
6438		stmmac_tx_timer_arm(priv, queue);
6439	}
6440
6441	__netif_tx_unlock(nq);
6442
6443	return nxmit;
6444}
6445
6446void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6447{
6448	struct stmmac_channel *ch = &priv->channel[queue];
6449	unsigned long flags;
6450
6451	spin_lock_irqsave(&ch->lock, flags);
6452	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6453	spin_unlock_irqrestore(&ch->lock, flags);
6454
6455	stmmac_stop_rx_dma(priv, queue);
6456	__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6457}
6458
6459void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6460{
6461	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6462	struct stmmac_channel *ch = &priv->channel[queue];
6463	unsigned long flags;
6464	u32 buf_size;
6465	int ret;
6466
6467	ret = __alloc_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6468	if (ret) {
6469		netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6470		return;
6471	}
6472
6473	ret = __init_dma_rx_desc_rings(priv, &priv->dma_conf, queue, GFP_KERNEL);
6474	if (ret) {
6475		__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6476		netdev_err(priv->dev, "Failed to init RX desc.\n");
6477		return;
6478	}
6479
6480	stmmac_reset_rx_queue(priv, queue);
6481	stmmac_clear_rx_descriptors(priv, &priv->dma_conf, queue);
6482
6483	stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6484			    rx_q->dma_rx_phy, rx_q->queue_index);
6485
6486	rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6487			     sizeof(struct dma_desc));
6488	stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6489			       rx_q->rx_tail_addr, rx_q->queue_index);
6490
6491	if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6492		buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6493		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6494				      buf_size,
6495				      rx_q->queue_index);
6496	} else {
6497		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6498				      priv->dma_conf.dma_buf_sz,
6499				      rx_q->queue_index);
6500	}
6501
6502	stmmac_start_rx_dma(priv, queue);
6503
6504	spin_lock_irqsave(&ch->lock, flags);
6505	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6506	spin_unlock_irqrestore(&ch->lock, flags);
6507}
6508
6509void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6510{
6511	struct stmmac_channel *ch = &priv->channel[queue];
6512	unsigned long flags;
6513
6514	spin_lock_irqsave(&ch->lock, flags);
6515	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6516	spin_unlock_irqrestore(&ch->lock, flags);
6517
6518	stmmac_stop_tx_dma(priv, queue);
6519	__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6520}
6521
6522void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6523{
6524	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6525	struct stmmac_channel *ch = &priv->channel[queue];
6526	unsigned long flags;
6527	int ret;
6528
6529	ret = __alloc_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6530	if (ret) {
6531		netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6532		return;
6533	}
6534
6535	ret = __init_dma_tx_desc_rings(priv,  &priv->dma_conf, queue);
6536	if (ret) {
6537		__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6538		netdev_err(priv->dev, "Failed to init TX desc.\n");
6539		return;
6540	}
6541
6542	stmmac_reset_tx_queue(priv, queue);
6543	stmmac_clear_tx_descriptors(priv, &priv->dma_conf, queue);
6544
6545	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6546			    tx_q->dma_tx_phy, tx_q->queue_index);
6547
6548	if (tx_q->tbs & STMMAC_TBS_AVAIL)
6549		stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6550
6551	tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6552	stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6553			       tx_q->tx_tail_addr, tx_q->queue_index);
6554
6555	stmmac_start_tx_dma(priv, queue);
6556
6557	spin_lock_irqsave(&ch->lock, flags);
6558	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6559	spin_unlock_irqrestore(&ch->lock, flags);
6560}
6561
6562void stmmac_xdp_release(struct net_device *dev)
6563{
6564	struct stmmac_priv *priv = netdev_priv(dev);
6565	u32 chan;
6566
6567	/* Ensure tx function is not running */
6568	netif_tx_disable(dev);
6569
6570	/* Disable NAPI process */
6571	stmmac_disable_all_queues(priv);
6572
6573	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6574		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6575
6576	/* Free the IRQ lines */
6577	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
6578
6579	/* Stop TX/RX DMA channels */
6580	stmmac_stop_all_dma(priv);
6581
6582	/* Release and free the Rx/Tx resources */
6583	free_dma_desc_resources(priv, &priv->dma_conf);
6584
6585	/* Disable the MAC Rx/Tx */
6586	stmmac_mac_set(priv, priv->ioaddr, false);
6587
6588	/* set trans_start so we don't get spurious
6589	 * watchdogs during reset
6590	 */
6591	netif_trans_update(dev);
6592	netif_carrier_off(dev);
6593}
6594
6595int stmmac_xdp_open(struct net_device *dev)
6596{
6597	struct stmmac_priv *priv = netdev_priv(dev);
6598	u32 rx_cnt = priv->plat->rx_queues_to_use;
6599	u32 tx_cnt = priv->plat->tx_queues_to_use;
6600	u32 dma_csr_ch = max(rx_cnt, tx_cnt);
6601	struct stmmac_rx_queue *rx_q;
6602	struct stmmac_tx_queue *tx_q;
6603	u32 buf_size;
6604	bool sph_en;
6605	u32 chan;
6606	int ret;
6607
6608	ret = alloc_dma_desc_resources(priv, &priv->dma_conf);
6609	if (ret < 0) {
6610		netdev_err(dev, "%s: DMA descriptors allocation failed\n",
6611			   __func__);
6612		goto dma_desc_error;
6613	}
6614
6615	ret = init_dma_desc_rings(dev, &priv->dma_conf, GFP_KERNEL);
6616	if (ret < 0) {
6617		netdev_err(dev, "%s: DMA descriptors initialization failed\n",
6618			   __func__);
6619		goto init_error;
6620	}
6621
6622	/* DMA CSR Channel configuration */
6623	for (chan = 0; chan < dma_csr_ch; chan++) {
6624		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
6625		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
6626	}
6627
6628	/* Adjust Split header */
6629	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
6630
6631	/* DMA RX Channel Configuration */
6632	for (chan = 0; chan < rx_cnt; chan++) {
6633		rx_q = &priv->dma_conf.rx_queue[chan];
6634
6635		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6636				    rx_q->dma_rx_phy, chan);
6637
6638		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
6639				     (rx_q->buf_alloc_num *
6640				      sizeof(struct dma_desc));
6641		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6642				       rx_q->rx_tail_addr, chan);
6643
6644		if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6645			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6646			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6647					      buf_size,
6648					      rx_q->queue_index);
6649		} else {
6650			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6651					      priv->dma_conf.dma_buf_sz,
6652					      rx_q->queue_index);
6653		}
6654
6655		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
6656	}
6657
6658	/* DMA TX Channel Configuration */
6659	for (chan = 0; chan < tx_cnt; chan++) {
6660		tx_q = &priv->dma_conf.tx_queue[chan];
6661
6662		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6663				    tx_q->dma_tx_phy, chan);
6664
6665		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6666		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6667				       tx_q->tx_tail_addr, chan);
6668
6669		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6670		tx_q->txtimer.function = stmmac_tx_timer;
6671	}
6672
6673	/* Enable the MAC Rx/Tx */
6674	stmmac_mac_set(priv, priv->ioaddr, true);
6675
6676	/* Start Rx & Tx DMA Channels */
6677	stmmac_start_all_dma(priv);
6678
6679	ret = stmmac_request_irq(dev);
6680	if (ret)
6681		goto irq_error;
6682
6683	/* Enable NAPI process*/
6684	stmmac_enable_all_queues(priv);
6685	netif_carrier_on(dev);
6686	netif_tx_start_all_queues(dev);
6687	stmmac_enable_all_dma_irq(priv);
6688
6689	return 0;
6690
6691irq_error:
6692	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6693		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6694
6695	stmmac_hw_teardown(dev);
6696init_error:
6697	free_dma_desc_resources(priv, &priv->dma_conf);
6698dma_desc_error:
6699	return ret;
6700}
6701
6702int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6703{
6704	struct stmmac_priv *priv = netdev_priv(dev);
6705	struct stmmac_rx_queue *rx_q;
6706	struct stmmac_tx_queue *tx_q;
6707	struct stmmac_channel *ch;
6708
6709	if (test_bit(STMMAC_DOWN, &priv->state) ||
6710	    !netif_carrier_ok(priv->dev))
6711		return -ENETDOWN;
6712
6713	if (!stmmac_xdp_is_enabled(priv))
6714		return -EINVAL;
6715
6716	if (queue >= priv->plat->rx_queues_to_use ||
6717	    queue >= priv->plat->tx_queues_to_use)
6718		return -EINVAL;
6719
6720	rx_q = &priv->dma_conf.rx_queue[queue];
6721	tx_q = &priv->dma_conf.tx_queue[queue];
6722	ch = &priv->channel[queue];
6723
6724	if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6725		return -EINVAL;
6726
6727	if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6728		/* EQoS does not have per-DMA channel SW interrupt,
6729		 * so we schedule RX Napi straight-away.
6730		 */
6731		if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6732			__napi_schedule(&ch->rxtx_napi);
6733	}
6734
6735	return 0;
6736}
6737
6738static const struct net_device_ops stmmac_netdev_ops = {
6739	.ndo_open = stmmac_open,
6740	.ndo_start_xmit = stmmac_xmit,
6741	.ndo_stop = stmmac_release,
6742	.ndo_change_mtu = stmmac_change_mtu,
6743	.ndo_fix_features = stmmac_fix_features,
6744	.ndo_set_features = stmmac_set_features,
6745	.ndo_set_rx_mode = stmmac_set_rx_mode,
6746	.ndo_tx_timeout = stmmac_tx_timeout,
6747	.ndo_eth_ioctl = stmmac_ioctl,
6748	.ndo_setup_tc = stmmac_setup_tc,
6749	.ndo_select_queue = stmmac_select_queue,
6750#ifdef CONFIG_NET_POLL_CONTROLLER
6751	.ndo_poll_controller = stmmac_poll_controller,
6752#endif
6753	.ndo_set_mac_address = stmmac_set_mac_address,
6754	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6755	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6756	.ndo_bpf = stmmac_bpf,
6757	.ndo_xdp_xmit = stmmac_xdp_xmit,
6758	.ndo_xsk_wakeup = stmmac_xsk_wakeup,
6759};
6760
6761static void stmmac_reset_subtask(struct stmmac_priv *priv)
6762{
6763	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6764		return;
6765	if (test_bit(STMMAC_DOWN, &priv->state))
6766		return;
6767
6768	netdev_err(priv->dev, "Reset adapter.\n");
6769
6770	rtnl_lock();
6771	netif_trans_update(priv->dev);
6772	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6773		usleep_range(1000, 2000);
6774
6775	set_bit(STMMAC_DOWN, &priv->state);
6776	dev_close(priv->dev);
6777	dev_open(priv->dev, NULL);
6778	clear_bit(STMMAC_DOWN, &priv->state);
6779	clear_bit(STMMAC_RESETING, &priv->state);
6780	rtnl_unlock();
6781}
6782
6783static void stmmac_service_task(struct work_struct *work)
6784{
6785	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6786			service_task);
6787
6788	stmmac_reset_subtask(priv);
6789	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6790}
6791
6792/**
6793 *  stmmac_hw_init - Init the MAC device
6794 *  @priv: driver private structure
6795 *  Description: this function is to configure the MAC device according to
6796 *  some platform parameters or the HW capability register. It prepares the
6797 *  driver to use either ring or chain modes and to setup either enhanced or
6798 *  normal descriptors.
6799 */
6800static int stmmac_hw_init(struct stmmac_priv *priv)
6801{
6802	int ret;
6803
6804	/* dwmac-sun8i only work in chain mode */
6805	if (priv->plat->has_sun8i)
6806		chain_mode = 1;
6807	priv->chain_mode = chain_mode;
6808
6809	/* Initialize HW Interface */
6810	ret = stmmac_hwif_init(priv);
6811	if (ret)
6812		return ret;
6813
6814	/* Get the HW capability (new GMAC newer than 3.50a) */
6815	priv->hw_cap_support = stmmac_get_hw_features(priv);
6816	if (priv->hw_cap_support) {
6817		dev_info(priv->device, "DMA HW capability register supported\n");
6818
6819		/* We can override some gmac/dma configuration fields: e.g.
6820		 * enh_desc, tx_coe (e.g. that are passed through the
6821		 * platform) with the values from the HW capability
6822		 * register (if supported).
6823		 */
6824		priv->plat->enh_desc = priv->dma_cap.enh_desc;
6825		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
6826				!priv->plat->use_phy_wol;
6827		priv->hw->pmt = priv->plat->pmt;
6828		if (priv->dma_cap.hash_tb_sz) {
6829			priv->hw->multicast_filter_bins =
6830					(BIT(priv->dma_cap.hash_tb_sz) << 5);
6831			priv->hw->mcast_bits_log2 =
6832					ilog2(priv->hw->multicast_filter_bins);
6833		}
6834
6835		/* TXCOE doesn't work in thresh DMA mode */
6836		if (priv->plat->force_thresh_dma_mode)
6837			priv->plat->tx_coe = 0;
6838		else
6839			priv->plat->tx_coe = priv->dma_cap.tx_coe;
6840
6841		/* In case of GMAC4 rx_coe is from HW cap register. */
6842		priv->plat->rx_coe = priv->dma_cap.rx_coe;
6843
6844		if (priv->dma_cap.rx_coe_type2)
6845			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6846		else if (priv->dma_cap.rx_coe_type1)
6847			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6848
6849	} else {
6850		dev_info(priv->device, "No HW DMA feature register supported\n");
6851	}
6852
6853	if (priv->plat->rx_coe) {
6854		priv->hw->rx_csum = priv->plat->rx_coe;
6855		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6856		if (priv->synopsys_id < DWMAC_CORE_4_00)
6857			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6858	}
6859	if (priv->plat->tx_coe)
6860		dev_info(priv->device, "TX Checksum insertion supported\n");
6861
6862	if (priv->plat->pmt) {
6863		dev_info(priv->device, "Wake-Up On Lan supported\n");
6864		device_set_wakeup_capable(priv->device, 1);
6865	}
6866
6867	if (priv->dma_cap.tsoen)
6868		dev_info(priv->device, "TSO supported\n");
6869
6870	priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6871	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6872
6873	/* Run HW quirks, if any */
6874	if (priv->hwif_quirks) {
6875		ret = priv->hwif_quirks(priv);
6876		if (ret)
6877			return ret;
6878	}
6879
6880	/* Rx Watchdog is available in the COREs newer than the 3.40.
6881	 * In some case, for example on bugged HW this feature
6882	 * has to be disable and this can be done by passing the
6883	 * riwt_off field from the platform.
6884	 */
6885	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6886	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6887		priv->use_riwt = 1;
6888		dev_info(priv->device,
6889			 "Enable RX Mitigation via HW Watchdog Timer\n");
6890	}
6891
6892	return 0;
6893}
6894
6895static void stmmac_napi_add(struct net_device *dev)
6896{
6897	struct stmmac_priv *priv = netdev_priv(dev);
6898	u32 queue, maxq;
6899
6900	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6901
6902	for (queue = 0; queue < maxq; queue++) {
6903		struct stmmac_channel *ch = &priv->channel[queue];
6904
6905		ch->priv_data = priv;
6906		ch->index = queue;
6907		spin_lock_init(&ch->lock);
6908
6909		if (queue < priv->plat->rx_queues_to_use) {
6910			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx);
6911		}
6912		if (queue < priv->plat->tx_queues_to_use) {
6913			netif_napi_add_tx(dev, &ch->tx_napi,
6914					  stmmac_napi_poll_tx);
6915		}
6916		if (queue < priv->plat->rx_queues_to_use &&
6917		    queue < priv->plat->tx_queues_to_use) {
6918			netif_napi_add(dev, &ch->rxtx_napi,
6919				       stmmac_napi_poll_rxtx);
6920		}
6921	}
6922}
6923
6924static void stmmac_napi_del(struct net_device *dev)
6925{
6926	struct stmmac_priv *priv = netdev_priv(dev);
6927	u32 queue, maxq;
6928
6929	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6930
6931	for (queue = 0; queue < maxq; queue++) {
6932		struct stmmac_channel *ch = &priv->channel[queue];
6933
6934		if (queue < priv->plat->rx_queues_to_use)
6935			netif_napi_del(&ch->rx_napi);
6936		if (queue < priv->plat->tx_queues_to_use)
6937			netif_napi_del(&ch->tx_napi);
6938		if (queue < priv->plat->rx_queues_to_use &&
6939		    queue < priv->plat->tx_queues_to_use) {
6940			netif_napi_del(&ch->rxtx_napi);
6941		}
6942	}
6943}
6944
6945int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6946{
6947	struct stmmac_priv *priv = netdev_priv(dev);
6948	int ret = 0;
6949
6950	if (netif_running(dev))
6951		stmmac_release(dev);
6952
6953	stmmac_napi_del(dev);
6954
6955	priv->plat->rx_queues_to_use = rx_cnt;
6956	priv->plat->tx_queues_to_use = tx_cnt;
6957
6958	stmmac_napi_add(dev);
6959
6960	if (netif_running(dev))
6961		ret = stmmac_open(dev);
6962
6963	return ret;
6964}
6965
6966int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6967{
6968	struct stmmac_priv *priv = netdev_priv(dev);
6969	int ret = 0;
6970
6971	if (netif_running(dev))
6972		stmmac_release(dev);
6973
6974	priv->dma_conf.dma_rx_size = rx_size;
6975	priv->dma_conf.dma_tx_size = tx_size;
6976
6977	if (netif_running(dev))
6978		ret = stmmac_open(dev);
6979
6980	return ret;
6981}
6982
6983#define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
6984static void stmmac_fpe_lp_task(struct work_struct *work)
6985{
6986	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6987						fpe_task);
6988	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
6989	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
6990	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
6991	bool *hs_enable = &fpe_cfg->hs_enable;
6992	bool *enable = &fpe_cfg->enable;
6993	int retries = 20;
6994
6995	while (retries-- > 0) {
6996		/* Bail out immediately if FPE handshake is OFF */
6997		if (*lo_state == FPE_STATE_OFF || !*hs_enable)
6998			break;
6999
7000		if (*lo_state == FPE_STATE_ENTERING_ON &&
7001		    *lp_state == FPE_STATE_ENTERING_ON) {
7002			stmmac_fpe_configure(priv, priv->ioaddr,
7003					     priv->plat->tx_queues_to_use,
7004					     priv->plat->rx_queues_to_use,
7005					     *enable);
7006
7007			netdev_info(priv->dev, "configured FPE\n");
7008
7009			*lo_state = FPE_STATE_ON;
7010			*lp_state = FPE_STATE_ON;
7011			netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
7012			break;
7013		}
7014
7015		if ((*lo_state == FPE_STATE_CAPABLE ||
7016		     *lo_state == FPE_STATE_ENTERING_ON) &&
7017		     *lp_state != FPE_STATE_ON) {
7018			netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
7019				    *lo_state, *lp_state);
7020			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7021						MPACKET_VERIFY);
7022		}
7023		/* Sleep then retry */
7024		msleep(500);
7025	}
7026
7027	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
7028}
7029
7030void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
7031{
7032	if (priv->plat->fpe_cfg->hs_enable != enable) {
7033		if (enable) {
7034			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7035						MPACKET_VERIFY);
7036		} else {
7037			priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
7038			priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
7039		}
7040
7041		priv->plat->fpe_cfg->hs_enable = enable;
7042	}
7043}
7044
7045/**
7046 * stmmac_dvr_probe
7047 * @device: device pointer
7048 * @plat_dat: platform data pointer
7049 * @res: stmmac resource pointer
7050 * Description: this is the main probe function used to
7051 * call the alloc_etherdev, allocate the priv structure.
7052 * Return:
7053 * returns 0 on success, otherwise errno.
7054 */
7055int stmmac_dvr_probe(struct device *device,
7056		     struct plat_stmmacenet_data *plat_dat,
7057		     struct stmmac_resources *res)
7058{
7059	struct net_device *ndev = NULL;
7060	struct stmmac_priv *priv;
7061	u32 rxq;
7062	int i, ret = 0;
7063
7064	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
7065				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
7066	if (!ndev)
7067		return -ENOMEM;
7068
7069	SET_NETDEV_DEV(ndev, device);
7070
7071	priv = netdev_priv(ndev);
7072	priv->device = device;
7073	priv->dev = ndev;
7074
7075	stmmac_set_ethtool_ops(ndev);
7076	priv->pause = pause;
7077	priv->plat = plat_dat;
7078	priv->ioaddr = res->addr;
7079	priv->dev->base_addr = (unsigned long)res->addr;
7080	priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
7081
7082	priv->dev->irq = res->irq;
7083	priv->wol_irq = res->wol_irq;
7084	priv->lpi_irq = res->lpi_irq;
7085	priv->sfty_ce_irq = res->sfty_ce_irq;
7086	priv->sfty_ue_irq = res->sfty_ue_irq;
7087	for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
7088		priv->rx_irq[i] = res->rx_irq[i];
7089	for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
7090		priv->tx_irq[i] = res->tx_irq[i];
7091
7092	if (!is_zero_ether_addr(res->mac))
7093		eth_hw_addr_set(priv->dev, res->mac);
7094
7095	dev_set_drvdata(device, priv->dev);
7096
7097	/* Verify driver arguments */
7098	stmmac_verify_args();
7099
7100	priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
7101	if (!priv->af_xdp_zc_qps)
7102		return -ENOMEM;
7103
7104	/* Allocate workqueue */
7105	priv->wq = create_singlethread_workqueue("stmmac_wq");
7106	if (!priv->wq) {
7107		dev_err(priv->device, "failed to create workqueue\n");
7108		ret = -ENOMEM;
7109		goto error_wq_init;
7110	}
7111
7112	INIT_WORK(&priv->service_task, stmmac_service_task);
7113
7114	/* Initialize Link Partner FPE workqueue */
7115	INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
7116
7117	/* Override with kernel parameters if supplied XXX CRS XXX
7118	 * this needs to have multiple instances
7119	 */
7120	if ((phyaddr >= 0) && (phyaddr <= 31))
7121		priv->plat->phy_addr = phyaddr;
7122
7123	if (priv->plat->stmmac_rst) {
7124		ret = reset_control_assert(priv->plat->stmmac_rst);
7125		reset_control_deassert(priv->plat->stmmac_rst);
7126		/* Some reset controllers have only reset callback instead of
7127		 * assert + deassert callbacks pair.
7128		 */
7129		if (ret == -ENOTSUPP)
7130			reset_control_reset(priv->plat->stmmac_rst);
7131	}
7132
7133	ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
7134	if (ret == -ENOTSUPP)
7135		dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
7136			ERR_PTR(ret));
7137
7138	/* Init MAC and get the capabilities */
7139	ret = stmmac_hw_init(priv);
7140	if (ret)
7141		goto error_hw_init;
7142
7143	/* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
7144	 */
7145	if (priv->synopsys_id < DWMAC_CORE_5_20)
7146		priv->plat->dma_cfg->dche = false;
7147
7148	stmmac_check_ether_addr(priv);
7149
7150	ndev->netdev_ops = &stmmac_netdev_ops;
7151
7152	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
7153			    NETIF_F_RXCSUM;
7154
7155	ret = stmmac_tc_init(priv, priv);
7156	if (!ret) {
7157		ndev->hw_features |= NETIF_F_HW_TC;
7158	}
7159
7160	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
7161		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
7162		if (priv->plat->has_gmac4)
7163			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
7164		priv->tso = true;
7165		dev_info(priv->device, "TSO feature enabled\n");
7166	}
7167
7168	if (priv->dma_cap.sphen && !priv->plat->sph_disable) {
7169		ndev->hw_features |= NETIF_F_GRO;
7170		priv->sph_cap = true;
7171		priv->sph = priv->sph_cap;
7172		dev_info(priv->device, "SPH feature enabled\n");
7173	}
7174
7175	/* The current IP register MAC_HW_Feature1[ADDR64] only define
7176	 * 32/40/64 bit width, but some SOC support others like i.MX8MP
7177	 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
7178	 * So overwrite dma_cap.addr64 according to HW real design.
7179	 */
7180	if (priv->plat->addr64)
7181		priv->dma_cap.addr64 = priv->plat->addr64;
7182
7183	if (priv->dma_cap.addr64) {
7184		ret = dma_set_mask_and_coherent(device,
7185				DMA_BIT_MASK(priv->dma_cap.addr64));
7186		if (!ret) {
7187			dev_info(priv->device, "Using %d bits DMA width\n",
7188				 priv->dma_cap.addr64);
7189
7190			/*
7191			 * If more than 32 bits can be addressed, make sure to
7192			 * enable enhanced addressing mode.
7193			 */
7194			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
7195				priv->plat->dma_cfg->eame = true;
7196		} else {
7197			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
7198			if (ret) {
7199				dev_err(priv->device, "Failed to set DMA Mask\n");
7200				goto error_hw_init;
7201			}
7202
7203			priv->dma_cap.addr64 = 32;
7204		}
7205	}
7206
7207	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
7208	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
7209#ifdef STMMAC_VLAN_TAG_USED
7210	/* Both mac100 and gmac support receive VLAN tag detection */
7211	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
7212	if (priv->dma_cap.vlhash) {
7213		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7214		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
7215	}
7216	if (priv->dma_cap.vlins) {
7217		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
7218		if (priv->dma_cap.dvlan)
7219			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
7220	}
7221#endif
7222	priv->msg_enable = netif_msg_init(debug, default_msg_level);
7223
7224	/* Initialize RSS */
7225	rxq = priv->plat->rx_queues_to_use;
7226	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
7227	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7228		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
7229
7230	if (priv->dma_cap.rssen && priv->plat->rss_en)
7231		ndev->features |= NETIF_F_RXHASH;
7232
7233	/* MTU range: 46 - hw-specific max */
7234	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
7235	if (priv->plat->has_xgmac)
7236		ndev->max_mtu = XGMAC_JUMBO_LEN;
7237	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
7238		ndev->max_mtu = JUMBO_LEN;
7239	else
7240		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
7241	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
7242	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
7243	 */
7244	if ((priv->plat->maxmtu < ndev->max_mtu) &&
7245	    (priv->plat->maxmtu >= ndev->min_mtu))
7246		ndev->max_mtu = priv->plat->maxmtu;
7247	else if (priv->plat->maxmtu < ndev->min_mtu)
7248		dev_warn(priv->device,
7249			 "%s: warning: maxmtu having invalid value (%d)\n",
7250			 __func__, priv->plat->maxmtu);
7251
7252	if (flow_ctrl)
7253		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
7254
7255	/* Setup channels NAPI */
7256	stmmac_napi_add(ndev);
7257
7258	mutex_init(&priv->lock);
7259
7260	/* If a specific clk_csr value is passed from the platform
7261	 * this means that the CSR Clock Range selection cannot be
7262	 * changed at run-time and it is fixed. Viceversa the driver'll try to
7263	 * set the MDC clock dynamically according to the csr actual
7264	 * clock input.
7265	 */
7266	if (priv->plat->clk_csr >= 0)
7267		priv->clk_csr = priv->plat->clk_csr;
7268	else
7269		stmmac_clk_csr_set(priv);
7270
7271	stmmac_check_pcs_mode(priv);
7272
7273	pm_runtime_get_noresume(device);
7274	pm_runtime_set_active(device);
7275	if (!pm_runtime_enabled(device))
7276		pm_runtime_enable(device);
7277
7278	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7279	    priv->hw->pcs != STMMAC_PCS_RTBI) {
7280		/* MDIO bus Registration */
7281		ret = stmmac_mdio_register(ndev);
7282		if (ret < 0) {
7283			dev_err_probe(priv->device, ret,
7284				      "%s: MDIO bus (id: %d) registration failed\n",
7285				      __func__, priv->plat->bus_id);
7286			goto error_mdio_register;
7287		}
7288	}
7289
7290	if (priv->plat->speed_mode_2500)
7291		priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7292
7293	if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7294		ret = stmmac_xpcs_setup(priv->mii);
7295		if (ret)
7296			goto error_xpcs_setup;
7297	}
7298
7299	ret = stmmac_phy_setup(priv);
7300	if (ret) {
7301		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7302		goto error_phy_setup;
7303	}
7304
7305	ret = register_netdev(ndev);
7306	if (ret) {
7307		dev_err(priv->device, "%s: ERROR %i registering the device\n",
7308			__func__, ret);
7309		goto error_netdev_register;
7310	}
7311
7312#ifdef CONFIG_DEBUG_FS
7313	stmmac_init_fs(ndev);
7314#endif
7315
7316	if (priv->plat->dump_debug_regs)
7317		priv->plat->dump_debug_regs(priv->plat->bsp_priv);
7318
7319	/* Let pm_runtime_put() disable the clocks.
7320	 * If CONFIG_PM is not enabled, the clocks will stay powered.
7321	 */
7322	pm_runtime_put(device);
7323
7324	return ret;
7325
7326error_netdev_register:
7327	phylink_destroy(priv->phylink);
7328error_xpcs_setup:
7329error_phy_setup:
7330	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7331	    priv->hw->pcs != STMMAC_PCS_RTBI)
7332		stmmac_mdio_unregister(ndev);
7333error_mdio_register:
7334	stmmac_napi_del(ndev);
7335error_hw_init:
7336	destroy_workqueue(priv->wq);
7337error_wq_init:
7338	bitmap_free(priv->af_xdp_zc_qps);
7339
7340	return ret;
7341}
7342EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7343
7344/**
7345 * stmmac_dvr_remove
7346 * @dev: device pointer
7347 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7348 * changes the link status, releases the DMA descriptor rings.
7349 */
7350int stmmac_dvr_remove(struct device *dev)
7351{
7352	struct net_device *ndev = dev_get_drvdata(dev);
7353	struct stmmac_priv *priv = netdev_priv(ndev);
7354
7355	netdev_info(priv->dev, "%s: removing driver", __func__);
7356
7357	pm_runtime_get_sync(dev);
7358
7359	stmmac_stop_all_dma(priv);
7360	stmmac_mac_set(priv, priv->ioaddr, false);
7361	netif_carrier_off(ndev);
7362	unregister_netdev(ndev);
7363
7364	/* Serdes power down needs to happen after VLAN filter
7365	 * is deleted that is triggered by unregister_netdev().
7366	 */
7367	if (priv->plat->serdes_powerdown)
7368		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7369
7370#ifdef CONFIG_DEBUG_FS
7371	stmmac_exit_fs(ndev);
7372#endif
7373	phylink_destroy(priv->phylink);
7374	if (priv->plat->stmmac_rst)
7375		reset_control_assert(priv->plat->stmmac_rst);
7376	reset_control_assert(priv->plat->stmmac_ahb_rst);
7377	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7378	    priv->hw->pcs != STMMAC_PCS_RTBI)
7379		stmmac_mdio_unregister(ndev);
7380	destroy_workqueue(priv->wq);
7381	mutex_destroy(&priv->lock);
7382	bitmap_free(priv->af_xdp_zc_qps);
7383
7384	pm_runtime_disable(dev);
7385	pm_runtime_put_noidle(dev);
7386
7387	return 0;
7388}
7389EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7390
7391/**
7392 * stmmac_suspend - suspend callback
7393 * @dev: device pointer
7394 * Description: this is the function to suspend the device and it is called
7395 * by the platform driver to stop the network queue, release the resources,
7396 * program the PMT register (for WoL), clean and release driver resources.
7397 */
7398int stmmac_suspend(struct device *dev)
7399{
7400	struct net_device *ndev = dev_get_drvdata(dev);
7401	struct stmmac_priv *priv = netdev_priv(ndev);
7402	u32 chan;
7403
7404	if (!ndev || !netif_running(ndev))
7405		return 0;
7406
7407	mutex_lock(&priv->lock);
7408
7409	netif_device_detach(ndev);
7410
7411	stmmac_disable_all_queues(priv);
7412
7413	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7414		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
7415
7416	if (priv->eee_enabled) {
7417		priv->tx_path_in_lpi_mode = false;
7418		del_timer_sync(&priv->eee_ctrl_timer);
7419	}
7420
7421	/* Stop TX/RX DMA */
7422	stmmac_stop_all_dma(priv);
7423
7424	if (priv->plat->serdes_powerdown)
7425		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7426
7427	/* Enable Power down mode by programming the PMT regs */
7428	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7429		stmmac_pmt(priv, priv->hw, priv->wolopts);
7430		priv->irq_wake = 1;
7431	} else {
7432		stmmac_mac_set(priv, priv->ioaddr, false);
7433		pinctrl_pm_select_sleep_state(priv->device);
7434	}
7435
7436	mutex_unlock(&priv->lock);
7437
7438	rtnl_lock();
7439	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7440		phylink_suspend(priv->phylink, true);
7441	} else {
7442		if (device_may_wakeup(priv->device))
7443			phylink_speed_down(priv->phylink, false);
7444		phylink_suspend(priv->phylink, false);
7445	}
7446	rtnl_unlock();
7447
7448	if (priv->dma_cap.fpesel) {
7449		/* Disable FPE */
7450		stmmac_fpe_configure(priv, priv->ioaddr,
7451				     priv->plat->tx_queues_to_use,
7452				     priv->plat->rx_queues_to_use, false);
7453
7454		stmmac_fpe_handshake(priv, false);
7455		stmmac_fpe_stop_wq(priv);
7456	}
7457
7458	priv->speed = SPEED_UNKNOWN;
7459	return 0;
7460}
7461EXPORT_SYMBOL_GPL(stmmac_suspend);
7462
7463static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue)
7464{
7465	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
7466
7467	rx_q->cur_rx = 0;
7468	rx_q->dirty_rx = 0;
7469}
7470
7471static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue)
7472{
7473	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
7474
7475	tx_q->cur_tx = 0;
7476	tx_q->dirty_tx = 0;
7477	tx_q->mss = 0;
7478
7479	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7480}
7481
7482/**
7483 * stmmac_reset_queues_param - reset queue parameters
7484 * @priv: device pointer
7485 */
7486static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7487{
7488	u32 rx_cnt = priv->plat->rx_queues_to_use;
7489	u32 tx_cnt = priv->plat->tx_queues_to_use;
7490	u32 queue;
7491
7492	for (queue = 0; queue < rx_cnt; queue++)
7493		stmmac_reset_rx_queue(priv, queue);
7494
7495	for (queue = 0; queue < tx_cnt; queue++)
7496		stmmac_reset_tx_queue(priv, queue);
7497}
7498
7499/**
7500 * stmmac_resume - resume callback
7501 * @dev: device pointer
7502 * Description: when resume this function is invoked to setup the DMA and CORE
7503 * in a usable state.
7504 */
7505int stmmac_resume(struct device *dev)
7506{
7507	struct net_device *ndev = dev_get_drvdata(dev);
7508	struct stmmac_priv *priv = netdev_priv(ndev);
7509	int ret;
7510
7511	if (!netif_running(ndev))
7512		return 0;
7513
7514	/* Power Down bit, into the PM register, is cleared
7515	 * automatically as soon as a magic packet or a Wake-up frame
7516	 * is received. Anyway, it's better to manually clear
7517	 * this bit because it can generate problems while resuming
7518	 * from another devices (e.g. serial console).
7519	 */
7520	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7521		mutex_lock(&priv->lock);
7522		stmmac_pmt(priv, priv->hw, 0);
7523		mutex_unlock(&priv->lock);
7524		priv->irq_wake = 0;
7525	} else {
7526		pinctrl_pm_select_default_state(priv->device);
7527		/* reset the phy so that it's ready */
7528		if (priv->mii)
7529			stmmac_mdio_reset(priv->mii);
7530	}
7531
7532	if (!priv->plat->serdes_up_after_phy_linkup && priv->plat->serdes_powerup) {
7533		ret = priv->plat->serdes_powerup(ndev,
7534						 priv->plat->bsp_priv);
7535
7536		if (ret < 0)
7537			return ret;
7538	}
7539
7540	rtnl_lock();
7541	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7542		phylink_resume(priv->phylink);
7543	} else {
7544		phylink_resume(priv->phylink);
7545		if (device_may_wakeup(priv->device))
7546			phylink_speed_up(priv->phylink);
7547	}
7548	rtnl_unlock();
7549
7550	rtnl_lock();
7551	mutex_lock(&priv->lock);
7552
7553	stmmac_reset_queues_param(priv);
7554
7555	stmmac_free_tx_skbufs(priv);
7556	stmmac_clear_descriptors(priv, &priv->dma_conf);
7557
7558	stmmac_hw_setup(ndev, false);
7559	stmmac_init_coalesce(priv);
7560	stmmac_set_rx_mode(ndev);
7561
7562	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7563
7564	stmmac_enable_all_queues(priv);
7565	stmmac_enable_all_dma_irq(priv);
7566
7567	mutex_unlock(&priv->lock);
7568	rtnl_unlock();
7569
7570	netif_device_attach(ndev);
7571
7572	return 0;
7573}
7574EXPORT_SYMBOL_GPL(stmmac_resume);
7575
7576#ifndef MODULE
7577static int __init stmmac_cmdline_opt(char *str)
7578{
7579	char *opt;
7580
7581	if (!str || !*str)
7582		return 1;
7583	while ((opt = strsep(&str, ",")) != NULL) {
7584		if (!strncmp(opt, "debug:", 6)) {
7585			if (kstrtoint(opt + 6, 0, &debug))
7586				goto err;
7587		} else if (!strncmp(opt, "phyaddr:", 8)) {
7588			if (kstrtoint(opt + 8, 0, &phyaddr))
7589				goto err;
7590		} else if (!strncmp(opt, "buf_sz:", 7)) {
7591			if (kstrtoint(opt + 7, 0, &buf_sz))
7592				goto err;
7593		} else if (!strncmp(opt, "tc:", 3)) {
7594			if (kstrtoint(opt + 3, 0, &tc))
7595				goto err;
7596		} else if (!strncmp(opt, "watchdog:", 9)) {
7597			if (kstrtoint(opt + 9, 0, &watchdog))
7598				goto err;
7599		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
7600			if (kstrtoint(opt + 10, 0, &flow_ctrl))
7601				goto err;
7602		} else if (!strncmp(opt, "pause:", 6)) {
7603			if (kstrtoint(opt + 6, 0, &pause))
7604				goto err;
7605		} else if (!strncmp(opt, "eee_timer:", 10)) {
7606			if (kstrtoint(opt + 10, 0, &eee_timer))
7607				goto err;
7608		} else if (!strncmp(opt, "chain_mode:", 11)) {
7609			if (kstrtoint(opt + 11, 0, &chain_mode))
7610				goto err;
7611		}
7612	}
7613	return 1;
7614
7615err:
7616	pr_err("%s: ERROR broken module parameter conversion", __func__);
7617	return 1;
7618}
7619
7620__setup("stmmaceth=", stmmac_cmdline_opt);
7621#endif /* MODULE */
7622
7623static int __init stmmac_init(void)
7624{
7625#ifdef CONFIG_DEBUG_FS
7626	/* Create debugfs main directory if it doesn't exist yet */
7627	if (!stmmac_fs_dir)
7628		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7629	register_netdevice_notifier(&stmmac_notifier);
7630#endif
7631
7632	return 0;
7633}
7634
7635static void __exit stmmac_exit(void)
7636{
7637#ifdef CONFIG_DEBUG_FS
7638	unregister_netdevice_notifier(&stmmac_notifier);
7639	debugfs_remove_recursive(stmmac_fs_dir);
7640#endif
7641}
7642
7643module_init(stmmac_init)
7644module_exit(stmmac_exit)
7645
7646MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7647MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7648MODULE_LICENSE("GPL");