Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.2.
   1/*
   2 * Support for IDE interfaces on PowerMacs.
   3 *
   4 * These IDE interfaces are memory-mapped and have a DBDMA channel
   5 * for doing DMA.
   6 *
   7 *  Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
   8 *  Copyright (C) 2007-2008 Bartlomiej Zolnierkiewicz
   9 *
  10 *  This program is free software; you can redistribute it and/or
  11 *  modify it under the terms of the GNU General Public License
  12 *  as published by the Free Software Foundation; either version
  13 *  2 of the License, or (at your option) any later version.
  14 *
  15 * Some code taken from drivers/ide/ide-dma.c:
  16 *
  17 *  Copyright (c) 1995-1998  Mark Lord
  18 *
  19 * TODO: - Use pre-calculated (kauai) timing tables all the time and
  20 * get rid of the "rounded" tables used previously, so we have the
  21 * same table format for all controllers and can then just have one
  22 * big table
  23 * 
  24 */
  25#include <linux/types.h>
  26#include <linux/kernel.h>
  27#include <linux/init.h>
  28#include <linux/delay.h>
  29#include <linux/ide.h>
  30#include <linux/notifier.h>
  31#include <linux/reboot.h>
  32#include <linux/pci.h>
  33#include <linux/adb.h>
  34#include <linux/pmu.h>
  35#include <linux/scatterlist.h>
  36#include <linux/slab.h>
  37
  38#include <asm/prom.h>
  39#include <asm/io.h>
  40#include <asm/dbdma.h>
  41#include <asm/ide.h>
  42#include <asm/pci-bridge.h>
  43#include <asm/machdep.h>
  44#include <asm/pmac_feature.h>
  45#include <asm/sections.h>
  46#include <asm/irq.h>
  47#include <asm/mediabay.h>
  48
  49#define DRV_NAME "ide-pmac"
  50
  51#undef IDE_PMAC_DEBUG
  52
  53#define DMA_WAIT_TIMEOUT	50
  54
  55typedef struct pmac_ide_hwif {
  56	unsigned long			regbase;
  57	int				irq;
  58	int				kind;
  59	int				aapl_bus_id;
  60	unsigned			broken_dma : 1;
  61	unsigned			broken_dma_warn : 1;
  62	struct device_node*		node;
  63	struct macio_dev		*mdev;
  64	u32				timings[4];
  65	volatile u32 __iomem *		*kauai_fcr;
  66	ide_hwif_t			*hwif;
  67
  68	/* Those fields are duplicating what is in hwif. We currently
  69	 * can't use the hwif ones because of some assumptions that are
  70	 * beeing done by the generic code about the kind of dma controller
  71	 * and format of the dma table. This will have to be fixed though.
  72	 */
  73	volatile struct dbdma_regs __iomem *	dma_regs;
  74	struct dbdma_cmd*		dma_table_cpu;
  75} pmac_ide_hwif_t;
  76
  77enum {
  78	controller_ohare,	/* OHare based */
  79	controller_heathrow,	/* Heathrow/Paddington */
  80	controller_kl_ata3,	/* KeyLargo ATA-3 */
  81	controller_kl_ata4,	/* KeyLargo ATA-4 */
  82	controller_un_ata6,	/* UniNorth2 ATA-6 */
  83	controller_k2_ata6,	/* K2 ATA-6 */
  84	controller_sh_ata6,	/* Shasta ATA-6 */
  85};
  86
  87static const char* model_name[] = {
  88	"OHare ATA",		/* OHare based */
  89	"Heathrow ATA",		/* Heathrow/Paddington */
  90	"KeyLargo ATA-3",	/* KeyLargo ATA-3 (MDMA only) */
  91	"KeyLargo ATA-4",	/* KeyLargo ATA-4 (UDMA/66) */
  92	"UniNorth ATA-6",	/* UniNorth2 ATA-6 (UDMA/100) */
  93	"K2 ATA-6",		/* K2 ATA-6 (UDMA/100) */
  94	"Shasta ATA-6",		/* Shasta ATA-6 (UDMA/133) */
  95};
  96
  97/*
  98 * Extra registers, both 32-bit little-endian
  99 */
 100#define IDE_TIMING_CONFIG	0x200
 101#define IDE_INTERRUPT		0x300
 102
 103/* Kauai (U2) ATA has different register setup */
 104#define IDE_KAUAI_PIO_CONFIG	0x200
 105#define IDE_KAUAI_ULTRA_CONFIG	0x210
 106#define IDE_KAUAI_POLL_CONFIG	0x220
 107
 108/*
 109 * Timing configuration register definitions
 110 */
 111
 112/* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
 113#define SYSCLK_TICKS(t)		(((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
 114#define SYSCLK_TICKS_66(t)	(((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
 115#define IDE_SYSCLK_NS		30	/* 33Mhz cell */
 116#define IDE_SYSCLK_66_NS	15	/* 66Mhz cell */
 117
 118/* 133Mhz cell, found in shasta.
 119 * See comments about 100 Mhz Uninorth 2...
 120 * Note that PIO_MASK and MDMA_MASK seem to overlap
 121 */
 122#define TR_133_PIOREG_PIO_MASK		0xff000fff
 123#define TR_133_PIOREG_MDMA_MASK		0x00fff800
 124#define TR_133_UDMAREG_UDMA_MASK	0x0003ffff
 125#define TR_133_UDMAREG_UDMA_EN		0x00000001
 126
 127/* 100Mhz cell, found in Uninorth 2. I don't have much infos about
 128 * this one yet, it appears as a pci device (106b/0033) on uninorth
 129 * internal PCI bus and it's clock is controlled like gem or fw. It
 130 * appears to be an evolution of keylargo ATA4 with a timing register
 131 * extended to 2 32bits registers and a similar DBDMA channel. Other
 132 * registers seem to exist but I can't tell much about them.
 133 * 
 134 * So far, I'm using pre-calculated tables for this extracted from
 135 * the values used by the MacOS X driver.
 136 * 
 137 * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
 138 * register controls the UDMA timings. At least, it seems bit 0
 139 * of this one enables UDMA vs. MDMA, and bits 4..7 are the
 140 * cycle time in units of 10ns. Bits 8..15 are used by I don't
 141 * know their meaning yet
 142 */
 143#define TR_100_PIOREG_PIO_MASK		0xff000fff
 144#define TR_100_PIOREG_MDMA_MASK		0x00fff000
 145#define TR_100_UDMAREG_UDMA_MASK	0x0000ffff
 146#define TR_100_UDMAREG_UDMA_EN		0x00000001
 147
 148
 149/* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
 150 * 40 connector cable and to 4 on 80 connector one.
 151 * Clock unit is 15ns (66Mhz)
 152 * 
 153 * 3 Values can be programmed:
 154 *  - Write data setup, which appears to match the cycle time. They
 155 *    also call it DIOW setup.
 156 *  - Ready to pause time (from spec)
 157 *  - Address setup. That one is weird. I don't see where exactly
 158 *    it fits in UDMA cycles, I got it's name from an obscure piece
 159 *    of commented out code in Darwin. They leave it to 0, we do as
 160 *    well, despite a comment that would lead to think it has a
 161 *    min value of 45ns.
 162 * Apple also add 60ns to the write data setup (or cycle time ?) on
 163 * reads.
 164 */
 165#define TR_66_UDMA_MASK			0xfff00000
 166#define TR_66_UDMA_EN			0x00100000 /* Enable Ultra mode for DMA */
 167#define TR_66_UDMA_ADDRSETUP_MASK	0xe0000000 /* Address setup */
 168#define TR_66_UDMA_ADDRSETUP_SHIFT	29
 169#define TR_66_UDMA_RDY2PAUS_MASK	0x1e000000 /* Ready 2 pause time */
 170#define TR_66_UDMA_RDY2PAUS_SHIFT	25
 171#define TR_66_UDMA_WRDATASETUP_MASK	0x01e00000 /* Write data setup time */
 172#define TR_66_UDMA_WRDATASETUP_SHIFT	21
 173#define TR_66_MDMA_MASK			0x000ffc00
 174#define TR_66_MDMA_RECOVERY_MASK	0x000f8000
 175#define TR_66_MDMA_RECOVERY_SHIFT	15
 176#define TR_66_MDMA_ACCESS_MASK		0x00007c00
 177#define TR_66_MDMA_ACCESS_SHIFT		10
 178#define TR_66_PIO_MASK			0x000003ff
 179#define TR_66_PIO_RECOVERY_MASK		0x000003e0
 180#define TR_66_PIO_RECOVERY_SHIFT	5
 181#define TR_66_PIO_ACCESS_MASK		0x0000001f
 182#define TR_66_PIO_ACCESS_SHIFT		0
 183
 184/* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
 185 * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
 186 * 
 187 * The access time and recovery time can be programmed. Some older
 188 * Darwin code base limit OHare to 150ns cycle time. I decided to do
 189 * the same here fore safety against broken old hardware ;)
 190 * The HalfTick bit, when set, adds half a clock (15ns) to the access
 191 * time and removes one from recovery. It's not supported on KeyLargo
 192 * implementation afaik. The E bit appears to be set for PIO mode 0 and
 193 * is used to reach long timings used in this mode.
 194 */
 195#define TR_33_MDMA_MASK			0x003ff800
 196#define TR_33_MDMA_RECOVERY_MASK	0x001f0000
 197#define TR_33_MDMA_RECOVERY_SHIFT	16
 198#define TR_33_MDMA_ACCESS_MASK		0x0000f800
 199#define TR_33_MDMA_ACCESS_SHIFT		11
 200#define TR_33_MDMA_HALFTICK		0x00200000
 201#define TR_33_PIO_MASK			0x000007ff
 202#define TR_33_PIO_E			0x00000400
 203#define TR_33_PIO_RECOVERY_MASK		0x000003e0
 204#define TR_33_PIO_RECOVERY_SHIFT	5
 205#define TR_33_PIO_ACCESS_MASK		0x0000001f
 206#define TR_33_PIO_ACCESS_SHIFT		0
 207
 208/*
 209 * Interrupt register definitions
 210 */
 211#define IDE_INTR_DMA			0x80000000
 212#define IDE_INTR_DEVICE			0x40000000
 213
 214/*
 215 * FCR Register on Kauai. Not sure what bit 0x4 is  ...
 216 */
 217#define KAUAI_FCR_UATA_MAGIC		0x00000004
 218#define KAUAI_FCR_UATA_RESET_N		0x00000002
 219#define KAUAI_FCR_UATA_ENABLE		0x00000001
 220
 221/* Rounded Multiword DMA timings
 222 * 
 223 * I gave up finding a generic formula for all controller
 224 * types and instead, built tables based on timing values
 225 * used by Apple in Darwin's implementation.
 226 */
 227struct mdma_timings_t {
 228	int	accessTime;
 229	int	recoveryTime;
 230	int	cycleTime;
 231};
 232
 233struct mdma_timings_t mdma_timings_33[] =
 234{
 235    { 240, 240, 480 },
 236    { 180, 180, 360 },
 237    { 135, 135, 270 },
 238    { 120, 120, 240 },
 239    { 105, 105, 210 },
 240    {  90,  90, 180 },
 241    {  75,  75, 150 },
 242    {  75,  45, 120 },
 243    {   0,   0,   0 }
 244};
 245
 246struct mdma_timings_t mdma_timings_33k[] =
 247{
 248    { 240, 240, 480 },
 249    { 180, 180, 360 },
 250    { 150, 150, 300 },
 251    { 120, 120, 240 },
 252    {  90, 120, 210 },
 253    {  90,  90, 180 },
 254    {  90,  60, 150 },
 255    {  90,  30, 120 },
 256    {   0,   0,   0 }
 257};
 258
 259struct mdma_timings_t mdma_timings_66[] =
 260{
 261    { 240, 240, 480 },
 262    { 180, 180, 360 },
 263    { 135, 135, 270 },
 264    { 120, 120, 240 },
 265    { 105, 105, 210 },
 266    {  90,  90, 180 },
 267    {  90,  75, 165 },
 268    {  75,  45, 120 },
 269    {   0,   0,   0 }
 270};
 271
 272/* KeyLargo ATA-4 Ultra DMA timings (rounded) */
 273struct {
 274	int	addrSetup; /* ??? */
 275	int	rdy2pause;
 276	int	wrDataSetup;
 277} kl66_udma_timings[] =
 278{
 279    {   0, 180,  120 },	/* Mode 0 */
 280    {   0, 150,  90 },	/*      1 */
 281    {   0, 120,  60 },	/*      2 */
 282    {   0, 90,   45 },	/*      3 */
 283    {   0, 90,   30 }	/*      4 */
 284};
 285
 286/* UniNorth 2 ATA/100 timings */
 287struct kauai_timing {
 288	int	cycle_time;
 289	u32	timing_reg;
 290};
 291
 292static struct kauai_timing	kauai_pio_timings[] =
 293{
 294	{ 930	, 0x08000fff },
 295	{ 600	, 0x08000a92 },
 296	{ 383	, 0x0800060f },
 297	{ 360	, 0x08000492 },
 298	{ 330	, 0x0800048f },
 299	{ 300	, 0x080003cf },
 300	{ 270	, 0x080003cc },
 301	{ 240	, 0x0800038b },
 302	{ 239	, 0x0800030c },
 303	{ 180	, 0x05000249 },
 304	{ 120	, 0x04000148 },
 305	{ 0	, 0 },
 306};
 307
 308static struct kauai_timing	kauai_mdma_timings[] =
 309{
 310	{ 1260	, 0x00fff000 },
 311	{ 480	, 0x00618000 },
 312	{ 360	, 0x00492000 },
 313	{ 270	, 0x0038e000 },
 314	{ 240	, 0x0030c000 },
 315	{ 210	, 0x002cb000 },
 316	{ 180	, 0x00249000 },
 317	{ 150	, 0x00209000 },
 318	{ 120	, 0x00148000 },
 319	{ 0	, 0 },
 320};
 321
 322static struct kauai_timing	kauai_udma_timings[] =
 323{
 324	{ 120	, 0x000070c0 },
 325	{ 90	, 0x00005d80 },
 326	{ 60	, 0x00004a60 },
 327	{ 45	, 0x00003a50 },
 328	{ 30	, 0x00002a30 },
 329	{ 20	, 0x00002921 },
 330	{ 0	, 0 },
 331};
 332
 333static struct kauai_timing	shasta_pio_timings[] =
 334{
 335	{ 930	, 0x08000fff },
 336	{ 600	, 0x0A000c97 },
 337	{ 383	, 0x07000712 },
 338	{ 360	, 0x040003cd },
 339	{ 330	, 0x040003cd },
 340	{ 300	, 0x040003cd },
 341	{ 270	, 0x040003cd },
 342	{ 240	, 0x040003cd },
 343	{ 239	, 0x040003cd },
 344	{ 180	, 0x0400028b },
 345	{ 120	, 0x0400010a },
 346	{ 0	, 0 },
 347};
 348
 349static struct kauai_timing	shasta_mdma_timings[] =
 350{
 351	{ 1260	, 0x00fff000 },
 352	{ 480	, 0x00820800 },
 353	{ 360	, 0x00820800 },
 354	{ 270	, 0x00820800 },
 355	{ 240	, 0x00820800 },
 356	{ 210	, 0x00820800 },
 357	{ 180	, 0x00820800 },
 358	{ 150	, 0x0028b000 },
 359	{ 120	, 0x001ca000 },
 360	{ 0	, 0 },
 361};
 362
 363static struct kauai_timing	shasta_udma133_timings[] =
 364{
 365	{ 120   , 0x00035901, },
 366	{ 90    , 0x000348b1, },
 367	{ 60    , 0x00033881, },
 368	{ 45    , 0x00033861, },
 369	{ 30    , 0x00033841, },
 370	{ 20    , 0x00033031, },
 371	{ 15    , 0x00033021, },
 372	{ 0	, 0 },
 373};
 374
 375
 376static inline u32
 377kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
 378{
 379	int i;
 380	
 381	for (i=0; table[i].cycle_time; i++)
 382		if (cycle_time > table[i+1].cycle_time)
 383			return table[i].timing_reg;
 384	BUG();
 385	return 0;
 386}
 387
 388/* allow up to 256 DBDMA commands per xfer */
 389#define MAX_DCMDS		256
 390
 391/* 
 392 * Wait 1s for disk to answer on IDE bus after a hard reset
 393 * of the device (via GPIO/FCR).
 394 * 
 395 * Some devices seem to "pollute" the bus even after dropping
 396 * the BSY bit (typically some combo drives slave on the UDMA
 397 * bus) after a hard reset. Since we hard reset all drives on
 398 * KeyLargo ATA66, we have to keep that delay around. I may end
 399 * up not hard resetting anymore on these and keep the delay only
 400 * for older interfaces instead (we have to reset when coming
 401 * from MacOS...) --BenH. 
 402 */
 403#define IDE_WAKEUP_DELAY	(1*HZ)
 404
 405static int pmac_ide_init_dma(ide_hwif_t *, const struct ide_port_info *);
 406
 407#define PMAC_IDE_REG(x) \
 408	((void __iomem *)((drive)->hwif->io_ports.data_addr + (x)))
 409
 410/*
 411 * Apply the timings of the proper unit (master/slave) to the shared
 412 * timing register when selecting that unit. This version is for
 413 * ASICs with a single timing register
 414 */
 415static void pmac_ide_apply_timings(ide_drive_t *drive)
 416{
 417	ide_hwif_t *hwif = drive->hwif;
 418	pmac_ide_hwif_t *pmif =
 419		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
 420
 421	if (drive->dn & 1)
 422		writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
 423	else
 424		writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
 425	(void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
 426}
 427
 428/*
 429 * Apply the timings of the proper unit (master/slave) to the shared
 430 * timing register when selecting that unit. This version is for
 431 * ASICs with a dual timing register (Kauai)
 432 */
 433static void pmac_ide_kauai_apply_timings(ide_drive_t *drive)
 434{
 435	ide_hwif_t *hwif = drive->hwif;
 436	pmac_ide_hwif_t *pmif =
 437		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
 438
 439	if (drive->dn & 1) {
 440		writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
 441		writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
 442	} else {
 443		writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
 444		writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
 445	}
 446	(void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
 447}
 448
 449/*
 450 * Force an update of controller timing values for a given drive
 451 */
 452static void
 453pmac_ide_do_update_timings(ide_drive_t *drive)
 454{
 455	ide_hwif_t *hwif = drive->hwif;
 456	pmac_ide_hwif_t *pmif =
 457		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
 458
 459	if (pmif->kind == controller_sh_ata6 ||
 460	    pmif->kind == controller_un_ata6 ||
 461	    pmif->kind == controller_k2_ata6)
 462		pmac_ide_kauai_apply_timings(drive);
 463	else
 464		pmac_ide_apply_timings(drive);
 465}
 466
 467static void pmac_dev_select(ide_drive_t *drive)
 468{
 469	pmac_ide_apply_timings(drive);
 470
 471	writeb(drive->select | ATA_DEVICE_OBS,
 472	       (void __iomem *)drive->hwif->io_ports.device_addr);
 473}
 474
 475static void pmac_kauai_dev_select(ide_drive_t *drive)
 476{
 477	pmac_ide_kauai_apply_timings(drive);
 478
 479	writeb(drive->select | ATA_DEVICE_OBS,
 480	       (void __iomem *)drive->hwif->io_ports.device_addr);
 481}
 482
 483static void pmac_exec_command(ide_hwif_t *hwif, u8 cmd)
 484{
 485	writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
 486	(void)readl((void __iomem *)(hwif->io_ports.data_addr
 487				     + IDE_TIMING_CONFIG));
 488}
 489
 490static void pmac_write_devctl(ide_hwif_t *hwif, u8 ctl)
 491{
 492	writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
 493	(void)readl((void __iomem *)(hwif->io_ports.data_addr
 494				     + IDE_TIMING_CONFIG));
 495}
 496
 497/*
 498 * Old tuning functions (called on hdparm -p), sets up drive PIO timings
 499 */
 500static void pmac_ide_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive)
 501{
 502	pmac_ide_hwif_t *pmif =
 503		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
 504	const u8 pio = drive->pio_mode - XFER_PIO_0;
 505	struct ide_timing *tim = ide_timing_find_mode(XFER_PIO_0 + pio);
 506	u32 *timings, t;
 507	unsigned accessTicks, recTicks;
 508	unsigned accessTime, recTime;
 509	unsigned int cycle_time;
 510
 511	/* which drive is it ? */
 512	timings = &pmif->timings[drive->dn & 1];
 513	t = *timings;
 514
 515	cycle_time = ide_pio_cycle_time(drive, pio);
 516
 517	switch (pmif->kind) {
 518	case controller_sh_ata6: {
 519		/* 133Mhz cell */
 520		u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
 521		t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
 522		break;
 523		}
 524	case controller_un_ata6:
 525	case controller_k2_ata6: {
 526		/* 100Mhz cell */
 527		u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
 528		t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
 529		break;
 530		}
 531	case controller_kl_ata4:
 532		/* 66Mhz cell */
 533		recTime = cycle_time - tim->active - tim->setup;
 534		recTime = max(recTime, 150U);
 535		accessTime = tim->active;
 536		accessTime = max(accessTime, 150U);
 537		accessTicks = SYSCLK_TICKS_66(accessTime);
 538		accessTicks = min(accessTicks, 0x1fU);
 539		recTicks = SYSCLK_TICKS_66(recTime);
 540		recTicks = min(recTicks, 0x1fU);
 541		t = (t & ~TR_66_PIO_MASK) |
 542			(accessTicks << TR_66_PIO_ACCESS_SHIFT) |
 543			(recTicks << TR_66_PIO_RECOVERY_SHIFT);
 544		break;
 545	default: {
 546		/* 33Mhz cell */
 547		int ebit = 0;
 548		recTime = cycle_time - tim->active - tim->setup;
 549		recTime = max(recTime, 150U);
 550		accessTime = tim->active;
 551		accessTime = max(accessTime, 150U);
 552		accessTicks = SYSCLK_TICKS(accessTime);
 553		accessTicks = min(accessTicks, 0x1fU);
 554		accessTicks = max(accessTicks, 4U);
 555		recTicks = SYSCLK_TICKS(recTime);
 556		recTicks = min(recTicks, 0x1fU);
 557		recTicks = max(recTicks, 5U) - 4;
 558		if (recTicks > 9) {
 559			recTicks--; /* guess, but it's only for PIO0, so... */
 560			ebit = 1;
 561		}
 562		t = (t & ~TR_33_PIO_MASK) |
 563				(accessTicks << TR_33_PIO_ACCESS_SHIFT) |
 564				(recTicks << TR_33_PIO_RECOVERY_SHIFT);
 565		if (ebit)
 566			t |= TR_33_PIO_E;
 567		break;
 568		}
 569	}
 570
 571#ifdef IDE_PMAC_DEBUG
 572	printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
 573		drive->name, pio,  *timings);
 574#endif	
 575
 576	*timings = t;
 577	pmac_ide_do_update_timings(drive);
 578}
 579
 580/*
 581 * Calculate KeyLargo ATA/66 UDMA timings
 582 */
 583static int
 584set_timings_udma_ata4(u32 *timings, u8 speed)
 585{
 586	unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
 587
 588	if (speed > XFER_UDMA_4)
 589		return 1;
 590
 591	rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
 592	wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
 593	addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
 594
 595	*timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
 596			(wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) | 
 597			(rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
 598			(addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
 599			TR_66_UDMA_EN;
 600#ifdef IDE_PMAC_DEBUG
 601	printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
 602		speed & 0xf,  *timings);
 603#endif	
 604
 605	return 0;
 606}
 607
 608/*
 609 * Calculate Kauai ATA/100 UDMA timings
 610 */
 611static int
 612set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
 613{
 614	struct ide_timing *t = ide_timing_find_mode(speed);
 615	u32 tr;
 616
 617	if (speed > XFER_UDMA_5 || t == NULL)
 618		return 1;
 619	tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
 620	*ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
 621	*ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
 622
 623	return 0;
 624}
 625
 626/*
 627 * Calculate Shasta ATA/133 UDMA timings
 628 */
 629static int
 630set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
 631{
 632	struct ide_timing *t = ide_timing_find_mode(speed);
 633	u32 tr;
 634
 635	if (speed > XFER_UDMA_6 || t == NULL)
 636		return 1;
 637	tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
 638	*ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
 639	*ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
 640
 641	return 0;
 642}
 643
 644/*
 645 * Calculate MDMA timings for all cells
 646 */
 647static void
 648set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
 649		 	u8 speed)
 650{
 651	u16 *id = drive->id;
 652	int cycleTime, accessTime = 0, recTime = 0;
 653	unsigned accessTicks, recTicks;
 654	struct mdma_timings_t* tm = NULL;
 655	int i;
 656
 657	/* Get default cycle time for mode */
 658	switch(speed & 0xf) {
 659		case 0: cycleTime = 480; break;
 660		case 1: cycleTime = 150; break;
 661		case 2: cycleTime = 120; break;
 662		default:
 663			BUG();
 664			break;
 665	}
 666
 667	/* Check if drive provides explicit DMA cycle time */
 668	if ((id[ATA_ID_FIELD_VALID] & 2) && id[ATA_ID_EIDE_DMA_TIME])
 669		cycleTime = max_t(int, id[ATA_ID_EIDE_DMA_TIME], cycleTime);
 670
 671	/* OHare limits according to some old Apple sources */	
 672	if ((intf_type == controller_ohare) && (cycleTime < 150))
 673		cycleTime = 150;
 674	/* Get the proper timing array for this controller */
 675	switch(intf_type) {
 676	        case controller_sh_ata6:
 677		case controller_un_ata6:
 678		case controller_k2_ata6:
 679			break;
 680		case controller_kl_ata4:
 681			tm = mdma_timings_66;
 682			break;
 683		case controller_kl_ata3:
 684			tm = mdma_timings_33k;
 685			break;
 686		default:
 687			tm = mdma_timings_33;
 688			break;
 689	}
 690	if (tm != NULL) {
 691		/* Lookup matching access & recovery times */
 692		i = -1;
 693		for (;;) {
 694			if (tm[i+1].cycleTime < cycleTime)
 695				break;
 696			i++;
 697		}
 698		cycleTime = tm[i].cycleTime;
 699		accessTime = tm[i].accessTime;
 700		recTime = tm[i].recoveryTime;
 701
 702#ifdef IDE_PMAC_DEBUG
 703		printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
 704			drive->name, cycleTime, accessTime, recTime);
 705#endif
 706	}
 707	switch(intf_type) {
 708	case controller_sh_ata6: {
 709		/* 133Mhz cell */
 710		u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
 711		*timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
 712		*timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
 713		}
 714	case controller_un_ata6:
 715	case controller_k2_ata6: {
 716		/* 100Mhz cell */
 717		u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
 718		*timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
 719		*timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
 720		}
 721		break;
 722	case controller_kl_ata4:
 723		/* 66Mhz cell */
 724		accessTicks = SYSCLK_TICKS_66(accessTime);
 725		accessTicks = min(accessTicks, 0x1fU);
 726		accessTicks = max(accessTicks, 0x1U);
 727		recTicks = SYSCLK_TICKS_66(recTime);
 728		recTicks = min(recTicks, 0x1fU);
 729		recTicks = max(recTicks, 0x3U);
 730		/* Clear out mdma bits and disable udma */
 731		*timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
 732			(accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
 733			(recTicks << TR_66_MDMA_RECOVERY_SHIFT);
 734		break;
 735	case controller_kl_ata3:
 736		/* 33Mhz cell on KeyLargo */
 737		accessTicks = SYSCLK_TICKS(accessTime);
 738		accessTicks = max(accessTicks, 1U);
 739		accessTicks = min(accessTicks, 0x1fU);
 740		accessTime = accessTicks * IDE_SYSCLK_NS;
 741		recTicks = SYSCLK_TICKS(recTime);
 742		recTicks = max(recTicks, 1U);
 743		recTicks = min(recTicks, 0x1fU);
 744		*timings = ((*timings) & ~TR_33_MDMA_MASK) |
 745				(accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
 746				(recTicks << TR_33_MDMA_RECOVERY_SHIFT);
 747		break;
 748	default: {
 749		/* 33Mhz cell on others */
 750		int halfTick = 0;
 751		int origAccessTime = accessTime;
 752		int origRecTime = recTime;
 753		
 754		accessTicks = SYSCLK_TICKS(accessTime);
 755		accessTicks = max(accessTicks, 1U);
 756		accessTicks = min(accessTicks, 0x1fU);
 757		accessTime = accessTicks * IDE_SYSCLK_NS;
 758		recTicks = SYSCLK_TICKS(recTime);
 759		recTicks = max(recTicks, 2U) - 1;
 760		recTicks = min(recTicks, 0x1fU);
 761		recTime = (recTicks + 1) * IDE_SYSCLK_NS;
 762		if ((accessTicks > 1) &&
 763		    ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
 764		    ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
 765            		halfTick = 1;
 766			accessTicks--;
 767		}
 768		*timings = ((*timings) & ~TR_33_MDMA_MASK) |
 769				(accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
 770				(recTicks << TR_33_MDMA_RECOVERY_SHIFT);
 771		if (halfTick)
 772			*timings |= TR_33_MDMA_HALFTICK;
 773		}
 774	}
 775#ifdef IDE_PMAC_DEBUG
 776	printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
 777		drive->name, speed & 0xf,  *timings);
 778#endif	
 779}
 780
 781static void pmac_ide_set_dma_mode(ide_hwif_t *hwif, ide_drive_t *drive)
 782{
 783	pmac_ide_hwif_t *pmif =
 784		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
 785	int ret = 0;
 786	u32 *timings, *timings2, tl[2];
 787	u8 unit = drive->dn & 1;
 788	const u8 speed = drive->dma_mode;
 789
 790	timings = &pmif->timings[unit];
 791	timings2 = &pmif->timings[unit+2];
 792
 793	/* Copy timings to local image */
 794	tl[0] = *timings;
 795	tl[1] = *timings2;
 796
 797	if (speed >= XFER_UDMA_0) {
 798		if (pmif->kind == controller_kl_ata4)
 799			ret = set_timings_udma_ata4(&tl[0], speed);
 800		else if (pmif->kind == controller_un_ata6
 801			 || pmif->kind == controller_k2_ata6)
 802			ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
 803		else if (pmif->kind == controller_sh_ata6)
 804			ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
 805		else
 806			ret = -1;
 807	} else
 808		set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
 809
 810	if (ret)
 811		return;
 812
 813	/* Apply timings to controller */
 814	*timings = tl[0];
 815	*timings2 = tl[1];
 816
 817	pmac_ide_do_update_timings(drive);	
 818}
 819
 820/*
 821 * Blast some well known "safe" values to the timing registers at init or
 822 * wakeup from sleep time, before we do real calculation
 823 */
 824static void
 825sanitize_timings(pmac_ide_hwif_t *pmif)
 826{
 827	unsigned int value, value2 = 0;
 828	
 829	switch(pmif->kind) {
 830		case controller_sh_ata6:
 831			value = 0x0a820c97;
 832			value2 = 0x00033031;
 833			break;
 834		case controller_un_ata6:
 835		case controller_k2_ata6:
 836			value = 0x08618a92;
 837			value2 = 0x00002921;
 838			break;
 839		case controller_kl_ata4:
 840			value = 0x0008438c;
 841			break;
 842		case controller_kl_ata3:
 843			value = 0x00084526;
 844			break;
 845		case controller_heathrow:
 846		case controller_ohare:
 847		default:
 848			value = 0x00074526;
 849			break;
 850	}
 851	pmif->timings[0] = pmif->timings[1] = value;
 852	pmif->timings[2] = pmif->timings[3] = value2;
 853}
 854
 855static int on_media_bay(pmac_ide_hwif_t *pmif)
 856{
 857	return pmif->mdev && pmif->mdev->media_bay != NULL;
 858}
 859
 860/* Suspend call back, should be called after the child devices
 861 * have actually been suspended
 862 */
 863static int pmac_ide_do_suspend(pmac_ide_hwif_t *pmif)
 864{
 865	/* We clear the timings */
 866	pmif->timings[0] = 0;
 867	pmif->timings[1] = 0;
 868	
 869	disable_irq(pmif->irq);
 870
 871	/* The media bay will handle itself just fine */
 872	if (on_media_bay(pmif))
 873		return 0;
 874	
 875	/* Kauai has bus control FCRs directly here */
 876	if (pmif->kauai_fcr) {
 877		u32 fcr = readl(pmif->kauai_fcr);
 878		fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
 879		writel(fcr, pmif->kauai_fcr);
 880	}
 881
 882	/* Disable the bus on older machines and the cell on kauai */
 883	ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
 884			    0);
 885
 886	return 0;
 887}
 888
 889/* Resume call back, should be called before the child devices
 890 * are resumed
 891 */
 892static int pmac_ide_do_resume(pmac_ide_hwif_t *pmif)
 893{
 894	/* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
 895	if (!on_media_bay(pmif)) {
 896		ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
 897		ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
 898		msleep(10);
 899		ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
 900
 901		/* Kauai has it different */
 902		if (pmif->kauai_fcr) {
 903			u32 fcr = readl(pmif->kauai_fcr);
 904			fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
 905			writel(fcr, pmif->kauai_fcr);
 906		}
 907
 908		msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
 909	}
 910
 911	/* Sanitize drive timings */
 912	sanitize_timings(pmif);
 913
 914	enable_irq(pmif->irq);
 915
 916	return 0;
 917}
 918
 919static u8 pmac_ide_cable_detect(ide_hwif_t *hwif)
 920{
 921	pmac_ide_hwif_t *pmif =
 922		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
 923	struct device_node *np = pmif->node;
 924	const char *cable = of_get_property(np, "cable-type", NULL);
 925	struct device_node *root = of_find_node_by_path("/");
 926	const char *model = of_get_property(root, "model", NULL);
 927
 928	/* Get cable type from device-tree. */
 929	if (cable && !strncmp(cable, "80-", 3)) {
 930		/* Some drives fail to detect 80c cable in PowerBook */
 931		/* These machine use proprietary short IDE cable anyway */
 932		if (!strncmp(model, "PowerBook", 9))
 933			return ATA_CBL_PATA40_SHORT;
 934		else
 935			return ATA_CBL_PATA80;
 936	}
 937
 938	/*
 939	 * G5's seem to have incorrect cable type in device-tree.
 940	 * Let's assume they have a 80 conductor cable, this seem
 941	 * to be always the case unless the user mucked around.
 942	 */
 943	if (of_device_is_compatible(np, "K2-UATA") ||
 944	    of_device_is_compatible(np, "shasta-ata"))
 945		return ATA_CBL_PATA80;
 946
 947	return ATA_CBL_PATA40;
 948}
 949
 950static void pmac_ide_init_dev(ide_drive_t *drive)
 951{
 952	ide_hwif_t *hwif = drive->hwif;
 953	pmac_ide_hwif_t *pmif =
 954		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
 955
 956	if (on_media_bay(pmif)) {
 957		if (check_media_bay(pmif->mdev->media_bay) == MB_CD) {
 958			drive->dev_flags &= ~IDE_DFLAG_NOPROBE;
 959			return;
 960		}
 961		drive->dev_flags |= IDE_DFLAG_NOPROBE;
 962	}
 963}
 964
 965static const struct ide_tp_ops pmac_tp_ops = {
 966	.exec_command		= pmac_exec_command,
 967	.read_status		= ide_read_status,
 968	.read_altstatus		= ide_read_altstatus,
 969	.write_devctl		= pmac_write_devctl,
 970
 971	.dev_select		= pmac_dev_select,
 972	.tf_load		= ide_tf_load,
 973	.tf_read		= ide_tf_read,
 974
 975	.input_data		= ide_input_data,
 976	.output_data		= ide_output_data,
 977};
 978
 979static const struct ide_tp_ops pmac_ata6_tp_ops = {
 980	.exec_command		= pmac_exec_command,
 981	.read_status		= ide_read_status,
 982	.read_altstatus		= ide_read_altstatus,
 983	.write_devctl		= pmac_write_devctl,
 984
 985	.dev_select		= pmac_kauai_dev_select,
 986	.tf_load		= ide_tf_load,
 987	.tf_read		= ide_tf_read,
 988
 989	.input_data		= ide_input_data,
 990	.output_data		= ide_output_data,
 991};
 992
 993static const struct ide_port_ops pmac_ide_ata4_port_ops = {
 994	.init_dev		= pmac_ide_init_dev,
 995	.set_pio_mode		= pmac_ide_set_pio_mode,
 996	.set_dma_mode		= pmac_ide_set_dma_mode,
 997	.cable_detect		= pmac_ide_cable_detect,
 998};
 999
1000static const struct ide_port_ops pmac_ide_port_ops = {
1001	.init_dev		= pmac_ide_init_dev,
1002	.set_pio_mode		= pmac_ide_set_pio_mode,
1003	.set_dma_mode		= pmac_ide_set_dma_mode,
1004};
1005
1006static const struct ide_dma_ops pmac_dma_ops;
1007
1008static const struct ide_port_info pmac_port_info = {
1009	.name			= DRV_NAME,
1010	.init_dma		= pmac_ide_init_dma,
1011	.chipset		= ide_pmac,
1012	.tp_ops			= &pmac_tp_ops,
1013	.port_ops		= &pmac_ide_port_ops,
1014	.dma_ops		= &pmac_dma_ops,
1015	.host_flags		= IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
1016				  IDE_HFLAG_POST_SET_MODE |
1017				  IDE_HFLAG_MMIO |
1018				  IDE_HFLAG_UNMASK_IRQS,
1019	.pio_mask		= ATA_PIO4,
1020	.mwdma_mask		= ATA_MWDMA2,
1021};
1022
1023/*
1024 * Setup, register & probe an IDE channel driven by this driver, this is
1025 * called by one of the 2 probe functions (macio or PCI).
1026 */
1027static int __devinit pmac_ide_setup_device(pmac_ide_hwif_t *pmif,
1028					   struct ide_hw *hw)
1029{
1030	struct device_node *np = pmif->node;
1031	const int *bidp;
1032	struct ide_host *host;
1033	ide_hwif_t *hwif;
1034	struct ide_hw *hws[] = { hw };
1035	struct ide_port_info d = pmac_port_info;
1036	int rc;
1037
1038	pmif->broken_dma = pmif->broken_dma_warn = 0;
1039	if (of_device_is_compatible(np, "shasta-ata")) {
1040		pmif->kind = controller_sh_ata6;
1041		d.tp_ops = &pmac_ata6_tp_ops;
1042		d.port_ops = &pmac_ide_ata4_port_ops;
1043		d.udma_mask = ATA_UDMA6;
1044	} else if (of_device_is_compatible(np, "kauai-ata")) {
1045		pmif->kind = controller_un_ata6;
1046		d.tp_ops = &pmac_ata6_tp_ops;
1047		d.port_ops = &pmac_ide_ata4_port_ops;
1048		d.udma_mask = ATA_UDMA5;
1049	} else if (of_device_is_compatible(np, "K2-UATA")) {
1050		pmif->kind = controller_k2_ata6;
1051		d.tp_ops = &pmac_ata6_tp_ops;
1052		d.port_ops = &pmac_ide_ata4_port_ops;
1053		d.udma_mask = ATA_UDMA5;
1054	} else if (of_device_is_compatible(np, "keylargo-ata")) {
1055		if (strcmp(np->name, "ata-4") == 0) {
1056			pmif->kind = controller_kl_ata4;
1057			d.port_ops = &pmac_ide_ata4_port_ops;
1058			d.udma_mask = ATA_UDMA4;
1059		} else
1060			pmif->kind = controller_kl_ata3;
1061	} else if (of_device_is_compatible(np, "heathrow-ata")) {
1062		pmif->kind = controller_heathrow;
1063	} else {
1064		pmif->kind = controller_ohare;
1065		pmif->broken_dma = 1;
1066	}
1067
1068	bidp = of_get_property(np, "AAPL,bus-id", NULL);
1069	pmif->aapl_bus_id =  bidp ? *bidp : 0;
1070
1071	/* On Kauai-type controllers, we make sure the FCR is correct */
1072	if (pmif->kauai_fcr)
1073		writel(KAUAI_FCR_UATA_MAGIC |
1074		       KAUAI_FCR_UATA_RESET_N |
1075		       KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
1076	
1077	/* Make sure we have sane timings */
1078	sanitize_timings(pmif);
1079
1080	/* If we are on a media bay, wait for it to settle and lock it */
1081	if (pmif->mdev)
1082		lock_media_bay(pmif->mdev->media_bay);
1083
1084	host = ide_host_alloc(&d, hws, 1);
1085	if (host == NULL) {
1086		rc = -ENOMEM;
1087		goto bail;
1088	}
1089	hwif = pmif->hwif = host->ports[0];
1090
1091	if (on_media_bay(pmif)) {
1092		/* Fixup bus ID for media bay */
1093		if (!bidp)
1094			pmif->aapl_bus_id = 1;
1095	} else if (pmif->kind == controller_ohare) {
1096		/* The code below is having trouble on some ohare machines
1097		 * (timing related ?). Until I can put my hand on one of these
1098		 * units, I keep the old way
1099		 */
1100		ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
1101	} else {
1102 		/* This is necessary to enable IDE when net-booting */
1103		ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
1104		ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
1105		msleep(10);
1106		ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
1107		msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1108	}
1109
1110	printk(KERN_INFO DRV_NAME ": Found Apple %s controller (%s), "
1111	       "bus ID %d%s, irq %d\n", model_name[pmif->kind],
1112	       pmif->mdev ? "macio" : "PCI", pmif->aapl_bus_id,
1113	       on_media_bay(pmif) ? " (mediabay)" : "", hw->irq);
1114
1115	rc = ide_host_register(host, &d, hws);
1116	if (rc)
1117		pmif->hwif = NULL;
1118
1119	if (pmif->mdev)
1120		unlock_media_bay(pmif->mdev->media_bay);
1121
1122 bail:
1123	if (rc && host)
1124		ide_host_free(host);
1125	return rc;
1126}
1127
1128static void __devinit pmac_ide_init_ports(struct ide_hw *hw, unsigned long base)
1129{
1130	int i;
1131
1132	for (i = 0; i < 8; ++i)
1133		hw->io_ports_array[i] = base + i * 0x10;
1134
1135	hw->io_ports.ctl_addr = base + 0x160;
1136}
1137
1138/*
1139 * Attach to a macio probed interface
1140 */
1141static int __devinit
1142pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
1143{
1144	void __iomem *base;
1145	unsigned long regbase;
1146	pmac_ide_hwif_t *pmif;
1147	int irq, rc;
1148	struct ide_hw hw;
1149
1150	pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1151	if (pmif == NULL)
1152		return -ENOMEM;
1153
1154	if (macio_resource_count(mdev) == 0) {
1155		printk(KERN_WARNING "ide-pmac: no address for %s\n",
1156				    mdev->ofdev.dev.of_node->full_name);
1157		rc = -ENXIO;
1158		goto out_free_pmif;
1159	}
1160
1161	/* Request memory resource for IO ports */
1162	if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
1163		printk(KERN_ERR "ide-pmac: can't request MMIO resource for "
1164				"%s!\n", mdev->ofdev.dev.of_node->full_name);
1165		rc = -EBUSY;
1166		goto out_free_pmif;
1167	}
1168			
1169	/* XXX This is bogus. Should be fixed in the registry by checking
1170	 * the kind of host interrupt controller, a bit like gatwick
1171	 * fixes in irq.c. That works well enough for the single case
1172	 * where that happens though...
1173	 */
1174	if (macio_irq_count(mdev) == 0) {
1175		printk(KERN_WARNING "ide-pmac: no intrs for device %s, using "
1176				    "13\n", mdev->ofdev.dev.of_node->full_name);
1177		irq = irq_create_mapping(NULL, 13);
1178	} else
1179		irq = macio_irq(mdev, 0);
1180
1181	base = ioremap(macio_resource_start(mdev, 0), 0x400);
1182	regbase = (unsigned long) base;
1183
1184	pmif->mdev = mdev;
1185	pmif->node = mdev->ofdev.dev.of_node;
1186	pmif->regbase = regbase;
1187	pmif->irq = irq;
1188	pmif->kauai_fcr = NULL;
1189
1190	if (macio_resource_count(mdev) >= 2) {
1191		if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
1192			printk(KERN_WARNING "ide-pmac: can't request DMA "
1193					    "resource for %s!\n",
1194					    mdev->ofdev.dev.of_node->full_name);
1195		else
1196			pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
1197	} else
1198		pmif->dma_regs = NULL;
1199
1200	dev_set_drvdata(&mdev->ofdev.dev, pmif);
1201
1202	memset(&hw, 0, sizeof(hw));
1203	pmac_ide_init_ports(&hw, pmif->regbase);
1204	hw.irq = irq;
1205	hw.dev = &mdev->bus->pdev->dev;
1206	hw.parent = &mdev->ofdev.dev;
1207
1208	rc = pmac_ide_setup_device(pmif, &hw);
1209	if (rc != 0) {
1210		/* The inteface is released to the common IDE layer */
1211		dev_set_drvdata(&mdev->ofdev.dev, NULL);
1212		iounmap(base);
1213		if (pmif->dma_regs) {
1214			iounmap(pmif->dma_regs);
1215			macio_release_resource(mdev, 1);
1216		}
1217		macio_release_resource(mdev, 0);
1218		kfree(pmif);
1219	}
1220
1221	return rc;
1222
1223out_free_pmif:
1224	kfree(pmif);
1225	return rc;
1226}
1227
1228static int
1229pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
1230{
1231	pmac_ide_hwif_t *pmif =
1232		(pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1233	int rc = 0;
1234
1235	if (mesg.event != mdev->ofdev.dev.power.power_state.event
1236			&& (mesg.event & PM_EVENT_SLEEP)) {
1237		rc = pmac_ide_do_suspend(pmif);
1238		if (rc == 0)
1239			mdev->ofdev.dev.power.power_state = mesg;
1240	}
1241
1242	return rc;
1243}
1244
1245static int
1246pmac_ide_macio_resume(struct macio_dev *mdev)
1247{
1248	pmac_ide_hwif_t *pmif =
1249		(pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1250	int rc = 0;
1251
1252	if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
1253		rc = pmac_ide_do_resume(pmif);
1254		if (rc == 0)
1255			mdev->ofdev.dev.power.power_state = PMSG_ON;
1256	}
1257
1258	return rc;
1259}
1260
1261/*
1262 * Attach to a PCI probed interface
1263 */
1264static int __devinit
1265pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
1266{
1267	struct device_node *np;
1268	pmac_ide_hwif_t *pmif;
1269	void __iomem *base;
1270	unsigned long rbase, rlen;
1271	int rc;
1272	struct ide_hw hw;
1273
1274	np = pci_device_to_OF_node(pdev);
1275	if (np == NULL) {
1276		printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1277		return -ENODEV;
1278	}
1279
1280	pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1281	if (pmif == NULL)
1282		return -ENOMEM;
1283
1284	if (pci_enable_device(pdev)) {
1285		printk(KERN_WARNING "ide-pmac: Can't enable PCI device for "
1286				    "%s\n", np->full_name);
1287		rc = -ENXIO;
1288		goto out_free_pmif;
1289	}
1290	pci_set_master(pdev);
1291			
1292	if (pci_request_regions(pdev, "Kauai ATA")) {
1293		printk(KERN_ERR "ide-pmac: Cannot obtain PCI resources for "
1294				"%s\n", np->full_name);
1295		rc = -ENXIO;
1296		goto out_free_pmif;
1297	}
1298
1299	pmif->mdev = NULL;
1300	pmif->node = np;
1301
1302	rbase = pci_resource_start(pdev, 0);
1303	rlen = pci_resource_len(pdev, 0);
1304
1305	base = ioremap(rbase, rlen);
1306	pmif->regbase = (unsigned long) base + 0x2000;
1307	pmif->dma_regs = base + 0x1000;
1308	pmif->kauai_fcr = base;
1309	pmif->irq = pdev->irq;
1310
1311	pci_set_drvdata(pdev, pmif);
1312
1313	memset(&hw, 0, sizeof(hw));
1314	pmac_ide_init_ports(&hw, pmif->regbase);
1315	hw.irq = pdev->irq;
1316	hw.dev = &pdev->dev;
1317
1318	rc = pmac_ide_setup_device(pmif, &hw);
1319	if (rc != 0) {
1320		/* The inteface is released to the common IDE layer */
1321		pci_set_drvdata(pdev, NULL);
1322		iounmap(base);
1323		pci_release_regions(pdev);
1324		kfree(pmif);
1325	}
1326
1327	return rc;
1328
1329out_free_pmif:
1330	kfree(pmif);
1331	return rc;
1332}
1333
1334static int
1335pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
1336{
1337	pmac_ide_hwif_t *pmif = pci_get_drvdata(pdev);
1338	int rc = 0;
1339
1340	if (mesg.event != pdev->dev.power.power_state.event
1341			&& (mesg.event & PM_EVENT_SLEEP)) {
1342		rc = pmac_ide_do_suspend(pmif);
1343		if (rc == 0)
1344			pdev->dev.power.power_state = mesg;
1345	}
1346
1347	return rc;
1348}
1349
1350static int
1351pmac_ide_pci_resume(struct pci_dev *pdev)
1352{
1353	pmac_ide_hwif_t *pmif = pci_get_drvdata(pdev);
1354	int rc = 0;
1355
1356	if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
1357		rc = pmac_ide_do_resume(pmif);
1358		if (rc == 0)
1359			pdev->dev.power.power_state = PMSG_ON;
1360	}
1361
1362	return rc;
1363}
1364
1365#ifdef CONFIG_PMAC_MEDIABAY
1366static void pmac_ide_macio_mb_event(struct macio_dev* mdev, int mb_state)
1367{
1368	pmac_ide_hwif_t *pmif =
1369		(pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1370
1371	switch(mb_state) {
1372	case MB_CD:
1373		if (!pmif->hwif->present)
1374			ide_port_scan(pmif->hwif);
1375		break;
1376	default:
1377		if (pmif->hwif->present)
1378			ide_port_unregister_devices(pmif->hwif);
1379	}
1380}
1381#endif /* CONFIG_PMAC_MEDIABAY */
1382
1383
1384static struct of_device_id pmac_ide_macio_match[] = 
1385{
1386	{
1387	.name 		= "IDE",
1388	},
1389	{
1390	.name 		= "ATA",
1391	},
1392	{
1393	.type		= "ide",
1394	},
1395	{
1396	.type		= "ata",
1397	},
1398	{},
1399};
1400
1401static struct macio_driver pmac_ide_macio_driver = 
1402{
1403	.driver = {
1404		.name 		= "ide-pmac",
1405		.owner		= THIS_MODULE,
1406		.of_match_table	= pmac_ide_macio_match,
1407	},
1408	.probe		= pmac_ide_macio_attach,
1409	.suspend	= pmac_ide_macio_suspend,
1410	.resume		= pmac_ide_macio_resume,
1411#ifdef CONFIG_PMAC_MEDIABAY
1412	.mediabay_event	= pmac_ide_macio_mb_event,
1413#endif
1414};
1415
1416static const struct pci_device_id pmac_ide_pci_match[] = {
1417	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA),	0 },
1418	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100),	0 },
1419	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100),	0 },
1420	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA),	0 },
1421	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA),	0 },
1422	{},
1423};
1424
1425static struct pci_driver pmac_ide_pci_driver = {
1426	.name		= "ide-pmac",
1427	.id_table	= pmac_ide_pci_match,
1428	.probe		= pmac_ide_pci_attach,
1429	.suspend	= pmac_ide_pci_suspend,
1430	.resume		= pmac_ide_pci_resume,
1431};
1432MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
1433
1434int __init pmac_ide_probe(void)
1435{
1436	int error;
1437
1438	if (!machine_is(powermac))
1439		return -ENODEV;
1440
1441#ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1442	error = pci_register_driver(&pmac_ide_pci_driver);
1443	if (error)
1444		goto out;
1445	error = macio_register_driver(&pmac_ide_macio_driver);
1446	if (error) {
1447		pci_unregister_driver(&pmac_ide_pci_driver);
1448		goto out;
1449	}
1450#else
1451	error = macio_register_driver(&pmac_ide_macio_driver);
1452	if (error)
1453		goto out;
1454	error = pci_register_driver(&pmac_ide_pci_driver);
1455	if (error) {
1456		macio_unregister_driver(&pmac_ide_macio_driver);
1457		goto out;
1458	}
1459#endif
1460out:
1461	return error;
1462}
1463
1464/*
1465 * pmac_ide_build_dmatable builds the DBDMA command list
1466 * for a transfer and sets the DBDMA channel to point to it.
1467 */
1468static int pmac_ide_build_dmatable(ide_drive_t *drive, struct ide_cmd *cmd)
1469{
1470	ide_hwif_t *hwif = drive->hwif;
1471	pmac_ide_hwif_t *pmif =
1472		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1473	struct dbdma_cmd *table;
1474	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1475	struct scatterlist *sg;
1476	int wr = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1477	int i = cmd->sg_nents, count = 0;
1478
1479	/* DMA table is already aligned */
1480	table = (struct dbdma_cmd *) pmif->dma_table_cpu;
1481
1482	/* Make sure DMA controller is stopped (necessary ?) */
1483	writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
1484	while (readl(&dma->status) & RUN)
1485		udelay(1);
1486
1487	/* Build DBDMA commands list */
1488	sg = hwif->sg_table;
1489	while (i && sg_dma_len(sg)) {
1490		u32 cur_addr;
1491		u32 cur_len;
1492
1493		cur_addr = sg_dma_address(sg);
1494		cur_len = sg_dma_len(sg);
1495
1496		if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
1497			if (pmif->broken_dma_warn == 0) {
1498				printk(KERN_WARNING "%s: DMA on non aligned address, "
1499				       "switching to PIO on Ohare chipset\n", drive->name);
1500				pmif->broken_dma_warn = 1;
1501			}
1502			return 0;
1503		}
1504		while (cur_len) {
1505			unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
1506
1507			if (count++ >= MAX_DCMDS) {
1508				printk(KERN_WARNING "%s: DMA table too small\n",
1509				       drive->name);
1510				return 0;
1511			}
1512			st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
1513			st_le16(&table->req_count, tc);
1514			st_le32(&table->phy_addr, cur_addr);
1515			table->cmd_dep = 0;
1516			table->xfer_status = 0;
1517			table->res_count = 0;
1518			cur_addr += tc;
1519			cur_len -= tc;
1520			++table;
1521		}
1522		sg = sg_next(sg);
1523		i--;
1524	}
1525
1526	/* convert the last command to an input/output last command */
1527	if (count) {
1528		st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
1529		/* add the stop command to the end of the list */
1530		memset(table, 0, sizeof(struct dbdma_cmd));
1531		st_le16(&table->command, DBDMA_STOP);
1532		mb();
1533		writel(hwif->dmatable_dma, &dma->cmdptr);
1534		return 1;
1535	}
1536
1537	printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
1538
1539	return 0; /* revert to PIO for this request */
1540}
1541
1542/*
1543 * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1544 * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1545 */
1546static int pmac_ide_dma_setup(ide_drive_t *drive, struct ide_cmd *cmd)
1547{
1548	ide_hwif_t *hwif = drive->hwif;
1549	pmac_ide_hwif_t *pmif =
1550		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1551	u8 unit = drive->dn & 1, ata4 = (pmif->kind == controller_kl_ata4);
1552	u8 write = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1553
1554	if (pmac_ide_build_dmatable(drive, cmd) == 0)
1555		return 1;
1556
1557	/* Apple adds 60ns to wrDataSetup on reads */
1558	if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
1559		writel(pmif->timings[unit] + (write ? 0 : 0x00800000UL),
1560			PMAC_IDE_REG(IDE_TIMING_CONFIG));
1561		(void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
1562	}
1563
1564	return 0;
1565}
1566
1567/*
1568 * Kick the DMA controller into life after the DMA command has been issued
1569 * to the drive.
1570 */
1571static void
1572pmac_ide_dma_start(ide_drive_t *drive)
1573{
1574	ide_hwif_t *hwif = drive->hwif;
1575	pmac_ide_hwif_t *pmif =
1576		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1577	volatile struct dbdma_regs __iomem *dma;
1578
1579	dma = pmif->dma_regs;
1580
1581	writel((RUN << 16) | RUN, &dma->control);
1582	/* Make sure it gets to the controller right now */
1583	(void)readl(&dma->control);
1584}
1585
1586/*
1587 * After a DMA transfer, make sure the controller is stopped
1588 */
1589static int
1590pmac_ide_dma_end (ide_drive_t *drive)
1591{
1592	ide_hwif_t *hwif = drive->hwif;
1593	pmac_ide_hwif_t *pmif =
1594		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1595	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1596	u32 dstat;
1597
1598	dstat = readl(&dma->status);
1599	writel(((RUN|WAKE|DEAD) << 16), &dma->control);
1600
1601	/* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1602	 * in theory, but with ATAPI decices doing buffer underruns, that would
1603	 * cause us to disable DMA, which isn't what we want
1604	 */
1605	return (dstat & (RUN|DEAD)) != RUN;
1606}
1607
1608/*
1609 * Check out that the interrupt we got was for us. We can't always know this
1610 * for sure with those Apple interfaces (well, we could on the recent ones but
1611 * that's not implemented yet), on the other hand, we don't have shared interrupts
1612 * so it's not really a problem
1613 */
1614static int
1615pmac_ide_dma_test_irq (ide_drive_t *drive)
1616{
1617	ide_hwif_t *hwif = drive->hwif;
1618	pmac_ide_hwif_t *pmif =
1619		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1620	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1621	unsigned long status, timeout;
1622
1623	/* We have to things to deal with here:
1624	 * 
1625	 * - The dbdma won't stop if the command was started
1626	 * but completed with an error without transferring all
1627	 * datas. This happens when bad blocks are met during
1628	 * a multi-block transfer.
1629	 * 
1630	 * - The dbdma fifo hasn't yet finished flushing to
1631	 * to system memory when the disk interrupt occurs.
1632	 * 
1633	 */
1634
1635	/* If ACTIVE is cleared, the STOP command have passed and
1636	 * transfer is complete.
1637	 */
1638	status = readl(&dma->status);
1639	if (!(status & ACTIVE))
1640		return 1;
1641
1642	/* If dbdma didn't execute the STOP command yet, the
1643	 * active bit is still set. We consider that we aren't
1644	 * sharing interrupts (which is hopefully the case with
1645	 * those controllers) and so we just try to flush the
1646	 * channel for pending data in the fifo
1647	 */
1648	udelay(1);
1649	writel((FLUSH << 16) | FLUSH, &dma->control);
1650	timeout = 0;
1651	for (;;) {
1652		udelay(1);
1653		status = readl(&dma->status);
1654		if ((status & FLUSH) == 0)
1655			break;
1656		if (++timeout > 100) {
1657			printk(KERN_WARNING "ide%d, ide_dma_test_irq timeout flushing channel\n",
1658			       hwif->index);
1659			break;
1660		}
1661	}	
1662	return 1;
1663}
1664
1665static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
1666{
1667}
1668
1669static void
1670pmac_ide_dma_lost_irq (ide_drive_t *drive)
1671{
1672	ide_hwif_t *hwif = drive->hwif;
1673	pmac_ide_hwif_t *pmif =
1674		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1675	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1676	unsigned long status = readl(&dma->status);
1677
1678	printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
1679}
1680
1681static const struct ide_dma_ops pmac_dma_ops = {
1682	.dma_host_set		= pmac_ide_dma_host_set,
1683	.dma_setup		= pmac_ide_dma_setup,
1684	.dma_start		= pmac_ide_dma_start,
1685	.dma_end		= pmac_ide_dma_end,
1686	.dma_test_irq		= pmac_ide_dma_test_irq,
1687	.dma_lost_irq		= pmac_ide_dma_lost_irq,
1688};
1689
1690/*
1691 * Allocate the data structures needed for using DMA with an interface
1692 * and fill the proper list of functions pointers
1693 */
1694static int __devinit pmac_ide_init_dma(ide_hwif_t *hwif,
1695				       const struct ide_port_info *d)
1696{
1697	pmac_ide_hwif_t *pmif =
1698		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1699	struct pci_dev *dev = to_pci_dev(hwif->dev);
1700
1701	/* We won't need pci_dev if we switch to generic consistent
1702	 * DMA routines ...
1703	 */
1704	if (dev == NULL || pmif->dma_regs == 0)
1705		return -ENODEV;
1706	/*
1707	 * Allocate space for the DBDMA commands.
1708	 * The +2 is +1 for the stop command and +1 to allow for
1709	 * aligning the start address to a multiple of 16 bytes.
1710	 */
1711	pmif->dma_table_cpu = pci_alloc_consistent(
1712		dev,
1713		(MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
1714		&hwif->dmatable_dma);
1715	if (pmif->dma_table_cpu == NULL) {
1716		printk(KERN_ERR "%s: unable to allocate DMA command list\n",
1717		       hwif->name);
1718		return -ENOMEM;
1719	}
1720
1721	hwif->sg_max_nents = MAX_DCMDS;
1722
1723	return 0;
1724}
1725
1726module_init(pmac_ide_probe);
1727
1728MODULE_LICENSE("GPL");