Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * OpenRISC fault.c
  3 *
  4 * Linux architectural port borrowing liberally from similar works of
  5 * others.  All original copyrights apply as per the original source
  6 * declaration.
  7 *
  8 * Modifications for the OpenRISC architecture:
  9 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
 10 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
 11 *
 12 *      This program is free software; you can redistribute it and/or
 13 *      modify it under the terms of the GNU General Public License
 14 *      as published by the Free Software Foundation; either version
 15 *      2 of the License, or (at your option) any later version.
 16 */
 17
 18#include <linux/mm.h>
 19#include <linux/interrupt.h>
 20#include <linux/module.h>
 21#include <linux/sched.h>
 
 22
 23#include <asm/uaccess.h>
 
 24#include <asm/siginfo.h>
 25#include <asm/signal.h>
 26
 27#define NUM_TLB_ENTRIES 64
 28#define TLB_OFFSET(add) (((add) >> PAGE_SHIFT) & (NUM_TLB_ENTRIES-1))
 29
 30unsigned long pte_misses;	/* updated by do_page_fault() */
 31unsigned long pte_errors;	/* updated by do_page_fault() */
 32
 33/* __PHX__ :: - check the vmalloc_fault in do_page_fault()
 34 *            - also look into include/asm-or32/mmu_context.h
 35 */
 36volatile pgd_t *current_pgd;
 37
 38extern void die(char *, struct pt_regs *, long);
 39
 40/*
 41 * This routine handles page faults.  It determines the address,
 42 * and the problem, and then passes it off to one of the appropriate
 43 * routines.
 44 *
 45 * If this routine detects a bad access, it returns 1, otherwise it
 46 * returns 0.
 47 */
 48
 49asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long address,
 50			      unsigned long vector, int write_acc)
 51{
 52	struct task_struct *tsk;
 53	struct mm_struct *mm;
 54	struct vm_area_struct *vma;
 55	siginfo_t info;
 56	int fault;
 
 57
 58	tsk = current;
 59
 60	/*
 61	 * We fault-in kernel-space virtual memory on-demand. The
 62	 * 'reference' page table is init_mm.pgd.
 63	 *
 64	 * NOTE! We MUST NOT take any locks for this case. We may
 65	 * be in an interrupt or a critical region, and should
 66	 * only copy the information from the master page table,
 67	 * nothing more.
 68	 *
 69	 * NOTE2: This is done so that, when updating the vmalloc
 70	 * mappings we don't have to walk all processes pgdirs and
 71	 * add the high mappings all at once. Instead we do it as they
 72	 * are used. However vmalloc'ed page entries have the PAGE_GLOBAL
 73	 * bit set so sometimes the TLB can use a lingering entry.
 74	 *
 75	 * This verifies that the fault happens in kernel space
 76	 * and that the fault was not a protection error.
 77	 */
 78
 79	if (address >= VMALLOC_START &&
 80	    (vector != 0x300 && vector != 0x400) &&
 81	    !user_mode(regs))
 82		goto vmalloc_fault;
 83
 84	/* If exceptions were enabled, we can reenable them here */
 85	if (user_mode(regs)) {
 86		/* Exception was in userspace: reenable interrupts */
 87		local_irq_enable();
 
 88	} else {
 89		/* If exception was in a syscall, then IRQ's may have
 90		 * been enabled or disabled.  If they were enabled,
 91		 * reenable them.
 92		 */
 93		if (regs->sr && (SPR_SR_IEE | SPR_SR_TEE))
 94			local_irq_enable();
 95	}
 96
 97	mm = tsk->mm;
 98	info.si_code = SEGV_MAPERR;
 99
100	/*
101	 * If we're in an interrupt or have no user
102	 * context, we must not take the fault..
103	 */
104
105	if (in_interrupt() || !mm)
106		goto no_context;
107
108	down_read(&mm->mmap_sem);
 
 
 
109	vma = find_vma(mm, address);
110
111	if (!vma)
112		goto bad_area;
113
114	if (vma->vm_start <= address)
115		goto good_area;
116
117	if (!(vma->vm_flags & VM_GROWSDOWN))
118		goto bad_area;
119
120	if (user_mode(regs)) {
121		/*
122		 * accessing the stack below usp is always a bug.
123		 * we get page-aligned addresses so we can only check
124		 * if we're within a page from usp, but that might be
125		 * enough to catch brutal errors at least.
126		 */
127		if (address + PAGE_SIZE < regs->sp)
128			goto bad_area;
129	}
130	if (expand_stack(vma, address))
131		goto bad_area;
132
133	/*
134	 * Ok, we have a good vm_area for this memory access, so
135	 * we can handle it..
136	 */
137
138good_area:
139	info.si_code = SEGV_ACCERR;
140
141	/* first do some preliminary protection checks */
142
143	if (write_acc) {
144		if (!(vma->vm_flags & VM_WRITE))
145			goto bad_area;
 
146	} else {
147		/* not present */
148		if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
149			goto bad_area;
150	}
151
152	/* are we trying to execute nonexecutable area */
153	if ((vector == 0x400) && !(vma->vm_page_prot.pgprot & _PAGE_EXEC))
154		goto bad_area;
155
156	/*
157	 * If for any reason at all we couldn't handle the fault,
158	 * make sure we exit gracefully rather than endlessly redo
159	 * the fault.
160	 */
161
162	fault = handle_mm_fault(mm, vma, address, write_acc);
 
 
 
 
 
 
 
 
163	if (unlikely(fault & VM_FAULT_ERROR)) {
164		if (fault & VM_FAULT_OOM)
165			goto out_of_memory;
 
 
166		else if (fault & VM_FAULT_SIGBUS)
167			goto do_sigbus;
168		BUG();
169	}
 
170	/*RGD modeled on Cris */
171	if (fault & VM_FAULT_MAJOR)
172		tsk->maj_flt++;
173	else
174		tsk->min_flt++;
175
176	up_read(&mm->mmap_sem);
 
 
 
 
 
 
 
 
177	return;
178
179	/*
180	 * Something tried to access memory that isn't in our memory map..
181	 * Fix it, but check if it's kernel or user first..
182	 */
183
184bad_area:
185	up_read(&mm->mmap_sem);
186
187bad_area_nosemaphore:
188
189	/* User mode accesses just cause a SIGSEGV */
190
191	if (user_mode(regs)) {
192		info.si_signo = SIGSEGV;
193		info.si_errno = 0;
194		/* info.si_code has been set above */
195		info.si_addr = (void *)address;
196		force_sig_info(SIGSEGV, &info, tsk);
197		return;
198	}
199
200no_context:
201
202	/* Are we prepared to handle this kernel fault?
203	 *
204	 * (The kernel has valid exception-points in the source
205	 *  when it acesses user-memory. When it fails in one
206	 *  of those points, we find it in a table and do a jump
207	 *  to some fixup code that loads an appropriate error
208	 *  code)
209	 */
210
211	{
212		const struct exception_table_entry *entry;
213
214		__asm__ __volatile__("l.nop 42");
215
216		if ((entry = search_exception_tables(regs->pc)) != NULL) {
217			/* Adjust the instruction pointer in the stackframe */
218			regs->pc = entry->fixup;
219			return;
220		}
221	}
222
223	/*
224	 * Oops. The kernel tried to access some bad page. We'll have to
225	 * terminate things with extreme prejudice.
226	 */
227
228	if ((unsigned long)(address) < PAGE_SIZE)
229		printk(KERN_ALERT
230		       "Unable to handle kernel NULL pointer dereference");
231	else
232		printk(KERN_ALERT "Unable to handle kernel access");
233	printk(" at virtual address 0x%08lx\n", address);
234
235	die("Oops", regs, write_acc);
236
237	do_exit(SIGKILL);
238
239	/*
240	 * We ran out of memory, or some other thing happened to us that made
241	 * us unable to handle the page fault gracefully.
242	 */
243
244out_of_memory:
245	__asm__ __volatile__("l.nop 42");
246	__asm__ __volatile__("l.nop 1");
247
248	up_read(&mm->mmap_sem);
249	printk("VM: killing process %s\n", tsk->comm);
250	if (user_mode(regs))
251		do_exit(SIGKILL);
252	goto no_context;
253
254do_sigbus:
255	up_read(&mm->mmap_sem);
256
257	/*
258	 * Send a sigbus, regardless of whether we were in kernel
259	 * or user mode.
260	 */
261	info.si_signo = SIGBUS;
262	info.si_errno = 0;
263	info.si_code = BUS_ADRERR;
264	info.si_addr = (void *)address;
265	force_sig_info(SIGBUS, &info, tsk);
266
267	/* Kernel mode? Handle exceptions or die */
268	if (!user_mode(regs))
269		goto no_context;
270	return;
271
272vmalloc_fault:
273	{
274		/*
275		 * Synchronize this task's top level page-table
276		 * with the 'reference' page table.
277		 *
278		 * Use current_pgd instead of tsk->active_mm->pgd
279		 * since the latter might be unavailable if this
280		 * code is executed in a misfortunately run irq
281		 * (like inside schedule() between switch_mm and
282		 *  switch_to...).
283		 */
284
285		int offset = pgd_index(address);
286		pgd_t *pgd, *pgd_k;
 
287		pud_t *pud, *pud_k;
288		pmd_t *pmd, *pmd_k;
289		pte_t *pte_k;
290
291/*
292		phx_warn("do_page_fault(): vmalloc_fault will not work, "
293			 "since current_pgd assign a proper value somewhere\n"
294			 "anyhow we don't need this at the moment\n");
295
296		phx_mmu("vmalloc_fault");
297*/
298		pgd = (pgd_t *)current_pgd + offset;
299		pgd_k = init_mm.pgd + offset;
300
301		/* Since we're two-level, we don't need to do both
302		 * set_pgd and set_pmd (they do the same thing). If
303		 * we go three-level at some point, do the right thing
304		 * with pgd_present and set_pgd here.
305		 *
306		 * Also, since the vmalloc area is global, we don't
307		 * need to copy individual PTE's, it is enough to
308		 * copy the pgd pointer into the pte page of the
309		 * root task. If that is there, we'll find our pte if
310		 * it exists.
311		 */
312
313		pud = pud_offset(pgd, address);
314		pud_k = pud_offset(pgd_k, address);
 
 
 
 
 
315		if (!pud_present(*pud_k))
316			goto no_context;
317
318		pmd = pmd_offset(pud, address);
319		pmd_k = pmd_offset(pud_k, address);
320
321		if (!pmd_present(*pmd_k))
322			goto bad_area_nosemaphore;
323
324		set_pmd(pmd, *pmd_k);
325
326		/* Make sure the actual PTE exists as well to
327		 * catch kernel vmalloc-area accesses to non-mapped
328		 * addresses. If we don't do this, this will just
329		 * silently loop forever.
330		 */
331
332		pte_k = pte_offset_kernel(pmd_k, address);
333		if (!pte_present(*pte_k))
334			goto no_context;
335
336		return;
337	}
338}
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * OpenRISC fault.c
  4 *
  5 * Linux architectural port borrowing liberally from similar works of
  6 * others.  All original copyrights apply as per the original source
  7 * declaration.
  8 *
  9 * Modifications for the OpenRISC architecture:
 10 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
 11 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
 
 
 
 
 
 12 */
 13
 14#include <linux/mm.h>
 15#include <linux/interrupt.h>
 16#include <linux/extable.h>
 17#include <linux/sched/signal.h>
 18#include <linux/perf_event.h>
 19
 20#include <linux/uaccess.h>
 21#include <asm/mmu_context.h>
 22#include <asm/siginfo.h>
 23#include <asm/signal.h>
 24
 25#define NUM_TLB_ENTRIES 64
 26#define TLB_OFFSET(add) (((add) >> PAGE_SHIFT) & (NUM_TLB_ENTRIES-1))
 27
 
 
 
 28/* __PHX__ :: - check the vmalloc_fault in do_page_fault()
 29 *            - also look into include/asm/mmu_context.h
 30 */
 31volatile pgd_t *current_pgd[NR_CPUS];
 32
 33extern void __noreturn die(char *, struct pt_regs *, long);
 34
 35/*
 36 * This routine handles page faults.  It determines the address,
 37 * and the problem, and then passes it off to one of the appropriate
 38 * routines.
 39 *
 40 * If this routine detects a bad access, it returns 1, otherwise it
 41 * returns 0.
 42 */
 43
 44asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long address,
 45			      unsigned long vector, int write_acc)
 46{
 47	struct task_struct *tsk;
 48	struct mm_struct *mm;
 49	struct vm_area_struct *vma;
 50	int si_code;
 51	vm_fault_t fault;
 52	unsigned int flags = FAULT_FLAG_DEFAULT;
 53
 54	tsk = current;
 55
 56	/*
 57	 * We fault-in kernel-space virtual memory on-demand. The
 58	 * 'reference' page table is init_mm.pgd.
 59	 *
 60	 * NOTE! We MUST NOT take any locks for this case. We may
 61	 * be in an interrupt or a critical region, and should
 62	 * only copy the information from the master page table,
 63	 * nothing more.
 64	 *
 65	 * NOTE2: This is done so that, when updating the vmalloc
 66	 * mappings we don't have to walk all processes pgdirs and
 67	 * add the high mappings all at once. Instead we do it as they
 68	 * are used. However vmalloc'ed page entries have the PAGE_GLOBAL
 69	 * bit set so sometimes the TLB can use a lingering entry.
 70	 *
 71	 * This verifies that the fault happens in kernel space
 72	 * and that the fault was not a protection error.
 73	 */
 74
 75	if (address >= VMALLOC_START &&
 76	    (vector != 0x300 && vector != 0x400) &&
 77	    !user_mode(regs))
 78		goto vmalloc_fault;
 79
 80	/* If exceptions were enabled, we can reenable them here */
 81	if (user_mode(regs)) {
 82		/* Exception was in userspace: reenable interrupts */
 83		local_irq_enable();
 84		flags |= FAULT_FLAG_USER;
 85	} else {
 86		/* If exception was in a syscall, then IRQ's may have
 87		 * been enabled or disabled.  If they were enabled,
 88		 * reenable them.
 89		 */
 90		if (regs->sr && (SPR_SR_IEE | SPR_SR_TEE))
 91			local_irq_enable();
 92	}
 93
 94	mm = tsk->mm;
 95	si_code = SEGV_MAPERR;
 96
 97	/*
 98	 * If we're in an interrupt or have no user
 99	 * context, we must not take the fault..
100	 */
101
102	if (in_interrupt() || !mm)
103		goto no_context;
104
105	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
106
107retry:
108	mmap_read_lock(mm);
109	vma = find_vma(mm, address);
110
111	if (!vma)
112		goto bad_area;
113
114	if (vma->vm_start <= address)
115		goto good_area;
116
117	if (!(vma->vm_flags & VM_GROWSDOWN))
118		goto bad_area;
119
120	if (user_mode(regs)) {
121		/*
122		 * accessing the stack below usp is always a bug.
123		 * we get page-aligned addresses so we can only check
124		 * if we're within a page from usp, but that might be
125		 * enough to catch brutal errors at least.
126		 */
127		if (address + PAGE_SIZE < regs->sp)
128			goto bad_area;
129	}
130	if (expand_stack(vma, address))
131		goto bad_area;
132
133	/*
134	 * Ok, we have a good vm_area for this memory access, so
135	 * we can handle it..
136	 */
137
138good_area:
139	si_code = SEGV_ACCERR;
140
141	/* first do some preliminary protection checks */
142
143	if (write_acc) {
144		if (!(vma->vm_flags & VM_WRITE))
145			goto bad_area;
146		flags |= FAULT_FLAG_WRITE;
147	} else {
148		/* not present */
149		if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
150			goto bad_area;
151	}
152
153	/* are we trying to execute nonexecutable area */
154	if ((vector == 0x400) && !(vma->vm_page_prot.pgprot & _PAGE_EXEC))
155		goto bad_area;
156
157	/*
158	 * If for any reason at all we couldn't handle the fault,
159	 * make sure we exit gracefully rather than endlessly redo
160	 * the fault.
161	 */
162
163	fault = handle_mm_fault(vma, address, flags, regs);
164
165	if (fault_signal_pending(fault, regs))
166		return;
167
168	/* The fault is fully completed (including releasing mmap lock) */
169	if (fault & VM_FAULT_COMPLETED)
170		return;
171
172	if (unlikely(fault & VM_FAULT_ERROR)) {
173		if (fault & VM_FAULT_OOM)
174			goto out_of_memory;
175		else if (fault & VM_FAULT_SIGSEGV)
176			goto bad_area;
177		else if (fault & VM_FAULT_SIGBUS)
178			goto do_sigbus;
179		BUG();
180	}
181
182	/*RGD modeled on Cris */
183	if (fault & VM_FAULT_RETRY) {
184		flags |= FAULT_FLAG_TRIED;
 
 
185
186		/* No need to mmap_read_unlock(mm) as we would
187		 * have already released it in __lock_page_or_retry
188		 * in mm/filemap.c.
189		 */
190
191		goto retry;
192	}
193
194	mmap_read_unlock(mm);
195	return;
196
197	/*
198	 * Something tried to access memory that isn't in our memory map..
199	 * Fix it, but check if it's kernel or user first..
200	 */
201
202bad_area:
203	mmap_read_unlock(mm);
204
205bad_area_nosemaphore:
206
207	/* User mode accesses just cause a SIGSEGV */
208
209	if (user_mode(regs)) {
210		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
 
 
 
 
211		return;
212	}
213
214no_context:
215
216	/* Are we prepared to handle this kernel fault?
217	 *
218	 * (The kernel has valid exception-points in the source
219	 *  when it acesses user-memory. When it fails in one
220	 *  of those points, we find it in a table and do a jump
221	 *  to some fixup code that loads an appropriate error
222	 *  code)
223	 */
224
225	{
226		const struct exception_table_entry *entry;
227
 
 
228		if ((entry = search_exception_tables(regs->pc)) != NULL) {
229			/* Adjust the instruction pointer in the stackframe */
230			regs->pc = entry->fixup;
231			return;
232		}
233	}
234
235	/*
236	 * Oops. The kernel tried to access some bad page. We'll have to
237	 * terminate things with extreme prejudice.
238	 */
239
240	if ((unsigned long)(address) < PAGE_SIZE)
241		printk(KERN_ALERT
242		       "Unable to handle kernel NULL pointer dereference");
243	else
244		printk(KERN_ALERT "Unable to handle kernel access");
245	printk(" at virtual address 0x%08lx\n", address);
246
247	die("Oops", regs, write_acc);
248
 
 
249	/*
250	 * We ran out of memory, or some other thing happened to us that made
251	 * us unable to handle the page fault gracefully.
252	 */
253
254out_of_memory:
255	mmap_read_unlock(mm);
256	if (!user_mode(regs))
257		goto no_context;
258	pagefault_out_of_memory();
259	return;
 
 
 
260
261do_sigbus:
262	mmap_read_unlock(mm);
263
264	/*
265	 * Send a sigbus, regardless of whether we were in kernel
266	 * or user mode.
267	 */
268	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
 
 
 
 
269
270	/* Kernel mode? Handle exceptions or die */
271	if (!user_mode(regs))
272		goto no_context;
273	return;
274
275vmalloc_fault:
276	{
277		/*
278		 * Synchronize this task's top level page-table
279		 * with the 'reference' page table.
280		 *
281		 * Use current_pgd instead of tsk->active_mm->pgd
282		 * since the latter might be unavailable if this
283		 * code is executed in a misfortunately run irq
284		 * (like inside schedule() between switch_mm and
285		 *  switch_to...).
286		 */
287
288		int offset = pgd_index(address);
289		pgd_t *pgd, *pgd_k;
290		p4d_t *p4d, *p4d_k;
291		pud_t *pud, *pud_k;
292		pmd_t *pmd, *pmd_k;
293		pte_t *pte_k;
294
295/*
296		phx_warn("do_page_fault(): vmalloc_fault will not work, "
297			 "since current_pgd assign a proper value somewhere\n"
298			 "anyhow we don't need this at the moment\n");
299
300		phx_mmu("vmalloc_fault");
301*/
302		pgd = (pgd_t *)current_pgd[smp_processor_id()] + offset;
303		pgd_k = init_mm.pgd + offset;
304
305		/* Since we're two-level, we don't need to do both
306		 * set_pgd and set_pmd (they do the same thing). If
307		 * we go three-level at some point, do the right thing
308		 * with pgd_present and set_pgd here.
309		 *
310		 * Also, since the vmalloc area is global, we don't
311		 * need to copy individual PTE's, it is enough to
312		 * copy the pgd pointer into the pte page of the
313		 * root task. If that is there, we'll find our pte if
314		 * it exists.
315		 */
316
317		p4d = p4d_offset(pgd, address);
318		p4d_k = p4d_offset(pgd_k, address);
319		if (!p4d_present(*p4d_k))
320			goto no_context;
321
322		pud = pud_offset(p4d, address);
323		pud_k = pud_offset(p4d_k, address);
324		if (!pud_present(*pud_k))
325			goto no_context;
326
327		pmd = pmd_offset(pud, address);
328		pmd_k = pmd_offset(pud_k, address);
329
330		if (!pmd_present(*pmd_k))
331			goto bad_area_nosemaphore;
332
333		set_pmd(pmd, *pmd_k);
334
335		/* Make sure the actual PTE exists as well to
336		 * catch kernel vmalloc-area accesses to non-mapped
337		 * addresses. If we don't do this, this will just
338		 * silently loop forever.
339		 */
340
341		pte_k = pte_offset_kernel(pmd_k, address);
342		if (!pte_present(*pte_k))
343			goto no_context;
344
345		return;
346	}
347}