Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * Copyright © 2017 Intel Corporation
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice (including the next
 12 * paragraph) shall be included in all copies or substantial portions of the
 13 * Software.
 14 *
 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 21 * IN THE SOFTWARE.
 22 *
 23 */
 24
 25#include <linux/slab.h>
 26
 27#include "i915_syncmap.h"
 28
 29#include "i915_gem.h" /* GEM_BUG_ON() */
 30#include "i915_selftest.h"
 31
 32#define SHIFT ilog2(KSYNCMAP)
 33#define MASK (KSYNCMAP - 1)
 34
 35/*
 36 * struct i915_syncmap is a layer of a radixtree that maps a u64 fence
 37 * context id to the last u32 fence seqno waited upon from that context.
 38 * Unlike lib/radixtree it uses a parent pointer that allows traversal back to
 39 * the root. This allows us to access the whole tree via a single pointer
 40 * to the most recently used layer. We expect fence contexts to be dense
 41 * and most reuse to be on the same i915_gem_context but on neighbouring
 42 * engines (i.e. on adjacent contexts) and reuse the same leaf, a very
 43 * effective lookup cache. If the new lookup is not on the same leaf, we
 44 * expect it to be on the neighbouring branch.
 45 *
 46 * A leaf holds an array of u32 seqno, and has height 0. The bitmap field
 47 * allows us to store whether a particular seqno is valid (i.e. allows us
 48 * to distinguish unset from 0).
 49 *
 50 * A branch holds an array of layer pointers, and has height > 0, and always
 51 * has at least 2 layers (either branches or leaves) below it.
 52 *
 53 * For example,
 54 *	for x in
 55 *	  0 1 2 0x10 0x11 0x200 0x201
 56 *	  0x500000 0x500001 0x503000 0x503001
 57 *	  0xE<<60:
 58 *		i915_syncmap_set(&sync, x, lower_32_bits(x));
 59 * will build a tree like:
 60 *	0xXXXXXXXXXXXXXXXX
 61 *	0-> 0x0000000000XXXXXX
 62 *	|   0-> 0x0000000000000XXX
 63 *	|   |   0-> 0x00000000000000XX
 64 *	|   |   |   0-> 0x000000000000000X 0:0, 1:1, 2:2
 65 *	|   |   |   1-> 0x000000000000001X 0:10, 1:11
 66 *	|   |   2-> 0x000000000000020X 0:200, 1:201
 67 *	|   5-> 0x000000000050XXXX
 68 *	|       0-> 0x000000000050000X 0:500000, 1:500001
 69 *	|       3-> 0x000000000050300X 0:503000, 1:503001
 70 *	e-> 0xe00000000000000X e:e
 71 */
 72
 73struct i915_syncmap {
 74	u64 prefix;
 75	unsigned int height;
 76	unsigned int bitmap;
 77	struct i915_syncmap *parent;
 78	/*
 79	 * Following this header is an array of either seqno or child pointers:
 80	 * union {
 81	 *	u32 seqno[KSYNCMAP];
 82	 *	struct i915_syncmap *child[KSYNCMAP];
 83	 * };
 84	 */
 85};
 86
 87/**
 88 * i915_syncmap_init -- initialise the #i915_syncmap
 89 * @root: pointer to the #i915_syncmap
 90 */
 91void i915_syncmap_init(struct i915_syncmap **root)
 92{
 93	BUILD_BUG_ON_NOT_POWER_OF_2(KSYNCMAP);
 94	BUILD_BUG_ON_NOT_POWER_OF_2(SHIFT);
 95	BUILD_BUG_ON(KSYNCMAP > BITS_PER_TYPE((*root)->bitmap));
 96	*root = NULL;
 97}
 98
 99static inline u32 *__sync_seqno(struct i915_syncmap *p)
100{
101	GEM_BUG_ON(p->height);
102	return (u32 *)(p + 1);
103}
104
105static inline struct i915_syncmap **__sync_child(struct i915_syncmap *p)
106{
107	GEM_BUG_ON(!p->height);
108	return (struct i915_syncmap **)(p + 1);
109}
110
111static inline unsigned int
112__sync_branch_idx(const struct i915_syncmap *p, u64 id)
113{
114	return (id >> p->height) & MASK;
115}
116
117static inline unsigned int
118__sync_leaf_idx(const struct i915_syncmap *p, u64 id)
119{
120	GEM_BUG_ON(p->height);
121	return id & MASK;
122}
123
124static inline u64 __sync_branch_prefix(const struct i915_syncmap *p, u64 id)
125{
126	return id >> p->height >> SHIFT;
127}
128
129static inline u64 __sync_leaf_prefix(const struct i915_syncmap *p, u64 id)
130{
131	GEM_BUG_ON(p->height);
132	return id >> SHIFT;
133}
134
135static inline bool seqno_later(u32 a, u32 b)
136{
137	return (s32)(a - b) >= 0;
138}
139
140/**
141 * i915_syncmap_is_later -- compare against the last know sync point
142 * @root: pointer to the #i915_syncmap
143 * @id: the context id (other timeline) we are synchronising to
144 * @seqno: the sequence number along the other timeline
145 *
146 * If we have already synchronised this @root timeline with another (@id) then
147 * we can omit any repeated or earlier synchronisation requests. If the two
148 * timelines are already coupled, we can also omit the dependency between the
149 * two as that is already known via the timeline.
150 *
151 * Returns true if the two timelines are already synchronised wrt to @seqno,
152 * false if not and the synchronisation must be emitted.
153 */
154bool i915_syncmap_is_later(struct i915_syncmap **root, u64 id, u32 seqno)
155{
156	struct i915_syncmap *p;
157	unsigned int idx;
158
159	p = *root;
160	if (!p)
161		return false;
162
163	if (likely(__sync_leaf_prefix(p, id) == p->prefix))
164		goto found;
165
166	/* First climb the tree back to a parent branch */
167	do {
168		p = p->parent;
169		if (!p)
170			return false;
171
172		if (__sync_branch_prefix(p, id) == p->prefix)
173			break;
174	} while (1);
175
176	/* And then descend again until we find our leaf */
177	do {
178		if (!p->height)
179			break;
180
181		p = __sync_child(p)[__sync_branch_idx(p, id)];
182		if (!p)
183			return false;
184
185		if (__sync_branch_prefix(p, id) != p->prefix)
186			return false;
187	} while (1);
188
189	*root = p;
190found:
191	idx = __sync_leaf_idx(p, id);
192	if (!(p->bitmap & BIT(idx)))
193		return false;
194
195	return seqno_later(__sync_seqno(p)[idx], seqno);
196}
197
198static struct i915_syncmap *
199__sync_alloc_leaf(struct i915_syncmap *parent, u64 id)
200{
201	struct i915_syncmap *p;
202
203	p = kmalloc(sizeof(*p) + KSYNCMAP * sizeof(u32), GFP_KERNEL);
204	if (unlikely(!p))
205		return NULL;
206
207	p->parent = parent;
208	p->height = 0;
209	p->bitmap = 0;
210	p->prefix = __sync_leaf_prefix(p, id);
211	return p;
212}
213
214static inline void __sync_set_seqno(struct i915_syncmap *p, u64 id, u32 seqno)
215{
216	unsigned int idx = __sync_leaf_idx(p, id);
217
218	p->bitmap |= BIT(idx);
219	__sync_seqno(p)[idx] = seqno;
220}
221
222static inline void __sync_set_child(struct i915_syncmap *p,
223				    unsigned int idx,
224				    struct i915_syncmap *child)
225{
226	p->bitmap |= BIT(idx);
227	__sync_child(p)[idx] = child;
228}
229
230static noinline int __sync_set(struct i915_syncmap **root, u64 id, u32 seqno)
231{
232	struct i915_syncmap *p = *root;
233	unsigned int idx;
234
235	if (!p) {
236		p = __sync_alloc_leaf(NULL, id);
237		if (unlikely(!p))
238			return -ENOMEM;
239
240		goto found;
241	}
242
243	/* Caller handled the likely cached case */
244	GEM_BUG_ON(__sync_leaf_prefix(p, id) == p->prefix);
245
246	/* Climb back up the tree until we find a common prefix */
247	do {
248		if (!p->parent)
249			break;
250
251		p = p->parent;
252
253		if (__sync_branch_prefix(p, id) == p->prefix)
254			break;
255	} while (1);
256
257	/*
258	 * No shortcut, we have to descend the tree to find the right layer
259	 * containing this fence.
260	 *
261	 * Each layer in the tree holds 16 (KSYNCMAP) pointers, either fences
262	 * or lower layers. Leaf nodes (height = 0) contain the fences, all
263	 * other nodes (height > 0) are internal layers that point to a lower
264	 * node. Each internal layer has at least 2 descendents.
265	 *
266	 * Starting at the top, we check whether the current prefix matches. If
267	 * it doesn't, we have gone past our target and need to insert a join
268	 * into the tree, and a new leaf node for the target as a descendent
269	 * of the join, as well as the original layer.
270	 *
271	 * The matching prefix means we are still following the right branch
272	 * of the tree. If it has height 0, we have found our leaf and just
273	 * need to replace the fence slot with ourselves. If the height is
274	 * not zero, our slot contains the next layer in the tree (unless
275	 * it is empty, in which case we can add ourselves as a new leaf).
276	 * As descend the tree the prefix grows (and height decreases).
277	 */
278	do {
279		struct i915_syncmap *next;
280
281		if (__sync_branch_prefix(p, id) != p->prefix) {
282			unsigned int above;
283
284			/* Insert a join above the current layer */
285			next = kzalloc(sizeof(*next) + KSYNCMAP * sizeof(next),
286				       GFP_KERNEL);
287			if (unlikely(!next))
288				return -ENOMEM;
289
290			/* Compute the height at which these two diverge */
291			above = fls64(__sync_branch_prefix(p, id) ^ p->prefix);
292			above = round_up(above, SHIFT);
293			next->height = above + p->height;
294			next->prefix = __sync_branch_prefix(next, id);
295
296			/* Insert the join into the parent */
297			if (p->parent) {
298				idx = __sync_branch_idx(p->parent, id);
299				__sync_child(p->parent)[idx] = next;
300				GEM_BUG_ON(!(p->parent->bitmap & BIT(idx)));
301			}
302			next->parent = p->parent;
303
304			/* Compute the idx of the other branch, not our id! */
305			idx = p->prefix >> (above - SHIFT) & MASK;
306			__sync_set_child(next, idx, p);
307			p->parent = next;
308
309			/* Ascend to the join */
310			p = next;
311		} else {
312			if (!p->height)
313				break;
314		}
315
316		/* Descend into the next layer */
317		GEM_BUG_ON(!p->height);
318		idx = __sync_branch_idx(p, id);
319		next = __sync_child(p)[idx];
320		if (!next) {
321			next = __sync_alloc_leaf(p, id);
322			if (unlikely(!next))
323				return -ENOMEM;
324
325			__sync_set_child(p, idx, next);
326			p = next;
327			break;
328		}
329
330		p = next;
331	} while (1);
332
333found:
334	GEM_BUG_ON(p->prefix != __sync_leaf_prefix(p, id));
335	__sync_set_seqno(p, id, seqno);
336	*root = p;
337	return 0;
338}
339
340/**
341 * i915_syncmap_set -- mark the most recent syncpoint between contexts
342 * @root: pointer to the #i915_syncmap
343 * @id: the context id (other timeline) we have synchronised to
344 * @seqno: the sequence number along the other timeline
345 *
346 * When we synchronise this @root timeline with another (@id), we also know
347 * that we have synchronized with all previous seqno along that timeline. If
348 * we then have a request to synchronise with the same seqno or older, we can
349 * omit it, see i915_syncmap_is_later()
350 *
351 * Returns 0 on success, or a negative error code.
352 */
353int i915_syncmap_set(struct i915_syncmap **root, u64 id, u32 seqno)
354{
355	struct i915_syncmap *p = *root;
356
357	/*
358	 * We expect to be called in sequence following is_later(id), which
359	 * should have preloaded the root for us.
360	 */
361	if (likely(p && __sync_leaf_prefix(p, id) == p->prefix)) {
362		__sync_set_seqno(p, id, seqno);
363		return 0;
364	}
365
366	return __sync_set(root, id, seqno);
367}
368
369static void __sync_free(struct i915_syncmap *p)
370{
371	if (p->height) {
372		unsigned int i;
373
374		while ((i = ffs(p->bitmap))) {
375			p->bitmap &= ~0u << i;
376			__sync_free(__sync_child(p)[i - 1]);
377		}
378	}
379
380	kfree(p);
381}
382
383/**
384 * i915_syncmap_free -- free all memory associated with the syncmap
385 * @root: pointer to the #i915_syncmap
386 *
387 * Either when the timeline is to be freed and we no longer need the sync
388 * point tracking, or when the fences are all known to be signaled and the
389 * sync point tracking is redundant, we can free the #i915_syncmap to recover
390 * its allocations.
391 *
392 * Will reinitialise the @root pointer so that the #i915_syncmap is ready for
393 * reuse.
394 */
395void i915_syncmap_free(struct i915_syncmap **root)
396{
397	struct i915_syncmap *p;
398
399	p = *root;
400	if (!p)
401		return;
402
403	while (p->parent)
404		p = p->parent;
405
406	__sync_free(p);
407	*root = NULL;
408}
409
410#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
411#include "selftests/i915_syncmap.c"
412#endif