Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2019, Intel Corporation. */
   3
   4#include "ice_common.h"
   5#include "ice_flow.h"
   6#include <net/gre.h>
   7
   8/* Describe properties of a protocol header field */
   9struct ice_flow_field_info {
  10	enum ice_flow_seg_hdr hdr;
  11	s16 off;	/* Offset from start of a protocol header, in bits */
  12	u16 size;	/* Size of fields in bits */
  13	u16 mask;	/* 16-bit mask for field */
  14};
  15
  16#define ICE_FLOW_FLD_INFO(_hdr, _offset_bytes, _size_bytes) { \
  17	.hdr = _hdr, \
  18	.off = (_offset_bytes) * BITS_PER_BYTE, \
  19	.size = (_size_bytes) * BITS_PER_BYTE, \
  20	.mask = 0, \
  21}
  22
  23#define ICE_FLOW_FLD_INFO_MSK(_hdr, _offset_bytes, _size_bytes, _mask) { \
  24	.hdr = _hdr, \
  25	.off = (_offset_bytes) * BITS_PER_BYTE, \
  26	.size = (_size_bytes) * BITS_PER_BYTE, \
  27	.mask = _mask, \
  28}
  29
  30/* Table containing properties of supported protocol header fields */
  31static const
  32struct ice_flow_field_info ice_flds_info[ICE_FLOW_FIELD_IDX_MAX] = {
  33	/* Ether */
  34	/* ICE_FLOW_FIELD_IDX_ETH_DA */
  35	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 0, ETH_ALEN),
  36	/* ICE_FLOW_FIELD_IDX_ETH_SA */
  37	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, ETH_ALEN, ETH_ALEN),
  38	/* ICE_FLOW_FIELD_IDX_S_VLAN */
  39	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 12, sizeof(__be16)),
  40	/* ICE_FLOW_FIELD_IDX_C_VLAN */
  41	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 14, sizeof(__be16)),
  42	/* ICE_FLOW_FIELD_IDX_ETH_TYPE */
  43	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 0, sizeof(__be16)),
  44	/* IPv4 / IPv6 */
  45	/* ICE_FLOW_FIELD_IDX_IPV4_DSCP */
  46	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_IPV4, 0, 1, 0x00fc),
  47	/* ICE_FLOW_FIELD_IDX_IPV6_DSCP */
  48	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_IPV6, 0, 1, 0x0ff0),
  49	/* ICE_FLOW_FIELD_IDX_IPV4_TTL */
  50	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 8, 1, 0xff00),
  51	/* ICE_FLOW_FIELD_IDX_IPV4_PROT */
  52	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 8, 1, 0x00ff),
  53	/* ICE_FLOW_FIELD_IDX_IPV6_TTL */
  54	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 6, 1, 0x00ff),
  55	/* ICE_FLOW_FIELD_IDX_IPV6_PROT */
  56	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 6, 1, 0xff00),
  57	/* ICE_FLOW_FIELD_IDX_IPV4_SA */
  58	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 12, sizeof(struct in_addr)),
  59	/* ICE_FLOW_FIELD_IDX_IPV4_DA */
  60	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 16, sizeof(struct in_addr)),
  61	/* ICE_FLOW_FIELD_IDX_IPV6_SA */
  62	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 8, sizeof(struct in6_addr)),
  63	/* ICE_FLOW_FIELD_IDX_IPV6_DA */
  64	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 24, sizeof(struct in6_addr)),
  65	/* Transport */
  66	/* ICE_FLOW_FIELD_IDX_TCP_SRC_PORT */
  67	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 0, sizeof(__be16)),
  68	/* ICE_FLOW_FIELD_IDX_TCP_DST_PORT */
  69	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 2, sizeof(__be16)),
  70	/* ICE_FLOW_FIELD_IDX_UDP_SRC_PORT */
  71	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 0, sizeof(__be16)),
  72	/* ICE_FLOW_FIELD_IDX_UDP_DST_PORT */
  73	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 2, sizeof(__be16)),
  74	/* ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT */
  75	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 0, sizeof(__be16)),
  76	/* ICE_FLOW_FIELD_IDX_SCTP_DST_PORT */
  77	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 2, sizeof(__be16)),
  78	/* ICE_FLOW_FIELD_IDX_TCP_FLAGS */
  79	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 13, 1),
  80	/* ARP */
  81	/* ICE_FLOW_FIELD_IDX_ARP_SIP */
  82	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 14, sizeof(struct in_addr)),
  83	/* ICE_FLOW_FIELD_IDX_ARP_DIP */
  84	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 24, sizeof(struct in_addr)),
  85	/* ICE_FLOW_FIELD_IDX_ARP_SHA */
  86	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 8, ETH_ALEN),
  87	/* ICE_FLOW_FIELD_IDX_ARP_DHA */
  88	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 18, ETH_ALEN),
  89	/* ICE_FLOW_FIELD_IDX_ARP_OP */
  90	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 6, sizeof(__be16)),
  91	/* ICMP */
  92	/* ICE_FLOW_FIELD_IDX_ICMP_TYPE */
  93	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 0, 1),
  94	/* ICE_FLOW_FIELD_IDX_ICMP_CODE */
  95	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 1, 1),
  96	/* GRE */
  97	/* ICE_FLOW_FIELD_IDX_GRE_KEYID */
  98	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GRE, 12,
  99			  sizeof_field(struct gre_full_hdr, key)),
 100	/* GTP */
 101	/* ICE_FLOW_FIELD_IDX_GTPC_TEID */
 102	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPC_TEID, 12, sizeof(__be32)),
 103	/* ICE_FLOW_FIELD_IDX_GTPU_IP_TEID */
 104	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_IP, 12, sizeof(__be32)),
 105	/* ICE_FLOW_FIELD_IDX_GTPU_EH_TEID */
 106	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_EH, 12, sizeof(__be32)),
 107	/* ICE_FLOW_FIELD_IDX_GTPU_EH_QFI */
 108	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_GTPU_EH, 22, sizeof(__be16),
 109			      0x3f00),
 110	/* ICE_FLOW_FIELD_IDX_GTPU_UP_TEID */
 111	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_UP, 12, sizeof(__be32)),
 112	/* ICE_FLOW_FIELD_IDX_GTPU_DWN_TEID */
 113	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_DWN, 12, sizeof(__be32)),
 114	/* PPPoE */
 115	/* ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID */
 116	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_PPPOE, 2, sizeof(__be16)),
 117	/* PFCP */
 118	/* ICE_FLOW_FIELD_IDX_PFCP_SEID */
 119	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_PFCP_SESSION, 12, sizeof(__be64)),
 120	/* L2TPv3 */
 121	/* ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID */
 122	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_L2TPV3, 0, sizeof(__be32)),
 123	/* ESP */
 124	/* ICE_FLOW_FIELD_IDX_ESP_SPI */
 125	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ESP, 0, sizeof(__be32)),
 126	/* AH */
 127	/* ICE_FLOW_FIELD_IDX_AH_SPI */
 128	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_AH, 4, sizeof(__be32)),
 129	/* NAT_T_ESP */
 130	/* ICE_FLOW_FIELD_IDX_NAT_T_ESP_SPI */
 131	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_NAT_T_ESP, 8, sizeof(__be32)),
 132};
 133
 134/* Bitmaps indicating relevant packet types for a particular protocol header
 135 *
 136 * Packet types for packets with an Outer/First/Single MAC header
 137 */
 138static const u32 ice_ptypes_mac_ofos[] = {
 139	0xFDC00846, 0xBFBF7F7E, 0xF70001DF, 0xFEFDFDFB,
 140	0x0000077E, 0x00000000, 0x00000000, 0x00000000,
 141	0x00400000, 0x03FFF000, 0x7FFFFFE0, 0x00000000,
 142	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 143	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 144	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 145	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 146	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 147};
 148
 149/* Packet types for packets with an Innermost/Last MAC VLAN header */
 150static const u32 ice_ptypes_macvlan_il[] = {
 151	0x00000000, 0xBC000000, 0x000001DF, 0xF0000000,
 152	0x0000077E, 0x00000000, 0x00000000, 0x00000000,
 153	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 154	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 155	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 156	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 157	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 158	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 159};
 160
 161/* Packet types for packets with an Outer/First/Single IPv4 header, does NOT
 162 * include IPv4 other PTYPEs
 163 */
 164static const u32 ice_ptypes_ipv4_ofos[] = {
 165	0x1DC00000, 0x04000800, 0x00000000, 0x00000000,
 166	0x00000000, 0x00000155, 0x00000000, 0x00000000,
 167	0x00000000, 0x000FC000, 0x00000000, 0x00000000,
 168	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 169	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 170	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 171	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 172	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 173};
 174
 175/* Packet types for packets with an Outer/First/Single IPv4 header, includes
 176 * IPv4 other PTYPEs
 177 */
 178static const u32 ice_ptypes_ipv4_ofos_all[] = {
 179	0x1DC00000, 0x04000800, 0x00000000, 0x00000000,
 180	0x00000000, 0x00000155, 0x00000000, 0x00000000,
 181	0x00000000, 0x000FC000, 0x83E0F800, 0x00000101,
 182	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 183	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 184	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 185	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 186	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 187};
 188
 189/* Packet types for packets with an Innermost/Last IPv4 header */
 190static const u32 ice_ptypes_ipv4_il[] = {
 191	0xE0000000, 0xB807700E, 0x80000003, 0xE01DC03B,
 192	0x0000000E, 0x00000000, 0x00000000, 0x00000000,
 193	0x00000000, 0x00000000, 0x001FF800, 0x00000000,
 194	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 195	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 196	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 197	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 198	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 199};
 200
 201/* Packet types for packets with an Outer/First/Single IPv6 header, does NOT
 202 * include IPv6 other PTYPEs
 203 */
 204static const u32 ice_ptypes_ipv6_ofos[] = {
 205	0x00000000, 0x00000000, 0x77000000, 0x10002000,
 206	0x00000000, 0x000002AA, 0x00000000, 0x00000000,
 207	0x00000000, 0x03F00000, 0x00000000, 0x00000000,
 208	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 209	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 210	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 211	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 212	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 213};
 214
 215/* Packet types for packets with an Outer/First/Single IPv6 header, includes
 216 * IPv6 other PTYPEs
 217 */
 218static const u32 ice_ptypes_ipv6_ofos_all[] = {
 219	0x00000000, 0x00000000, 0x77000000, 0x10002000,
 220	0x00000000, 0x000002AA, 0x00000000, 0x00000000,
 221	0x00080F00, 0x03F00000, 0x7C1F0000, 0x00000206,
 222	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 223	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 224	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 225	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 226	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 227};
 228
 229/* Packet types for packets with an Innermost/Last IPv6 header */
 230static const u32 ice_ptypes_ipv6_il[] = {
 231	0x00000000, 0x03B80770, 0x000001DC, 0x0EE00000,
 232	0x00000770, 0x00000000, 0x00000000, 0x00000000,
 233	0x00000000, 0x00000000, 0x7FE00000, 0x00000000,
 234	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 235	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 236	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 237	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 238	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 239};
 240
 241/* Packet types for packets with an Outer/First/Single IPv4 header - no L4 */
 242static const u32 ice_ptypes_ipv4_ofos_no_l4[] = {
 243	0x10C00000, 0x04000800, 0x00000000, 0x00000000,
 244	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 245	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 246	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 247	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 248	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 249	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 250	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 251};
 252
 253/* Packet types for packets with an Outermost/First ARP header */
 254static const u32 ice_ptypes_arp_of[] = {
 255	0x00000800, 0x00000000, 0x00000000, 0x00000000,
 256	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 257	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 258	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 259	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 260	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 261	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 262	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 263};
 264
 265/* Packet types for packets with an Innermost/Last IPv4 header - no L4 */
 266static const u32 ice_ptypes_ipv4_il_no_l4[] = {
 267	0x60000000, 0x18043008, 0x80000002, 0x6010c021,
 268	0x00000008, 0x00000000, 0x00000000, 0x00000000,
 269	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 270	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 271	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 272	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 273	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 274	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 275};
 276
 277/* Packet types for packets with an Outer/First/Single IPv6 header - no L4 */
 278static const u32 ice_ptypes_ipv6_ofos_no_l4[] = {
 279	0x00000000, 0x00000000, 0x43000000, 0x10002000,
 280	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 281	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 282	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 283	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 284	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 285	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 286	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 287};
 288
 289/* Packet types for packets with an Innermost/Last IPv6 header - no L4 */
 290static const u32 ice_ptypes_ipv6_il_no_l4[] = {
 291	0x00000000, 0x02180430, 0x0000010c, 0x086010c0,
 292	0x00000430, 0x00000000, 0x00000000, 0x00000000,
 293	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 294	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 295	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 296	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 297	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 298	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 299};
 300
 301/* UDP Packet types for non-tunneled packets or tunneled
 302 * packets with inner UDP.
 303 */
 304static const u32 ice_ptypes_udp_il[] = {
 305	0x81000000, 0x20204040, 0x04000010, 0x80810102,
 306	0x00000040, 0x00000000, 0x00000000, 0x00000000,
 307	0x00000000, 0x00410000, 0x90842000, 0x00000007,
 308	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 309	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 310	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 311	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 312	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 313};
 314
 315/* Packet types for packets with an Innermost/Last TCP header */
 316static const u32 ice_ptypes_tcp_il[] = {
 317	0x04000000, 0x80810102, 0x10000040, 0x02040408,
 318	0x00000102, 0x00000000, 0x00000000, 0x00000000,
 319	0x00000000, 0x00820000, 0x21084000, 0x00000000,
 320	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 321	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 322	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 323	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 324	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 325};
 326
 327/* Packet types for packets with an Innermost/Last SCTP header */
 328static const u32 ice_ptypes_sctp_il[] = {
 329	0x08000000, 0x01020204, 0x20000081, 0x04080810,
 330	0x00000204, 0x00000000, 0x00000000, 0x00000000,
 331	0x00000000, 0x01040000, 0x00000000, 0x00000000,
 332	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 333	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 334	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 335	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 336	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 337};
 338
 339/* Packet types for packets with an Outermost/First ICMP header */
 340static const u32 ice_ptypes_icmp_of[] = {
 341	0x10000000, 0x00000000, 0x00000000, 0x00000000,
 342	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 343	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 344	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 345	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 346	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 347	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 348	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 349};
 350
 351/* Packet types for packets with an Innermost/Last ICMP header */
 352static const u32 ice_ptypes_icmp_il[] = {
 353	0x00000000, 0x02040408, 0x40000102, 0x08101020,
 354	0x00000408, 0x00000000, 0x00000000, 0x00000000,
 355	0x00000000, 0x00000000, 0x42108000, 0x00000000,
 356	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 357	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 358	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 359	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 360	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 361};
 362
 363/* Packet types for packets with an Outermost/First GRE header */
 364static const u32 ice_ptypes_gre_of[] = {
 365	0x00000000, 0xBFBF7800, 0x000001DF, 0xFEFDE000,
 366	0x0000017E, 0x00000000, 0x00000000, 0x00000000,
 367	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 368	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 369	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 370	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 371	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 372	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 373};
 374
 375/* Packet types for packets with an Innermost/Last MAC header */
 376static const u32 ice_ptypes_mac_il[] = {
 377	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 378	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 379	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 380	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 381	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 382	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 383	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 384	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 385};
 386
 387/* Packet types for GTPC */
 388static const u32 ice_ptypes_gtpc[] = {
 389	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 390	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 391	0x00000000, 0x00000000, 0x00000180, 0x00000000,
 392	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 393	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 394	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 395	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 396	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 397};
 398
 399/* Packet types for GTPC with TEID */
 400static const u32 ice_ptypes_gtpc_tid[] = {
 401	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 402	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 403	0x00000000, 0x00000000, 0x00000060, 0x00000000,
 404	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 405	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 406	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 407	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 408	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 409};
 410
 411/* Packet types for GTPU */
 412static const struct ice_ptype_attributes ice_attr_gtpu_eh[] = {
 413	{ ICE_MAC_IPV4_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 414	{ ICE_MAC_IPV4_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 415	{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
 416	{ ICE_MAC_IPV4_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 417	{ ICE_MAC_IPV4_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 418	{ ICE_MAC_IPV6_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 419	{ ICE_MAC_IPV6_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 420	{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
 421	{ ICE_MAC_IPV6_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 422	{ ICE_MAC_IPV6_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 423	{ ICE_MAC_IPV4_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 424	{ ICE_MAC_IPV4_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 425	{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
 426	{ ICE_MAC_IPV4_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 427	{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_PDU_EH },
 428	{ ICE_MAC_IPV6_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 429	{ ICE_MAC_IPV6_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 430	{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
 431	{ ICE_MAC_IPV6_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 432	{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_PDU_EH },
 433};
 434
 435static const struct ice_ptype_attributes ice_attr_gtpu_down[] = {
 436	{ ICE_MAC_IPV4_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 437	{ ICE_MAC_IPV4_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 438	{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
 439	{ ICE_MAC_IPV4_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 440	{ ICE_MAC_IPV4_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 441	{ ICE_MAC_IPV6_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 442	{ ICE_MAC_IPV6_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 443	{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
 444	{ ICE_MAC_IPV6_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 445	{ ICE_MAC_IPV6_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 446	{ ICE_MAC_IPV4_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 447	{ ICE_MAC_IPV4_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 448	{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
 449	{ ICE_MAC_IPV4_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 450	{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 451	{ ICE_MAC_IPV6_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 452	{ ICE_MAC_IPV6_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 453	{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
 454	{ ICE_MAC_IPV6_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 455	{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 456};
 457
 458static const struct ice_ptype_attributes ice_attr_gtpu_up[] = {
 459	{ ICE_MAC_IPV4_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 460	{ ICE_MAC_IPV4_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 461	{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
 462	{ ICE_MAC_IPV4_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 463	{ ICE_MAC_IPV4_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 464	{ ICE_MAC_IPV6_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 465	{ ICE_MAC_IPV6_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 466	{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
 467	{ ICE_MAC_IPV6_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 468	{ ICE_MAC_IPV6_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 469	{ ICE_MAC_IPV4_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 470	{ ICE_MAC_IPV4_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 471	{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
 472	{ ICE_MAC_IPV4_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 473	{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_UPLINK },
 474	{ ICE_MAC_IPV6_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 475	{ ICE_MAC_IPV6_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 476	{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
 477	{ ICE_MAC_IPV6_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 478	{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_UPLINK },
 479};
 480
 481static const u32 ice_ptypes_gtpu[] = {
 482	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 483	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 484	0x00000000, 0x00000000, 0x7FFFFE00, 0x00000000,
 485	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 486	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 487	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 488	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 489	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 490};
 491
 492/* Packet types for PPPoE */
 493static const u32 ice_ptypes_pppoe[] = {
 494	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 495	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 496	0x00000000, 0x03ffe000, 0x00000000, 0x00000000,
 497	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 498	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 499	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 500	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 501	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 502};
 503
 504/* Packet types for packets with PFCP NODE header */
 505static const u32 ice_ptypes_pfcp_node[] = {
 506	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 507	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 508	0x00000000, 0x00000000, 0x80000000, 0x00000002,
 509	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 510	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 511	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 512	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 513	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 514};
 515
 516/* Packet types for packets with PFCP SESSION header */
 517static const u32 ice_ptypes_pfcp_session[] = {
 518	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 519	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 520	0x00000000, 0x00000000, 0x00000000, 0x00000005,
 521	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 522	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 523	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 524	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 525	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 526};
 527
 528/* Packet types for L2TPv3 */
 529static const u32 ice_ptypes_l2tpv3[] = {
 530	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 531	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 532	0x00000000, 0x00000000, 0x00000000, 0x00000300,
 533	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 534	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 535	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 536	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 537	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 538};
 539
 540/* Packet types for ESP */
 541static const u32 ice_ptypes_esp[] = {
 542	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 543	0x00000000, 0x00000003, 0x00000000, 0x00000000,
 544	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 545	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 546	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 547	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 548	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 549	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 550};
 551
 552/* Packet types for AH */
 553static const u32 ice_ptypes_ah[] = {
 554	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 555	0x00000000, 0x0000000C, 0x00000000, 0x00000000,
 556	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 557	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 558	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 559	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 560	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 561	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 562};
 563
 564/* Packet types for packets with NAT_T ESP header */
 565static const u32 ice_ptypes_nat_t_esp[] = {
 566	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 567	0x00000000, 0x00000030, 0x00000000, 0x00000000,
 568	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 569	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 570	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 571	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 572	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 573	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 574};
 575
 576static const u32 ice_ptypes_mac_non_ip_ofos[] = {
 577	0x00000846, 0x00000000, 0x00000000, 0x00000000,
 578	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 579	0x00400000, 0x03FFF000, 0x00000000, 0x00000000,
 580	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 581	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 582	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 583	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 584	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 585};
 586
 587/* Manage parameters and info. used during the creation of a flow profile */
 588struct ice_flow_prof_params {
 589	enum ice_block blk;
 590	u16 entry_length; /* # of bytes formatted entry will require */
 591	u8 es_cnt;
 592	struct ice_flow_prof *prof;
 593
 594	/* For ACL, the es[0] will have the data of ICE_RX_MDID_PKT_FLAGS_15_0
 595	 * This will give us the direction flags.
 596	 */
 597	struct ice_fv_word es[ICE_MAX_FV_WORDS];
 598	/* attributes can be used to add attributes to a particular PTYPE */
 599	const struct ice_ptype_attributes *attr;
 600	u16 attr_cnt;
 601
 602	u16 mask[ICE_MAX_FV_WORDS];
 603	DECLARE_BITMAP(ptypes, ICE_FLOW_PTYPE_MAX);
 604};
 605
 606#define ICE_FLOW_RSS_HDRS_INNER_MASK \
 607	(ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_GTPC | \
 608	ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_GTPU | \
 609	ICE_FLOW_SEG_HDR_PFCP_SESSION | ICE_FLOW_SEG_HDR_L2TPV3 | \
 610	ICE_FLOW_SEG_HDR_ESP | ICE_FLOW_SEG_HDR_AH | \
 611	ICE_FLOW_SEG_HDR_NAT_T_ESP)
 612
 613#define ICE_FLOW_SEG_HDRS_L3_MASK	\
 614	(ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_ARP)
 615#define ICE_FLOW_SEG_HDRS_L4_MASK	\
 616	(ICE_FLOW_SEG_HDR_ICMP | ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | \
 617	 ICE_FLOW_SEG_HDR_SCTP)
 618/* mask for L4 protocols that are NOT part of IPv4/6 OTHER PTYPE groups */
 619#define ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER	\
 620	(ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP)
 621
 622/**
 623 * ice_flow_val_hdrs - validates packet segments for valid protocol headers
 624 * @segs: array of one or more packet segments that describe the flow
 625 * @segs_cnt: number of packet segments provided
 626 */
 627static int ice_flow_val_hdrs(struct ice_flow_seg_info *segs, u8 segs_cnt)
 628{
 629	u8 i;
 630
 631	for (i = 0; i < segs_cnt; i++) {
 632		/* Multiple L3 headers */
 633		if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK &&
 634		    !is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK))
 635			return -EINVAL;
 636
 637		/* Multiple L4 headers */
 638		if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK &&
 639		    !is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK))
 640			return -EINVAL;
 641	}
 642
 643	return 0;
 644}
 645
 646/* Sizes of fixed known protocol headers without header options */
 647#define ICE_FLOW_PROT_HDR_SZ_MAC	14
 648#define ICE_FLOW_PROT_HDR_SZ_MAC_VLAN	(ICE_FLOW_PROT_HDR_SZ_MAC + 2)
 649#define ICE_FLOW_PROT_HDR_SZ_IPV4	20
 650#define ICE_FLOW_PROT_HDR_SZ_IPV6	40
 651#define ICE_FLOW_PROT_HDR_SZ_ARP	28
 652#define ICE_FLOW_PROT_HDR_SZ_ICMP	8
 653#define ICE_FLOW_PROT_HDR_SZ_TCP	20
 654#define ICE_FLOW_PROT_HDR_SZ_UDP	8
 655#define ICE_FLOW_PROT_HDR_SZ_SCTP	12
 656
 657/**
 658 * ice_flow_calc_seg_sz - calculates size of a packet segment based on headers
 659 * @params: information about the flow to be processed
 660 * @seg: index of packet segment whose header size is to be determined
 661 */
 662static u16 ice_flow_calc_seg_sz(struct ice_flow_prof_params *params, u8 seg)
 663{
 664	u16 sz;
 665
 666	/* L2 headers */
 667	sz = (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_VLAN) ?
 668		ICE_FLOW_PROT_HDR_SZ_MAC_VLAN : ICE_FLOW_PROT_HDR_SZ_MAC;
 669
 670	/* L3 headers */
 671	if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV4)
 672		sz += ICE_FLOW_PROT_HDR_SZ_IPV4;
 673	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV6)
 674		sz += ICE_FLOW_PROT_HDR_SZ_IPV6;
 675	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_ARP)
 676		sz += ICE_FLOW_PROT_HDR_SZ_ARP;
 677	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK)
 678		/* An L3 header is required if L4 is specified */
 679		return 0;
 680
 681	/* L4 headers */
 682	if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_ICMP)
 683		sz += ICE_FLOW_PROT_HDR_SZ_ICMP;
 684	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_TCP)
 685		sz += ICE_FLOW_PROT_HDR_SZ_TCP;
 686	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_UDP)
 687		sz += ICE_FLOW_PROT_HDR_SZ_UDP;
 688	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_SCTP)
 689		sz += ICE_FLOW_PROT_HDR_SZ_SCTP;
 690
 691	return sz;
 692}
 693
 694/**
 695 * ice_flow_proc_seg_hdrs - process protocol headers present in pkt segments
 696 * @params: information about the flow to be processed
 697 *
 698 * This function identifies the packet types associated with the protocol
 699 * headers being present in packet segments of the specified flow profile.
 700 */
 701static int ice_flow_proc_seg_hdrs(struct ice_flow_prof_params *params)
 702{
 703	struct ice_flow_prof *prof;
 704	u8 i;
 705
 706	memset(params->ptypes, 0xff, sizeof(params->ptypes));
 707
 708	prof = params->prof;
 709
 710	for (i = 0; i < params->prof->segs_cnt; i++) {
 711		const unsigned long *src;
 712		u32 hdrs;
 713
 714		hdrs = prof->segs[i].hdrs;
 715
 716		if (hdrs & ICE_FLOW_SEG_HDR_ETH) {
 717			src = !i ? (const unsigned long *)ice_ptypes_mac_ofos :
 718				(const unsigned long *)ice_ptypes_mac_il;
 719			bitmap_and(params->ptypes, params->ptypes, src,
 720				   ICE_FLOW_PTYPE_MAX);
 721		}
 722
 723		if (i && hdrs & ICE_FLOW_SEG_HDR_VLAN) {
 724			src = (const unsigned long *)ice_ptypes_macvlan_il;
 725			bitmap_and(params->ptypes, params->ptypes, src,
 726				   ICE_FLOW_PTYPE_MAX);
 727		}
 728
 729		if (!i && hdrs & ICE_FLOW_SEG_HDR_ARP) {
 730			bitmap_and(params->ptypes, params->ptypes,
 731				   (const unsigned long *)ice_ptypes_arp_of,
 732				   ICE_FLOW_PTYPE_MAX);
 733		}
 734
 735		if ((hdrs & ICE_FLOW_SEG_HDR_IPV4) &&
 736		    (hdrs & ICE_FLOW_SEG_HDR_IPV_OTHER)) {
 737			src = i ? (const unsigned long *)ice_ptypes_ipv4_il :
 738				(const unsigned long *)ice_ptypes_ipv4_ofos_all;
 739			bitmap_and(params->ptypes, params->ptypes, src,
 740				   ICE_FLOW_PTYPE_MAX);
 741		} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV6) &&
 742			   (hdrs & ICE_FLOW_SEG_HDR_IPV_OTHER)) {
 743			src = i ? (const unsigned long *)ice_ptypes_ipv6_il :
 744				(const unsigned long *)ice_ptypes_ipv6_ofos_all;
 745			bitmap_and(params->ptypes, params->ptypes, src,
 746				   ICE_FLOW_PTYPE_MAX);
 747		} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV4) &&
 748			   !(hdrs & ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER)) {
 749			src = !i ? (const unsigned long *)ice_ptypes_ipv4_ofos_no_l4 :
 750				(const unsigned long *)ice_ptypes_ipv4_il_no_l4;
 751			bitmap_and(params->ptypes, params->ptypes, src,
 752				   ICE_FLOW_PTYPE_MAX);
 753		} else if (hdrs & ICE_FLOW_SEG_HDR_IPV4) {
 754			src = !i ? (const unsigned long *)ice_ptypes_ipv4_ofos :
 755				(const unsigned long *)ice_ptypes_ipv4_il;
 756			bitmap_and(params->ptypes, params->ptypes, src,
 757				   ICE_FLOW_PTYPE_MAX);
 758		} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV6) &&
 759			   !(hdrs & ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER)) {
 760			src = !i ? (const unsigned long *)ice_ptypes_ipv6_ofos_no_l4 :
 761				(const unsigned long *)ice_ptypes_ipv6_il_no_l4;
 762			bitmap_and(params->ptypes, params->ptypes, src,
 763				   ICE_FLOW_PTYPE_MAX);
 764		} else if (hdrs & ICE_FLOW_SEG_HDR_IPV6) {
 765			src = !i ? (const unsigned long *)ice_ptypes_ipv6_ofos :
 766				(const unsigned long *)ice_ptypes_ipv6_il;
 767			bitmap_and(params->ptypes, params->ptypes, src,
 768				   ICE_FLOW_PTYPE_MAX);
 769		}
 770
 771		if (hdrs & ICE_FLOW_SEG_HDR_ETH_NON_IP) {
 772			src = (const unsigned long *)ice_ptypes_mac_non_ip_ofos;
 773			bitmap_and(params->ptypes, params->ptypes, src,
 774				   ICE_FLOW_PTYPE_MAX);
 775		} else if (hdrs & ICE_FLOW_SEG_HDR_PPPOE) {
 776			src = (const unsigned long *)ice_ptypes_pppoe;
 777			bitmap_and(params->ptypes, params->ptypes, src,
 778				   ICE_FLOW_PTYPE_MAX);
 779		} else {
 780			src = (const unsigned long *)ice_ptypes_pppoe;
 781			bitmap_andnot(params->ptypes, params->ptypes, src,
 782				      ICE_FLOW_PTYPE_MAX);
 783		}
 784
 785		if (hdrs & ICE_FLOW_SEG_HDR_UDP) {
 786			src = (const unsigned long *)ice_ptypes_udp_il;
 787			bitmap_and(params->ptypes, params->ptypes, src,
 788				   ICE_FLOW_PTYPE_MAX);
 789		} else if (hdrs & ICE_FLOW_SEG_HDR_TCP) {
 790			bitmap_and(params->ptypes, params->ptypes,
 791				   (const unsigned long *)ice_ptypes_tcp_il,
 792				   ICE_FLOW_PTYPE_MAX);
 793		} else if (hdrs & ICE_FLOW_SEG_HDR_SCTP) {
 794			src = (const unsigned long *)ice_ptypes_sctp_il;
 795			bitmap_and(params->ptypes, params->ptypes, src,
 796				   ICE_FLOW_PTYPE_MAX);
 797		}
 798
 799		if (hdrs & ICE_FLOW_SEG_HDR_ICMP) {
 800			src = !i ? (const unsigned long *)ice_ptypes_icmp_of :
 801				(const unsigned long *)ice_ptypes_icmp_il;
 802			bitmap_and(params->ptypes, params->ptypes, src,
 803				   ICE_FLOW_PTYPE_MAX);
 804		} else if (hdrs & ICE_FLOW_SEG_HDR_GRE) {
 805			if (!i) {
 806				src = (const unsigned long *)ice_ptypes_gre_of;
 807				bitmap_and(params->ptypes, params->ptypes,
 808					   src, ICE_FLOW_PTYPE_MAX);
 809			}
 810		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPC) {
 811			src = (const unsigned long *)ice_ptypes_gtpc;
 812			bitmap_and(params->ptypes, params->ptypes, src,
 813				   ICE_FLOW_PTYPE_MAX);
 814		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPC_TEID) {
 815			src = (const unsigned long *)ice_ptypes_gtpc_tid;
 816			bitmap_and(params->ptypes, params->ptypes, src,
 817				   ICE_FLOW_PTYPE_MAX);
 818		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_DWN) {
 819			src = (const unsigned long *)ice_ptypes_gtpu;
 820			bitmap_and(params->ptypes, params->ptypes, src,
 821				   ICE_FLOW_PTYPE_MAX);
 822
 823			/* Attributes for GTP packet with downlink */
 824			params->attr = ice_attr_gtpu_down;
 825			params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_down);
 826		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_UP) {
 827			src = (const unsigned long *)ice_ptypes_gtpu;
 828			bitmap_and(params->ptypes, params->ptypes, src,
 829				   ICE_FLOW_PTYPE_MAX);
 830
 831			/* Attributes for GTP packet with uplink */
 832			params->attr = ice_attr_gtpu_up;
 833			params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_up);
 834		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_EH) {
 835			src = (const unsigned long *)ice_ptypes_gtpu;
 836			bitmap_and(params->ptypes, params->ptypes, src,
 837				   ICE_FLOW_PTYPE_MAX);
 838
 839			/* Attributes for GTP packet with Extension Header */
 840			params->attr = ice_attr_gtpu_eh;
 841			params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_eh);
 842		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_IP) {
 843			src = (const unsigned long *)ice_ptypes_gtpu;
 844			bitmap_and(params->ptypes, params->ptypes, src,
 845				   ICE_FLOW_PTYPE_MAX);
 846		} else if (hdrs & ICE_FLOW_SEG_HDR_L2TPV3) {
 847			src = (const unsigned long *)ice_ptypes_l2tpv3;
 848			bitmap_and(params->ptypes, params->ptypes, src,
 849				   ICE_FLOW_PTYPE_MAX);
 850		} else if (hdrs & ICE_FLOW_SEG_HDR_ESP) {
 851			src = (const unsigned long *)ice_ptypes_esp;
 852			bitmap_and(params->ptypes, params->ptypes, src,
 853				   ICE_FLOW_PTYPE_MAX);
 854		} else if (hdrs & ICE_FLOW_SEG_HDR_AH) {
 855			src = (const unsigned long *)ice_ptypes_ah;
 856			bitmap_and(params->ptypes, params->ptypes, src,
 857				   ICE_FLOW_PTYPE_MAX);
 858		} else if (hdrs & ICE_FLOW_SEG_HDR_NAT_T_ESP) {
 859			src = (const unsigned long *)ice_ptypes_nat_t_esp;
 860			bitmap_and(params->ptypes, params->ptypes, src,
 861				   ICE_FLOW_PTYPE_MAX);
 862		}
 863
 864		if (hdrs & ICE_FLOW_SEG_HDR_PFCP) {
 865			if (hdrs & ICE_FLOW_SEG_HDR_PFCP_NODE)
 866				src = (const unsigned long *)ice_ptypes_pfcp_node;
 867			else
 868				src = (const unsigned long *)ice_ptypes_pfcp_session;
 869
 870			bitmap_and(params->ptypes, params->ptypes, src,
 871				   ICE_FLOW_PTYPE_MAX);
 872		} else {
 873			src = (const unsigned long *)ice_ptypes_pfcp_node;
 874			bitmap_andnot(params->ptypes, params->ptypes, src,
 875				      ICE_FLOW_PTYPE_MAX);
 876
 877			src = (const unsigned long *)ice_ptypes_pfcp_session;
 878			bitmap_andnot(params->ptypes, params->ptypes, src,
 879				      ICE_FLOW_PTYPE_MAX);
 880		}
 881	}
 882
 883	return 0;
 884}
 885
 886/**
 887 * ice_flow_xtract_fld - Create an extraction sequence entry for the given field
 888 * @hw: pointer to the HW struct
 889 * @params: information about the flow to be processed
 890 * @seg: packet segment index of the field to be extracted
 891 * @fld: ID of field to be extracted
 892 * @match: bit field of all fields
 893 *
 894 * This function determines the protocol ID, offset, and size of the given
 895 * field. It then allocates one or more extraction sequence entries for the
 896 * given field, and fill the entries with protocol ID and offset information.
 897 */
 898static int
 899ice_flow_xtract_fld(struct ice_hw *hw, struct ice_flow_prof_params *params,
 900		    u8 seg, enum ice_flow_field fld, u64 match)
 901{
 902	enum ice_flow_field sib = ICE_FLOW_FIELD_IDX_MAX;
 903	enum ice_prot_id prot_id = ICE_PROT_ID_INVAL;
 904	u8 fv_words = hw->blk[params->blk].es.fvw;
 905	struct ice_flow_fld_info *flds;
 906	u16 cnt, ese_bits, i;
 907	u16 sib_mask = 0;
 908	u16 mask;
 909	u16 off;
 910
 911	flds = params->prof->segs[seg].fields;
 912
 913	switch (fld) {
 914	case ICE_FLOW_FIELD_IDX_ETH_DA:
 915	case ICE_FLOW_FIELD_IDX_ETH_SA:
 916	case ICE_FLOW_FIELD_IDX_S_VLAN:
 917	case ICE_FLOW_FIELD_IDX_C_VLAN:
 918		prot_id = seg == 0 ? ICE_PROT_MAC_OF_OR_S : ICE_PROT_MAC_IL;
 919		break;
 920	case ICE_FLOW_FIELD_IDX_ETH_TYPE:
 921		prot_id = seg == 0 ? ICE_PROT_ETYPE_OL : ICE_PROT_ETYPE_IL;
 922		break;
 923	case ICE_FLOW_FIELD_IDX_IPV4_DSCP:
 924		prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
 925		break;
 926	case ICE_FLOW_FIELD_IDX_IPV6_DSCP:
 927		prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
 928		break;
 929	case ICE_FLOW_FIELD_IDX_IPV4_TTL:
 930	case ICE_FLOW_FIELD_IDX_IPV4_PROT:
 931		prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
 932
 933		/* TTL and PROT share the same extraction seq. entry.
 934		 * Each is considered a sibling to the other in terms of sharing
 935		 * the same extraction sequence entry.
 936		 */
 937		if (fld == ICE_FLOW_FIELD_IDX_IPV4_TTL)
 938			sib = ICE_FLOW_FIELD_IDX_IPV4_PROT;
 939		else if (fld == ICE_FLOW_FIELD_IDX_IPV4_PROT)
 940			sib = ICE_FLOW_FIELD_IDX_IPV4_TTL;
 941
 942		/* If the sibling field is also included, that field's
 943		 * mask needs to be included.
 944		 */
 945		if (match & BIT(sib))
 946			sib_mask = ice_flds_info[sib].mask;
 947		break;
 948	case ICE_FLOW_FIELD_IDX_IPV6_TTL:
 949	case ICE_FLOW_FIELD_IDX_IPV6_PROT:
 950		prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
 951
 952		/* TTL and PROT share the same extraction seq. entry.
 953		 * Each is considered a sibling to the other in terms of sharing
 954		 * the same extraction sequence entry.
 955		 */
 956		if (fld == ICE_FLOW_FIELD_IDX_IPV6_TTL)
 957			sib = ICE_FLOW_FIELD_IDX_IPV6_PROT;
 958		else if (fld == ICE_FLOW_FIELD_IDX_IPV6_PROT)
 959			sib = ICE_FLOW_FIELD_IDX_IPV6_TTL;
 960
 961		/* If the sibling field is also included, that field's
 962		 * mask needs to be included.
 963		 */
 964		if (match & BIT(sib))
 965			sib_mask = ice_flds_info[sib].mask;
 966		break;
 967	case ICE_FLOW_FIELD_IDX_IPV4_SA:
 968	case ICE_FLOW_FIELD_IDX_IPV4_DA:
 969		prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
 970		break;
 971	case ICE_FLOW_FIELD_IDX_IPV6_SA:
 972	case ICE_FLOW_FIELD_IDX_IPV6_DA:
 973		prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
 974		break;
 975	case ICE_FLOW_FIELD_IDX_TCP_SRC_PORT:
 976	case ICE_FLOW_FIELD_IDX_TCP_DST_PORT:
 977	case ICE_FLOW_FIELD_IDX_TCP_FLAGS:
 978		prot_id = ICE_PROT_TCP_IL;
 979		break;
 980	case ICE_FLOW_FIELD_IDX_UDP_SRC_PORT:
 981	case ICE_FLOW_FIELD_IDX_UDP_DST_PORT:
 982		prot_id = ICE_PROT_UDP_IL_OR_S;
 983		break;
 984	case ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT:
 985	case ICE_FLOW_FIELD_IDX_SCTP_DST_PORT:
 986		prot_id = ICE_PROT_SCTP_IL;
 987		break;
 988	case ICE_FLOW_FIELD_IDX_GTPC_TEID:
 989	case ICE_FLOW_FIELD_IDX_GTPU_IP_TEID:
 990	case ICE_FLOW_FIELD_IDX_GTPU_UP_TEID:
 991	case ICE_FLOW_FIELD_IDX_GTPU_DWN_TEID:
 992	case ICE_FLOW_FIELD_IDX_GTPU_EH_TEID:
 993	case ICE_FLOW_FIELD_IDX_GTPU_EH_QFI:
 994		/* GTP is accessed through UDP OF protocol */
 995		prot_id = ICE_PROT_UDP_OF;
 996		break;
 997	case ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID:
 998		prot_id = ICE_PROT_PPPOE;
 999		break;
1000	case ICE_FLOW_FIELD_IDX_PFCP_SEID:
1001		prot_id = ICE_PROT_UDP_IL_OR_S;
1002		break;
1003	case ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID:
1004		prot_id = ICE_PROT_L2TPV3;
1005		break;
1006	case ICE_FLOW_FIELD_IDX_ESP_SPI:
1007		prot_id = ICE_PROT_ESP_F;
1008		break;
1009	case ICE_FLOW_FIELD_IDX_AH_SPI:
1010		prot_id = ICE_PROT_ESP_2;
1011		break;
1012	case ICE_FLOW_FIELD_IDX_NAT_T_ESP_SPI:
1013		prot_id = ICE_PROT_UDP_IL_OR_S;
1014		break;
1015	case ICE_FLOW_FIELD_IDX_ARP_SIP:
1016	case ICE_FLOW_FIELD_IDX_ARP_DIP:
1017	case ICE_FLOW_FIELD_IDX_ARP_SHA:
1018	case ICE_FLOW_FIELD_IDX_ARP_DHA:
1019	case ICE_FLOW_FIELD_IDX_ARP_OP:
1020		prot_id = ICE_PROT_ARP_OF;
1021		break;
1022	case ICE_FLOW_FIELD_IDX_ICMP_TYPE:
1023	case ICE_FLOW_FIELD_IDX_ICMP_CODE:
1024		/* ICMP type and code share the same extraction seq. entry */
1025		prot_id = (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV4) ?
1026				ICE_PROT_ICMP_IL : ICE_PROT_ICMPV6_IL;
1027		sib = fld == ICE_FLOW_FIELD_IDX_ICMP_TYPE ?
1028			ICE_FLOW_FIELD_IDX_ICMP_CODE :
1029			ICE_FLOW_FIELD_IDX_ICMP_TYPE;
1030		break;
1031	case ICE_FLOW_FIELD_IDX_GRE_KEYID:
1032		prot_id = ICE_PROT_GRE_OF;
1033		break;
1034	default:
1035		return -EOPNOTSUPP;
1036	}
1037
1038	/* Each extraction sequence entry is a word in size, and extracts a
1039	 * word-aligned offset from a protocol header.
1040	 */
1041	ese_bits = ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE;
1042
1043	flds[fld].xtrct.prot_id = prot_id;
1044	flds[fld].xtrct.off = (ice_flds_info[fld].off / ese_bits) *
1045		ICE_FLOW_FV_EXTRACT_SZ;
1046	flds[fld].xtrct.disp = (u8)(ice_flds_info[fld].off % ese_bits);
1047	flds[fld].xtrct.idx = params->es_cnt;
1048	flds[fld].xtrct.mask = ice_flds_info[fld].mask;
1049
1050	/* Adjust the next field-entry index after accommodating the number of
1051	 * entries this field consumes
1052	 */
1053	cnt = DIV_ROUND_UP(flds[fld].xtrct.disp + ice_flds_info[fld].size,
1054			   ese_bits);
1055
1056	/* Fill in the extraction sequence entries needed for this field */
1057	off = flds[fld].xtrct.off;
1058	mask = flds[fld].xtrct.mask;
1059	for (i = 0; i < cnt; i++) {
1060		/* Only consume an extraction sequence entry if there is no
1061		 * sibling field associated with this field or the sibling entry
1062		 * already extracts the word shared with this field.
1063		 */
1064		if (sib == ICE_FLOW_FIELD_IDX_MAX ||
1065		    flds[sib].xtrct.prot_id == ICE_PROT_ID_INVAL ||
1066		    flds[sib].xtrct.off != off) {
1067			u8 idx;
1068
1069			/* Make sure the number of extraction sequence required
1070			 * does not exceed the block's capability
1071			 */
1072			if (params->es_cnt >= fv_words)
1073				return -ENOSPC;
1074
1075			/* some blocks require a reversed field vector layout */
1076			if (hw->blk[params->blk].es.reverse)
1077				idx = fv_words - params->es_cnt - 1;
1078			else
1079				idx = params->es_cnt;
1080
1081			params->es[idx].prot_id = prot_id;
1082			params->es[idx].off = off;
1083			params->mask[idx] = mask | sib_mask;
1084			params->es_cnt++;
1085		}
1086
1087		off += ICE_FLOW_FV_EXTRACT_SZ;
1088	}
1089
1090	return 0;
1091}
1092
1093/**
1094 * ice_flow_xtract_raws - Create extract sequence entries for raw bytes
1095 * @hw: pointer to the HW struct
1096 * @params: information about the flow to be processed
1097 * @seg: index of packet segment whose raw fields are to be extracted
1098 */
1099static int
1100ice_flow_xtract_raws(struct ice_hw *hw, struct ice_flow_prof_params *params,
1101		     u8 seg)
1102{
1103	u16 fv_words;
1104	u16 hdrs_sz;
1105	u8 i;
1106
1107	if (!params->prof->segs[seg].raws_cnt)
1108		return 0;
1109
1110	if (params->prof->segs[seg].raws_cnt >
1111	    ARRAY_SIZE(params->prof->segs[seg].raws))
1112		return -ENOSPC;
1113
1114	/* Offsets within the segment headers are not supported */
1115	hdrs_sz = ice_flow_calc_seg_sz(params, seg);
1116	if (!hdrs_sz)
1117		return -EINVAL;
1118
1119	fv_words = hw->blk[params->blk].es.fvw;
1120
1121	for (i = 0; i < params->prof->segs[seg].raws_cnt; i++) {
1122		struct ice_flow_seg_fld_raw *raw;
1123		u16 off, cnt, j;
1124
1125		raw = &params->prof->segs[seg].raws[i];
1126
1127		/* Storing extraction information */
1128		raw->info.xtrct.prot_id = ICE_PROT_MAC_OF_OR_S;
1129		raw->info.xtrct.off = (raw->off / ICE_FLOW_FV_EXTRACT_SZ) *
1130			ICE_FLOW_FV_EXTRACT_SZ;
1131		raw->info.xtrct.disp = (raw->off % ICE_FLOW_FV_EXTRACT_SZ) *
1132			BITS_PER_BYTE;
1133		raw->info.xtrct.idx = params->es_cnt;
1134
1135		/* Determine the number of field vector entries this raw field
1136		 * consumes.
1137		 */
1138		cnt = DIV_ROUND_UP(raw->info.xtrct.disp +
1139				   (raw->info.src.last * BITS_PER_BYTE),
1140				   (ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE));
1141		off = raw->info.xtrct.off;
1142		for (j = 0; j < cnt; j++) {
1143			u16 idx;
1144
1145			/* Make sure the number of extraction sequence required
1146			 * does not exceed the block's capability
1147			 */
1148			if (params->es_cnt >= hw->blk[params->blk].es.count ||
1149			    params->es_cnt >= ICE_MAX_FV_WORDS)
1150				return -ENOSPC;
1151
1152			/* some blocks require a reversed field vector layout */
1153			if (hw->blk[params->blk].es.reverse)
1154				idx = fv_words - params->es_cnt - 1;
1155			else
1156				idx = params->es_cnt;
1157
1158			params->es[idx].prot_id = raw->info.xtrct.prot_id;
1159			params->es[idx].off = off;
1160			params->es_cnt++;
1161			off += ICE_FLOW_FV_EXTRACT_SZ;
1162		}
1163	}
1164
1165	return 0;
1166}
1167
1168/**
1169 * ice_flow_create_xtrct_seq - Create an extraction sequence for given segments
1170 * @hw: pointer to the HW struct
1171 * @params: information about the flow to be processed
1172 *
1173 * This function iterates through all matched fields in the given segments, and
1174 * creates an extraction sequence for the fields.
1175 */
1176static int
1177ice_flow_create_xtrct_seq(struct ice_hw *hw,
1178			  struct ice_flow_prof_params *params)
1179{
1180	struct ice_flow_prof *prof = params->prof;
1181	int status = 0;
1182	u8 i;
1183
1184	for (i = 0; i < prof->segs_cnt; i++) {
1185		u64 match = params->prof->segs[i].match;
1186		enum ice_flow_field j;
1187
1188		for_each_set_bit(j, (unsigned long *)&match,
1189				 ICE_FLOW_FIELD_IDX_MAX) {
1190			status = ice_flow_xtract_fld(hw, params, i, j, match);
1191			if (status)
1192				return status;
1193			clear_bit(j, (unsigned long *)&match);
1194		}
1195
1196		/* Process raw matching bytes */
1197		status = ice_flow_xtract_raws(hw, params, i);
1198		if (status)
1199			return status;
1200	}
1201
1202	return status;
1203}
1204
1205/**
1206 * ice_flow_proc_segs - process all packet segments associated with a profile
1207 * @hw: pointer to the HW struct
1208 * @params: information about the flow to be processed
1209 */
1210static int
1211ice_flow_proc_segs(struct ice_hw *hw, struct ice_flow_prof_params *params)
1212{
1213	int status;
1214
1215	status = ice_flow_proc_seg_hdrs(params);
1216	if (status)
1217		return status;
1218
1219	status = ice_flow_create_xtrct_seq(hw, params);
1220	if (status)
1221		return status;
1222
1223	switch (params->blk) {
1224	case ICE_BLK_FD:
1225	case ICE_BLK_RSS:
1226		status = 0;
1227		break;
1228	default:
1229		return -EOPNOTSUPP;
1230	}
1231
1232	return status;
1233}
1234
1235#define ICE_FLOW_FIND_PROF_CHK_FLDS	0x00000001
1236#define ICE_FLOW_FIND_PROF_CHK_VSI	0x00000002
1237#define ICE_FLOW_FIND_PROF_NOT_CHK_DIR	0x00000004
1238
1239/**
1240 * ice_flow_find_prof_conds - Find a profile matching headers and conditions
1241 * @hw: pointer to the HW struct
1242 * @blk: classification stage
1243 * @dir: flow direction
1244 * @segs: array of one or more packet segments that describe the flow
1245 * @segs_cnt: number of packet segments provided
1246 * @vsi_handle: software VSI handle to check VSI (ICE_FLOW_FIND_PROF_CHK_VSI)
1247 * @conds: additional conditions to be checked (ICE_FLOW_FIND_PROF_CHK_*)
1248 */
1249static struct ice_flow_prof *
1250ice_flow_find_prof_conds(struct ice_hw *hw, enum ice_block blk,
1251			 enum ice_flow_dir dir, struct ice_flow_seg_info *segs,
1252			 u8 segs_cnt, u16 vsi_handle, u32 conds)
1253{
1254	struct ice_flow_prof *p, *prof = NULL;
1255
1256	mutex_lock(&hw->fl_profs_locks[blk]);
1257	list_for_each_entry(p, &hw->fl_profs[blk], l_entry)
1258		if ((p->dir == dir || conds & ICE_FLOW_FIND_PROF_NOT_CHK_DIR) &&
1259		    segs_cnt && segs_cnt == p->segs_cnt) {
1260			u8 i;
1261
1262			/* Check for profile-VSI association if specified */
1263			if ((conds & ICE_FLOW_FIND_PROF_CHK_VSI) &&
1264			    ice_is_vsi_valid(hw, vsi_handle) &&
1265			    !test_bit(vsi_handle, p->vsis))
1266				continue;
1267
1268			/* Protocol headers must be checked. Matched fields are
1269			 * checked if specified.
1270			 */
1271			for (i = 0; i < segs_cnt; i++)
1272				if (segs[i].hdrs != p->segs[i].hdrs ||
1273				    ((conds & ICE_FLOW_FIND_PROF_CHK_FLDS) &&
1274				     segs[i].match != p->segs[i].match))
1275					break;
1276
1277			/* A match is found if all segments are matched */
1278			if (i == segs_cnt) {
1279				prof = p;
1280				break;
1281			}
1282		}
1283	mutex_unlock(&hw->fl_profs_locks[blk]);
1284
1285	return prof;
1286}
1287
1288/**
1289 * ice_flow_find_prof_id - Look up a profile with given profile ID
1290 * @hw: pointer to the HW struct
1291 * @blk: classification stage
1292 * @prof_id: unique ID to identify this flow profile
1293 */
1294static struct ice_flow_prof *
1295ice_flow_find_prof_id(struct ice_hw *hw, enum ice_block blk, u64 prof_id)
1296{
1297	struct ice_flow_prof *p;
1298
1299	list_for_each_entry(p, &hw->fl_profs[blk], l_entry)
1300		if (p->id == prof_id)
1301			return p;
1302
1303	return NULL;
1304}
1305
1306/**
1307 * ice_dealloc_flow_entry - Deallocate flow entry memory
1308 * @hw: pointer to the HW struct
1309 * @entry: flow entry to be removed
1310 */
1311static void
1312ice_dealloc_flow_entry(struct ice_hw *hw, struct ice_flow_entry *entry)
1313{
1314	if (!entry)
1315		return;
1316
1317	if (entry->entry)
1318		devm_kfree(ice_hw_to_dev(hw), entry->entry);
1319
1320	devm_kfree(ice_hw_to_dev(hw), entry);
1321}
1322
1323/**
1324 * ice_flow_rem_entry_sync - Remove a flow entry
1325 * @hw: pointer to the HW struct
1326 * @blk: classification stage
1327 * @entry: flow entry to be removed
1328 */
1329static int
1330ice_flow_rem_entry_sync(struct ice_hw *hw, enum ice_block __always_unused blk,
1331			struct ice_flow_entry *entry)
1332{
1333	if (!entry)
1334		return -EINVAL;
1335
1336	list_del(&entry->l_entry);
1337
1338	ice_dealloc_flow_entry(hw, entry);
1339
1340	return 0;
1341}
1342
1343/**
1344 * ice_flow_add_prof_sync - Add a flow profile for packet segments and fields
1345 * @hw: pointer to the HW struct
1346 * @blk: classification stage
1347 * @dir: flow direction
1348 * @prof_id: unique ID to identify this flow profile
1349 * @segs: array of one or more packet segments that describe the flow
1350 * @segs_cnt: number of packet segments provided
1351 * @prof: stores the returned flow profile added
1352 *
1353 * Assumption: the caller has acquired the lock to the profile list
1354 */
1355static int
1356ice_flow_add_prof_sync(struct ice_hw *hw, enum ice_block blk,
1357		       enum ice_flow_dir dir, u64 prof_id,
1358		       struct ice_flow_seg_info *segs, u8 segs_cnt,
1359		       struct ice_flow_prof **prof)
1360{
1361	struct ice_flow_prof_params *params;
1362	int status;
1363	u8 i;
1364
1365	if (!prof)
1366		return -EINVAL;
1367
1368	params = kzalloc(sizeof(*params), GFP_KERNEL);
1369	if (!params)
1370		return -ENOMEM;
1371
1372	params->prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*params->prof),
1373				    GFP_KERNEL);
1374	if (!params->prof) {
1375		status = -ENOMEM;
1376		goto free_params;
1377	}
1378
1379	/* initialize extraction sequence to all invalid (0xff) */
1380	for (i = 0; i < ICE_MAX_FV_WORDS; i++) {
1381		params->es[i].prot_id = ICE_PROT_INVALID;
1382		params->es[i].off = ICE_FV_OFFSET_INVAL;
1383	}
1384
1385	params->blk = blk;
1386	params->prof->id = prof_id;
1387	params->prof->dir = dir;
1388	params->prof->segs_cnt = segs_cnt;
1389
1390	/* Make a copy of the segments that need to be persistent in the flow
1391	 * profile instance
1392	 */
1393	for (i = 0; i < segs_cnt; i++)
1394		memcpy(&params->prof->segs[i], &segs[i], sizeof(*segs));
1395
1396	status = ice_flow_proc_segs(hw, params);
1397	if (status) {
1398		ice_debug(hw, ICE_DBG_FLOW, "Error processing a flow's packet segments\n");
1399		goto out;
1400	}
1401
1402	/* Add a HW profile for this flow profile */
1403	status = ice_add_prof(hw, blk, prof_id, (u8 *)params->ptypes,
1404			      params->attr, params->attr_cnt, params->es,
1405			      params->mask);
1406	if (status) {
1407		ice_debug(hw, ICE_DBG_FLOW, "Error adding a HW flow profile\n");
1408		goto out;
1409	}
1410
1411	INIT_LIST_HEAD(&params->prof->entries);
1412	mutex_init(&params->prof->entries_lock);
1413	*prof = params->prof;
1414
1415out:
1416	if (status)
1417		devm_kfree(ice_hw_to_dev(hw), params->prof);
1418free_params:
1419	kfree(params);
1420
1421	return status;
1422}
1423
1424/**
1425 * ice_flow_rem_prof_sync - remove a flow profile
1426 * @hw: pointer to the hardware structure
1427 * @blk: classification stage
1428 * @prof: pointer to flow profile to remove
1429 *
1430 * Assumption: the caller has acquired the lock to the profile list
1431 */
1432static int
1433ice_flow_rem_prof_sync(struct ice_hw *hw, enum ice_block blk,
1434		       struct ice_flow_prof *prof)
1435{
1436	int status;
1437
1438	/* Remove all remaining flow entries before removing the flow profile */
1439	if (!list_empty(&prof->entries)) {
1440		struct ice_flow_entry *e, *t;
1441
1442		mutex_lock(&prof->entries_lock);
1443
1444		list_for_each_entry_safe(e, t, &prof->entries, l_entry) {
1445			status = ice_flow_rem_entry_sync(hw, blk, e);
1446			if (status)
1447				break;
1448		}
1449
1450		mutex_unlock(&prof->entries_lock);
1451	}
1452
1453	/* Remove all hardware profiles associated with this flow profile */
1454	status = ice_rem_prof(hw, blk, prof->id);
1455	if (!status) {
1456		list_del(&prof->l_entry);
1457		mutex_destroy(&prof->entries_lock);
1458		devm_kfree(ice_hw_to_dev(hw), prof);
1459	}
1460
1461	return status;
1462}
1463
1464/**
1465 * ice_flow_assoc_prof - associate a VSI with a flow profile
1466 * @hw: pointer to the hardware structure
1467 * @blk: classification stage
1468 * @prof: pointer to flow profile
1469 * @vsi_handle: software VSI handle
1470 *
1471 * Assumption: the caller has acquired the lock to the profile list
1472 * and the software VSI handle has been validated
1473 */
1474static int
1475ice_flow_assoc_prof(struct ice_hw *hw, enum ice_block blk,
1476		    struct ice_flow_prof *prof, u16 vsi_handle)
1477{
1478	int status = 0;
1479
1480	if (!test_bit(vsi_handle, prof->vsis)) {
1481		status = ice_add_prof_id_flow(hw, blk,
1482					      ice_get_hw_vsi_num(hw,
1483								 vsi_handle),
1484					      prof->id);
1485		if (!status)
1486			set_bit(vsi_handle, prof->vsis);
1487		else
1488			ice_debug(hw, ICE_DBG_FLOW, "HW profile add failed, %d\n",
1489				  status);
1490	}
1491
1492	return status;
1493}
1494
1495/**
1496 * ice_flow_disassoc_prof - disassociate a VSI from a flow profile
1497 * @hw: pointer to the hardware structure
1498 * @blk: classification stage
1499 * @prof: pointer to flow profile
1500 * @vsi_handle: software VSI handle
1501 *
1502 * Assumption: the caller has acquired the lock to the profile list
1503 * and the software VSI handle has been validated
1504 */
1505static int
1506ice_flow_disassoc_prof(struct ice_hw *hw, enum ice_block blk,
1507		       struct ice_flow_prof *prof, u16 vsi_handle)
1508{
1509	int status = 0;
1510
1511	if (test_bit(vsi_handle, prof->vsis)) {
1512		status = ice_rem_prof_id_flow(hw, blk,
1513					      ice_get_hw_vsi_num(hw,
1514								 vsi_handle),
1515					      prof->id);
1516		if (!status)
1517			clear_bit(vsi_handle, prof->vsis);
1518		else
1519			ice_debug(hw, ICE_DBG_FLOW, "HW profile remove failed, %d\n",
1520				  status);
1521	}
1522
1523	return status;
1524}
1525
1526/**
1527 * ice_flow_add_prof - Add a flow profile for packet segments and matched fields
1528 * @hw: pointer to the HW struct
1529 * @blk: classification stage
1530 * @dir: flow direction
1531 * @prof_id: unique ID to identify this flow profile
1532 * @segs: array of one or more packet segments that describe the flow
1533 * @segs_cnt: number of packet segments provided
1534 * @prof: stores the returned flow profile added
1535 */
1536int
1537ice_flow_add_prof(struct ice_hw *hw, enum ice_block blk, enum ice_flow_dir dir,
1538		  u64 prof_id, struct ice_flow_seg_info *segs, u8 segs_cnt,
1539		  struct ice_flow_prof **prof)
1540{
1541	int status;
1542
1543	if (segs_cnt > ICE_FLOW_SEG_MAX)
1544		return -ENOSPC;
1545
1546	if (!segs_cnt)
1547		return -EINVAL;
1548
1549	if (!segs)
1550		return -EINVAL;
1551
1552	status = ice_flow_val_hdrs(segs, segs_cnt);
1553	if (status)
1554		return status;
1555
1556	mutex_lock(&hw->fl_profs_locks[blk]);
1557
1558	status = ice_flow_add_prof_sync(hw, blk, dir, prof_id, segs, segs_cnt,
1559					prof);
1560	if (!status)
1561		list_add(&(*prof)->l_entry, &hw->fl_profs[blk]);
1562
1563	mutex_unlock(&hw->fl_profs_locks[blk]);
1564
1565	return status;
1566}
1567
1568/**
1569 * ice_flow_rem_prof - Remove a flow profile and all entries associated with it
1570 * @hw: pointer to the HW struct
1571 * @blk: the block for which the flow profile is to be removed
1572 * @prof_id: unique ID of the flow profile to be removed
1573 */
1574int ice_flow_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 prof_id)
1575{
1576	struct ice_flow_prof *prof;
1577	int status;
1578
1579	mutex_lock(&hw->fl_profs_locks[blk]);
1580
1581	prof = ice_flow_find_prof_id(hw, blk, prof_id);
1582	if (!prof) {
1583		status = -ENOENT;
1584		goto out;
1585	}
1586
1587	/* prof becomes invalid after the call */
1588	status = ice_flow_rem_prof_sync(hw, blk, prof);
1589
1590out:
1591	mutex_unlock(&hw->fl_profs_locks[blk]);
1592
1593	return status;
1594}
1595
1596/**
1597 * ice_flow_add_entry - Add a flow entry
1598 * @hw: pointer to the HW struct
1599 * @blk: classification stage
1600 * @prof_id: ID of the profile to add a new flow entry to
1601 * @entry_id: unique ID to identify this flow entry
1602 * @vsi_handle: software VSI handle for the flow entry
1603 * @prio: priority of the flow entry
1604 * @data: pointer to a data buffer containing flow entry's match values/masks
1605 * @entry_h: pointer to buffer that receives the new flow entry's handle
1606 */
1607int
1608ice_flow_add_entry(struct ice_hw *hw, enum ice_block blk, u64 prof_id,
1609		   u64 entry_id, u16 vsi_handle, enum ice_flow_priority prio,
1610		   void *data, u64 *entry_h)
1611{
1612	struct ice_flow_entry *e = NULL;
1613	struct ice_flow_prof *prof;
1614	int status;
1615
1616	/* No flow entry data is expected for RSS */
1617	if (!entry_h || (!data && blk != ICE_BLK_RSS))
1618		return -EINVAL;
1619
1620	if (!ice_is_vsi_valid(hw, vsi_handle))
1621		return -EINVAL;
1622
1623	mutex_lock(&hw->fl_profs_locks[blk]);
1624
1625	prof = ice_flow_find_prof_id(hw, blk, prof_id);
1626	if (!prof) {
1627		status = -ENOENT;
1628	} else {
1629		/* Allocate memory for the entry being added and associate
1630		 * the VSI to the found flow profile
1631		 */
1632		e = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*e), GFP_KERNEL);
1633		if (!e)
1634			status = -ENOMEM;
1635		else
1636			status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
1637	}
1638
1639	mutex_unlock(&hw->fl_profs_locks[blk]);
1640	if (status)
1641		goto out;
1642
1643	e->id = entry_id;
1644	e->vsi_handle = vsi_handle;
1645	e->prof = prof;
1646	e->priority = prio;
1647
1648	switch (blk) {
1649	case ICE_BLK_FD:
1650	case ICE_BLK_RSS:
1651		break;
1652	default:
1653		status = -EOPNOTSUPP;
1654		goto out;
1655	}
1656
1657	mutex_lock(&prof->entries_lock);
1658	list_add(&e->l_entry, &prof->entries);
1659	mutex_unlock(&prof->entries_lock);
1660
1661	*entry_h = ICE_FLOW_ENTRY_HNDL(e);
1662
1663out:
1664	if (status && e) {
1665		if (e->entry)
1666			devm_kfree(ice_hw_to_dev(hw), e->entry);
1667		devm_kfree(ice_hw_to_dev(hw), e);
1668	}
1669
1670	return status;
1671}
1672
1673/**
1674 * ice_flow_rem_entry - Remove a flow entry
1675 * @hw: pointer to the HW struct
1676 * @blk: classification stage
1677 * @entry_h: handle to the flow entry to be removed
1678 */
1679int ice_flow_rem_entry(struct ice_hw *hw, enum ice_block blk, u64 entry_h)
1680{
1681	struct ice_flow_entry *entry;
1682	struct ice_flow_prof *prof;
1683	int status = 0;
1684
1685	if (entry_h == ICE_FLOW_ENTRY_HANDLE_INVAL)
1686		return -EINVAL;
1687
1688	entry = ICE_FLOW_ENTRY_PTR(entry_h);
1689
1690	/* Retain the pointer to the flow profile as the entry will be freed */
1691	prof = entry->prof;
1692
1693	if (prof) {
1694		mutex_lock(&prof->entries_lock);
1695		status = ice_flow_rem_entry_sync(hw, blk, entry);
1696		mutex_unlock(&prof->entries_lock);
1697	}
1698
1699	return status;
1700}
1701
1702/**
1703 * ice_flow_set_fld_ext - specifies locations of field from entry's input buffer
1704 * @seg: packet segment the field being set belongs to
1705 * @fld: field to be set
1706 * @field_type: type of the field
1707 * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
1708 *           entry's input buffer
1709 * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
1710 *            input buffer
1711 * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
1712 *            entry's input buffer
1713 *
1714 * This helper function stores information of a field being matched, including
1715 * the type of the field and the locations of the value to match, the mask, and
1716 * the upper-bound value in the start of the input buffer for a flow entry.
1717 * This function should only be used for fixed-size data structures.
1718 *
1719 * This function also opportunistically determines the protocol headers to be
1720 * present based on the fields being set. Some fields cannot be used alone to
1721 * determine the protocol headers present. Sometimes, fields for particular
1722 * protocol headers are not matched. In those cases, the protocol headers
1723 * must be explicitly set.
1724 */
1725static void
1726ice_flow_set_fld_ext(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
1727		     enum ice_flow_fld_match_type field_type, u16 val_loc,
1728		     u16 mask_loc, u16 last_loc)
1729{
1730	u64 bit = BIT_ULL(fld);
1731
1732	seg->match |= bit;
1733	if (field_type == ICE_FLOW_FLD_TYPE_RANGE)
1734		seg->range |= bit;
1735
1736	seg->fields[fld].type = field_type;
1737	seg->fields[fld].src.val = val_loc;
1738	seg->fields[fld].src.mask = mask_loc;
1739	seg->fields[fld].src.last = last_loc;
1740
1741	ICE_FLOW_SET_HDRS(seg, ice_flds_info[fld].hdr);
1742}
1743
1744/**
1745 * ice_flow_set_fld - specifies locations of field from entry's input buffer
1746 * @seg: packet segment the field being set belongs to
1747 * @fld: field to be set
1748 * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
1749 *           entry's input buffer
1750 * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
1751 *            input buffer
1752 * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
1753 *            entry's input buffer
1754 * @range: indicate if field being matched is to be in a range
1755 *
1756 * This function specifies the locations, in the form of byte offsets from the
1757 * start of the input buffer for a flow entry, from where the value to match,
1758 * the mask value, and upper value can be extracted. These locations are then
1759 * stored in the flow profile. When adding a flow entry associated with the
1760 * flow profile, these locations will be used to quickly extract the values and
1761 * create the content of a match entry. This function should only be used for
1762 * fixed-size data structures.
1763 */
1764void
1765ice_flow_set_fld(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
1766		 u16 val_loc, u16 mask_loc, u16 last_loc, bool range)
1767{
1768	enum ice_flow_fld_match_type t = range ?
1769		ICE_FLOW_FLD_TYPE_RANGE : ICE_FLOW_FLD_TYPE_REG;
1770
1771	ice_flow_set_fld_ext(seg, fld, t, val_loc, mask_loc, last_loc);
1772}
1773
1774/**
1775 * ice_flow_add_fld_raw - sets locations of a raw field from entry's input buf
1776 * @seg: packet segment the field being set belongs to
1777 * @off: offset of the raw field from the beginning of the segment in bytes
1778 * @len: length of the raw pattern to be matched
1779 * @val_loc: location of the value to match from entry's input buffer
1780 * @mask_loc: location of mask value from entry's input buffer
1781 *
1782 * This function specifies the offset of the raw field to be match from the
1783 * beginning of the specified packet segment, and the locations, in the form of
1784 * byte offsets from the start of the input buffer for a flow entry, from where
1785 * the value to match and the mask value to be extracted. These locations are
1786 * then stored in the flow profile. When adding flow entries to the associated
1787 * flow profile, these locations can be used to quickly extract the values to
1788 * create the content of a match entry. This function should only be used for
1789 * fixed-size data structures.
1790 */
1791void
1792ice_flow_add_fld_raw(struct ice_flow_seg_info *seg, u16 off, u8 len,
1793		     u16 val_loc, u16 mask_loc)
1794{
1795	if (seg->raws_cnt < ICE_FLOW_SEG_RAW_FLD_MAX) {
1796		seg->raws[seg->raws_cnt].off = off;
1797		seg->raws[seg->raws_cnt].info.type = ICE_FLOW_FLD_TYPE_SIZE;
1798		seg->raws[seg->raws_cnt].info.src.val = val_loc;
1799		seg->raws[seg->raws_cnt].info.src.mask = mask_loc;
1800		/* The "last" field is used to store the length of the field */
1801		seg->raws[seg->raws_cnt].info.src.last = len;
1802	}
1803
1804	/* Overflows of "raws" will be handled as an error condition later in
1805	 * the flow when this information is processed.
1806	 */
1807	seg->raws_cnt++;
1808}
1809
1810/**
1811 * ice_flow_rem_vsi_prof - remove VSI from flow profile
1812 * @hw: pointer to the hardware structure
1813 * @vsi_handle: software VSI handle
1814 * @prof_id: unique ID to identify this flow profile
1815 *
1816 * This function removes the flow entries associated to the input
1817 * VSI handle and disassociate the VSI from the flow profile.
1818 */
1819int ice_flow_rem_vsi_prof(struct ice_hw *hw, u16 vsi_handle, u64 prof_id)
1820{
1821	struct ice_flow_prof *prof;
1822	int status = 0;
1823
1824	if (!ice_is_vsi_valid(hw, vsi_handle))
1825		return -EINVAL;
1826
1827	/* find flow profile pointer with input package block and profile ID */
1828	prof = ice_flow_find_prof_id(hw, ICE_BLK_FD, prof_id);
1829	if (!prof) {
1830		ice_debug(hw, ICE_DBG_PKG, "Cannot find flow profile id=%llu\n",
1831			  prof_id);
1832		return -ENOENT;
1833	}
1834
1835	/* Remove all remaining flow entries before removing the flow profile */
1836	if (!list_empty(&prof->entries)) {
1837		struct ice_flow_entry *e, *t;
1838
1839		mutex_lock(&prof->entries_lock);
1840		list_for_each_entry_safe(e, t, &prof->entries, l_entry) {
1841			if (e->vsi_handle != vsi_handle)
1842				continue;
1843
1844			status = ice_flow_rem_entry_sync(hw, ICE_BLK_FD, e);
1845			if (status)
1846				break;
1847		}
1848		mutex_unlock(&prof->entries_lock);
1849	}
1850	if (status)
1851		return status;
1852
1853	/* disassociate the flow profile from sw VSI handle */
1854	status = ice_flow_disassoc_prof(hw, ICE_BLK_FD, prof, vsi_handle);
1855	if (status)
1856		ice_debug(hw, ICE_DBG_PKG, "ice_flow_disassoc_prof() failed with status=%d\n",
1857			  status);
1858	return status;
1859}
1860
1861#define ICE_FLOW_RSS_SEG_HDR_L2_MASKS \
1862	(ICE_FLOW_SEG_HDR_ETH | ICE_FLOW_SEG_HDR_VLAN)
1863
1864#define ICE_FLOW_RSS_SEG_HDR_L3_MASKS \
1865	(ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6)
1866
1867#define ICE_FLOW_RSS_SEG_HDR_L4_MASKS \
1868	(ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP)
1869
1870#define ICE_FLOW_RSS_SEG_HDR_VAL_MASKS \
1871	(ICE_FLOW_RSS_SEG_HDR_L2_MASKS | \
1872	 ICE_FLOW_RSS_SEG_HDR_L3_MASKS | \
1873	 ICE_FLOW_RSS_SEG_HDR_L4_MASKS)
1874
1875/**
1876 * ice_flow_set_rss_seg_info - setup packet segments for RSS
1877 * @segs: pointer to the flow field segment(s)
1878 * @hash_fields: fields to be hashed on for the segment(s)
1879 * @flow_hdr: protocol header fields within a packet segment
1880 *
1881 * Helper function to extract fields from hash bitmap and use flow
1882 * header value to set flow field segment for further use in flow
1883 * profile entry or removal.
1884 */
1885static int
1886ice_flow_set_rss_seg_info(struct ice_flow_seg_info *segs, u64 hash_fields,
1887			  u32 flow_hdr)
1888{
1889	u64 val;
1890	u8 i;
1891
1892	for_each_set_bit(i, (unsigned long *)&hash_fields,
1893			 ICE_FLOW_FIELD_IDX_MAX)
1894		ice_flow_set_fld(segs, (enum ice_flow_field)i,
1895				 ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL,
1896				 ICE_FLOW_FLD_OFF_INVAL, false);
1897
1898	ICE_FLOW_SET_HDRS(segs, flow_hdr);
1899
1900	if (segs->hdrs & ~ICE_FLOW_RSS_SEG_HDR_VAL_MASKS &
1901	    ~ICE_FLOW_RSS_HDRS_INNER_MASK & ~ICE_FLOW_SEG_HDR_IPV_OTHER)
1902		return -EINVAL;
1903
1904	val = (u64)(segs->hdrs & ICE_FLOW_RSS_SEG_HDR_L3_MASKS);
1905	if (val && !is_power_of_2(val))
1906		return -EIO;
1907
1908	val = (u64)(segs->hdrs & ICE_FLOW_RSS_SEG_HDR_L4_MASKS);
1909	if (val && !is_power_of_2(val))
1910		return -EIO;
1911
1912	return 0;
1913}
1914
1915/**
1916 * ice_rem_vsi_rss_list - remove VSI from RSS list
1917 * @hw: pointer to the hardware structure
1918 * @vsi_handle: software VSI handle
1919 *
1920 * Remove the VSI from all RSS configurations in the list.
1921 */
1922void ice_rem_vsi_rss_list(struct ice_hw *hw, u16 vsi_handle)
1923{
1924	struct ice_rss_cfg *r, *tmp;
1925
1926	if (list_empty(&hw->rss_list_head))
1927		return;
1928
1929	mutex_lock(&hw->rss_locks);
1930	list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry)
1931		if (test_and_clear_bit(vsi_handle, r->vsis))
1932			if (bitmap_empty(r->vsis, ICE_MAX_VSI)) {
1933				list_del(&r->l_entry);
1934				devm_kfree(ice_hw_to_dev(hw), r);
1935			}
1936	mutex_unlock(&hw->rss_locks);
1937}
1938
1939/**
1940 * ice_rem_vsi_rss_cfg - remove RSS configurations associated with VSI
1941 * @hw: pointer to the hardware structure
1942 * @vsi_handle: software VSI handle
1943 *
1944 * This function will iterate through all flow profiles and disassociate
1945 * the VSI from that profile. If the flow profile has no VSIs it will
1946 * be removed.
1947 */
1948int ice_rem_vsi_rss_cfg(struct ice_hw *hw, u16 vsi_handle)
1949{
1950	const enum ice_block blk = ICE_BLK_RSS;
1951	struct ice_flow_prof *p, *t;
1952	int status = 0;
1953
1954	if (!ice_is_vsi_valid(hw, vsi_handle))
1955		return -EINVAL;
1956
1957	if (list_empty(&hw->fl_profs[blk]))
1958		return 0;
1959
1960	mutex_lock(&hw->rss_locks);
1961	list_for_each_entry_safe(p, t, &hw->fl_profs[blk], l_entry)
1962		if (test_bit(vsi_handle, p->vsis)) {
1963			status = ice_flow_disassoc_prof(hw, blk, p, vsi_handle);
1964			if (status)
1965				break;
1966
1967			if (bitmap_empty(p->vsis, ICE_MAX_VSI)) {
1968				status = ice_flow_rem_prof(hw, blk, p->id);
1969				if (status)
1970					break;
1971			}
1972		}
1973	mutex_unlock(&hw->rss_locks);
1974
1975	return status;
1976}
1977
1978/**
1979 * ice_rem_rss_list - remove RSS configuration from list
1980 * @hw: pointer to the hardware structure
1981 * @vsi_handle: software VSI handle
1982 * @prof: pointer to flow profile
1983 *
1984 * Assumption: lock has already been acquired for RSS list
1985 */
1986static void
1987ice_rem_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof)
1988{
1989	struct ice_rss_cfg *r, *tmp;
1990
1991	/* Search for RSS hash fields associated to the VSI that match the
1992	 * hash configurations associated to the flow profile. If found
1993	 * remove from the RSS entry list of the VSI context and delete entry.
1994	 */
1995	list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry)
1996		if (r->hashed_flds == prof->segs[prof->segs_cnt - 1].match &&
1997		    r->packet_hdr == prof->segs[prof->segs_cnt - 1].hdrs) {
1998			clear_bit(vsi_handle, r->vsis);
1999			if (bitmap_empty(r->vsis, ICE_MAX_VSI)) {
2000				list_del(&r->l_entry);
2001				devm_kfree(ice_hw_to_dev(hw), r);
2002			}
2003			return;
2004		}
2005}
2006
2007/**
2008 * ice_add_rss_list - add RSS configuration to list
2009 * @hw: pointer to the hardware structure
2010 * @vsi_handle: software VSI handle
2011 * @prof: pointer to flow profile
2012 *
2013 * Assumption: lock has already been acquired for RSS list
2014 */
2015static int
2016ice_add_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof)
2017{
2018	struct ice_rss_cfg *r, *rss_cfg;
2019
2020	list_for_each_entry(r, &hw->rss_list_head, l_entry)
2021		if (r->hashed_flds == prof->segs[prof->segs_cnt - 1].match &&
2022		    r->packet_hdr == prof->segs[prof->segs_cnt - 1].hdrs) {
2023			set_bit(vsi_handle, r->vsis);
2024			return 0;
2025		}
2026
2027	rss_cfg = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rss_cfg),
2028			       GFP_KERNEL);
2029	if (!rss_cfg)
2030		return -ENOMEM;
2031
2032	rss_cfg->hashed_flds = prof->segs[prof->segs_cnt - 1].match;
2033	rss_cfg->packet_hdr = prof->segs[prof->segs_cnt - 1].hdrs;
2034	set_bit(vsi_handle, rss_cfg->vsis);
2035
2036	list_add_tail(&rss_cfg->l_entry, &hw->rss_list_head);
2037
2038	return 0;
2039}
2040
2041#define ICE_FLOW_PROF_HASH_S	0
2042#define ICE_FLOW_PROF_HASH_M	(0xFFFFFFFFULL << ICE_FLOW_PROF_HASH_S)
2043#define ICE_FLOW_PROF_HDR_S	32
2044#define ICE_FLOW_PROF_HDR_M	(0x3FFFFFFFULL << ICE_FLOW_PROF_HDR_S)
2045#define ICE_FLOW_PROF_ENCAP_S	63
2046#define ICE_FLOW_PROF_ENCAP_M	(BIT_ULL(ICE_FLOW_PROF_ENCAP_S))
2047
2048#define ICE_RSS_OUTER_HEADERS	1
2049#define ICE_RSS_INNER_HEADERS	2
2050
2051/* Flow profile ID format:
2052 * [0:31] - Packet match fields
2053 * [32:62] - Protocol header
2054 * [63] - Encapsulation flag, 0 if non-tunneled, 1 if tunneled
2055 */
2056#define ICE_FLOW_GEN_PROFID(hash, hdr, segs_cnt) \
2057	((u64)(((u64)(hash) & ICE_FLOW_PROF_HASH_M) | \
2058	       (((u64)(hdr) << ICE_FLOW_PROF_HDR_S) & ICE_FLOW_PROF_HDR_M) | \
2059	       ((u8)((segs_cnt) - 1) ? ICE_FLOW_PROF_ENCAP_M : 0)))
2060
2061/**
2062 * ice_add_rss_cfg_sync - add an RSS configuration
2063 * @hw: pointer to the hardware structure
2064 * @vsi_handle: software VSI handle
2065 * @hashed_flds: hash bit fields (ICE_FLOW_HASH_*) to configure
2066 * @addl_hdrs: protocol header fields
2067 * @segs_cnt: packet segment count
2068 *
2069 * Assumption: lock has already been acquired for RSS list
2070 */
2071static int
2072ice_add_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
2073		     u32 addl_hdrs, u8 segs_cnt)
2074{
2075	const enum ice_block blk = ICE_BLK_RSS;
2076	struct ice_flow_prof *prof = NULL;
2077	struct ice_flow_seg_info *segs;
2078	int status;
2079
2080	if (!segs_cnt || segs_cnt > ICE_FLOW_SEG_MAX)
2081		return -EINVAL;
2082
2083	segs = kcalloc(segs_cnt, sizeof(*segs), GFP_KERNEL);
2084	if (!segs)
2085		return -ENOMEM;
2086
2087	/* Construct the packet segment info from the hashed fields */
2088	status = ice_flow_set_rss_seg_info(&segs[segs_cnt - 1], hashed_flds,
2089					   addl_hdrs);
2090	if (status)
2091		goto exit;
2092
2093	/* Search for a flow profile that has matching headers, hash fields
2094	 * and has the input VSI associated to it. If found, no further
2095	 * operations required and exit.
2096	 */
2097	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2098					vsi_handle,
2099					ICE_FLOW_FIND_PROF_CHK_FLDS |
2100					ICE_FLOW_FIND_PROF_CHK_VSI);
2101	if (prof)
2102		goto exit;
2103
2104	/* Check if a flow profile exists with the same protocol headers and
2105	 * associated with the input VSI. If so disassociate the VSI from
2106	 * this profile. The VSI will be added to a new profile created with
2107	 * the protocol header and new hash field configuration.
2108	 */
2109	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2110					vsi_handle, ICE_FLOW_FIND_PROF_CHK_VSI);
2111	if (prof) {
2112		status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle);
2113		if (!status)
2114			ice_rem_rss_list(hw, vsi_handle, prof);
2115		else
2116			goto exit;
2117
2118		/* Remove profile if it has no VSIs associated */
2119		if (bitmap_empty(prof->vsis, ICE_MAX_VSI)) {
2120			status = ice_flow_rem_prof(hw, blk, prof->id);
2121			if (status)
2122				goto exit;
2123		}
2124	}
2125
2126	/* Search for a profile that has same match fields only. If this
2127	 * exists then associate the VSI to this profile.
2128	 */
2129	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2130					vsi_handle,
2131					ICE_FLOW_FIND_PROF_CHK_FLDS);
2132	if (prof) {
2133		status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
2134		if (!status)
2135			status = ice_add_rss_list(hw, vsi_handle, prof);
2136		goto exit;
2137	}
2138
2139	/* Create a new flow profile with generated profile and packet
2140	 * segment information.
2141	 */
2142	status = ice_flow_add_prof(hw, blk, ICE_FLOW_RX,
2143				   ICE_FLOW_GEN_PROFID(hashed_flds,
2144						       segs[segs_cnt - 1].hdrs,
2145						       segs_cnt),
2146				   segs, segs_cnt, &prof);
2147	if (status)
2148		goto exit;
2149
2150	status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
2151	/* If association to a new flow profile failed then this profile can
2152	 * be removed.
2153	 */
2154	if (status) {
2155		ice_flow_rem_prof(hw, blk, prof->id);
2156		goto exit;
2157	}
2158
2159	status = ice_add_rss_list(hw, vsi_handle, prof);
2160
2161exit:
2162	kfree(segs);
2163	return status;
2164}
2165
2166/**
2167 * ice_add_rss_cfg - add an RSS configuration with specified hashed fields
2168 * @hw: pointer to the hardware structure
2169 * @vsi_handle: software VSI handle
2170 * @hashed_flds: hash bit fields (ICE_FLOW_HASH_*) to configure
2171 * @addl_hdrs: protocol header fields
2172 *
2173 * This function will generate a flow profile based on fields associated with
2174 * the input fields to hash on, the flow type and use the VSI number to add
2175 * a flow entry to the profile.
2176 */
2177int
2178ice_add_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
2179		u32 addl_hdrs)
2180{
2181	int status;
2182
2183	if (hashed_flds == ICE_HASH_INVALID ||
2184	    !ice_is_vsi_valid(hw, vsi_handle))
2185		return -EINVAL;
2186
2187	mutex_lock(&hw->rss_locks);
2188	status = ice_add_rss_cfg_sync(hw, vsi_handle, hashed_flds, addl_hdrs,
2189				      ICE_RSS_OUTER_HEADERS);
2190	if (!status)
2191		status = ice_add_rss_cfg_sync(hw, vsi_handle, hashed_flds,
2192					      addl_hdrs, ICE_RSS_INNER_HEADERS);
2193	mutex_unlock(&hw->rss_locks);
2194
2195	return status;
2196}
2197
2198/**
2199 * ice_rem_rss_cfg_sync - remove an existing RSS configuration
2200 * @hw: pointer to the hardware structure
2201 * @vsi_handle: software VSI handle
2202 * @hashed_flds: Packet hash types (ICE_FLOW_HASH_*) to remove
2203 * @addl_hdrs: Protocol header fields within a packet segment
2204 * @segs_cnt: packet segment count
2205 *
2206 * Assumption: lock has already been acquired for RSS list
2207 */
2208static int
2209ice_rem_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
2210		     u32 addl_hdrs, u8 segs_cnt)
2211{
2212	const enum ice_block blk = ICE_BLK_RSS;
2213	struct ice_flow_seg_info *segs;
2214	struct ice_flow_prof *prof;
2215	int status;
2216
2217	segs = kcalloc(segs_cnt, sizeof(*segs), GFP_KERNEL);
2218	if (!segs)
2219		return -ENOMEM;
2220
2221	/* Construct the packet segment info from the hashed fields */
2222	status = ice_flow_set_rss_seg_info(&segs[segs_cnt - 1], hashed_flds,
2223					   addl_hdrs);
2224	if (status)
2225		goto out;
2226
2227	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2228					vsi_handle,
2229					ICE_FLOW_FIND_PROF_CHK_FLDS);
2230	if (!prof) {
2231		status = -ENOENT;
2232		goto out;
2233	}
2234
2235	status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle);
2236	if (status)
2237		goto out;
2238
2239	/* Remove RSS configuration from VSI context before deleting
2240	 * the flow profile.
2241	 */
2242	ice_rem_rss_list(hw, vsi_handle, prof);
2243
2244	if (bitmap_empty(prof->vsis, ICE_MAX_VSI))
2245		status = ice_flow_rem_prof(hw, blk, prof->id);
2246
2247out:
2248	kfree(segs);
2249	return status;
2250}
2251
2252/**
2253 * ice_rem_rss_cfg - remove an existing RSS config with matching hashed fields
2254 * @hw: pointer to the hardware structure
2255 * @vsi_handle: software VSI handle
2256 * @hashed_flds: Packet hash types (ICE_FLOW_HASH_*) to remove
2257 * @addl_hdrs: Protocol header fields within a packet segment
2258 *
2259 * This function will lookup the flow profile based on the input
2260 * hash field bitmap, iterate through the profile entry list of
2261 * that profile and find entry associated with input VSI to be
2262 * removed. Calls are made to underlying flow s which will APIs
2263 * turn build or update buffers for RSS XLT1 section.
2264 */
2265int __maybe_unused
2266ice_rem_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
2267		u32 addl_hdrs)
2268{
2269	int status;
2270
2271	if (hashed_flds == ICE_HASH_INVALID ||
2272	    !ice_is_vsi_valid(hw, vsi_handle))
2273		return -EINVAL;
2274
2275	mutex_lock(&hw->rss_locks);
2276	status = ice_rem_rss_cfg_sync(hw, vsi_handle, hashed_flds, addl_hdrs,
2277				      ICE_RSS_OUTER_HEADERS);
2278	if (!status)
2279		status = ice_rem_rss_cfg_sync(hw, vsi_handle, hashed_flds,
2280					      addl_hdrs, ICE_RSS_INNER_HEADERS);
2281	mutex_unlock(&hw->rss_locks);
2282
2283	return status;
2284}
2285
2286/* Mapping of AVF hash bit fields to an L3-L4 hash combination.
2287 * As the ice_flow_avf_hdr_field represent individual bit shifts in a hash,
2288 * convert its values to their appropriate flow L3, L4 values.
2289 */
2290#define ICE_FLOW_AVF_RSS_IPV4_MASKS \
2291	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_OTHER) | \
2292	 BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV4))
2293#define ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS \
2294	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP_SYN_NO_ACK) | \
2295	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP))
2296#define ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS \
2297	(BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV4_UDP) | \
2298	 BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV4_UDP) | \
2299	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_UDP))
2300#define ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS \
2301	(ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS | \
2302	 ICE_FLOW_AVF_RSS_IPV4_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP))
2303
2304#define ICE_FLOW_AVF_RSS_IPV6_MASKS \
2305	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_OTHER) | \
2306	 BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV6))
2307#define ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS \
2308	(BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV6_UDP) | \
2309	 BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV6_UDP) | \
2310	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_UDP))
2311#define ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS \
2312	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP_SYN_NO_ACK) | \
2313	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP))
2314#define ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS \
2315	(ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS | \
2316	 ICE_FLOW_AVF_RSS_IPV6_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP))
2317
2318/**
2319 * ice_add_avf_rss_cfg - add an RSS configuration for AVF driver
2320 * @hw: pointer to the hardware structure
2321 * @vsi_handle: software VSI handle
2322 * @avf_hash: hash bit fields (ICE_AVF_FLOW_FIELD_*) to configure
2323 *
2324 * This function will take the hash bitmap provided by the AVF driver via a
2325 * message, convert it to ICE-compatible values, and configure RSS flow
2326 * profiles.
2327 */
2328int ice_add_avf_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 avf_hash)
2329{
2330	int status = 0;
2331	u64 hash_flds;
2332
2333	if (avf_hash == ICE_AVF_FLOW_FIELD_INVALID ||
2334	    !ice_is_vsi_valid(hw, vsi_handle))
2335		return -EINVAL;
2336
2337	/* Make sure no unsupported bits are specified */
2338	if (avf_hash & ~(ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS |
2339			 ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS))
2340		return -EIO;
2341
2342	hash_flds = avf_hash;
2343
2344	/* Always create an L3 RSS configuration for any L4 RSS configuration */
2345	if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS)
2346		hash_flds |= ICE_FLOW_AVF_RSS_IPV4_MASKS;
2347
2348	if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS)
2349		hash_flds |= ICE_FLOW_AVF_RSS_IPV6_MASKS;
2350
2351	/* Create the corresponding RSS configuration for each valid hash bit */
2352	while (hash_flds) {
2353		u64 rss_hash = ICE_HASH_INVALID;
2354
2355		if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS) {
2356			if (hash_flds & ICE_FLOW_AVF_RSS_IPV4_MASKS) {
2357				rss_hash = ICE_FLOW_HASH_IPV4;
2358				hash_flds &= ~ICE_FLOW_AVF_RSS_IPV4_MASKS;
2359			} else if (hash_flds &
2360				   ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS) {
2361				rss_hash = ICE_FLOW_HASH_IPV4 |
2362					ICE_FLOW_HASH_TCP_PORT;
2363				hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS;
2364			} else if (hash_flds &
2365				   ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS) {
2366				rss_hash = ICE_FLOW_HASH_IPV4 |
2367					ICE_FLOW_HASH_UDP_PORT;
2368				hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS;
2369			} else if (hash_flds &
2370				   BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP)) {
2371				rss_hash = ICE_FLOW_HASH_IPV4 |
2372					ICE_FLOW_HASH_SCTP_PORT;
2373				hash_flds &=
2374					~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP);
2375			}
2376		} else if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS) {
2377			if (hash_flds & ICE_FLOW_AVF_RSS_IPV6_MASKS) {
2378				rss_hash = ICE_FLOW_HASH_IPV6;
2379				hash_flds &= ~ICE_FLOW_AVF_RSS_IPV6_MASKS;
2380			} else if (hash_flds &
2381				   ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS) {
2382				rss_hash = ICE_FLOW_HASH_IPV6 |
2383					ICE_FLOW_HASH_TCP_PORT;
2384				hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS;
2385			} else if (hash_flds &
2386				   ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS) {
2387				rss_hash = ICE_FLOW_HASH_IPV6 |
2388					ICE_FLOW_HASH_UDP_PORT;
2389				hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS;
2390			} else if (hash_flds &
2391				   BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP)) {
2392				rss_hash = ICE_FLOW_HASH_IPV6 |
2393					ICE_FLOW_HASH_SCTP_PORT;
2394				hash_flds &=
2395					~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP);
2396			}
2397		}
2398
2399		if (rss_hash == ICE_HASH_INVALID)
2400			return -EIO;
2401
2402		status = ice_add_rss_cfg(hw, vsi_handle, rss_hash,
2403					 ICE_FLOW_SEG_HDR_NONE);
2404		if (status)
2405			break;
2406	}
2407
2408	return status;
2409}
2410
2411/**
2412 * ice_replay_rss_cfg - replay RSS configurations associated with VSI
2413 * @hw: pointer to the hardware structure
2414 * @vsi_handle: software VSI handle
2415 */
2416int ice_replay_rss_cfg(struct ice_hw *hw, u16 vsi_handle)
2417{
2418	struct ice_rss_cfg *r;
2419	int status = 0;
2420
2421	if (!ice_is_vsi_valid(hw, vsi_handle))
2422		return -EINVAL;
2423
2424	mutex_lock(&hw->rss_locks);
2425	list_for_each_entry(r, &hw->rss_list_head, l_entry) {
2426		if (test_bit(vsi_handle, r->vsis)) {
2427			status = ice_add_rss_cfg_sync(hw, vsi_handle,
2428						      r->hashed_flds,
2429						      r->packet_hdr,
2430						      ICE_RSS_OUTER_HEADERS);
2431			if (status)
2432				break;
2433			status = ice_add_rss_cfg_sync(hw, vsi_handle,
2434						      r->hashed_flds,
2435						      r->packet_hdr,
2436						      ICE_RSS_INNER_HEADERS);
2437			if (status)
2438				break;
2439		}
2440	}
2441	mutex_unlock(&hw->rss_locks);
2442
2443	return status;
2444}
2445
2446/**
2447 * ice_get_rss_cfg - returns hashed fields for the given header types
2448 * @hw: pointer to the hardware structure
2449 * @vsi_handle: software VSI handle
2450 * @hdrs: protocol header type
2451 *
2452 * This function will return the match fields of the first instance of flow
2453 * profile having the given header types and containing input VSI
2454 */
2455u64 ice_get_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u32 hdrs)
2456{
2457	u64 rss_hash = ICE_HASH_INVALID;
2458	struct ice_rss_cfg *r;
2459
2460	/* verify if the protocol header is non zero and VSI is valid */
2461	if (hdrs == ICE_FLOW_SEG_HDR_NONE || !ice_is_vsi_valid(hw, vsi_handle))
2462		return ICE_HASH_INVALID;
2463
2464	mutex_lock(&hw->rss_locks);
2465	list_for_each_entry(r, &hw->rss_list_head, l_entry)
2466		if (test_bit(vsi_handle, r->vsis) &&
2467		    r->packet_hdr == hdrs) {
2468			rss_hash = r->hashed_flds;
2469			break;
2470		}
2471	mutex_unlock(&hw->rss_locks);
2472
2473	return rss_hash;
2474}