Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.2.
  1/*
  2 * Copyright (c) 2010-2011 Samsung Electronics Co., Ltd.
  3 *		http://www.samsung.com
  4 *
  5 * EXYNOS4 - CPU frequency scaling support
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10*/
 11
 12#include <linux/types.h>
 13#include <linux/kernel.h>
 14#include <linux/err.h>
 15#include <linux/clk.h>
 16#include <linux/io.h>
 17#include <linux/slab.h>
 18#include <linux/regulator/consumer.h>
 19#include <linux/cpufreq.h>
 20
 21#include <mach/map.h>
 22#include <mach/regs-clock.h>
 23#include <mach/regs-mem.h>
 24
 25#include <plat/clock.h>
 26#include <plat/pm.h>
 27
 28static struct clk *cpu_clk;
 29static struct clk *moutcore;
 30static struct clk *mout_mpll;
 31static struct clk *mout_apll;
 32
 33static struct regulator *arm_regulator;
 34static struct regulator *int_regulator;
 35
 36static struct cpufreq_freqs freqs;
 37static unsigned int memtype;
 38
 39enum exynos4_memory_type {
 40	DDR2 = 4,
 41	LPDDR2,
 42	DDR3,
 43};
 44
 45enum cpufreq_level_index {
 46	L0, L1, L2, L3, CPUFREQ_LEVEL_END,
 47};
 48
 49static struct cpufreq_frequency_table exynos4_freq_table[] = {
 50	{L0, 1000*1000},
 51	{L1, 800*1000},
 52	{L2, 400*1000},
 53	{L3, 100*1000},
 54	{0, CPUFREQ_TABLE_END},
 55};
 56
 57static unsigned int clkdiv_cpu0[CPUFREQ_LEVEL_END][7] = {
 58	/*
 59	 * Clock divider value for following
 60	 * { DIVCORE, DIVCOREM0, DIVCOREM1, DIVPERIPH,
 61	 *		DIVATB, DIVPCLK_DBG, DIVAPLL }
 62	 */
 63
 64	/* ARM L0: 1000MHz */
 65	{ 0, 3, 7, 3, 3, 0, 1 },
 66
 67	/* ARM L1: 800MHz */
 68	{ 0, 3, 7, 3, 3, 0, 1 },
 69
 70	/* ARM L2: 400MHz */
 71	{ 0, 1, 3, 1, 3, 0, 1 },
 72
 73	/* ARM L3: 100MHz */
 74	{ 0, 0, 1, 0, 3, 1, 1 },
 75};
 76
 77static unsigned int clkdiv_cpu1[CPUFREQ_LEVEL_END][2] = {
 78	/*
 79	 * Clock divider value for following
 80	 * { DIVCOPY, DIVHPM }
 81	 */
 82
 83	 /* ARM L0: 1000MHz */
 84	{ 3, 0 },
 85
 86	/* ARM L1: 800MHz */
 87	{ 3, 0 },
 88
 89	/* ARM L2: 400MHz */
 90	{ 3, 0 },
 91
 92	/* ARM L3: 100MHz */
 93	{ 3, 0 },
 94};
 95
 96static unsigned int clkdiv_dmc0[CPUFREQ_LEVEL_END][8] = {
 97	/*
 98	 * Clock divider value for following
 99	 * { DIVACP, DIVACP_PCLK, DIVDPHY, DIVDMC, DIVDMCD
100	 *		DIVDMCP, DIVCOPY2, DIVCORE_TIMERS }
101	 */
102
103	/* DMC L0: 400MHz */
104	{ 3, 1, 1, 1, 1, 1, 3, 1 },
105
106	/* DMC L1: 400MHz */
107	{ 3, 1, 1, 1, 1, 1, 3, 1 },
108
109	/* DMC L2: 266.7MHz */
110	{ 7, 1, 1, 2, 1, 1, 3, 1 },
111
112	/* DMC L3: 200MHz */
113	{ 7, 1, 1, 3, 1, 1, 3, 1 },
114};
115
116static unsigned int clkdiv_top[CPUFREQ_LEVEL_END][5] = {
117	/*
118	 * Clock divider value for following
119	 * { DIVACLK200, DIVACLK100, DIVACLK160, DIVACLK133, DIVONENAND }
120	 */
121
122	/* ACLK200 L0: 200MHz */
123	{ 3, 7, 4, 5, 1 },
124
125	/* ACLK200 L1: 200MHz */
126	{ 3, 7, 4, 5, 1 },
127
128	/* ACLK200 L2: 160MHz */
129	{ 4, 7, 5, 7, 1 },
130
131	/* ACLK200 L3: 133.3MHz */
132	{ 5, 7, 7, 7, 1 },
133};
134
135static unsigned int clkdiv_lr_bus[CPUFREQ_LEVEL_END][2] = {
136	/*
137	 * Clock divider value for following
138	 * { DIVGDL/R, DIVGPL/R }
139	 */
140
141	/* ACLK_GDL/R L0: 200MHz */
142	{ 3, 1 },
143
144	/* ACLK_GDL/R L1: 200MHz */
145	{ 3, 1 },
146
147	/* ACLK_GDL/R L2: 160MHz */
148	{ 4, 1 },
149
150	/* ACLK_GDL/R L3: 133.3MHz */
151	{ 5, 1 },
152};
153
154struct cpufreq_voltage_table {
155	unsigned int	index;		/* any */
156	unsigned int	arm_volt;	/* uV */
157	unsigned int	int_volt;
158};
159
160static struct cpufreq_voltage_table exynos4_volt_table[CPUFREQ_LEVEL_END] = {
161	{
162		.index		= L0,
163		.arm_volt	= 1200000,
164		.int_volt	= 1100000,
165	}, {
166		.index		= L1,
167		.arm_volt	= 1100000,
168		.int_volt	= 1100000,
169	}, {
170		.index		= L2,
171		.arm_volt	= 1000000,
172		.int_volt	= 1000000,
173	}, {
174		.index		= L3,
175		.arm_volt	= 900000,
176		.int_volt	= 1000000,
177	},
178};
179
180static unsigned int exynos4_apll_pms_table[CPUFREQ_LEVEL_END] = {
181	/* APLL FOUT L0: 1000MHz */
182	((250 << 16) | (6 << 8) | 1),
183
184	/* APLL FOUT L1: 800MHz */
185	((200 << 16) | (6 << 8) | 1),
186
187	/* APLL FOUT L2 : 400MHz */
188	((200 << 16) | (6 << 8) | 2),
189
190	/* APLL FOUT L3: 100MHz */
191	((200 << 16) | (6 << 8) | 4),
192};
193
194static int exynos4_verify_speed(struct cpufreq_policy *policy)
195{
196	return cpufreq_frequency_table_verify(policy, exynos4_freq_table);
197}
198
199static unsigned int exynos4_getspeed(unsigned int cpu)
200{
201	return clk_get_rate(cpu_clk) / 1000;
202}
203
204static void exynos4_set_clkdiv(unsigned int div_index)
205{
206	unsigned int tmp;
207
208	/* Change Divider - CPU0 */
209
210	tmp = __raw_readl(S5P_CLKDIV_CPU);
211
212	tmp &= ~(S5P_CLKDIV_CPU0_CORE_MASK | S5P_CLKDIV_CPU0_COREM0_MASK |
213		S5P_CLKDIV_CPU0_COREM1_MASK | S5P_CLKDIV_CPU0_PERIPH_MASK |
214		S5P_CLKDIV_CPU0_ATB_MASK | S5P_CLKDIV_CPU0_PCLKDBG_MASK |
215		S5P_CLKDIV_CPU0_APLL_MASK);
216
217	tmp |= ((clkdiv_cpu0[div_index][0] << S5P_CLKDIV_CPU0_CORE_SHIFT) |
218		(clkdiv_cpu0[div_index][1] << S5P_CLKDIV_CPU0_COREM0_SHIFT) |
219		(clkdiv_cpu0[div_index][2] << S5P_CLKDIV_CPU0_COREM1_SHIFT) |
220		(clkdiv_cpu0[div_index][3] << S5P_CLKDIV_CPU0_PERIPH_SHIFT) |
221		(clkdiv_cpu0[div_index][4] << S5P_CLKDIV_CPU0_ATB_SHIFT) |
222		(clkdiv_cpu0[div_index][5] << S5P_CLKDIV_CPU0_PCLKDBG_SHIFT) |
223		(clkdiv_cpu0[div_index][6] << S5P_CLKDIV_CPU0_APLL_SHIFT));
224
225	__raw_writel(tmp, S5P_CLKDIV_CPU);
226
227	do {
228		tmp = __raw_readl(S5P_CLKDIV_STATCPU);
229	} while (tmp & 0x1111111);
230
231	/* Change Divider - CPU1 */
232
233	tmp = __raw_readl(S5P_CLKDIV_CPU1);
234
235	tmp &= ~((0x7 << 4) | 0x7);
236
237	tmp |= ((clkdiv_cpu1[div_index][0] << 4) |
238		(clkdiv_cpu1[div_index][1] << 0));
239
240	__raw_writel(tmp, S5P_CLKDIV_CPU1);
241
242	do {
243		tmp = __raw_readl(S5P_CLKDIV_STATCPU1);
244	} while (tmp & 0x11);
245
246	/* Change Divider - DMC0 */
247
248	tmp = __raw_readl(S5P_CLKDIV_DMC0);
249
250	tmp &= ~(S5P_CLKDIV_DMC0_ACP_MASK | S5P_CLKDIV_DMC0_ACPPCLK_MASK |
251		S5P_CLKDIV_DMC0_DPHY_MASK | S5P_CLKDIV_DMC0_DMC_MASK |
252		S5P_CLKDIV_DMC0_DMCD_MASK | S5P_CLKDIV_DMC0_DMCP_MASK |
253		S5P_CLKDIV_DMC0_COPY2_MASK | S5P_CLKDIV_DMC0_CORETI_MASK);
254
255	tmp |= ((clkdiv_dmc0[div_index][0] << S5P_CLKDIV_DMC0_ACP_SHIFT) |
256		(clkdiv_dmc0[div_index][1] << S5P_CLKDIV_DMC0_ACPPCLK_SHIFT) |
257		(clkdiv_dmc0[div_index][2] << S5P_CLKDIV_DMC0_DPHY_SHIFT) |
258		(clkdiv_dmc0[div_index][3] << S5P_CLKDIV_DMC0_DMC_SHIFT) |
259		(clkdiv_dmc0[div_index][4] << S5P_CLKDIV_DMC0_DMCD_SHIFT) |
260		(clkdiv_dmc0[div_index][5] << S5P_CLKDIV_DMC0_DMCP_SHIFT) |
261		(clkdiv_dmc0[div_index][6] << S5P_CLKDIV_DMC0_COPY2_SHIFT) |
262		(clkdiv_dmc0[div_index][7] << S5P_CLKDIV_DMC0_CORETI_SHIFT));
263
264	__raw_writel(tmp, S5P_CLKDIV_DMC0);
265
266	do {
267		tmp = __raw_readl(S5P_CLKDIV_STAT_DMC0);
268	} while (tmp & 0x11111111);
269
270	/* Change Divider - TOP */
271
272	tmp = __raw_readl(S5P_CLKDIV_TOP);
273
274	tmp &= ~(S5P_CLKDIV_TOP_ACLK200_MASK | S5P_CLKDIV_TOP_ACLK100_MASK |
275		S5P_CLKDIV_TOP_ACLK160_MASK | S5P_CLKDIV_TOP_ACLK133_MASK |
276		S5P_CLKDIV_TOP_ONENAND_MASK);
277
278	tmp |= ((clkdiv_top[div_index][0] << S5P_CLKDIV_TOP_ACLK200_SHIFT) |
279		(clkdiv_top[div_index][1] << S5P_CLKDIV_TOP_ACLK100_SHIFT) |
280		(clkdiv_top[div_index][2] << S5P_CLKDIV_TOP_ACLK160_SHIFT) |
281		(clkdiv_top[div_index][3] << S5P_CLKDIV_TOP_ACLK133_SHIFT) |
282		(clkdiv_top[div_index][4] << S5P_CLKDIV_TOP_ONENAND_SHIFT));
283
284	__raw_writel(tmp, S5P_CLKDIV_TOP);
285
286	do {
287		tmp = __raw_readl(S5P_CLKDIV_STAT_TOP);
288	} while (tmp & 0x11111);
289
290	/* Change Divider - LEFTBUS */
291
292	tmp = __raw_readl(S5P_CLKDIV_LEFTBUS);
293
294	tmp &= ~(S5P_CLKDIV_BUS_GDLR_MASK | S5P_CLKDIV_BUS_GPLR_MASK);
295
296	tmp |= ((clkdiv_lr_bus[div_index][0] << S5P_CLKDIV_BUS_GDLR_SHIFT) |
297		(clkdiv_lr_bus[div_index][1] << S5P_CLKDIV_BUS_GPLR_SHIFT));
298
299	__raw_writel(tmp, S5P_CLKDIV_LEFTBUS);
300
301	do {
302		tmp = __raw_readl(S5P_CLKDIV_STAT_LEFTBUS);
303	} while (tmp & 0x11);
304
305	/* Change Divider - RIGHTBUS */
306
307	tmp = __raw_readl(S5P_CLKDIV_RIGHTBUS);
308
309	tmp &= ~(S5P_CLKDIV_BUS_GDLR_MASK | S5P_CLKDIV_BUS_GPLR_MASK);
310
311	tmp |= ((clkdiv_lr_bus[div_index][0] << S5P_CLKDIV_BUS_GDLR_SHIFT) |
312		(clkdiv_lr_bus[div_index][1] << S5P_CLKDIV_BUS_GPLR_SHIFT));
313
314	__raw_writel(tmp, S5P_CLKDIV_RIGHTBUS);
315
316	do {
317		tmp = __raw_readl(S5P_CLKDIV_STAT_RIGHTBUS);
318	} while (tmp & 0x11);
319}
320
321static void exynos4_set_apll(unsigned int index)
322{
323	unsigned int tmp;
324
325	/* 1. MUX_CORE_SEL = MPLL, ARMCLK uses MPLL for lock time */
326	clk_set_parent(moutcore, mout_mpll);
327
328	do {
329		tmp = (__raw_readl(S5P_CLKMUX_STATCPU)
330			>> S5P_CLKSRC_CPU_MUXCORE_SHIFT);
331		tmp &= 0x7;
332	} while (tmp != 0x2);
333
334	/* 2. Set APLL Lock time */
335	__raw_writel(S5P_APLL_LOCKTIME, S5P_APLL_LOCK);
336
337	/* 3. Change PLL PMS values */
338	tmp = __raw_readl(S5P_APLL_CON0);
339	tmp &= ~((0x3ff << 16) | (0x3f << 8) | (0x7 << 0));
340	tmp |= exynos4_apll_pms_table[index];
341	__raw_writel(tmp, S5P_APLL_CON0);
342
343	/* 4. wait_lock_time */
344	do {
345		tmp = __raw_readl(S5P_APLL_CON0);
346	} while (!(tmp & (0x1 << S5P_APLLCON0_LOCKED_SHIFT)));
347
348	/* 5. MUX_CORE_SEL = APLL */
349	clk_set_parent(moutcore, mout_apll);
350
351	do {
352		tmp = __raw_readl(S5P_CLKMUX_STATCPU);
353		tmp &= S5P_CLKMUX_STATCPU_MUXCORE_MASK;
354	} while (tmp != (0x1 << S5P_CLKSRC_CPU_MUXCORE_SHIFT));
355}
356
357static void exynos4_set_frequency(unsigned int old_index, unsigned int new_index)
358{
359	unsigned int tmp;
360
361	if (old_index > new_index) {
362		/* The frequency changing to L0 needs to change apll */
363		if (freqs.new == exynos4_freq_table[L0].frequency) {
364			/* 1. Change the system clock divider values */
365			exynos4_set_clkdiv(new_index);
366
367			/* 2. Change the apll m,p,s value */
368			exynos4_set_apll(new_index);
369		} else {
370			/* 1. Change the system clock divider values */
371			exynos4_set_clkdiv(new_index);
372
373			/* 2. Change just s value in apll m,p,s value */
374			tmp = __raw_readl(S5P_APLL_CON0);
375			tmp &= ~(0x7 << 0);
376			tmp |= (exynos4_apll_pms_table[new_index] & 0x7);
377			__raw_writel(tmp, S5P_APLL_CON0);
378		}
379	}
380
381	else if (old_index < new_index) {
382		/* The frequency changing from L0 needs to change apll */
383		if (freqs.old == exynos4_freq_table[L0].frequency) {
384			/* 1. Change the apll m,p,s value */
385			exynos4_set_apll(new_index);
386
387			/* 2. Change the system clock divider values */
388			exynos4_set_clkdiv(new_index);
389		} else {
390			/* 1. Change just s value in apll m,p,s value */
391			tmp = __raw_readl(S5P_APLL_CON0);
392			tmp &= ~(0x7 << 0);
393			tmp |= (exynos4_apll_pms_table[new_index] & 0x7);
394			__raw_writel(tmp, S5P_APLL_CON0);
395
396			/* 2. Change the system clock divider values */
397			exynos4_set_clkdiv(new_index);
398		}
399	}
400}
401
402static int exynos4_target(struct cpufreq_policy *policy,
403			  unsigned int target_freq,
404			  unsigned int relation)
405{
406	unsigned int index, old_index;
407	unsigned int arm_volt, int_volt;
408
409	freqs.old = exynos4_getspeed(policy->cpu);
410
411	if (cpufreq_frequency_table_target(policy, exynos4_freq_table,
412					   freqs.old, relation, &old_index))
413		return -EINVAL;
414
415	if (cpufreq_frequency_table_target(policy, exynos4_freq_table,
416					   target_freq, relation, &index))
417		return -EINVAL;
418
419	freqs.new = exynos4_freq_table[index].frequency;
420	freqs.cpu = policy->cpu;
421
422	if (freqs.new == freqs.old)
423		return 0;
424
425	/* get the voltage value */
426	arm_volt = exynos4_volt_table[index].arm_volt;
427	int_volt = exynos4_volt_table[index].int_volt;
428
429	cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
430
431	/* control regulator */
432	if (freqs.new > freqs.old) {
433		/* Voltage up */
434		regulator_set_voltage(arm_regulator, arm_volt, arm_volt);
435		regulator_set_voltage(int_regulator, int_volt, int_volt);
436	}
437
438	/* Clock Configuration Procedure */
439	exynos4_set_frequency(old_index, index);
440
441	/* control regulator */
442	if (freqs.new < freqs.old) {
443		/* Voltage down */
444		regulator_set_voltage(arm_regulator, arm_volt, arm_volt);
445		regulator_set_voltage(int_regulator, int_volt, int_volt);
446	}
447
448	cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
449
450	return 0;
451}
452
453#ifdef CONFIG_PM
454static int exynos4_cpufreq_suspend(struct cpufreq_policy *policy)
455{
456	return 0;
457}
458
459static int exynos4_cpufreq_resume(struct cpufreq_policy *policy)
460{
461	return 0;
462}
463#endif
464
465static int exynos4_cpufreq_cpu_init(struct cpufreq_policy *policy)
466{
467	policy->cur = policy->min = policy->max = exynos4_getspeed(policy->cpu);
468
469	cpufreq_frequency_table_get_attr(exynos4_freq_table, policy->cpu);
470
471	/* set the transition latency value */
472	policy->cpuinfo.transition_latency = 100000;
473
474	/*
475	 * EXYNOS4 multi-core processors has 2 cores
476	 * that the frequency cannot be set independently.
477	 * Each cpu is bound to the same speed.
478	 * So the affected cpu is all of the cpus.
479	 */
480	cpumask_setall(policy->cpus);
481
482	return cpufreq_frequency_table_cpuinfo(policy, exynos4_freq_table);
483}
484
485static struct cpufreq_driver exynos4_driver = {
486	.flags		= CPUFREQ_STICKY,
487	.verify		= exynos4_verify_speed,
488	.target		= exynos4_target,
489	.get		= exynos4_getspeed,
490	.init		= exynos4_cpufreq_cpu_init,
491	.name		= "exynos4_cpufreq",
492#ifdef CONFIG_PM
493	.suspend	= exynos4_cpufreq_suspend,
494	.resume		= exynos4_cpufreq_resume,
495#endif
496};
497
498static int __init exynos4_cpufreq_init(void)
499{
500	cpu_clk = clk_get(NULL, "armclk");
501	if (IS_ERR(cpu_clk))
502		return PTR_ERR(cpu_clk);
503
504	moutcore = clk_get(NULL, "moutcore");
505	if (IS_ERR(moutcore))
506		goto out;
507
508	mout_mpll = clk_get(NULL, "mout_mpll");
509	if (IS_ERR(mout_mpll))
510		goto out;
511
512	mout_apll = clk_get(NULL, "mout_apll");
513	if (IS_ERR(mout_apll))
514		goto out;
515
516	arm_regulator = regulator_get(NULL, "vdd_arm");
517	if (IS_ERR(arm_regulator)) {
518		printk(KERN_ERR "failed to get resource %s\n", "vdd_arm");
519		goto out;
520	}
521
522	int_regulator = regulator_get(NULL, "vdd_int");
523	if (IS_ERR(int_regulator)) {
524		printk(KERN_ERR "failed to get resource %s\n", "vdd_int");
525		goto out;
526	}
527
528	/*
529	 * Check DRAM type.
530	 * Because DVFS level is different according to DRAM type.
531	 */
532	memtype = __raw_readl(S5P_VA_DMC0 + S5P_DMC0_MEMCON_OFFSET);
533	memtype = (memtype >> S5P_DMC0_MEMTYPE_SHIFT);
534	memtype &= S5P_DMC0_MEMTYPE_MASK;
535
536	if ((memtype < DDR2) && (memtype > DDR3)) {
537		printk(KERN_ERR "%s: wrong memtype= 0x%x\n", __func__, memtype);
538		goto out;
539	} else {
540		printk(KERN_DEBUG "%s: memtype= 0x%x\n", __func__, memtype);
541	}
542
543	return cpufreq_register_driver(&exynos4_driver);
544
545out:
546	if (!IS_ERR(cpu_clk))
547		clk_put(cpu_clk);
548
549	if (!IS_ERR(moutcore))
550		clk_put(moutcore);
551
552	if (!IS_ERR(mout_mpll))
553		clk_put(mout_mpll);
554
555	if (!IS_ERR(mout_apll))
556		clk_put(mout_apll);
557
558	if (!IS_ERR(arm_regulator))
559		regulator_put(arm_regulator);
560
561	if (!IS_ERR(int_regulator))
562		regulator_put(int_regulator);
563
564	printk(KERN_ERR "%s: failed initialization\n", __func__);
565
566	return -EINVAL;
567}
568late_initcall(exynos4_cpufreq_init);