Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *   This program is free software; you can redistribute it and/or
   3 *   modify it under the terms of the GNU General Public License
   4 *   as published by the Free Software Foundation; either version
   5 *   2 of the License, or (at your option) any later version.
   6 *
   7 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
   8 *     & Swedish University of Agricultural Sciences.
   9 *
  10 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
  11 *     Agricultural Sciences.
  12 *
  13 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
  14 *
  15 * This work is based on the LPC-trie which is originally described in:
  16 *
  17 * An experimental study of compression methods for dynamic tries
  18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
  20 *
  21 *
  22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  24 *
  25 *
  26 * Code from fib_hash has been reused which includes the following header:
  27 *
  28 *
  29 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  30 *		operating system.  INET is implemented using the  BSD Socket
  31 *		interface as the means of communication with the user level.
  32 *
  33 *		IPv4 FIB: lookup engine and maintenance routines.
  34 *
  35 *
  36 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  37 *
  38 *		This program is free software; you can redistribute it and/or
  39 *		modify it under the terms of the GNU General Public License
  40 *		as published by the Free Software Foundation; either version
  41 *		2 of the License, or (at your option) any later version.
  42 *
  43 * Substantial contributions to this work comes from:
  44 *
  45 *		David S. Miller, <davem@davemloft.net>
  46 *		Stephen Hemminger <shemminger@osdl.org>
  47 *		Paul E. McKenney <paulmck@us.ibm.com>
  48 *		Patrick McHardy <kaber@trash.net>
  49 */
  50
  51#define VERSION "0.409"
  52
  53#include <asm/uaccess.h>
  54#include <asm/system.h>
  55#include <linux/bitops.h>
  56#include <linux/types.h>
  57#include <linux/kernel.h>
  58#include <linux/mm.h>
  59#include <linux/string.h>
  60#include <linux/socket.h>
  61#include <linux/sockios.h>
  62#include <linux/errno.h>
  63#include <linux/in.h>
  64#include <linux/inet.h>
  65#include <linux/inetdevice.h>
  66#include <linux/netdevice.h>
  67#include <linux/if_arp.h>
  68#include <linux/proc_fs.h>
  69#include <linux/rcupdate.h>
 
  70#include <linux/skbuff.h>
  71#include <linux/netlink.h>
  72#include <linux/init.h>
  73#include <linux/list.h>
  74#include <linux/slab.h>
  75#include <linux/prefetch.h>
 
 
  76#include <net/net_namespace.h>
 
  77#include <net/ip.h>
  78#include <net/protocol.h>
  79#include <net/route.h>
  80#include <net/tcp.h>
  81#include <net/sock.h>
  82#include <net/ip_fib.h>
 
 
  83#include "fib_lookup.h"
  84
  85#define MAX_STAT_DEPTH 32
  86
  87#define KEYLENGTH (8*sizeof(t_key))
  88
  89typedef unsigned int t_key;
 
 
 
 
 
 
 
 
 
 
 
  90
  91#define T_TNODE 0
  92#define T_LEAF  1
  93#define NODE_TYPE_MASK	0x1UL
  94#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
 
 
 
 
 
 
 
 
 
 
 
 
  95
  96#define IS_TNODE(n) (!(n->parent & T_LEAF))
  97#define IS_LEAF(n) (n->parent & T_LEAF)
  98
  99struct rt_trie_node {
 100	unsigned long parent;
 101	t_key key;
 102};
 103
 104struct leaf {
 105	unsigned long parent;
 106	t_key key;
 107	struct hlist_head list;
 108	struct rcu_head rcu;
 109};
 110
 111struct leaf_info {
 112	struct hlist_node hlist;
 113	int plen;
 114	u32 mask_plen; /* ntohl(inet_make_mask(plen)) */
 115	struct list_head falh;
 116	struct rcu_head rcu;
 117};
 118
 119struct tnode {
 120	unsigned long parent;
 121	t_key key;
 122	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
 123	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
 124	unsigned int full_children;	/* KEYLENGTH bits needed */
 125	unsigned int empty_children;	/* KEYLENGTH bits needed */
 126	union {
 127		struct rcu_head rcu;
 128		struct work_struct work;
 129		struct tnode *tnode_free;
 
 130	};
 131	struct rt_trie_node __rcu *child[0];
 132};
 133
 
 
 
 
 
 
 
 
 
 
 
 
 134#ifdef CONFIG_IP_FIB_TRIE_STATS
 135struct trie_use_stats {
 136	unsigned int gets;
 137	unsigned int backtrack;
 138	unsigned int semantic_match_passed;
 139	unsigned int semantic_match_miss;
 140	unsigned int null_node_hit;
 141	unsigned int resize_node_skipped;
 142};
 143#endif
 144
 145struct trie_stat {
 146	unsigned int totdepth;
 147	unsigned int maxdepth;
 148	unsigned int tnodes;
 149	unsigned int leaves;
 150	unsigned int nullpointers;
 151	unsigned int prefixes;
 152	unsigned int nodesizes[MAX_STAT_DEPTH];
 153};
 154
 155struct trie {
 156	struct rt_trie_node __rcu *trie;
 157#ifdef CONFIG_IP_FIB_TRIE_STATS
 158	struct trie_use_stats stats;
 159#endif
 160};
 161
 162static void put_child(struct trie *t, struct tnode *tn, int i, struct rt_trie_node *n);
 163static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
 164				  int wasfull);
 165static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
 166static struct tnode *inflate(struct trie *t, struct tnode *tn);
 167static struct tnode *halve(struct trie *t, struct tnode *tn);
 168/* tnodes to free after resize(); protected by RTNL */
 169static struct tnode *tnode_free_head;
 170static size_t tnode_free_size;
 171
 172/*
 173 * synchronize_rcu after call_rcu for that many pages; it should be especially
 174 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 175 * obtained experimentally, aiming to avoid visible slowdown.
 176 */
 177static const int sync_pages = 128;
 
 
 178
 179static struct kmem_cache *fn_alias_kmem __read_mostly;
 180static struct kmem_cache *trie_leaf_kmem __read_mostly;
 181
 182/*
 183 * caller must hold RTNL
 184 */
 185static inline struct tnode *node_parent(const struct rt_trie_node *node)
 186{
 187	unsigned long parent;
 188
 189	parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held());
 190
 191	return (struct tnode *)(parent & ~NODE_TYPE_MASK);
 192}
 193
 194/*
 195 * caller must hold RCU read lock or RTNL
 196 */
 197static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node)
 198{
 199	unsigned long parent;
 200
 201	parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() ||
 202							   lockdep_rtnl_is_held());
 203
 204	return (struct tnode *)(parent & ~NODE_TYPE_MASK);
 205}
 
 206
 207/* Same as rcu_assign_pointer
 208 * but that macro() assumes that value is a pointer.
 209 */
 210static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
 211{
 212	smp_wmb();
 213	node->parent = (unsigned long)ptr | NODE_TYPE(node);
 214}
 215
 216/*
 217 * caller must hold RTNL
 218 */
 219static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i)
 220{
 221	BUG_ON(i >= 1U << tn->bits);
 222
 223	return rtnl_dereference(tn->child[i]);
 224}
 225
 226/*
 227 * caller must hold RCU read lock or RTNL
 228 */
 229static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i)
 230{
 231	BUG_ON(i >= 1U << tn->bits);
 232
 233	return rcu_dereference_rtnl(tn->child[i]);
 234}
 235
 236static inline int tnode_child_length(const struct tnode *tn)
 237{
 238	return 1 << tn->bits;
 239}
 240
 241static inline t_key mask_pfx(t_key k, unsigned int l)
 242{
 243	return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
 244}
 245
 246static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
 247{
 248	if (offset < KEYLENGTH)
 249		return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
 250	else
 251		return 0;
 252}
 253
 254static inline int tkey_equals(t_key a, t_key b)
 255{
 256	return a == b;
 257}
 258
 259static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
 260{
 261	if (bits == 0 || offset >= KEYLENGTH)
 262		return 1;
 263	bits = bits > KEYLENGTH ? KEYLENGTH : bits;
 264	return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
 265}
 266
 267static inline int tkey_mismatch(t_key a, int offset, t_key b)
 268{
 269	t_key diff = a ^ b;
 270	int i = offset;
 271
 272	if (!diff)
 273		return 0;
 274	while ((diff << i) >> (KEYLENGTH-1) == 0)
 275		i++;
 276	return i;
 277}
 278
 279/*
 280  To understand this stuff, an understanding of keys and all their bits is
 281  necessary. Every node in the trie has a key associated with it, but not
 282  all of the bits in that key are significant.
 283
 284  Consider a node 'n' and its parent 'tp'.
 285
 286  If n is a leaf, every bit in its key is significant. Its presence is
 287  necessitated by path compression, since during a tree traversal (when
 288  searching for a leaf - unless we are doing an insertion) we will completely
 289  ignore all skipped bits we encounter. Thus we need to verify, at the end of
 290  a potentially successful search, that we have indeed been walking the
 291  correct key path.
 292
 293  Note that we can never "miss" the correct key in the tree if present by
 294  following the wrong path. Path compression ensures that segments of the key
 295  that are the same for all keys with a given prefix are skipped, but the
 296  skipped part *is* identical for each node in the subtrie below the skipped
 297  bit! trie_insert() in this implementation takes care of that - note the
 298  call to tkey_sub_equals() in trie_insert().
 299
 300  if n is an internal node - a 'tnode' here, the various parts of its key
 301  have many different meanings.
 302
 303  Example:
 304  _________________________________________________________________
 305  | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 306  -----------------------------------------------------------------
 307    0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
 308
 309  _________________________________________________________________
 310  | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 311  -----------------------------------------------------------------
 312   16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31
 313
 314  tp->pos = 7
 315  tp->bits = 3
 316  n->pos = 15
 317  n->bits = 4
 318
 319  First, let's just ignore the bits that come before the parent tp, that is
 320  the bits from 0 to (tp->pos-1). They are *known* but at this point we do
 321  not use them for anything.
 322
 323  The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 324  index into the parent's child array. That is, they will be used to find
 325  'n' among tp's children.
 326
 327  The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
 328  for the node n.
 329
 330  All the bits we have seen so far are significant to the node n. The rest
 331  of the bits are really not needed or indeed known in n->key.
 332
 333  The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 334  n's child array, and will of course be different for each child.
 335
 336
 337  The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
 338  at this point.
 339
 340*/
 341
 342static inline void check_tnode(const struct tnode *tn)
 343{
 344	WARN_ON(tn && tn->pos+tn->bits > 32);
 345}
 346
 347static const int halve_threshold = 25;
 348static const int inflate_threshold = 50;
 349static const int halve_threshold_root = 15;
 350static const int inflate_threshold_root = 30;
 351
 352static void __alias_free_mem(struct rcu_head *head)
 353{
 354	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
 355	kmem_cache_free(fn_alias_kmem, fa);
 356}
 357
 358static inline void alias_free_mem_rcu(struct fib_alias *fa)
 359{
 360	call_rcu(&fa->rcu, __alias_free_mem);
 361}
 362
 363static void __leaf_free_rcu(struct rcu_head *head)
 364{
 365	struct leaf *l = container_of(head, struct leaf, rcu);
 366	kmem_cache_free(trie_leaf_kmem, l);
 367}
 368
 369static inline void free_leaf(struct leaf *l)
 370{
 371	call_rcu_bh(&l->rcu, __leaf_free_rcu);
 372}
 373
 374static inline void free_leaf_info(struct leaf_info *leaf)
 375{
 376	kfree_rcu(leaf, rcu);
 
 377}
 378
 379static struct tnode *tnode_alloc(size_t size)
 
 
 380{
 
 
 
 
 
 
 
 
 
 381	if (size <= PAGE_SIZE)
 382		return kzalloc(size, GFP_KERNEL);
 383	else
 384		return vzalloc(size);
 385}
 386
 387static void __tnode_vfree(struct work_struct *arg)
 388{
 389	struct tnode *tn = container_of(arg, struct tnode, work);
 390	vfree(tn);
 391}
 392
 393static void __tnode_free_rcu(struct rcu_head *head)
 394{
 395	struct tnode *tn = container_of(head, struct tnode, rcu);
 396	size_t size = sizeof(struct tnode) +
 397		      (sizeof(struct rt_trie_node *) << tn->bits);
 398
 399	if (size <= PAGE_SIZE)
 400		kfree(tn);
 401	else {
 402		INIT_WORK(&tn->work, __tnode_vfree);
 403		schedule_work(&tn->work);
 404	}
 405}
 406
 407static inline void tnode_free(struct tnode *tn)
 408{
 409	if (IS_LEAF(tn))
 410		free_leaf((struct leaf *) tn);
 411	else
 412		call_rcu(&tn->rcu, __tnode_free_rcu);
 413}
 414
 415static void tnode_free_safe(struct tnode *tn)
 416{
 417	BUG_ON(IS_LEAF(tn));
 418	tn->tnode_free = tnode_free_head;
 419	tnode_free_head = tn;
 420	tnode_free_size += sizeof(struct tnode) +
 421			   (sizeof(struct rt_trie_node *) << tn->bits);
 422}
 423
 424static void tnode_free_flush(void)
 425{
 426	struct tnode *tn;
 
 427
 428	while ((tn = tnode_free_head)) {
 429		tnode_free_head = tn->tnode_free;
 430		tn->tnode_free = NULL;
 431		tnode_free(tn);
 432	}
 433
 434	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
 435		tnode_free_size = 0;
 436		synchronize_rcu();
 437	}
 438}
 
 
 
 
 
 439
 440static struct leaf *leaf_new(void)
 441{
 442	struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
 443	if (l) {
 444		l->parent = T_LEAF;
 445		INIT_HLIST_HEAD(&l->list);
 446	}
 447	return l;
 448}
 449
 450static struct leaf_info *leaf_info_new(int plen)
 451{
 452	struct leaf_info *li = kmalloc(sizeof(struct leaf_info),  GFP_KERNEL);
 453	if (li) {
 454		li->plen = plen;
 455		li->mask_plen = ntohl(inet_make_mask(plen));
 456		INIT_LIST_HEAD(&li->falh);
 457	}
 458	return li;
 459}
 460
 461static struct tnode *tnode_new(t_key key, int pos, int bits)
 462{
 463	size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
 464	struct tnode *tn = tnode_alloc(sz);
 465
 466	if (tn) {
 467		tn->parent = T_TNODE;
 468		tn->pos = pos;
 469		tn->bits = bits;
 470		tn->key = key;
 471		tn->full_children = 0;
 472		tn->empty_children = 1<<bits;
 473	}
 474
 475	pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
 476		 sizeof(struct rt_trie_node) << bits);
 477	return tn;
 478}
 479
 480/*
 481 * Check whether a tnode 'n' is "full", i.e. it is an internal node
 482 * and no bits are skipped. See discussion in dyntree paper p. 6
 483 */
 484
 485static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
 486{
 487	if (n == NULL || IS_LEAF(n))
 488		return 0;
 
 489
 490	return ((struct tnode *) n)->pos == tn->pos + tn->bits;
 491}
 492
 493static inline void put_child(struct trie *t, struct tnode *tn, int i,
 494			     struct rt_trie_node *n)
 
 
 495{
 496	tnode_put_child_reorg(tn, i, n, -1);
 497}
 498
 499 /*
 500  * Add a child at position i overwriting the old value.
 501  * Update the value of full_children and empty_children.
 502  */
 503
 504static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
 505				  int wasfull)
 506{
 507	struct rt_trie_node *chi = rtnl_dereference(tn->child[i]);
 508	int isfull;
 509
 510	BUG_ON(i >= 1<<tn->bits);
 511
 512	/* update emptyChildren */
 513	if (n == NULL && chi != NULL)
 514		tn->empty_children++;
 515	else if (n != NULL && chi == NULL)
 516		tn->empty_children--;
 517
 518	/* update fullChildren */
 519	if (wasfull == -1)
 520		wasfull = tnode_full(tn, chi);
 521
 522	isfull = tnode_full(tn, n);
 
 523	if (wasfull && !isfull)
 524		tn->full_children--;
 525	else if (!wasfull && isfull)
 526		tn->full_children++;
 527
 528	if (n)
 529		node_set_parent(n, tn);
 530
 531	rcu_assign_pointer(tn->child[i], n);
 532}
 533
 534#define MAX_WORK 10
 535static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
 536{
 537	int i;
 538	struct tnode *old_tn;
 539	int inflate_threshold_use;
 540	int halve_threshold_use;
 541	int max_work;
 542
 543	if (!tn)
 544		return NULL;
 
 545
 546	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
 547		 tn, inflate_threshold, halve_threshold);
 548
 549	/* No children */
 550	if (tn->empty_children == tnode_child_length(tn)) {
 551		tnode_free_safe(tn);
 552		return NULL;
 
 
 
 
 553	}
 554	/* One child */
 555	if (tn->empty_children == tnode_child_length(tn) - 1)
 556		goto one_child;
 557	/*
 558	 * Double as long as the resulting node has a number of
 559	 * nonempty nodes that are above the threshold.
 560	 */
 561
 562	/*
 563	 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 564	 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 565	 * Telecommunications, page 6:
 566	 * "A node is doubled if the ratio of non-empty children to all
 567	 * children in the *doubled* node is at least 'high'."
 568	 *
 569	 * 'high' in this instance is the variable 'inflate_threshold'. It
 570	 * is expressed as a percentage, so we multiply it with
 571	 * tnode_child_length() and instead of multiplying by 2 (since the
 572	 * child array will be doubled by inflate()) and multiplying
 573	 * the left-hand side by 100 (to handle the percentage thing) we
 574	 * multiply the left-hand side by 50.
 575	 *
 576	 * The left-hand side may look a bit weird: tnode_child_length(tn)
 577	 * - tn->empty_children is of course the number of non-null children
 578	 * in the current node. tn->full_children is the number of "full"
 579	 * children, that is non-null tnodes with a skip value of 0.
 580	 * All of those will be doubled in the resulting inflated tnode, so
 581	 * we just count them one extra time here.
 582	 *
 583	 * A clearer way to write this would be:
 584	 *
 585	 * to_be_doubled = tn->full_children;
 586	 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
 587	 *     tn->full_children;
 588	 *
 589	 * new_child_length = tnode_child_length(tn) * 2;
 590	 *
 591	 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 592	 *      new_child_length;
 593	 * if (new_fill_factor >= inflate_threshold)
 594	 *
 595	 * ...and so on, tho it would mess up the while () loop.
 596	 *
 597	 * anyway,
 598	 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 599	 *      inflate_threshold
 600	 *
 601	 * avoid a division:
 602	 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 603	 *      inflate_threshold * new_child_length
 604	 *
 605	 * expand not_to_be_doubled and to_be_doubled, and shorten:
 606	 * 100 * (tnode_child_length(tn) - tn->empty_children +
 607	 *    tn->full_children) >= inflate_threshold * new_child_length
 608	 *
 609	 * expand new_child_length:
 610	 * 100 * (tnode_child_length(tn) - tn->empty_children +
 611	 *    tn->full_children) >=
 612	 *      inflate_threshold * tnode_child_length(tn) * 2
 613	 *
 614	 * shorten again:
 615	 * 50 * (tn->full_children + tnode_child_length(tn) -
 616	 *    tn->empty_children) >= inflate_threshold *
 617	 *    tnode_child_length(tn)
 618	 *
 619	 */
 620
 621	check_tnode(tn);
 
 
 
 
 
 
 
 622
 623	/* Keep root node larger  */
 
 
 
 624
 625	if (!node_parent((struct rt_trie_node *)tn)) {
 626		inflate_threshold_use = inflate_threshold_root;
 627		halve_threshold_use = halve_threshold_root;
 628	} else {
 629		inflate_threshold_use = inflate_threshold;
 630		halve_threshold_use = halve_threshold;
 631	}
 632
 633	max_work = MAX_WORK;
 634	while ((tn->full_children > 0 &&  max_work-- &&
 635		50 * (tn->full_children + tnode_child_length(tn)
 636		      - tn->empty_children)
 637		>= inflate_threshold_use * tnode_child_length(tn))) {
 638
 639		old_tn = tn;
 640		tn = inflate(t, tn);
 
 
 641
 642		if (IS_ERR(tn)) {
 643			tn = old_tn;
 644#ifdef CONFIG_IP_FIB_TRIE_STATS
 645			t->stats.resize_node_skipped++;
 646#endif
 647			break;
 648		}
 649	}
 650
 651	check_tnode(tn);
 652
 653	/* Return if at least one inflate is run */
 654	if (max_work != MAX_WORK)
 655		return (struct rt_trie_node *) tn;
 656
 657	/*
 658	 * Halve as long as the number of empty children in this
 659	 * node is above threshold.
 660	 */
 661
 662	max_work = MAX_WORK;
 663	while (tn->bits > 1 &&  max_work-- &&
 664	       100 * (tnode_child_length(tn) - tn->empty_children) <
 665	       halve_threshold_use * tnode_child_length(tn)) {
 666
 667		old_tn = tn;
 668		tn = halve(t, tn);
 669		if (IS_ERR(tn)) {
 670			tn = old_tn;
 671#ifdef CONFIG_IP_FIB_TRIE_STATS
 672			t->stats.resize_node_skipped++;
 673#endif
 674			break;
 675		}
 676	}
 
 677
 
 
 
 
 
 
 678
 679	/* Only one child remains */
 680	if (tn->empty_children == tnode_child_length(tn) - 1) {
 681one_child:
 682		for (i = 0; i < tnode_child_length(tn); i++) {
 683			struct rt_trie_node *n;
 684
 685			n = rtnl_dereference(tn->child[i]);
 686			if (!n)
 687				continue;
 688
 689			/* compress one level */
 690
 691			node_set_parent(n, NULL);
 692			tnode_free_safe(tn);
 693			return n;
 694		}
 695	}
 696	return (struct rt_trie_node *) tn;
 697}
 698
 
 
 699
 700static void tnode_clean_free(struct tnode *tn)
 701{
 702	int i;
 703	struct tnode *tofree;
 704
 705	for (i = 0; i < tnode_child_length(tn); i++) {
 706		tofree = (struct tnode *)rtnl_dereference(tn->child[i]);
 707		if (tofree)
 708			tnode_free(tofree);
 709	}
 710	tnode_free(tn);
 
 711}
 712
 713static struct tnode *inflate(struct trie *t, struct tnode *tn)
 
 714{
 715	struct tnode *oldtnode = tn;
 716	int olen = tnode_child_length(tn);
 717	int i;
 718
 719	pr_debug("In inflate\n");
 720
 721	tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
 722
 723	if (!tn)
 724		return ERR_PTR(-ENOMEM);
 725
 726	/*
 727	 * Preallocate and store tnodes before the actual work so we
 728	 * don't get into an inconsistent state if memory allocation
 729	 * fails. In case of failure we return the oldnode and  inflate
 730	 * of tnode is ignored.
 731	 */
 732
 733	for (i = 0; i < olen; i++) {
 734		struct tnode *inode;
 735
 736		inode = (struct tnode *) tnode_get_child(oldtnode, i);
 737		if (inode &&
 738		    IS_TNODE(inode) &&
 739		    inode->pos == oldtnode->pos + oldtnode->bits &&
 740		    inode->bits > 1) {
 741			struct tnode *left, *right;
 742			t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
 743
 744			left = tnode_new(inode->key&(~m), inode->pos + 1,
 745					 inode->bits - 1);
 746			if (!left)
 747				goto nomem;
 748
 749			right = tnode_new(inode->key|m, inode->pos + 1,
 750					  inode->bits - 1);
 751
 752			if (!right) {
 753				tnode_free(left);
 754				goto nomem;
 755			}
 756
 757			put_child(t, tn, 2*i, (struct rt_trie_node *) left);
 758			put_child(t, tn, 2*i+1, (struct rt_trie_node *) right);
 759		}
 760	}
 761
 762	for (i = 0; i < olen; i++) {
 763		struct tnode *inode;
 764		struct rt_trie_node *node = tnode_get_child(oldtnode, i);
 765		struct tnode *left, *right;
 766		int size, j;
 767
 768		/* An empty child */
 769		if (node == NULL)
 770			continue;
 771
 772		/* A leaf or an internal node with skipped bits */
 773
 774		if (IS_LEAF(node) || ((struct tnode *) node)->pos >
 775		   tn->pos + tn->bits - 1) {
 776			if (tkey_extract_bits(node->key,
 777					      oldtnode->pos + oldtnode->bits,
 778					      1) == 0)
 779				put_child(t, tn, 2*i, node);
 780			else
 781				put_child(t, tn, 2*i+1, node);
 782			continue;
 783		}
 784
 785		/* An internal node with two children */
 786		inode = (struct tnode *) node;
 787
 
 788		if (inode->bits == 1) {
 789			put_child(t, tn, 2*i, rtnl_dereference(inode->child[0]));
 790			put_child(t, tn, 2*i+1, rtnl_dereference(inode->child[1]));
 791
 792			tnode_free_safe(inode);
 793			continue;
 794		}
 795
 796		/* An internal node with more than two children */
 797
 798		/* We will replace this node 'inode' with two new
 799		 * ones, 'left' and 'right', each with half of the
 800		 * original children. The two new nodes will have
 801		 * a position one bit further down the key and this
 802		 * means that the "significant" part of their keys
 803		 * (see the discussion near the top of this file)
 804		 * will differ by one bit, which will be "0" in
 805		 * left's key and "1" in right's key. Since we are
 806		 * moving the key position by one step, the bit that
 807		 * we are moving away from - the bit at position
 808		 * (inode->pos) - is the one that will differ between
 809		 * left and right. So... we synthesize that bit in the
 810		 * two  new keys.
 811		 * The mask 'm' below will be a single "one" bit at
 812		 * the position (inode->pos)
 813		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 814
 815		/* Use the old key, but set the new significant
 816		 *   bit to zero.
 817		 */
 
 
 
 
 
 818
 819		left = (struct tnode *) tnode_get_child(tn, 2*i);
 820		put_child(t, tn, 2*i, NULL);
 
 
 
 821
 822		BUG_ON(!left);
 823
 824		right = (struct tnode *) tnode_get_child(tn, 2*i+1);
 825		put_child(t, tn, 2*i+1, NULL);
 
 826
 827		BUG_ON(!right);
 
 828
 829		size = tnode_child_length(left);
 830		for (j = 0; j < size; j++) {
 831			put_child(t, left, j, rtnl_dereference(inode->child[j]));
 832			put_child(t, right, j, rtnl_dereference(inode->child[j + size]));
 
 
 
 
 
 
 
 
 
 
 833		}
 834		put_child(t, tn, 2*i, resize(t, left));
 835		put_child(t, tn, 2*i+1, resize(t, right));
 836
 837		tnode_free_safe(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 838	}
 839	tnode_free_safe(oldtnode);
 840	return tn;
 
 841nomem:
 842	tnode_clean_free(tn);
 843	return ERR_PTR(-ENOMEM);
 
 
 844}
 845
 846static struct tnode *halve(struct trie *t, struct tnode *tn)
 
 847{
 848	struct tnode *oldtnode = tn;
 849	struct rt_trie_node *left, *right;
 850	int i;
 851	int olen = tnode_child_length(tn);
 852
 853	pr_debug("In halve\n");
 
 
 854
 855	tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
 
 
 
 856
 857	if (!tn)
 858		return ERR_PTR(-ENOMEM);
 859
 860	/*
 861	 * Preallocate and store tnodes before the actual work so we
 862	 * don't get into an inconsistent state if memory allocation
 863	 * fails. In case of failure we return the oldnode and halve
 864	 * of tnode is ignored.
 865	 */
 866
 867	for (i = 0; i < olen; i += 2) {
 868		left = tnode_get_child(oldtnode, i);
 869		right = tnode_get_child(oldtnode, i+1);
 
 
 870
 871		/* Two nonempty children */
 872		if (left && right) {
 873			struct tnode *newn;
 
 
 874
 875			newn = tnode_new(left->key, tn->pos + tn->bits, 1);
 
 
 
 
 
 
 876
 877			if (!newn)
 878				goto nomem;
 879
 880			put_child(t, tn, i/2, (struct rt_trie_node *)newn);
 881		}
 
 
 882
 
 
 
 883	}
 884
 885	for (i = 0; i < olen; i += 2) {
 886		struct tnode *newBinNode;
 887
 888		left = tnode_get_child(oldtnode, i);
 889		right = tnode_get_child(oldtnode, i+1);
 890
 891		/* At least one of the children is empty */
 892		if (left == NULL) {
 893			if (right == NULL)    /* Both are empty */
 894				continue;
 895			put_child(t, tn, i/2, right);
 896			continue;
 897		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 898
 899		if (right == NULL) {
 900			put_child(t, tn, i/2, left);
 901			continue;
 902		}
 903
 904		/* Two nonempty children */
 905		newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
 906		put_child(t, tn, i/2, NULL);
 907		put_child(t, newBinNode, 0, left);
 908		put_child(t, newBinNode, 1, right);
 909		put_child(t, tn, i/2, resize(t, newBinNode));
 910	}
 911	tnode_free_safe(oldtnode);
 912	return tn;
 913nomem:
 914	tnode_clean_free(tn);
 915	return ERR_PTR(-ENOMEM);
 916}
 917
 918/* readside must use rcu_read_lock currently dump routines
 919 via get_fa_head and dump */
 920
 921static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
 922{
 923	struct hlist_head *head = &l->list;
 924	struct hlist_node *node;
 925	struct leaf_info *li;
 926
 927	hlist_for_each_entry_rcu(li, node, head, hlist)
 928		if (li->plen == plen)
 929			return li;
 930
 931	return NULL;
 
 
 932}
 933
 934static inline struct list_head *get_fa_head(struct leaf *l, int plen)
 935{
 936	struct leaf_info *li = find_leaf_info(l, plen);
 937
 938	if (!li)
 939		return NULL;
 940
 941	return &li->falh;
 
 
 
 
 
 942}
 943
 944static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
 
 945{
 946	struct leaf_info *li = NULL, *last = NULL;
 947	struct hlist_node *node;
 
 
 
 
 948
 949	if (hlist_empty(head)) {
 950		hlist_add_head_rcu(&new->hlist, head);
 951	} else {
 952		hlist_for_each_entry(li, node, head, hlist) {
 953			if (new->plen > li->plen)
 954				break;
 
 
 955
 956			last = li;
 
 
 
 
 
 
 
 
 
 957		}
 958		if (last)
 959			hlist_add_after_rcu(&last->hlist, &new->hlist);
 960		else
 961			hlist_add_before_rcu(&new->hlist, &li->hlist);
 962	}
 963}
 964
 965/* rcu_read_lock needs to be hold by caller from readside */
 
 966
 967static struct leaf *
 968fib_find_node(struct trie *t, u32 key)
 969{
 970	int pos;
 971	struct tnode *tn;
 972	struct rt_trie_node *n;
 973
 974	pos = 0;
 975	n = rcu_dereference_rtnl(t->trie);
 976
 977	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
 978		tn = (struct tnode *) n;
 979
 980		check_tnode(tn);
 981
 982		if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
 983			pos = tn->pos + tn->bits;
 984			n = tnode_get_child_rcu(tn,
 985						tkey_extract_bits(key,
 986								  tn->pos,
 987								  tn->bits));
 988		} else
 989			break;
 
 
 
 
 990	}
 991	/* Case we have found a leaf. Compare prefixes */
 992
 993	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
 994		return (struct leaf *)n;
 
 995
 996	return NULL;
 
 997}
 998
 999static void trie_rebalance(struct trie *t, struct tnode *tn)
1000{
1001	int wasfull;
1002	t_key cindex, key;
1003	struct tnode *tp;
1004
1005	key = tn->key;
 
 
 
1006
1007	while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
1008		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1009		wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
1010		tn = (struct tnode *) resize(t, (struct tnode *)tn);
1011
1012		tnode_put_child_reorg((struct tnode *)tp, cindex,
1013				      (struct rt_trie_node *)tn, wasfull);
 
 
 
 
 
 
 
 
 
 
 
 
1014
1015		tp = node_parent((struct rt_trie_node *) tn);
1016		if (!tp)
1017			rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1018
1019		tnode_free_flush();
1020		if (!tp)
1021			break;
1022		tn = tp;
1023	}
1024
1025	/* Handle last (top) tnode */
1026	if (IS_TNODE(tn))
1027		tn = (struct tnode *)resize(t, (struct tnode *)tn);
1028
1029	rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1030	tnode_free_flush();
1031}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1032
1033/* only used from updater-side */
1034
1035static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
 
 
 
 
 
 
 
 
 
 
1036{
1037	int pos, newpos;
1038	struct tnode *tp = NULL, *tn = NULL;
1039	struct rt_trie_node *n;
1040	struct leaf *l;
1041	int missbit;
1042	struct list_head *fa_head = NULL;
1043	struct leaf_info *li;
1044	t_key cindex;
1045
1046	pos = 0;
1047	n = rtnl_dereference(t->trie);
1048
1049	/* If we point to NULL, stop. Either the tree is empty and we should
1050	 * just put a new leaf in if, or we have reached an empty child slot,
1051	 * and we should just put our new leaf in that.
1052	 * If we point to a T_TNODE, check if it matches our key. Note that
1053	 * a T_TNODE might be skipping any number of bits - its 'pos' need
1054	 * not be the parent's 'pos'+'bits'!
1055	 *
1056	 * If it does match the current key, get pos/bits from it, extract
1057	 * the index from our key, push the T_TNODE and walk the tree.
1058	 *
1059	 * If it doesn't, we have to replace it with a new T_TNODE.
1060	 *
1061	 * If we point to a T_LEAF, it might or might not have the same key
1062	 * as we do. If it does, just change the value, update the T_LEAF's
1063	 * value, and return it.
1064	 * If it doesn't, we need to replace it with a T_TNODE.
1065	 */
1066
1067	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
1068		tn = (struct tnode *) n;
 
 
 
 
 
 
 
 
 
 
 
 
 
1069
1070		check_tnode(tn);
 
1071
1072		if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1073			tp = tn;
1074			pos = tn->pos + tn->bits;
1075			n = tnode_get_child(tn,
1076					    tkey_extract_bits(key,
1077							      tn->pos,
1078							      tn->bits));
 
1079
1080			BUG_ON(n && node_parent(n) != tn);
1081		} else
1082			break;
 
 
 
 
 
 
 
 
 
 
 
1083	}
1084
1085	/*
1086	 * n  ----> NULL, LEAF or TNODE
1087	 *
1088	 * tp is n's (parent) ----> NULL or TNODE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1089	 */
 
 
 
 
1090
1091	BUG_ON(tp && IS_LEAF(tp));
 
1092
1093	/* Case 1: n is a leaf. Compare prefixes */
1094
1095	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1096		l = (struct leaf *) n;
1097		li = leaf_info_new(plen);
 
 
 
 
 
 
1098
1099		if (!li)
1100			return NULL;
 
 
 
1101
1102		fa_head = &li->falh;
1103		insert_leaf_info(&l->list, li);
1104		goto done;
 
 
 
1105	}
1106	l = leaf_new();
1107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1108	if (!l)
1109		return NULL;
1110
1111	l->key = key;
1112	li = leaf_info_new(plen);
1113
1114	if (!li) {
1115		free_leaf(l);
1116		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1117	}
1118
1119	fa_head = &li->falh;
1120	insert_leaf_info(&l->list, li);
 
 
 
1121
1122	if (t->trie && n == NULL) {
1123		/* Case 2: n is NULL, and will just insert a new leaf */
 
 
 
 
1124
1125		node_set_parent((struct rt_trie_node *)l, tp);
 
 
 
 
 
1126
1127		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1128		put_child(t, (struct tnode *)tp, cindex, (struct rt_trie_node *)l);
1129	} else {
1130		/* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1131		/*
1132		 *  Add a new tnode here
1133		 *  first tnode need some special handling
1134		 */
1135
1136		if (tp)
1137			pos = tp->pos+tp->bits;
1138		else
1139			pos = 0;
1140
1141		if (n) {
1142			newpos = tkey_mismatch(key, pos, n->key);
1143			tn = tnode_new(n->key, newpos, 1);
1144		} else {
1145			newpos = 0;
1146			tn = tnode_new(key, newpos, 1); /* First tnode */
1147		}
1148
1149		if (!tn) {
1150			free_leaf_info(li);
1151			free_leaf(l);
1152			return NULL;
1153		}
1154
1155		node_set_parent((struct rt_trie_node *)tn, tp);
 
 
 
 
1156
1157		missbit = tkey_extract_bits(key, newpos, 1);
1158		put_child(t, tn, missbit, (struct rt_trie_node *)l);
1159		put_child(t, tn, 1-missbit, n);
1160
1161		if (tp) {
1162			cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1163			put_child(t, (struct tnode *)tp, cindex,
1164				  (struct rt_trie_node *)tn);
1165		} else {
1166			rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1167			tp = tn;
1168		}
1169	}
1170
1171	if (tp && tp->pos + tp->bits > 32)
1172		pr_warning("fib_trie"
1173			   " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1174			   tp, tp->pos, tp->bits, key, plen);
1175
1176	/* Rebalance the trie */
1177
1178	trie_rebalance(t, tp);
1179done:
1180	return fa_head;
1181}
1182
1183/*
1184 * Caller must hold RTNL.
1185 */
1186int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
 
 
1187{
1188	struct trie *t = (struct trie *) tb->tb_data;
1189	struct fib_alias *fa, *new_fa;
1190	struct list_head *fa_head = NULL;
 
1191	struct fib_info *fi;
1192	int plen = cfg->fc_dst_len;
1193	u8 tos = cfg->fc_tos;
1194	u32 key, mask;
 
1195	int err;
1196	struct leaf *l;
1197
1198	if (plen > 32)
1199		return -EINVAL;
1200
1201	key = ntohl(cfg->fc_dst);
1202
1203	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1204
1205	mask = ntohl(inet_make_mask(plen));
1206
1207	if (key & ~mask)
1208		return -EINVAL;
1209
1210	key = key & mask;
1211
1212	fi = fib_create_info(cfg);
1213	if (IS_ERR(fi)) {
1214		err = PTR_ERR(fi);
1215		goto err;
1216	}
1217
1218	l = fib_find_node(t, key);
1219	fa = NULL;
1220
1221	if (l) {
1222		fa_head = get_fa_head(l, plen);
1223		fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1224	}
1225
1226	/* Now fa, if non-NULL, points to the first fib alias
1227	 * with the same keys [prefix,tos,priority], if such key already
1228	 * exists or to the node before which we will insert new one.
1229	 *
1230	 * If fa is NULL, we will need to allocate a new one and
1231	 * insert to the head of f.
1232	 *
1233	 * If f is NULL, no fib node matched the destination key
1234	 * and we need to allocate a new one of those as well.
1235	 */
1236
1237	if (fa && fa->fa_tos == tos &&
1238	    fa->fa_info->fib_priority == fi->fib_priority) {
1239		struct fib_alias *fa_first, *fa_match;
1240
1241		err = -EEXIST;
1242		if (cfg->fc_nlflags & NLM_F_EXCL)
1243			goto out;
1244
 
 
1245		/* We have 2 goals:
1246		 * 1. Find exact match for type, scope, fib_info to avoid
1247		 * duplicate routes
1248		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1249		 */
1250		fa_match = NULL;
1251		fa_first = fa;
1252		fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1253		list_for_each_entry_continue(fa, fa_head, fa_list) {
1254			if (fa->fa_tos != tos)
 
1255				break;
1256			if (fa->fa_info->fib_priority != fi->fib_priority)
1257				break;
1258			if (fa->fa_type == cfg->fc_type &&
1259			    fa->fa_info == fi) {
1260				fa_match = fa;
1261				break;
1262			}
1263		}
1264
1265		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1266			struct fib_info *fi_drop;
1267			u8 state;
1268
 
1269			fa = fa_first;
1270			if (fa_match) {
1271				if (fa == fa_match)
1272					err = 0;
1273				goto out;
1274			}
1275			err = -ENOBUFS;
1276			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1277			if (new_fa == NULL)
1278				goto out;
1279
1280			fi_drop = fa->fa_info;
1281			new_fa->fa_tos = fa->fa_tos;
1282			new_fa->fa_info = fi;
1283			new_fa->fa_type = cfg->fc_type;
1284			state = fa->fa_state;
1285			new_fa->fa_state = state & ~FA_S_ACCESSED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1286
1287			list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1288			alias_free_mem_rcu(fa);
1289
1290			fib_release_info(fi_drop);
1291			if (state & FA_S_ACCESSED)
1292				rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1293			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1294				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1295
1296			goto succeeded;
1297		}
1298		/* Error if we find a perfect match which
1299		 * uses the same scope, type, and nexthop
1300		 * information.
1301		 */
1302		if (fa_match)
1303			goto out;
1304
1305		if (!(cfg->fc_nlflags & NLM_F_APPEND))
 
 
1306			fa = fa_first;
1307	}
1308	err = -ENOENT;
1309	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1310		goto out;
1311
 
1312	err = -ENOBUFS;
1313	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1314	if (new_fa == NULL)
1315		goto out;
1316
1317	new_fa->fa_info = fi;
1318	new_fa->fa_tos = tos;
1319	new_fa->fa_type = cfg->fc_type;
1320	new_fa->fa_state = 0;
1321	/*
1322	 * Insert new entry to the list.
1323	 */
1324
1325	if (!fa_head) {
1326		fa_head = fib_insert_node(t, key, plen);
1327		if (unlikely(!fa_head)) {
1328			err = -ENOMEM;
1329			goto out_free_new_fa;
1330		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1331	}
1332
1333	if (!plen)
1334		tb->tb_num_default++;
1335
1336	list_add_tail_rcu(&new_fa->fa_list,
1337			  (fa ? &fa->fa_list : fa_head));
1338
1339	rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1340	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1341		  &cfg->fc_nlinfo, 0);
1342succeeded:
1343	return 0;
1344
 
 
1345out_free_new_fa:
1346	kmem_cache_free(fn_alias_kmem, new_fa);
1347out:
1348	fib_release_info(fi);
1349err:
1350	return err;
1351}
1352
1353/* should be called with rcu_read_lock */
1354static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
1355		      t_key key,  const struct flowi4 *flp,
1356		      struct fib_result *res, int fib_flags)
1357{
1358	struct leaf_info *li;
1359	struct hlist_head *hhead = &l->list;
1360	struct hlist_node *node;
1361
1362	hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1363		struct fib_alias *fa;
1364
1365		if (l->key != (key & li->mask_plen))
1366			continue;
1367
1368		list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1369			struct fib_info *fi = fa->fa_info;
1370			int nhsel, err;
1371
1372			if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1373				continue;
1374			if (fa->fa_info->fib_scope < flp->flowi4_scope)
1375				continue;
1376			fib_alias_accessed(fa);
1377			err = fib_props[fa->fa_type].error;
1378			if (err) {
1379#ifdef CONFIG_IP_FIB_TRIE_STATS
1380				t->stats.semantic_match_passed++;
1381#endif
1382				return err;
1383			}
1384			if (fi->fib_flags & RTNH_F_DEAD)
1385				continue;
1386			for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1387				const struct fib_nh *nh = &fi->fib_nh[nhsel];
1388
1389				if (nh->nh_flags & RTNH_F_DEAD)
1390					continue;
1391				if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1392					continue;
 
1393
1394#ifdef CONFIG_IP_FIB_TRIE_STATS
1395				t->stats.semantic_match_passed++;
1396#endif
1397				res->prefixlen = li->plen;
1398				res->nh_sel = nhsel;
1399				res->type = fa->fa_type;
1400				res->scope = fa->fa_info->fib_scope;
1401				res->fi = fi;
1402				res->table = tb;
1403				res->fa_head = &li->falh;
1404				if (!(fib_flags & FIB_LOOKUP_NOREF))
1405					atomic_inc(&fi->fib_clntref);
1406				return 0;
1407			}
1408		}
1409
1410#ifdef CONFIG_IP_FIB_TRIE_STATS
1411		t->stats.semantic_match_miss++;
1412#endif
1413	}
1414
1415	return 1;
1416}
1417
 
1418int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1419		     struct fib_result *res, int fib_flags)
1420{
1421	struct trie *t = (struct trie *) tb->tb_data;
1422	int ret;
1423	struct rt_trie_node *n;
1424	struct tnode *pn;
1425	unsigned int pos, bits;
1426	t_key key = ntohl(flp->daddr);
1427	unsigned int chopped_off;
1428	t_key cindex = 0;
1429	unsigned int current_prefix_length = KEYLENGTH;
1430	struct tnode *cn;
1431	t_key pref_mismatch;
1432
1433	rcu_read_lock();
1434
1435	n = rcu_dereference(t->trie);
1436	if (!n)
1437		goto failed;
1438
1439#ifdef CONFIG_IP_FIB_TRIE_STATS
1440	t->stats.gets++;
1441#endif
 
 
 
 
 
1442
1443	/* Just a leaf? */
1444	if (IS_LEAF(n)) {
1445		ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1446		goto found;
1447	}
1448
1449	pn = (struct tnode *) n;
1450	chopped_off = 0;
1451
1452	while (pn) {
1453		pos = pn->pos;
1454		bits = pn->bits;
1455
1456		if (!chopped_off)
1457			cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1458						   pos, bits);
1459
1460		n = tnode_get_child_rcu(pn, cindex);
 
 
 
 
1461
1462		if (n == NULL) {
1463#ifdef CONFIG_IP_FIB_TRIE_STATS
1464			t->stats.null_node_hit++;
1465#endif
1466			goto backtrace;
1467		}
1468
1469		if (IS_LEAF(n)) {
1470			ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1471			if (ret > 0)
1472				goto backtrace;
1473			goto found;
1474		}
1475
1476		cn = (struct tnode *)n;
1477
1478		/*
1479		 * It's a tnode, and we can do some extra checks here if we
1480		 * like, to avoid descending into a dead-end branch.
1481		 * This tnode is in the parent's child array at index
1482		 * key[p_pos..p_pos+p_bits] but potentially with some bits
1483		 * chopped off, so in reality the index may be just a
1484		 * subprefix, padded with zero at the end.
1485		 * We can also take a look at any skipped bits in this
1486		 * tnode - everything up to p_pos is supposed to be ok,
1487		 * and the non-chopped bits of the index (se previous
1488		 * paragraph) are also guaranteed ok, but the rest is
1489		 * considered unknown.
1490		 *
1491		 * The skipped bits are key[pos+bits..cn->pos].
1492		 */
1493
1494		/* If current_prefix_length < pos+bits, we are already doing
1495		 * actual prefix  matching, which means everything from
1496		 * pos+(bits-chopped_off) onward must be zero along some
1497		 * branch of this subtree - otherwise there is *no* valid
1498		 * prefix present. Here we can only check the skipped
1499		 * bits. Remember, since we have already indexed into the
1500		 * parent's child array, we know that the bits we chopped of
1501		 * *are* zero.
1502		 */
 
 
1503
1504		/* NOTA BENE: Checking only skipped bits
1505		   for the new node here */
 
1506
1507		if (current_prefix_length < pos+bits) {
1508			if (tkey_extract_bits(cn->key, current_prefix_length,
1509						cn->pos - current_prefix_length)
1510			    || !(cn->child[0]))
1511				goto backtrace;
1512		}
1513
1514		/*
1515		 * If chopped_off=0, the index is fully validated and we
1516		 * only need to look at the skipped bits for this, the new,
1517		 * tnode. What we actually want to do is to find out if
1518		 * these skipped bits match our key perfectly, or if we will
1519		 * have to count on finding a matching prefix further down,
1520		 * because if we do, we would like to have some way of
1521		 * verifying the existence of such a prefix at this point.
1522		 */
 
 
 
 
1523
1524		/* The only thing we can do at this point is to verify that
1525		 * any such matching prefix can indeed be a prefix to our
1526		 * key, and if the bits in the node we are inspecting that
1527		 * do not match our key are not ZERO, this cannot be true.
1528		 * Thus, find out where there is a mismatch (before cn->pos)
1529		 * and verify that all the mismatching bits are zero in the
1530		 * new tnode's key.
1531		 */
1532
1533		/*
1534		 * Note: We aren't very concerned about the piece of
1535		 * the key that precede pn->pos+pn->bits, since these
1536		 * have already been checked. The bits after cn->pos
1537		 * aren't checked since these are by definition
1538		 * "unknown" at this point. Thus, what we want to see
1539		 * is if we are about to enter the "prefix matching"
1540		 * state, and in that case verify that the skipped
1541		 * bits that will prevail throughout this subtree are
1542		 * zero, as they have to be if we are to find a
1543		 * matching prefix.
1544		 */
 
 
1545
1546		pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
 
 
1547
1548		/*
1549		 * In short: If skipped bits in this node do not match
1550		 * the search key, enter the "prefix matching"
1551		 * state.directly.
1552		 */
1553		if (pref_mismatch) {
1554			int mp = KEYLENGTH - fls(pref_mismatch);
1555
1556			if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
1557				goto backtrace;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1558
1559			if (current_prefix_length >= cn->pos)
1560				current_prefix_length = mp;
1561		}
 
1562
1563		pn = (struct tnode *)n; /* Descend */
1564		chopped_off = 0;
1565		continue;
1566
1567backtrace:
1568		chopped_off++;
 
 
 
1569
1570		/* As zero don't change the child key (cindex) */
1571		while ((chopped_off <= pn->bits)
1572		       && !(cindex & (1<<(chopped_off-1))))
1573			chopped_off++;
1574
1575		/* Decrease current_... with bits chopped off */
1576		if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1577			current_prefix_length = pn->pos + pn->bits
1578				- chopped_off;
1579
1580		/*
1581		 * Either we do the actual chop off according or if we have
1582		 * chopped off all bits in this tnode walk up to our parent.
1583		 */
 
 
 
 
 
 
 
 
 
1584
1585		if (chopped_off <= pn->bits) {
1586			cindex &= ~(1 << (chopped_off-1));
1587		} else {
1588			struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
1589			if (!parent)
1590				goto failed;
1591
1592			/* Get Child's index */
1593			cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1594			pn = parent;
1595			chopped_off = 0;
 
 
 
 
1596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1597#ifdef CONFIG_IP_FIB_TRIE_STATS
1598			t->stats.backtrack++;
1599#endif
1600			goto backtrace;
 
 
1601		}
1602	}
1603failed:
1604	ret = 1;
1605found:
1606	rcu_read_unlock();
1607	return ret;
1608}
 
1609
1610/*
1611 * Remove the leaf and return parent.
1612 */
1613static void trie_leaf_remove(struct trie *t, struct leaf *l)
1614{
1615	struct tnode *tp = node_parent((struct rt_trie_node *) l);
 
 
1616
1617	pr_debug("entering trie_leaf_remove(%p)\n", l);
 
1618
1619	if (tp) {
1620		t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1621		put_child(t, (struct tnode *)tp, cindex, NULL);
 
 
 
 
 
1622		trie_rebalance(t, tp);
1623	} else
1624		rcu_assign_pointer(t->trie, NULL);
 
 
 
 
1625
1626	free_leaf(l);
 
 
1627}
1628
1629/*
1630 * Caller must hold RTNL.
1631 */
1632int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1633{
1634	struct trie *t = (struct trie *) tb->tb_data;
1635	u32 key, mask;
1636	int plen = cfg->fc_dst_len;
1637	u8 tos = cfg->fc_tos;
1638	struct fib_alias *fa, *fa_to_delete;
1639	struct list_head *fa_head;
1640	struct leaf *l;
1641	struct leaf_info *li;
1642
1643	if (plen > 32)
1644		return -EINVAL;
1645
1646	key = ntohl(cfg->fc_dst);
1647	mask = ntohl(inet_make_mask(plen));
1648
1649	if (key & ~mask)
1650		return -EINVAL;
1651
1652	key = key & mask;
1653	l = fib_find_node(t, key);
1654
1655	if (!l)
1656		return -ESRCH;
1657
1658	fa_head = get_fa_head(l, plen);
1659	fa = fib_find_alias(fa_head, tos, 0);
1660
1661	if (!fa)
1662		return -ESRCH;
1663
1664	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
 
1665
1666	fa_to_delete = NULL;
1667	fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1668	list_for_each_entry_continue(fa, fa_head, fa_list) {
1669		struct fib_info *fi = fa->fa_info;
1670
1671		if (fa->fa_tos != tos)
 
 
1672			break;
1673
1674		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1675		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1676		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1677		    (!cfg->fc_prefsrc ||
1678		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1679		    (!cfg->fc_protocol ||
1680		     fi->fib_protocol == cfg->fc_protocol) &&
1681		    fib_nh_match(cfg, fi) == 0) {
 
1682			fa_to_delete = fa;
1683			break;
1684		}
1685	}
1686
1687	if (!fa_to_delete)
1688		return -ESRCH;
1689
1690	fa = fa_to_delete;
1691	rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1692		  &cfg->fc_nlinfo, 0);
1693
1694	l = fib_find_node(t, key);
1695	li = find_leaf_info(l, plen);
1696
1697	list_del_rcu(&fa->fa_list);
1698
1699	if (!plen)
1700		tb->tb_num_default--;
1701
1702	if (list_empty(fa_head)) {
1703		hlist_del_rcu(&li->hlist);
1704		free_leaf_info(li);
1705	}
1706
1707	if (hlist_empty(&l->list))
1708		trie_leaf_remove(t, l);
1709
1710	if (fa->fa_state & FA_S_ACCESSED)
1711		rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1712
1713	fib_release_info(fa->fa_info);
1714	alias_free_mem_rcu(fa);
1715	return 0;
1716}
1717
1718static int trie_flush_list(struct list_head *head)
 
1719{
1720	struct fib_alias *fa, *fa_node;
1721	int found = 0;
1722
1723	list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1724		struct fib_info *fi = fa->fa_info;
 
 
 
1725
1726		if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1727			list_del_rcu(&fa->fa_list);
1728			fib_release_info(fa->fa_info);
1729			alias_free_mem_rcu(fa);
1730			found++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1731		}
 
 
 
 
 
 
 
 
 
 
 
 
 
1732	}
1733	return found;
 
 
 
 
 
 
1734}
1735
1736static int trie_flush_leaf(struct leaf *l)
1737{
1738	int found = 0;
1739	struct hlist_head *lih = &l->list;
1740	struct hlist_node *node, *tmp;
1741	struct leaf_info *li = NULL;
1742
1743	hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1744		found += trie_flush_list(&li->falh);
1745
1746		if (list_empty(&li->falh)) {
1747			hlist_del_rcu(&li->hlist);
1748			free_leaf_info(li);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1749		}
 
 
 
 
 
 
 
 
1750	}
1751	return found;
 
 
 
 
1752}
1753
1754/*
1755 * Scan for the next right leaf starting at node p->child[idx]
1756 * Since we have back pointer, no recursion necessary.
1757 */
1758static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
1759{
1760	do {
1761		t_key idx;
 
 
 
 
1762
1763		if (c)
1764			idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1765		else
1766			idx = 0;
1767
1768		while (idx < 1u << p->bits) {
1769			c = tnode_get_child_rcu(p, idx++);
1770			if (!c)
 
 
 
 
 
 
 
 
 
 
1771				continue;
1772
1773			if (IS_LEAF(c)) {
1774				prefetch(rcu_dereference_rtnl(p->child[idx]));
1775				return (struct leaf *) c;
1776			}
 
 
1777
1778			/* Rescan start scanning in new node */
1779			p = (struct tnode *) c;
1780			idx = 0;
 
 
 
 
 
 
1781		}
1782
1783		/* Node empty, walk back up to parent */
1784		c = (struct rt_trie_node *) p;
1785	} while ((p = node_parent_rcu(c)) != NULL);
 
 
1786
1787	return NULL; /* Root of trie */
 
 
 
 
1788}
1789
1790static struct leaf *trie_firstleaf(struct trie *t)
 
1791{
1792	struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
 
 
 
 
1793
1794	if (!n)
1795		return NULL;
 
 
1796
1797	if (IS_LEAF(n))          /* trie is just a leaf */
1798		return (struct leaf *) n;
1799
1800	return leaf_walk_rcu(n, NULL);
1801}
 
1802
1803static struct leaf *trie_nextleaf(struct leaf *l)
1804{
1805	struct rt_trie_node *c = (struct rt_trie_node *) l;
1806	struct tnode *p = node_parent_rcu(c);
 
 
 
1807
1808	if (!p)
1809		return NULL;	/* trie with just one leaf */
1810
1811	return leaf_walk_rcu(p, c);
1812}
 
 
1813
1814static struct leaf *trie_leafindex(struct trie *t, int index)
1815{
1816	struct leaf *l = trie_firstleaf(t);
 
1817
1818	while (l && index-- > 0)
1819		l = trie_nextleaf(l);
1820
1821	return l;
1822}
 
 
 
 
 
 
 
1823
 
 
 
1824
1825/*
1826 * Caller must hold RTNL.
1827 */
1828int fib_table_flush(struct fib_table *tb)
 
 
 
 
 
 
 
 
1829{
1830	struct trie *t = (struct trie *) tb->tb_data;
1831	struct leaf *l, *ll = NULL;
 
 
 
 
1832	int found = 0;
1833
1834	for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1835		found += trie_flush_leaf(l);
 
 
1836
1837		if (ll && hlist_empty(&ll->list))
1838			trie_leaf_remove(t, ll);
1839		ll = l;
1840	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1841
1842	if (ll && hlist_empty(&ll->list))
1843		trie_leaf_remove(t, ll);
 
 
 
1844
1845	pr_debug("trie_flush found=%d\n", found);
1846	return found;
1847}
1848
1849void fib_free_table(struct fib_table *tb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1850{
1851	kfree(tb);
 
 
 
 
 
 
 
 
 
1852}
1853
1854static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1855			   struct fib_table *tb,
1856			   struct sk_buff *skb, struct netlink_callback *cb)
1857{
1858	int i, s_i;
1859	struct fib_alias *fa;
1860	__be32 xkey = htonl(key);
 
1861
1862	s_i = cb->args[5];
1863	i = 0;
1864
1865	/* rcu_read_lock is hold by caller */
 
 
 
 
 
 
 
1866
1867	list_for_each_entry_rcu(fa, fah, fa_list) {
1868		if (i < s_i) {
1869			i++;
1870			continue;
1871		}
1872
1873		if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1874				  cb->nlh->nlmsg_seq,
1875				  RTM_NEWROUTE,
1876				  tb->tb_id,
1877				  fa->fa_type,
1878				  xkey,
1879				  plen,
1880				  fa->fa_tos,
1881				  fa->fa_info, NLM_F_MULTI) < 0) {
1882			cb->args[5] = i;
1883			return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1884		}
1885		i++;
1886	}
1887	cb->args[5] = i;
1888	return skb->len;
1889}
1890
1891static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1892			struct sk_buff *skb, struct netlink_callback *cb)
1893{
1894	struct leaf_info *li;
1895	struct hlist_node *node;
1896	int i, s_i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1897
1898	s_i = cb->args[4];
 
1899	i = 0;
1900
1901	/* rcu_read_lock is hold by caller */
1902	hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1903		if (i < s_i) {
1904			i++;
1905			continue;
1906		}
1907
1908		if (i > s_i)
1909			cb->args[5] = 0;
1910
1911		if (list_empty(&li->falh))
1912			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1913
1914		if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1915			cb->args[4] = i;
1916			return -1;
 
 
1917		}
 
 
1918		i++;
1919	}
1920
1921	cb->args[4] = i;
1922	return skb->len;
 
 
 
 
 
1923}
1924
 
1925int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1926		   struct netlink_callback *cb)
1927{
1928	struct leaf *l;
1929	struct trie *t = (struct trie *) tb->tb_data;
1930	t_key key = cb->args[2];
1931	int count = cb->args[3];
1932
1933	rcu_read_lock();
1934	/* Dump starting at last key.
1935	 * Note: 0.0.0.0/0 (ie default) is first key.
1936	 */
1937	if (count == 0)
1938		l = trie_firstleaf(t);
1939	else {
1940		/* Normally, continue from last key, but if that is missing
1941		 * fallback to using slow rescan
1942		 */
1943		l = fib_find_node(t, key);
1944		if (!l)
1945			l = trie_leafindex(t, count);
1946	}
 
1947
1948	while (l) {
1949		cb->args[2] = l->key;
1950		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1951			cb->args[3] = count;
1952			rcu_read_unlock();
1953			return -1;
1954		}
1955
1956		++count;
1957		l = trie_nextleaf(l);
 
1958		memset(&cb->args[4], 0,
1959		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
 
 
 
 
1960	}
1961	cb->args[3] = count;
1962	rcu_read_unlock();
1963
1964	return skb->len;
 
 
 
1965}
1966
1967void __init fib_trie_init(void)
1968{
1969	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1970					  sizeof(struct fib_alias),
1971					  0, SLAB_PANIC, NULL);
1972
1973	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1974					   max(sizeof(struct leaf),
1975					       sizeof(struct leaf_info)),
1976					   0, SLAB_PANIC, NULL);
1977}
1978
1979
1980struct fib_table *fib_trie_table(u32 id)
1981{
1982	struct fib_table *tb;
1983	struct trie *t;
 
 
 
 
1984
1985	tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1986		     GFP_KERNEL);
1987	if (tb == NULL)
1988		return NULL;
1989
1990	tb->tb_id = id;
1991	tb->tb_default = -1;
1992	tb->tb_num_default = 0;
 
 
 
 
1993
1994	t = (struct trie *) tb->tb_data;
1995	memset(t, 0, sizeof(*t));
 
 
 
 
 
 
 
 
1996
1997	return tb;
1998}
1999
2000#ifdef CONFIG_PROC_FS
2001/* Depth first Trie walk iterator */
2002struct fib_trie_iter {
2003	struct seq_net_private p;
2004	struct fib_table *tb;
2005	struct tnode *tnode;
2006	unsigned int index;
2007	unsigned int depth;
2008};
2009
2010static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
2011{
2012	struct tnode *tn = iter->tnode;
2013	unsigned int cindex = iter->index;
2014	struct tnode *p;
2015
2016	/* A single entry routing table */
2017	if (!tn)
2018		return NULL;
2019
2020	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2021		 iter->tnode, iter->index, iter->depth);
2022rescan:
2023	while (cindex < (1<<tn->bits)) {
2024		struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
2025
2026		if (n) {
 
 
 
 
 
 
2027			if (IS_LEAF(n)) {
2028				iter->tnode = tn;
2029				iter->index = cindex + 1;
2030			} else {
2031				/* push down one level */
2032				iter->tnode = (struct tnode *) n;
2033				iter->index = 0;
2034				++iter->depth;
2035			}
 
2036			return n;
2037		}
2038
2039		++cindex;
2040	}
2041
2042	/* Current node exhausted, pop back up */
2043	p = node_parent_rcu((struct rt_trie_node *)tn);
2044	if (p) {
2045		cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2046		tn = p;
2047		--iter->depth;
2048		goto rescan;
2049	}
2050
2051	/* got root? */
 
 
 
2052	return NULL;
2053}
2054
2055static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
2056				       struct trie *t)
2057{
2058	struct rt_trie_node *n;
2059
2060	if (!t)
2061		return NULL;
2062
2063	n = rcu_dereference(t->trie);
 
2064	if (!n)
2065		return NULL;
2066
2067	if (IS_TNODE(n)) {
2068		iter->tnode = (struct tnode *) n;
2069		iter->index = 0;
2070		iter->depth = 1;
2071	} else {
2072		iter->tnode = NULL;
2073		iter->index = 0;
2074		iter->depth = 0;
2075	}
2076
2077	return n;
2078}
2079
2080static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2081{
2082	struct rt_trie_node *n;
2083	struct fib_trie_iter iter;
2084
2085	memset(s, 0, sizeof(*s));
2086
2087	rcu_read_lock();
2088	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2089		if (IS_LEAF(n)) {
2090			struct leaf *l = (struct leaf *)n;
2091			struct leaf_info *li;
2092			struct hlist_node *tmp;
2093
2094			s->leaves++;
2095			s->totdepth += iter.depth;
2096			if (iter.depth > s->maxdepth)
2097				s->maxdepth = iter.depth;
2098
2099			hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2100				++s->prefixes;
2101		} else {
2102			const struct tnode *tn = (const struct tnode *) n;
2103			int i;
2104
2105			s->tnodes++;
2106			if (tn->bits < MAX_STAT_DEPTH)
2107				s->nodesizes[tn->bits]++;
2108
2109			for (i = 0; i < (1<<tn->bits); i++)
2110				if (!tn->child[i])
2111					s->nullpointers++;
2112		}
2113	}
2114	rcu_read_unlock();
2115}
2116
2117/*
2118 *	This outputs /proc/net/fib_triestats
2119 */
2120static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2121{
2122	unsigned int i, max, pointers, bytes, avdepth;
2123
2124	if (stat->leaves)
2125		avdepth = stat->totdepth*100 / stat->leaves;
2126	else
2127		avdepth = 0;
2128
2129	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2130		   avdepth / 100, avdepth % 100);
2131	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2132
2133	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2134	bytes = sizeof(struct leaf) * stat->leaves;
2135
2136	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2137	bytes += sizeof(struct leaf_info) * stat->prefixes;
2138
2139	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2140	bytes += sizeof(struct tnode) * stat->tnodes;
2141
2142	max = MAX_STAT_DEPTH;
2143	while (max > 0 && stat->nodesizes[max-1] == 0)
2144		max--;
2145
2146	pointers = 0;
2147	for (i = 1; i <= max; i++)
2148		if (stat->nodesizes[i] != 0) {
2149			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2150			pointers += (1<<i) * stat->nodesizes[i];
2151		}
2152	seq_putc(seq, '\n');
2153	seq_printf(seq, "\tPointers: %u\n", pointers);
2154
2155	bytes += sizeof(struct rt_trie_node *) * pointers;
2156	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2157	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2158}
2159
2160#ifdef CONFIG_IP_FIB_TRIE_STATS
2161static void trie_show_usage(struct seq_file *seq,
2162			    const struct trie_use_stats *stats)
2163{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2164	seq_printf(seq, "\nCounters:\n---------\n");
2165	seq_printf(seq, "gets = %u\n", stats->gets);
2166	seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2167	seq_printf(seq, "semantic match passed = %u\n",
2168		   stats->semantic_match_passed);
2169	seq_printf(seq, "semantic match miss = %u\n",
2170		   stats->semantic_match_miss);
2171	seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2172	seq_printf(seq, "skipped node resize = %u\n\n",
2173		   stats->resize_node_skipped);
2174}
2175#endif /*  CONFIG_IP_FIB_TRIE_STATS */
2176
2177static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2178{
2179	if (tb->tb_id == RT_TABLE_LOCAL)
2180		seq_puts(seq, "Local:\n");
2181	else if (tb->tb_id == RT_TABLE_MAIN)
2182		seq_puts(seq, "Main:\n");
2183	else
2184		seq_printf(seq, "Id %d:\n", tb->tb_id);
2185}
2186
2187
2188static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2189{
2190	struct net *net = (struct net *)seq->private;
2191	unsigned int h;
2192
2193	seq_printf(seq,
2194		   "Basic info: size of leaf:"
2195		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2196		   sizeof(struct leaf), sizeof(struct tnode));
2197
 
2198	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2199		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2200		struct hlist_node *node;
2201		struct fib_table *tb;
2202
2203		hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2204			struct trie *t = (struct trie *) tb->tb_data;
2205			struct trie_stat stat;
2206
2207			if (!t)
2208				continue;
2209
2210			fib_table_print(seq, tb);
2211
2212			trie_collect_stats(t, &stat);
2213			trie_show_stats(seq, &stat);
2214#ifdef CONFIG_IP_FIB_TRIE_STATS
2215			trie_show_usage(seq, &t->stats);
2216#endif
2217		}
 
2218	}
 
2219
2220	return 0;
2221}
2222
2223static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2224{
2225	return single_open_net(inode, file, fib_triestat_seq_show);
2226}
2227
2228static const struct file_operations fib_triestat_fops = {
2229	.owner	= THIS_MODULE,
2230	.open	= fib_triestat_seq_open,
2231	.read	= seq_read,
2232	.llseek	= seq_lseek,
2233	.release = single_release_net,
2234};
2235
2236static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2237{
2238	struct fib_trie_iter *iter = seq->private;
2239	struct net *net = seq_file_net(seq);
2240	loff_t idx = 0;
2241	unsigned int h;
2242
2243	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2244		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2245		struct hlist_node *node;
2246		struct fib_table *tb;
2247
2248		hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2249			struct rt_trie_node *n;
2250
2251			for (n = fib_trie_get_first(iter,
2252						    (struct trie *) tb->tb_data);
2253			     n; n = fib_trie_get_next(iter))
2254				if (pos == idx++) {
2255					iter->tb = tb;
2256					return n;
2257				}
2258		}
2259	}
2260
2261	return NULL;
2262}
2263
2264static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2265	__acquires(RCU)
2266{
2267	rcu_read_lock();
2268	return fib_trie_get_idx(seq, *pos);
2269}
2270
2271static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2272{
2273	struct fib_trie_iter *iter = seq->private;
2274	struct net *net = seq_file_net(seq);
2275	struct fib_table *tb = iter->tb;
2276	struct hlist_node *tb_node;
2277	unsigned int h;
2278	struct rt_trie_node *n;
2279
2280	++*pos;
2281	/* next node in same table */
2282	n = fib_trie_get_next(iter);
2283	if (n)
2284		return n;
2285
2286	/* walk rest of this hash chain */
2287	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2288	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2289		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2290		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2291		if (n)
2292			goto found;
2293	}
2294
2295	/* new hash chain */
2296	while (++h < FIB_TABLE_HASHSZ) {
2297		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2298		hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2299			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2300			if (n)
2301				goto found;
2302		}
2303	}
2304	return NULL;
2305
2306found:
2307	iter->tb = tb;
2308	return n;
2309}
2310
2311static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2312	__releases(RCU)
2313{
2314	rcu_read_unlock();
2315}
2316
2317static void seq_indent(struct seq_file *seq, int n)
2318{
2319	while (n-- > 0)
2320		seq_puts(seq, "   ");
2321}
2322
2323static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2324{
2325	switch (s) {
2326	case RT_SCOPE_UNIVERSE: return "universe";
2327	case RT_SCOPE_SITE:	return "site";
2328	case RT_SCOPE_LINK:	return "link";
2329	case RT_SCOPE_HOST:	return "host";
2330	case RT_SCOPE_NOWHERE:	return "nowhere";
2331	default:
2332		snprintf(buf, len, "scope=%d", s);
2333		return buf;
2334	}
2335}
2336
2337static const char *const rtn_type_names[__RTN_MAX] = {
2338	[RTN_UNSPEC] = "UNSPEC",
2339	[RTN_UNICAST] = "UNICAST",
2340	[RTN_LOCAL] = "LOCAL",
2341	[RTN_BROADCAST] = "BROADCAST",
2342	[RTN_ANYCAST] = "ANYCAST",
2343	[RTN_MULTICAST] = "MULTICAST",
2344	[RTN_BLACKHOLE] = "BLACKHOLE",
2345	[RTN_UNREACHABLE] = "UNREACHABLE",
2346	[RTN_PROHIBIT] = "PROHIBIT",
2347	[RTN_THROW] = "THROW",
2348	[RTN_NAT] = "NAT",
2349	[RTN_XRESOLVE] = "XRESOLVE",
2350};
2351
2352static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2353{
2354	if (t < __RTN_MAX && rtn_type_names[t])
2355		return rtn_type_names[t];
2356	snprintf(buf, len, "type %u", t);
2357	return buf;
2358}
2359
2360/* Pretty print the trie */
2361static int fib_trie_seq_show(struct seq_file *seq, void *v)
2362{
2363	const struct fib_trie_iter *iter = seq->private;
2364	struct rt_trie_node *n = v;
2365
2366	if (!node_parent_rcu(n))
2367		fib_table_print(seq, iter->tb);
2368
2369	if (IS_TNODE(n)) {
2370		struct tnode *tn = (struct tnode *) n;
2371		__be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2372
2373		seq_indent(seq, iter->depth-1);
2374		seq_printf(seq, "  +-- %pI4/%d %d %d %d\n",
2375			   &prf, tn->pos, tn->bits, tn->full_children,
2376			   tn->empty_children);
2377
2378	} else {
2379		struct leaf *l = (struct leaf *) n;
2380		struct leaf_info *li;
2381		struct hlist_node *node;
2382		__be32 val = htonl(l->key);
2383
2384		seq_indent(seq, iter->depth);
2385		seq_printf(seq, "  |-- %pI4\n", &val);
2386
2387		hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2388			struct fib_alias *fa;
2389
2390			list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2391				char buf1[32], buf2[32];
2392
2393				seq_indent(seq, iter->depth+1);
2394				seq_printf(seq, "  /%d %s %s", li->plen,
2395					   rtn_scope(buf1, sizeof(buf1),
2396						     fa->fa_info->fib_scope),
2397					   rtn_type(buf2, sizeof(buf2),
2398						    fa->fa_type));
2399				if (fa->fa_tos)
2400					seq_printf(seq, " tos=%d", fa->fa_tos);
2401				seq_putc(seq, '\n');
2402			}
 
2403		}
2404	}
2405
2406	return 0;
2407}
2408
2409static const struct seq_operations fib_trie_seq_ops = {
2410	.start  = fib_trie_seq_start,
2411	.next   = fib_trie_seq_next,
2412	.stop   = fib_trie_seq_stop,
2413	.show   = fib_trie_seq_show,
2414};
2415
2416static int fib_trie_seq_open(struct inode *inode, struct file *file)
2417{
2418	return seq_open_net(inode, file, &fib_trie_seq_ops,
2419			    sizeof(struct fib_trie_iter));
2420}
2421
2422static const struct file_operations fib_trie_fops = {
2423	.owner  = THIS_MODULE,
2424	.open   = fib_trie_seq_open,
2425	.read   = seq_read,
2426	.llseek = seq_lseek,
2427	.release = seq_release_net,
2428};
2429
2430struct fib_route_iter {
2431	struct seq_net_private p;
2432	struct trie *main_trie;
 
2433	loff_t	pos;
2434	t_key	key;
2435};
2436
2437static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
 
2438{
2439	struct leaf *l = NULL;
2440	struct trie *t = iter->main_trie;
2441
2442	/* use cache location of last found key */
2443	if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2444		pos -= iter->pos;
2445	else {
2446		iter->pos = 0;
2447		l = trie_firstleaf(t);
2448	}
2449
2450	while (l && pos-- > 0) {
 
 
 
2451		iter->pos++;
2452		l = trie_nextleaf(l);
 
 
 
 
2453	}
2454
2455	if (l)
2456		iter->key = pos;	/* remember it */
2457	else
2458		iter->pos = 0;		/* forget it */
2459
2460	return l;
2461}
2462
2463static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2464	__acquires(RCU)
2465{
2466	struct fib_route_iter *iter = seq->private;
2467	struct fib_table *tb;
 
2468
2469	rcu_read_lock();
 
2470	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2471	if (!tb)
2472		return NULL;
2473
2474	iter->main_trie = (struct trie *) tb->tb_data;
2475	if (*pos == 0)
2476		return SEQ_START_TOKEN;
2477	else
2478		return fib_route_get_idx(iter, *pos - 1);
 
 
 
 
 
 
2479}
2480
2481static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2482{
2483	struct fib_route_iter *iter = seq->private;
2484	struct leaf *l = v;
 
2485
2486	++*pos;
2487	if (v == SEQ_START_TOKEN) {
2488		iter->pos = 0;
2489		l = trie_firstleaf(iter->main_trie);
2490	} else {
2491		iter->pos++;
2492		l = trie_nextleaf(l);
2493	}
2494
2495	if (l)
 
 
 
 
2496		iter->key = l->key;
2497	else
 
2498		iter->pos = 0;
 
 
2499	return l;
2500}
2501
2502static void fib_route_seq_stop(struct seq_file *seq, void *v)
2503	__releases(RCU)
2504{
2505	rcu_read_unlock();
2506}
2507
2508static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2509{
2510	unsigned int flags = 0;
2511
2512	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2513		flags = RTF_REJECT;
2514	if (fi && fi->fib_nh->nh_gw)
2515		flags |= RTF_GATEWAY;
 
 
 
 
2516	if (mask == htonl(0xFFFFFFFF))
2517		flags |= RTF_HOST;
2518	flags |= RTF_UP;
2519	return flags;
2520}
2521
2522/*
2523 *	This outputs /proc/net/route.
2524 *	The format of the file is not supposed to be changed
2525 *	and needs to be same as fib_hash output to avoid breaking
2526 *	legacy utilities
2527 */
2528static int fib_route_seq_show(struct seq_file *seq, void *v)
2529{
2530	struct leaf *l = v;
2531	struct leaf_info *li;
2532	struct hlist_node *node;
 
 
2533
2534	if (v == SEQ_START_TOKEN) {
2535		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2536			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2537			   "\tWindow\tIRTT");
2538		return 0;
2539	}
2540
2541	hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2542		struct fib_alias *fa;
2543		__be32 mask, prefix;
2544
2545		mask = inet_make_mask(li->plen);
2546		prefix = htonl(l->key);
 
 
2547
2548		list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2549			const struct fib_info *fi = fa->fa_info;
2550			unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2551			int len;
2552
2553			if (fa->fa_type == RTN_BROADCAST
2554			    || fa->fa_type == RTN_MULTICAST)
2555				continue;
2556
2557			if (fi)
2558				seq_printf(seq,
2559					 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2560					 "%d\t%08X\t%d\t%u\t%u%n",
2561					 fi->fib_dev ? fi->fib_dev->name : "*",
2562					 prefix,
2563					 fi->fib_nh->nh_gw, flags, 0, 0,
2564					 fi->fib_priority,
2565					 mask,
2566					 (fi->fib_advmss ?
2567					  fi->fib_advmss + 40 : 0),
2568					 fi->fib_window,
2569					 fi->fib_rtt >> 3, &len);
2570			else
2571				seq_printf(seq,
2572					 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2573					 "%d\t%08X\t%d\t%u\t%u%n",
2574					 prefix, 0, flags, 0, 0, 0,
2575					 mask, 0, 0, 0, &len);
2576
2577			seq_printf(seq, "%*s\n", 127 - len, "");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2578		}
 
2579	}
2580
2581	return 0;
2582}
2583
2584static const struct seq_operations fib_route_seq_ops = {
2585	.start  = fib_route_seq_start,
2586	.next   = fib_route_seq_next,
2587	.stop   = fib_route_seq_stop,
2588	.show   = fib_route_seq_show,
2589};
2590
2591static int fib_route_seq_open(struct inode *inode, struct file *file)
2592{
2593	return seq_open_net(inode, file, &fib_route_seq_ops,
2594			    sizeof(struct fib_route_iter));
2595}
2596
2597static const struct file_operations fib_route_fops = {
2598	.owner  = THIS_MODULE,
2599	.open   = fib_route_seq_open,
2600	.read   = seq_read,
2601	.llseek = seq_lseek,
2602	.release = seq_release_net,
2603};
2604
2605int __net_init fib_proc_init(struct net *net)
2606{
2607	if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
 
2608		goto out1;
2609
2610	if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2611				  &fib_triestat_fops))
2612		goto out2;
2613
2614	if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
 
2615		goto out3;
2616
2617	return 0;
2618
2619out3:
2620	proc_net_remove(net, "fib_triestat");
2621out2:
2622	proc_net_remove(net, "fib_trie");
2623out1:
2624	return -ENOMEM;
2625}
2626
2627void __net_exit fib_proc_exit(struct net *net)
2628{
2629	proc_net_remove(net, "fib_trie");
2630	proc_net_remove(net, "fib_triestat");
2631	proc_net_remove(net, "route");
2632}
2633
2634#endif /* CONFIG_PROC_FS */
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
 
 
 
 
   3 *
   4 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
   5 *     & Swedish University of Agricultural Sciences.
   6 *
   7 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
   8 *     Agricultural Sciences.
   9 *
  10 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
  11 *
  12 * This work is based on the LPC-trie which is originally described in:
  13 *
  14 * An experimental study of compression methods for dynamic tries
  15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  16 * https://www.csc.kth.se/~snilsson/software/dyntrie2/
 
  17 *
  18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  20 *
 
  21 * Code from fib_hash has been reused which includes the following header:
  22 *
 
  23 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  24 *		operating system.  INET is implemented using the  BSD Socket
  25 *		interface as the means of communication with the user level.
  26 *
  27 *		IPv4 FIB: lookup engine and maintenance routines.
  28 *
 
  29 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  30 *
 
 
 
 
 
  31 * Substantial contributions to this work comes from:
  32 *
  33 *		David S. Miller, <davem@davemloft.net>
  34 *		Stephen Hemminger <shemminger@osdl.org>
  35 *		Paul E. McKenney <paulmck@us.ibm.com>
  36 *		Patrick McHardy <kaber@trash.net>
  37 */
  38#include <linux/cache.h>
  39#include <linux/uaccess.h>
 
 
 
  40#include <linux/bitops.h>
  41#include <linux/types.h>
  42#include <linux/kernel.h>
  43#include <linux/mm.h>
  44#include <linux/string.h>
  45#include <linux/socket.h>
  46#include <linux/sockios.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/inet.h>
  50#include <linux/inetdevice.h>
  51#include <linux/netdevice.h>
  52#include <linux/if_arp.h>
  53#include <linux/proc_fs.h>
  54#include <linux/rcupdate.h>
  55#include <linux/rcupdate_wait.h>
  56#include <linux/skbuff.h>
  57#include <linux/netlink.h>
  58#include <linux/init.h>
  59#include <linux/list.h>
  60#include <linux/slab.h>
  61#include <linux/export.h>
  62#include <linux/vmalloc.h>
  63#include <linux/notifier.h>
  64#include <net/net_namespace.h>
  65#include <net/inet_dscp.h>
  66#include <net/ip.h>
  67#include <net/protocol.h>
  68#include <net/route.h>
  69#include <net/tcp.h>
  70#include <net/sock.h>
  71#include <net/ip_fib.h>
  72#include <net/fib_notifier.h>
  73#include <trace/events/fib.h>
  74#include "fib_lookup.h"
  75
  76static int call_fib_entry_notifier(struct notifier_block *nb,
  77				   enum fib_event_type event_type, u32 dst,
  78				   int dst_len, struct fib_alias *fa,
  79				   struct netlink_ext_ack *extack)
  80{
  81	struct fib_entry_notifier_info info = {
  82		.info.extack = extack,
  83		.dst = dst,
  84		.dst_len = dst_len,
  85		.fi = fa->fa_info,
  86		.dscp = fa->fa_dscp,
  87		.type = fa->fa_type,
  88		.tb_id = fa->tb_id,
  89	};
  90	return call_fib4_notifier(nb, event_type, &info.info);
  91}
  92
  93static int call_fib_entry_notifiers(struct net *net,
  94				    enum fib_event_type event_type, u32 dst,
  95				    int dst_len, struct fib_alias *fa,
  96				    struct netlink_ext_ack *extack)
  97{
  98	struct fib_entry_notifier_info info = {
  99		.info.extack = extack,
 100		.dst = dst,
 101		.dst_len = dst_len,
 102		.fi = fa->fa_info,
 103		.dscp = fa->fa_dscp,
 104		.type = fa->fa_type,
 105		.tb_id = fa->tb_id,
 106	};
 107	return call_fib4_notifiers(net, event_type, &info.info);
 108}
 109
 110#define MAX_STAT_DEPTH 32
 
 111
 112#define KEYLENGTH	(8*sizeof(t_key))
 113#define KEY_MAX		((t_key)~0)
 
 
 114
 115typedef unsigned int t_key;
 
 
 
 
 
 116
 117#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
 118#define IS_TNODE(n)	((n)->bits)
 119#define IS_LEAF(n)	(!(n)->bits)
 
 
 
 
 120
 121struct key_vector {
 
 122	t_key key;
 123	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
 124	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
 125	unsigned char slen;
 
 126	union {
 127		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
 128		struct hlist_head leaf;
 129		/* This array is valid if (pos | bits) > 0 (TNODE) */
 130		DECLARE_FLEX_ARRAY(struct key_vector __rcu *, tnode);
 131	};
 
 132};
 133
 134struct tnode {
 135	struct rcu_head rcu;
 136	t_key empty_children;		/* KEYLENGTH bits needed */
 137	t_key full_children;		/* KEYLENGTH bits needed */
 138	struct key_vector __rcu *parent;
 139	struct key_vector kv[1];
 140#define tn_bits kv[0].bits
 141};
 142
 143#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
 144#define LEAF_SIZE	TNODE_SIZE(1)
 145
 146#ifdef CONFIG_IP_FIB_TRIE_STATS
 147struct trie_use_stats {
 148	unsigned int gets;
 149	unsigned int backtrack;
 150	unsigned int semantic_match_passed;
 151	unsigned int semantic_match_miss;
 152	unsigned int null_node_hit;
 153	unsigned int resize_node_skipped;
 154};
 155#endif
 156
 157struct trie_stat {
 158	unsigned int totdepth;
 159	unsigned int maxdepth;
 160	unsigned int tnodes;
 161	unsigned int leaves;
 162	unsigned int nullpointers;
 163	unsigned int prefixes;
 164	unsigned int nodesizes[MAX_STAT_DEPTH];
 165};
 166
 167struct trie {
 168	struct key_vector kv[1];
 169#ifdef CONFIG_IP_FIB_TRIE_STATS
 170	struct trie_use_stats __percpu *stats;
 171#endif
 172};
 173
 174static struct key_vector *resize(struct trie *t, struct key_vector *tn);
 175static unsigned int tnode_free_size;
 
 
 
 
 
 
 
 176
 177/*
 178 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
 179 * especially useful before resizing the root node with PREEMPT_NONE configs;
 180 * the value was obtained experimentally, aiming to avoid visible slowdown.
 181 */
 182unsigned int sysctl_fib_sync_mem = 512 * 1024;
 183unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
 184unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
 185
 186static struct kmem_cache *fn_alias_kmem __ro_after_init;
 187static struct kmem_cache *trie_leaf_kmem __ro_after_init;
 188
 189static inline struct tnode *tn_info(struct key_vector *kv)
 
 
 
 190{
 191	return container_of(kv, struct tnode, kv[0]);
 
 
 
 
 192}
 193
 194/* caller must hold RTNL */
 195#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
 196#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
 
 
 
 
 
 
 197
 198/* caller must hold RCU read lock or RTNL */
 199#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
 200#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
 201
 202/* wrapper for rcu_assign_pointer */
 203static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
 
 
 204{
 205	if (n)
 206		rcu_assign_pointer(tn_info(n)->parent, tp);
 207}
 208
 209#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
 
 
 
 
 
 
 
 
 210
 211/* This provides us with the number of children in this node, in the case of a
 212 * leaf this will return 0 meaning none of the children are accessible.
 213 */
 214static inline unsigned long child_length(const struct key_vector *tn)
 215{
 216	return (1ul << tn->bits) & ~(1ul);
 
 
 217}
 218
 219#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
 
 
 
 220
 221static inline unsigned long get_index(t_key key, struct key_vector *kv)
 222{
 223	unsigned long index = key ^ kv->key;
 
 224
 225	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
 
 
 
 
 226		return 0;
 
 227
 228	return index >> kv->pos;
 
 
 229}
 230
 231/* To understand this stuff, an understanding of keys and all their bits is
 232 * necessary. Every node in the trie has a key associated with it, but not
 233 * all of the bits in that key are significant.
 234 *
 235 * Consider a node 'n' and its parent 'tp'.
 236 *
 237 * If n is a leaf, every bit in its key is significant. Its presence is
 238 * necessitated by path compression, since during a tree traversal (when
 239 * searching for a leaf - unless we are doing an insertion) we will completely
 240 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 241 * a potentially successful search, that we have indeed been walking the
 242 * correct key path.
 243 *
 244 * Note that we can never "miss" the correct key in the tree if present by
 245 * following the wrong path. Path compression ensures that segments of the key
 246 * that are the same for all keys with a given prefix are skipped, but the
 247 * skipped part *is* identical for each node in the subtrie below the skipped
 248 * bit! trie_insert() in this implementation takes care of that.
 249 *
 250 * if n is an internal node - a 'tnode' here, the various parts of its key
 251 * have many different meanings.
 252 *
 253 * Example:
 254 * _________________________________________________________________
 255 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 256 * -----------------------------------------------------------------
 257 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 258 *
 259 * _________________________________________________________________
 260 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 261 * -----------------------------------------------------------------
 262 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 263 *
 264 * tp->pos = 22
 265 * tp->bits = 3
 266 * n->pos = 13
 267 * n->bits = 4
 268 *
 269 * First, let's just ignore the bits that come before the parent tp, that is
 270 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 271 * point we do not use them for anything.
 272 *
 273 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 274 * index into the parent's child array. That is, they will be used to find
 275 * 'n' among tp's children.
 276 *
 277 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
 278 * for the node n.
 279 *
 280 * All the bits we have seen so far are significant to the node n. The rest
 281 * of the bits are really not needed or indeed known in n->key.
 282 *
 283 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 284 * n's child array, and will of course be different for each child.
 285 *
 286 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
 287 * at this point.
 288 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 289
 290static const int halve_threshold = 25;
 291static const int inflate_threshold = 50;
 292static const int halve_threshold_root = 15;
 293static const int inflate_threshold_root = 30;
 294
 
 
 
 
 
 
 295static inline void alias_free_mem_rcu(struct fib_alias *fa)
 296{
 297	kfree_rcu(fa, rcu);
 298}
 299
 300#define TNODE_VMALLOC_MAX \
 301	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 
 
 
 302
 303static void __node_free_rcu(struct rcu_head *head)
 304{
 305	struct tnode *n = container_of(head, struct tnode, rcu);
 
 306
 307	if (!n->tn_bits)
 308		kmem_cache_free(trie_leaf_kmem, n);
 309	else
 310		kvfree(n);
 311}
 312
 313#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
 314
 315static struct tnode *tnode_alloc(int bits)
 316{
 317	size_t size;
 318
 319	/* verify bits is within bounds */
 320	if (bits > TNODE_VMALLOC_MAX)
 321		return NULL;
 322
 323	/* determine size and verify it is non-zero and didn't overflow */
 324	size = TNODE_SIZE(1ul << bits);
 325
 326	if (size <= PAGE_SIZE)
 327		return kzalloc(size, GFP_KERNEL);
 328	else
 329		return vzalloc(size);
 330}
 331
 332static inline void empty_child_inc(struct key_vector *n)
 
 
 
 
 
 
 333{
 334	tn_info(n)->empty_children++;
 
 
 335
 336	if (!tn_info(n)->empty_children)
 337		tn_info(n)->full_children++;
 
 
 
 
 338}
 339
 340static inline void empty_child_dec(struct key_vector *n)
 341{
 342	if (!tn_info(n)->empty_children)
 343		tn_info(n)->full_children--;
 
 
 
 344
 345	tn_info(n)->empty_children--;
 
 
 
 
 
 
 346}
 347
 348static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
 349{
 350	struct key_vector *l;
 351	struct tnode *kv;
 352
 353	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
 354	if (!kv)
 355		return NULL;
 
 
 356
 357	/* initialize key vector */
 358	l = kv->kv;
 359	l->key = key;
 360	l->pos = 0;
 361	l->bits = 0;
 362	l->slen = fa->fa_slen;
 363
 364	/* link leaf to fib alias */
 365	INIT_HLIST_HEAD(&l->leaf);
 366	hlist_add_head(&fa->fa_list, &l->leaf);
 367
 
 
 
 
 
 
 
 368	return l;
 369}
 370
 371static struct key_vector *tnode_new(t_key key, int pos, int bits)
 372{
 373	unsigned int shift = pos + bits;
 374	struct key_vector *tn;
 375	struct tnode *tnode;
 
 
 
 
 
 376
 377	/* verify bits and pos their msb bits clear and values are valid */
 378	BUG_ON(!bits || (shift > KEYLENGTH));
 
 
 379
 380	tnode = tnode_alloc(bits);
 381	if (!tnode)
 382		return NULL;
 
 
 
 
 
 383
 384	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
 385		 sizeof(struct key_vector *) << bits);
 
 
 386
 387	if (bits == KEYLENGTH)
 388		tnode->full_children = 1;
 389	else
 390		tnode->empty_children = 1ul << bits;
 391
 392	tn = tnode->kv;
 393	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
 394	tn->pos = pos;
 395	tn->bits = bits;
 396	tn->slen = pos;
 397
 398	return tn;
 399}
 400
 401/* Check whether a tnode 'n' is "full", i.e. it is an internal node
 402 * and no bits are skipped. See discussion in dyntree paper p. 6
 403 */
 404static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
 405{
 406	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
 407}
 408
 409/* Add a child at position i overwriting the old value.
 410 * Update the value of full_children and empty_children.
 411 */
 412static void put_child(struct key_vector *tn, unsigned long i,
 413		      struct key_vector *n)
 
 
 414{
 415	struct key_vector *chi = get_child(tn, i);
 416	int isfull, wasfull;
 417
 418	BUG_ON(i >= child_length(tn));
 419
 420	/* update emptyChildren, overflow into fullChildren */
 421	if (!n && chi)
 422		empty_child_inc(tn);
 423	if (n && !chi)
 424		empty_child_dec(tn);
 425
 426	/* update fullChildren */
 427	wasfull = tnode_full(tn, chi);
 
 
 428	isfull = tnode_full(tn, n);
 429
 430	if (wasfull && !isfull)
 431		tn_info(tn)->full_children--;
 432	else if (!wasfull && isfull)
 433		tn_info(tn)->full_children++;
 434
 435	if (n && (tn->slen < n->slen))
 436		tn->slen = n->slen;
 437
 438	rcu_assign_pointer(tn->tnode[i], n);
 439}
 440
 441static void update_children(struct key_vector *tn)
 
 442{
 443	unsigned long i;
 
 
 
 
 444
 445	/* update all of the child parent pointers */
 446	for (i = child_length(tn); i;) {
 447		struct key_vector *inode = get_child(tn, --i);
 448
 449		if (!inode)
 450			continue;
 451
 452		/* Either update the children of a tnode that
 453		 * already belongs to us or update the child
 454		 * to point to ourselves.
 455		 */
 456		if (node_parent(inode) == tn)
 457			update_children(inode);
 458		else
 459			node_set_parent(inode, tn);
 460	}
 461}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 462
 463static inline void put_child_root(struct key_vector *tp, t_key key,
 464				  struct key_vector *n)
 465{
 466	if (IS_TRIE(tp))
 467		rcu_assign_pointer(tp->tnode[0], n);
 468	else
 469		put_child(tp, get_index(key, tp), n);
 470}
 471
 472static inline void tnode_free_init(struct key_vector *tn)
 473{
 474	tn_info(tn)->rcu.next = NULL;
 475}
 476
 477static inline void tnode_free_append(struct key_vector *tn,
 478				     struct key_vector *n)
 479{
 480	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
 481	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
 482}
 
 483
 484static void tnode_free(struct key_vector *tn)
 485{
 486	struct callback_head *head = &tn_info(tn)->rcu;
 
 
 487
 488	while (head) {
 489		head = head->next;
 490		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
 491		node_free(tn);
 492
 493		tn = container_of(head, struct tnode, rcu)->kv;
 
 
 
 
 
 
 494	}
 495
 496	if (tnode_free_size >= READ_ONCE(sysctl_fib_sync_mem)) {
 497		tnode_free_size = 0;
 498		synchronize_net();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 499	}
 500}
 501
 502static struct key_vector *replace(struct trie *t,
 503				  struct key_vector *oldtnode,
 504				  struct key_vector *tn)
 505{
 506	struct key_vector *tp = node_parent(oldtnode);
 507	unsigned long i;
 508
 509	/* setup the parent pointer out of and back into this node */
 510	NODE_INIT_PARENT(tn, tp);
 511	put_child_root(tp, tn->key, tn);
 
 
 
 
 
 
 
 
 512
 513	/* update all of the child parent pointers */
 514	update_children(tn);
 
 
 
 
 
 515
 516	/* all pointers should be clean so we are done */
 517	tnode_free(oldtnode);
 518
 519	/* resize children now that oldtnode is freed */
 520	for (i = child_length(tn); i;) {
 521		struct key_vector *inode = get_child(tn, --i);
 
 522
 523		/* resize child node */
 524		if (tnode_full(tn, inode))
 525			tn = resize(t, inode);
 
 526	}
 527
 528	return tp;
 529}
 530
 531static struct key_vector *inflate(struct trie *t,
 532				  struct key_vector *oldtnode)
 533{
 534	struct key_vector *tn;
 535	unsigned long i;
 536	t_key m;
 537
 538	pr_debug("In inflate\n");
 539
 540	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
 
 541	if (!tn)
 542		goto notnode;
 
 
 
 
 
 
 
 
 
 
 543
 544	/* prepare oldtnode to be freed */
 545	tnode_free_init(oldtnode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 546
 547	/* Assemble all of the pointers in our cluster, in this case that
 548	 * represents all of the pointers out of our allocated nodes that
 549	 * point to existing tnodes and the links between our allocated
 550	 * nodes.
 551	 */
 552	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
 553		struct key_vector *inode = get_child(oldtnode, --i);
 554		struct key_vector *node0, *node1;
 555		unsigned long j, k;
 
 556
 557		/* An empty child */
 558		if (!inode)
 559			continue;
 560
 561		/* A leaf or an internal node with skipped bits */
 562		if (!tnode_full(oldtnode, inode)) {
 563			put_child(tn, get_index(inode->key, tn), inode);
 
 
 
 
 
 
 
 564			continue;
 565		}
 566
 567		/* drop the node in the old tnode free list */
 568		tnode_free_append(oldtnode, inode);
 569
 570		/* An internal node with two children */
 571		if (inode->bits == 1) {
 572			put_child(tn, 2 * i + 1, get_child(inode, 1));
 573			put_child(tn, 2 * i, get_child(inode, 0));
 
 
 574			continue;
 575		}
 576
 
 
 577		/* We will replace this node 'inode' with two new
 578		 * ones, 'node0' and 'node1', each with half of the
 579		 * original children. The two new nodes will have
 580		 * a position one bit further down the key and this
 581		 * means that the "significant" part of their keys
 582		 * (see the discussion near the top of this file)
 583		 * will differ by one bit, which will be "0" in
 584		 * node0's key and "1" in node1's key. Since we are
 585		 * moving the key position by one step, the bit that
 586		 * we are moving away from - the bit at position
 587		 * (tn->pos) - is the one that will differ between
 588		 * node0 and node1. So... we synthesize that bit in the
 589		 * two new keys.
 
 
 590		 */
 591		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
 592		if (!node1)
 593			goto nomem;
 594		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
 595
 596		tnode_free_append(tn, node1);
 597		if (!node0)
 598			goto nomem;
 599		tnode_free_append(tn, node0);
 600
 601		/* populate child pointers in new nodes */
 602		for (k = child_length(inode), j = k / 2; j;) {
 603			put_child(node1, --j, get_child(inode, --k));
 604			put_child(node0, j, get_child(inode, j));
 605			put_child(node1, --j, get_child(inode, --k));
 606			put_child(node0, j, get_child(inode, j));
 607		}
 608
 609		/* link new nodes to parent */
 610		NODE_INIT_PARENT(node1, tn);
 611		NODE_INIT_PARENT(node0, tn);
 612
 613		/* link parent to nodes */
 614		put_child(tn, 2 * i + 1, node1);
 615		put_child(tn, 2 * i, node0);
 616	}
 617
 618	/* setup the parent pointers into and out of this node */
 619	return replace(t, oldtnode, tn);
 620nomem:
 621	/* all pointers should be clean so we are done */
 622	tnode_free(tn);
 623notnode:
 624	return NULL;
 625}
 626
 627static struct key_vector *halve(struct trie *t,
 628				struct key_vector *oldtnode)
 629{
 630	struct key_vector *tn;
 631	unsigned long i;
 632
 633	pr_debug("In halve\n");
 634
 635	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
 636	if (!tn)
 637		goto notnode;
 638
 639	/* prepare oldtnode to be freed */
 640	tnode_free_init(oldtnode);
 641
 642	/* Assemble all of the pointers in our cluster, in this case that
 643	 * represents all of the pointers out of our allocated nodes that
 644	 * point to existing tnodes and the links between our allocated
 645	 * nodes.
 646	 */
 647	for (i = child_length(oldtnode); i;) {
 648		struct key_vector *node1 = get_child(oldtnode, --i);
 649		struct key_vector *node0 = get_child(oldtnode, --i);
 650		struct key_vector *inode;
 651
 652		/* At least one of the children is empty */
 653		if (!node1 || !node0) {
 654			put_child(tn, i / 2, node1 ? : node0);
 655			continue;
 656		}
 
 
 657
 658		/* Two nonempty children */
 659		inode = tnode_new(node0->key, oldtnode->pos, 1);
 660		if (!inode)
 661			goto nomem;
 662		tnode_free_append(tn, inode);
 663
 664		/* initialize pointers out of node */
 665		put_child(inode, 1, node1);
 666		put_child(inode, 0, node0);
 667		NODE_INIT_PARENT(inode, tn);
 668
 669		/* link parent to node */
 670		put_child(tn, i / 2, inode);
 671	}
 672
 673	/* setup the parent pointers into and out of this node */
 674	return replace(t, oldtnode, tn);
 675nomem:
 676	/* all pointers should be clean so we are done */
 677	tnode_free(tn);
 678notnode:
 679	return NULL;
 680}
 681
 682static struct key_vector *collapse(struct trie *t,
 683				   struct key_vector *oldtnode)
 684{
 685	struct key_vector *n, *tp;
 686	unsigned long i;
 
 
 687
 688	/* scan the tnode looking for that one child that might still exist */
 689	for (n = NULL, i = child_length(oldtnode); !n && i;)
 690		n = get_child(oldtnode, --i);
 691
 692	/* compress one level */
 693	tp = node_parent(oldtnode);
 694	put_child_root(tp, oldtnode->key, n);
 695	node_set_parent(n, tp);
 696
 697	/* drop dead node */
 698	node_free(oldtnode);
 699
 700	return tp;
 701}
 
 
 
 
 702
 703static unsigned char update_suffix(struct key_vector *tn)
 704{
 705	unsigned char slen = tn->pos;
 706	unsigned long stride, i;
 707	unsigned char slen_max;
 708
 709	/* only vector 0 can have a suffix length greater than or equal to
 710	 * tn->pos + tn->bits, the second highest node will have a suffix
 711	 * length at most of tn->pos + tn->bits - 1
 712	 */
 713	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
 714
 715	/* search though the list of children looking for nodes that might
 716	 * have a suffix greater than the one we currently have.  This is
 717	 * why we start with a stride of 2 since a stride of 1 would
 718	 * represent the nodes with suffix length equal to tn->pos
 719	 */
 720	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
 721		struct key_vector *n = get_child(tn, i);
 722
 723		if (!n || (n->slen <= slen))
 724			continue;
 725
 726		/* update stride and slen based on new value */
 727		stride <<= (n->slen - slen);
 728		slen = n->slen;
 729		i &= ~(stride - 1);
 730
 731		/* stop searching if we have hit the maximum possible value */
 732		if (slen >= slen_max)
 733			break;
 734	}
 735
 736	tn->slen = slen;
 
 737
 738	return slen;
 739}
 740
 741/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 742 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 743 * Telecommunications, page 6:
 744 * "A node is doubled if the ratio of non-empty children to all
 745 * children in the *doubled* node is at least 'high'."
 746 *
 747 * 'high' in this instance is the variable 'inflate_threshold'. It
 748 * is expressed as a percentage, so we multiply it with
 749 * child_length() and instead of multiplying by 2 (since the
 750 * child array will be doubled by inflate()) and multiplying
 751 * the left-hand side by 100 (to handle the percentage thing) we
 752 * multiply the left-hand side by 50.
 753 *
 754 * The left-hand side may look a bit weird: child_length(tn)
 755 * - tn->empty_children is of course the number of non-null children
 756 * in the current node. tn->full_children is the number of "full"
 757 * children, that is non-null tnodes with a skip value of 0.
 758 * All of those will be doubled in the resulting inflated tnode, so
 759 * we just count them one extra time here.
 760 *
 761 * A clearer way to write this would be:
 762 *
 763 * to_be_doubled = tn->full_children;
 764 * not_to_be_doubled = child_length(tn) - tn->empty_children -
 765 *     tn->full_children;
 766 *
 767 * new_child_length = child_length(tn) * 2;
 768 *
 769 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 770 *      new_child_length;
 771 * if (new_fill_factor >= inflate_threshold)
 772 *
 773 * ...and so on, tho it would mess up the while () loop.
 774 *
 775 * anyway,
 776 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 777 *      inflate_threshold
 778 *
 779 * avoid a division:
 780 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 781 *      inflate_threshold * new_child_length
 782 *
 783 * expand not_to_be_doubled and to_be_doubled, and shorten:
 784 * 100 * (child_length(tn) - tn->empty_children +
 785 *    tn->full_children) >= inflate_threshold * new_child_length
 786 *
 787 * expand new_child_length:
 788 * 100 * (child_length(tn) - tn->empty_children +
 789 *    tn->full_children) >=
 790 *      inflate_threshold * child_length(tn) * 2
 791 *
 792 * shorten again:
 793 * 50 * (tn->full_children + child_length(tn) -
 794 *    tn->empty_children) >= inflate_threshold *
 795 *    child_length(tn)
 796 *
 797 */
 798static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
 799{
 800	unsigned long used = child_length(tn);
 801	unsigned long threshold = used;
 802
 803	/* Keep root node larger */
 804	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
 805	used -= tn_info(tn)->empty_children;
 806	used += tn_info(tn)->full_children;
 807
 808	/* if bits == KEYLENGTH then pos = 0, and will fail below */
 
 
 
 
 
 
 
 
 
 
 
 
 809
 810	return (used > 1) && tn->pos && ((50 * used) >= threshold);
 811}
 812
 813static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
 814{
 815	unsigned long used = child_length(tn);
 816	unsigned long threshold = used;
 
 817
 818	/* Keep root node larger */
 819	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
 820	used -= tn_info(tn)->empty_children;
 821
 822	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
 823
 824	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
 825}
 826
 827static inline bool should_collapse(struct key_vector *tn)
 828{
 829	unsigned long used = child_length(tn);
 830
 831	used -= tn_info(tn)->empty_children;
 
 832
 833	/* account for bits == KEYLENGTH case */
 834	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
 835		used -= KEY_MAX;
 836
 837	/* One child or none, time to drop us from the trie */
 838	return used < 2;
 839}
 840
 841#define MAX_WORK 10
 842static struct key_vector *resize(struct trie *t, struct key_vector *tn)
 843{
 844#ifdef CONFIG_IP_FIB_TRIE_STATS
 845	struct trie_use_stats __percpu *stats = t->stats;
 846#endif
 847	struct key_vector *tp = node_parent(tn);
 848	unsigned long cindex = get_index(tn->key, tp);
 849	int max_work = MAX_WORK;
 850
 851	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
 852		 tn, inflate_threshold, halve_threshold);
 853
 854	/* track the tnode via the pointer from the parent instead of
 855	 * doing it ourselves.  This way we can let RCU fully do its
 856	 * thing without us interfering
 857	 */
 858	BUG_ON(tn != get_child(tp, cindex));
 859
 860	/* Double as long as the resulting node has a number of
 861	 * nonempty nodes that are above the threshold.
 862	 */
 863	while (should_inflate(tp, tn) && max_work) {
 864		tp = inflate(t, tn);
 865		if (!tp) {
 866#ifdef CONFIG_IP_FIB_TRIE_STATS
 867			this_cpu_inc(stats->resize_node_skipped);
 868#endif
 869			break;
 870		}
 871
 872		max_work--;
 873		tn = get_child(tp, cindex);
 
 874	}
 
 875
 876	/* update parent in case inflate failed */
 877	tp = node_parent(tn);
 878
 879	/* Return if at least one inflate is run */
 880	if (max_work != MAX_WORK)
 881		return tp;
 882
 883	/* Halve as long as the number of empty children in this
 884	 * node is above threshold.
 885	 */
 886	while (should_halve(tp, tn) && max_work) {
 887		tp = halve(t, tn);
 888		if (!tp) {
 889#ifdef CONFIG_IP_FIB_TRIE_STATS
 890			this_cpu_inc(stats->resize_node_skipped);
 891#endif
 
 
 
 
 
 
 
 
 
 892			break;
 893		}
 894
 895		max_work--;
 896		tn = get_child(tp, cindex);
 897	}
 
 898
 899	/* Only one child remains */
 900	if (should_collapse(tn))
 901		return collapse(t, tn);
 902
 903	/* update parent in case halve failed */
 904	return node_parent(tn);
 905}
 906
 907static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
 908{
 909	unsigned char node_slen = tn->slen;
 
 
 910
 911	while ((node_slen > tn->pos) && (node_slen > slen)) {
 912		slen = update_suffix(tn);
 913		if (node_slen == slen)
 914			break;
 915
 916		tn = node_parent(tn);
 917		node_slen = tn->slen;
 918	}
 919}
 920
 921static void node_push_suffix(struct key_vector *tn, unsigned char slen)
 922{
 923	while (tn->slen < slen) {
 924		tn->slen = slen;
 925		tn = node_parent(tn);
 926	}
 927}
 928
 929/* rcu_read_lock needs to be hold by caller from readside */
 930static struct key_vector *fib_find_node(struct trie *t,
 931					struct key_vector **tp, u32 key)
 932{
 933	struct key_vector *pn, *n = t->kv;
 934	unsigned long index = 0;
 935
 936	do {
 937		pn = n;
 938		n = get_child_rcu(n, index);
 939
 940		if (!n)
 
 941			break;
 
 
 942
 943		index = get_cindex(key, n);
 
 
 944
 945		/* This bit of code is a bit tricky but it combines multiple
 946		 * checks into a single check.  The prefix consists of the
 947		 * prefix plus zeros for the bits in the cindex. The index
 948		 * is the difference between the key and this value.  From
 949		 * this we can actually derive several pieces of data.
 950		 *   if (index >= (1ul << bits))
 951		 *     we have a mismatch in skip bits and failed
 952		 *   else
 953		 *     we know the value is cindex
 954		 *
 955		 * This check is safe even if bits == KEYLENGTH due to the
 956		 * fact that we can only allocate a node with 32 bits if a
 957		 * long is greater than 32 bits.
 958		 */
 959		if (index >= (1ul << n->bits)) {
 960			n = NULL;
 961			break;
 962		}
 963
 964		/* keep searching until we find a perfect match leaf or NULL */
 965	} while (IS_TNODE(n));
 966
 967	*tp = pn;
 968
 969	return n;
 970}
 971
 972/* Return the first fib alias matching DSCP with
 973 * priority less than or equal to PRIO.
 974 * If 'find_first' is set, return the first matching
 975 * fib alias, regardless of DSCP and priority.
 976 */
 977static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
 978					dscp_t dscp, u32 prio, u32 tb_id,
 979					bool find_first)
 980{
 981	struct fib_alias *fa;
 
 
 
 
 
 
 
 982
 983	if (!fah)
 984		return NULL;
 985
 986	hlist_for_each_entry(fa, fah, fa_list) {
 987		/* Avoid Sparse warning when using dscp_t in inequalities */
 988		u8 __fa_dscp = inet_dscp_to_dsfield(fa->fa_dscp);
 989		u8 __dscp = inet_dscp_to_dsfield(dscp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 990
 991		if (fa->fa_slen < slen)
 992			continue;
 993		if (fa->fa_slen != slen)
 994			break;
 995		if (fa->tb_id > tb_id)
 996			continue;
 997		if (fa->tb_id != tb_id)
 998			break;
 999		if (find_first)
1000			return fa;
1001		if (__fa_dscp > __dscp)
1002			continue;
1003		if (fa->fa_info->fib_priority >= prio || __fa_dscp < __dscp)
1004			return fa;
1005	}
1006
1007	return NULL;
1008}
1009
1010static struct fib_alias *
1011fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri)
1012{
1013	u8 slen = KEYLENGTH - fri->dst_len;
1014	struct key_vector *l, *tp;
1015	struct fib_table *tb;
1016	struct fib_alias *fa;
1017	struct trie *t;
1018
1019	tb = fib_get_table(net, fri->tb_id);
1020	if (!tb)
1021		return NULL;
1022
1023	t = (struct trie *)tb->tb_data;
1024	l = fib_find_node(t, &tp, be32_to_cpu(fri->dst));
1025	if (!l)
1026		return NULL;
1027
1028	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1029		if (fa->fa_slen == slen && fa->tb_id == fri->tb_id &&
1030		    fa->fa_dscp == fri->dscp && fa->fa_info == fri->fi &&
1031		    fa->fa_type == fri->type)
1032			return fa;
1033	}
1034
1035	return NULL;
1036}
1037
1038void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri)
1039{
1040	u8 fib_notify_on_flag_change;
1041	struct fib_alias *fa_match;
1042	struct sk_buff *skb;
1043	int err;
1044
1045	rcu_read_lock();
1046
1047	fa_match = fib_find_matching_alias(net, fri);
1048	if (!fa_match)
1049		goto out;
1050
1051	/* These are paired with the WRITE_ONCE() happening in this function.
1052	 * The reason is that we are only protected by RCU at this point.
1053	 */
1054	if (READ_ONCE(fa_match->offload) == fri->offload &&
1055	    READ_ONCE(fa_match->trap) == fri->trap &&
1056	    READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1057		goto out;
1058
1059	WRITE_ONCE(fa_match->offload, fri->offload);
1060	WRITE_ONCE(fa_match->trap, fri->trap);
1061
1062	fib_notify_on_flag_change = READ_ONCE(net->ipv4.sysctl_fib_notify_on_flag_change);
1063
1064	/* 2 means send notifications only if offload_failed was changed. */
1065	if (fib_notify_on_flag_change == 2 &&
1066	    READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1067		goto out;
1068
1069	WRITE_ONCE(fa_match->offload_failed, fri->offload_failed);
1070
1071	if (!fib_notify_on_flag_change)
1072		goto out;
1073
1074	skb = nlmsg_new(fib_nlmsg_size(fa_match->fa_info), GFP_ATOMIC);
1075	if (!skb) {
1076		err = -ENOBUFS;
1077		goto errout;
1078	}
1079
1080	err = fib_dump_info(skb, 0, 0, RTM_NEWROUTE, fri, 0);
1081	if (err < 0) {
1082		/* -EMSGSIZE implies BUG in fib_nlmsg_size() */
1083		WARN_ON(err == -EMSGSIZE);
1084		kfree_skb(skb);
1085		goto errout;
1086	}
 
1087
1088	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_ROUTE, NULL, GFP_ATOMIC);
1089	goto out;
1090
1091errout:
1092	rtnl_set_sk_err(net, RTNLGRP_IPV4_ROUTE, err);
1093out:
1094	rcu_read_unlock();
1095}
1096EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set);
1097
1098static void trie_rebalance(struct trie *t, struct key_vector *tn)
1099{
1100	while (!IS_TRIE(tn))
1101		tn = resize(t, tn);
1102}
1103
1104static int fib_insert_node(struct trie *t, struct key_vector *tp,
1105			   struct fib_alias *new, t_key key)
1106{
1107	struct key_vector *n, *l;
1108
1109	l = leaf_new(key, new);
1110	if (!l)
1111		goto noleaf;
1112
1113	/* retrieve child from parent node */
1114	n = get_child(tp, get_index(key, tp));
1115
1116	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1117	 *
1118	 *  Add a new tnode here
1119	 *  first tnode need some special handling
1120	 *  leaves us in position for handling as case 3
1121	 */
1122	if (n) {
1123		struct key_vector *tn;
1124
1125		tn = tnode_new(key, __fls(key ^ n->key), 1);
1126		if (!tn)
1127			goto notnode;
1128
1129		/* initialize routes out of node */
1130		NODE_INIT_PARENT(tn, tp);
1131		put_child(tn, get_index(key, tn) ^ 1, n);
1132
1133		/* start adding routes into the node */
1134		put_child_root(tp, key, tn);
1135		node_set_parent(n, tn);
1136
1137		/* parent now has a NULL spot where the leaf can go */
1138		tp = tn;
1139	}
1140
1141	/* Case 3: n is NULL, and will just insert a new leaf */
1142	node_push_suffix(tp, new->fa_slen);
1143	NODE_INIT_PARENT(l, tp);
1144	put_child_root(tp, key, l);
1145	trie_rebalance(t, tp);
1146
1147	return 0;
1148notnode:
1149	node_free(l);
1150noleaf:
1151	return -ENOMEM;
1152}
1153
1154static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1155			    struct key_vector *l, struct fib_alias *new,
1156			    struct fib_alias *fa, t_key key)
1157{
1158	if (!l)
1159		return fib_insert_node(t, tp, new, key);
1160
1161	if (fa) {
1162		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1163	} else {
1164		struct fib_alias *last;
 
 
 
 
1165
1166		hlist_for_each_entry(last, &l->leaf, fa_list) {
1167			if (new->fa_slen < last->fa_slen)
1168				break;
1169			if ((new->fa_slen == last->fa_slen) &&
1170			    (new->tb_id > last->tb_id))
1171				break;
1172			fa = last;
 
 
 
 
1173		}
1174
1175		if (fa)
1176			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1177		else
1178			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1179	}
1180
1181	/* if we added to the tail node then we need to update slen */
1182	if (l->slen < new->fa_slen) {
1183		l->slen = new->fa_slen;
1184		node_push_suffix(tp, new->fa_slen);
1185	}
1186
1187	return 0;
1188}
 
1189
1190static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1191{
1192	if (plen > KEYLENGTH) {
1193		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1194		return false;
 
 
 
1195	}
1196
1197	if ((plen < KEYLENGTH) && (key << plen)) {
1198		NL_SET_ERR_MSG(extack,
1199			       "Invalid prefix for given prefix length");
1200		return false;
1201	}
 
1202
1203	return true;
 
 
1204}
1205
1206static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1207			     struct key_vector *l, struct fib_alias *old);
1208
1209/* Caller must hold RTNL. */
1210int fib_table_insert(struct net *net, struct fib_table *tb,
1211		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1212{
1213	struct trie *t = (struct trie *)tb->tb_data;
1214	struct fib_alias *fa, *new_fa;
1215	struct key_vector *l, *tp;
1216	u16 nlflags = NLM_F_EXCL;
1217	struct fib_info *fi;
1218	u8 plen = cfg->fc_dst_len;
1219	u8 slen = KEYLENGTH - plen;
1220	dscp_t dscp;
1221	u32 key;
1222	int err;
 
 
 
 
1223
1224	key = ntohl(cfg->fc_dst);
1225
1226	if (!fib_valid_key_len(key, plen, extack))
 
 
 
 
1227		return -EINVAL;
1228
1229	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1230
1231	fi = fib_create_info(cfg, extack);
1232	if (IS_ERR(fi)) {
1233		err = PTR_ERR(fi);
1234		goto err;
1235	}
1236
1237	dscp = cfg->fc_dscp;
1238	l = fib_find_node(t, &tp, key);
1239	fa = l ? fib_find_alias(&l->leaf, slen, dscp, fi->fib_priority,
1240				tb->tb_id, false) : NULL;
 
 
 
1241
1242	/* Now fa, if non-NULL, points to the first fib alias
1243	 * with the same keys [prefix,dscp,priority], if such key already
1244	 * exists or to the node before which we will insert new one.
1245	 *
1246	 * If fa is NULL, we will need to allocate a new one and
1247	 * insert to the tail of the section matching the suffix length
1248	 * of the new alias.
 
 
1249	 */
1250
1251	if (fa && fa->fa_dscp == dscp &&
1252	    fa->fa_info->fib_priority == fi->fib_priority) {
1253		struct fib_alias *fa_first, *fa_match;
1254
1255		err = -EEXIST;
1256		if (cfg->fc_nlflags & NLM_F_EXCL)
1257			goto out;
1258
1259		nlflags &= ~NLM_F_EXCL;
1260
1261		/* We have 2 goals:
1262		 * 1. Find exact match for type, scope, fib_info to avoid
1263		 * duplicate routes
1264		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1265		 */
1266		fa_match = NULL;
1267		fa_first = fa;
1268		hlist_for_each_entry_from(fa, fa_list) {
1269			if ((fa->fa_slen != slen) ||
1270			    (fa->tb_id != tb->tb_id) ||
1271			    (fa->fa_dscp != dscp))
1272				break;
1273			if (fa->fa_info->fib_priority != fi->fib_priority)
1274				break;
1275			if (fa->fa_type == cfg->fc_type &&
1276			    fa->fa_info == fi) {
1277				fa_match = fa;
1278				break;
1279			}
1280		}
1281
1282		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1283			struct fib_info *fi_drop;
1284			u8 state;
1285
1286			nlflags |= NLM_F_REPLACE;
1287			fa = fa_first;
1288			if (fa_match) {
1289				if (fa == fa_match)
1290					err = 0;
1291				goto out;
1292			}
1293			err = -ENOBUFS;
1294			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1295			if (!new_fa)
1296				goto out;
1297
1298			fi_drop = fa->fa_info;
1299			new_fa->fa_dscp = fa->fa_dscp;
1300			new_fa->fa_info = fi;
1301			new_fa->fa_type = cfg->fc_type;
1302			state = fa->fa_state;
1303			new_fa->fa_state = state & ~FA_S_ACCESSED;
1304			new_fa->fa_slen = fa->fa_slen;
1305			new_fa->tb_id = tb->tb_id;
1306			new_fa->fa_default = -1;
1307			new_fa->offload = 0;
1308			new_fa->trap = 0;
1309			new_fa->offload_failed = 0;
1310
1311			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1312
1313			if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0,
1314					   tb->tb_id, true) == new_fa) {
1315				enum fib_event_type fib_event;
1316
1317				fib_event = FIB_EVENT_ENTRY_REPLACE;
1318				err = call_fib_entry_notifiers(net, fib_event,
1319							       key, plen,
1320							       new_fa, extack);
1321				if (err) {
1322					hlist_replace_rcu(&new_fa->fa_list,
1323							  &fa->fa_list);
1324					goto out_free_new_fa;
1325				}
1326			}
1327
1328			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1329				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1330
 
1331			alias_free_mem_rcu(fa);
1332
1333			fib_release_info(fi_drop);
1334			if (state & FA_S_ACCESSED)
1335				rt_cache_flush(cfg->fc_nlinfo.nl_net);
 
 
1336
1337			goto succeeded;
1338		}
1339		/* Error if we find a perfect match which
1340		 * uses the same scope, type, and nexthop
1341		 * information.
1342		 */
1343		if (fa_match)
1344			goto out;
1345
1346		if (cfg->fc_nlflags & NLM_F_APPEND)
1347			nlflags |= NLM_F_APPEND;
1348		else
1349			fa = fa_first;
1350	}
1351	err = -ENOENT;
1352	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1353		goto out;
1354
1355	nlflags |= NLM_F_CREATE;
1356	err = -ENOBUFS;
1357	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1358	if (!new_fa)
1359		goto out;
1360
1361	new_fa->fa_info = fi;
1362	new_fa->fa_dscp = dscp;
1363	new_fa->fa_type = cfg->fc_type;
1364	new_fa->fa_state = 0;
1365	new_fa->fa_slen = slen;
1366	new_fa->tb_id = tb->tb_id;
1367	new_fa->fa_default = -1;
1368	new_fa->offload = 0;
1369	new_fa->trap = 0;
1370	new_fa->offload_failed = 0;
1371
1372	/* Insert new entry to the list. */
1373	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1374	if (err)
1375		goto out_free_new_fa;
1376
1377	/* The alias was already inserted, so the node must exist. */
1378	l = l ? l : fib_find_node(t, &tp, key);
1379	if (WARN_ON_ONCE(!l)) {
1380		err = -ENOENT;
1381		goto out_free_new_fa;
1382	}
1383
1384	if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) ==
1385	    new_fa) {
1386		enum fib_event_type fib_event;
1387
1388		fib_event = FIB_EVENT_ENTRY_REPLACE;
1389		err = call_fib_entry_notifiers(net, fib_event, key, plen,
1390					       new_fa, extack);
1391		if (err)
1392			goto out_remove_new_fa;
1393	}
1394
1395	if (!plen)
1396		tb->tb_num_default++;
1397
1398	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1399	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1400		  &cfg->fc_nlinfo, nlflags);
 
 
 
1401succeeded:
1402	return 0;
1403
1404out_remove_new_fa:
1405	fib_remove_alias(t, tp, l, new_fa);
1406out_free_new_fa:
1407	kmem_cache_free(fn_alias_kmem, new_fa);
1408out:
1409	fib_release_info(fi);
1410err:
1411	return err;
1412}
1413
1414static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1415{
1416	t_key prefix = n->key;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1417
1418	return (key ^ prefix) & (prefix | -prefix);
1419}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1420
1421bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags,
1422			 const struct flowi4 *flp)
1423{
1424	if (nhc->nhc_flags & RTNH_F_DEAD)
1425		return false;
1426
1427	if (ip_ignore_linkdown(nhc->nhc_dev) &&
1428	    nhc->nhc_flags & RTNH_F_LINKDOWN &&
1429	    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1430		return false;
 
 
 
 
 
 
 
 
 
 
 
1431
1432	if (flp->flowi4_oif && flp->flowi4_oif != nhc->nhc_oif)
1433		return false;
 
 
1434
1435	return true;
1436}
1437
1438/* should be called with rcu_read_lock */
1439int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1440		     struct fib_result *res, int fib_flags)
1441{
1442	struct trie *t = (struct trie *) tb->tb_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1443#ifdef CONFIG_IP_FIB_TRIE_STATS
1444	struct trie_use_stats __percpu *stats = t->stats;
1445#endif
1446	const t_key key = ntohl(flp->daddr);
1447	struct key_vector *n, *pn;
1448	struct fib_alias *fa;
1449	unsigned long index;
1450	t_key cindex;
1451
1452	pn = t->kv;
1453	cindex = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1454
1455	n = get_child_rcu(pn, cindex);
1456	if (!n) {
1457		trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1458		return -EAGAIN;
1459	}
1460
 
1461#ifdef CONFIG_IP_FIB_TRIE_STATS
1462	this_cpu_inc(stats->gets);
1463#endif
 
 
 
 
 
 
 
 
 
1464
1465	/* Step 1: Travel to the longest prefix match in the trie */
1466	for (;;) {
1467		index = get_cindex(key, n);
1468
1469		/* This bit of code is a bit tricky but it combines multiple
1470		 * checks into a single check.  The prefix consists of the
1471		 * prefix plus zeros for the "bits" in the prefix. The index
1472		 * is the difference between the key and this value.  From
1473		 * this we can actually derive several pieces of data.
1474		 *   if (index >= (1ul << bits))
1475		 *     we have a mismatch in skip bits and failed
1476		 *   else
1477		 *     we know the value is cindex
 
1478		 *
1479		 * This check is safe even if bits == KEYLENGTH due to the
1480		 * fact that we can only allocate a node with 32 bits if a
1481		 * long is greater than 32 bits.
 
 
 
 
 
 
 
 
1482		 */
1483		if (index >= (1ul << n->bits))
1484			break;
1485
1486		/* we have found a leaf. Prefixes have already been compared */
1487		if (IS_LEAF(n))
1488			goto found;
1489
1490		/* only record pn and cindex if we are going to be chopping
1491		 * bits later.  Otherwise we are just wasting cycles.
 
 
 
 
 
 
 
 
 
 
 
 
 
1492		 */
1493		if (n->slen > n->pos) {
1494			pn = n;
1495			cindex = index;
1496		}
1497
1498		n = get_child_rcu(n, index);
1499		if (unlikely(!n))
1500			goto backtrace;
1501	}
 
 
 
 
1502
1503	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1504	for (;;) {
1505		/* record the pointer where our next node pointer is stored */
1506		struct key_vector __rcu **cptr = n->tnode;
1507
1508		/* This test verifies that none of the bits that differ
1509		 * between the key and the prefix exist in the region of
1510		 * the lsb and higher in the prefix.
 
 
 
1511		 */
1512		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1513			goto backtrace;
1514
1515		/* exit out and process leaf */
1516		if (unlikely(IS_LEAF(n)))
1517			break;
1518
1519		/* Don't bother recording parent info.  Since we are in
1520		 * prefix match mode we will have to come back to wherever
1521		 * we started this traversal anyway
 
1522		 */
 
 
1523
1524		while ((n = rcu_dereference(*cptr)) == NULL) {
1525backtrace:
1526#ifdef CONFIG_IP_FIB_TRIE_STATS
1527			if (!n)
1528				this_cpu_inc(stats->null_node_hit);
1529#endif
1530			/* If we are at cindex 0 there are no more bits for
1531			 * us to strip at this level so we must ascend back
1532			 * up one level to see if there are any more bits to
1533			 * be stripped there.
1534			 */
1535			while (!cindex) {
1536				t_key pkey = pn->key;
1537
1538				/* If we don't have a parent then there is
1539				 * nothing for us to do as we do not have any
1540				 * further nodes to parse.
1541				 */
1542				if (IS_TRIE(pn)) {
1543					trace_fib_table_lookup(tb->tb_id, flp,
1544							       NULL, -EAGAIN);
1545					return -EAGAIN;
1546				}
1547#ifdef CONFIG_IP_FIB_TRIE_STATS
1548				this_cpu_inc(stats->backtrack);
1549#endif
1550				/* Get Child's index */
1551				pn = node_parent_rcu(pn);
1552				cindex = get_index(pkey, pn);
1553			}
1554
1555			/* strip the least significant bit from the cindex */
1556			cindex &= cindex - 1;
1557
1558			/* grab pointer for next child node */
1559			cptr = &pn->tnode[cindex];
1560		}
1561	}
1562
1563found:
1564	/* this line carries forward the xor from earlier in the function */
1565	index = key ^ n->key;
1566
1567	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1568	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1569		struct fib_info *fi = fa->fa_info;
1570		struct fib_nh_common *nhc;
1571		int nhsel, err;
1572
1573		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1574			if (index >= (1ul << fa->fa_slen))
1575				continue;
1576		}
1577		if (fa->fa_dscp && !fib_dscp_masked_match(fa->fa_dscp, flp))
1578			continue;
1579		/* Paired with WRITE_ONCE() in fib_release_info() */
1580		if (READ_ONCE(fi->fib_dead))
1581			continue;
1582		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1583			continue;
1584		fib_alias_accessed(fa);
1585		err = fib_props[fa->fa_type].error;
1586		if (unlikely(err < 0)) {
1587out_reject:
1588#ifdef CONFIG_IP_FIB_TRIE_STATS
1589			this_cpu_inc(stats->semantic_match_passed);
1590#endif
1591			trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1592			return err;
1593		}
1594		if (fi->fib_flags & RTNH_F_DEAD)
1595			continue;
1596
1597		if (unlikely(fi->nh)) {
1598			if (nexthop_is_blackhole(fi->nh)) {
1599				err = fib_props[RTN_BLACKHOLE].error;
1600				goto out_reject;
1601			}
1602
1603			nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp,
1604						     &nhsel);
1605			if (nhc)
1606				goto set_result;
1607			goto miss;
1608		}
1609
1610		for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1611			nhc = fib_info_nhc(fi, nhsel);
1612
1613			if (!fib_lookup_good_nhc(nhc, fib_flags, flp))
1614				continue;
1615set_result:
1616			if (!(fib_flags & FIB_LOOKUP_NOREF))
1617				refcount_inc(&fi->fib_clntref);
1618
1619			res->prefix = htonl(n->key);
1620			res->prefixlen = KEYLENGTH - fa->fa_slen;
1621			res->nh_sel = nhsel;
1622			res->nhc = nhc;
1623			res->type = fa->fa_type;
1624			res->scope = fi->fib_scope;
1625			res->dscp = fa->fa_dscp;
1626			res->fi = fi;
1627			res->table = tb;
1628			res->fa_head = &n->leaf;
1629#ifdef CONFIG_IP_FIB_TRIE_STATS
1630			this_cpu_inc(stats->semantic_match_passed);
1631#endif
1632			trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1633
1634			return err;
1635		}
1636	}
1637miss:
1638#ifdef CONFIG_IP_FIB_TRIE_STATS
1639	this_cpu_inc(stats->semantic_match_miss);
1640#endif
1641	goto backtrace;
1642}
1643EXPORT_SYMBOL_GPL(fib_table_lookup);
1644
1645static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1646			     struct key_vector *l, struct fib_alias *old)
 
 
1647{
1648	/* record the location of the previous list_info entry */
1649	struct hlist_node **pprev = old->fa_list.pprev;
1650	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1651
1652	/* remove the fib_alias from the list */
1653	hlist_del_rcu(&old->fa_list);
1654
1655	/* if we emptied the list this leaf will be freed and we can sort
1656	 * out parent suffix lengths as a part of trie_rebalance
1657	 */
1658	if (hlist_empty(&l->leaf)) {
1659		if (tp->slen == l->slen)
1660			node_pull_suffix(tp, tp->pos);
1661		put_child_root(tp, l->key, NULL);
1662		node_free(l);
1663		trie_rebalance(t, tp);
1664		return;
1665	}
1666
1667	/* only access fa if it is pointing at the last valid hlist_node */
1668	if (*pprev)
1669		return;
1670
1671	/* update the trie with the latest suffix length */
1672	l->slen = fa->fa_slen;
1673	node_pull_suffix(tp, fa->fa_slen);
1674}
1675
1676static void fib_notify_alias_delete(struct net *net, u32 key,
1677				    struct hlist_head *fah,
1678				    struct fib_alias *fa_to_delete,
1679				    struct netlink_ext_ack *extack)
1680{
1681	struct fib_alias *fa_next, *fa_to_notify;
1682	u32 tb_id = fa_to_delete->tb_id;
1683	u8 slen = fa_to_delete->fa_slen;
1684	enum fib_event_type fib_event;
1685
1686	/* Do not notify if we do not care about the route. */
1687	if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete)
1688		return;
1689
1690	/* Determine if the route should be replaced by the next route in the
1691	 * list.
1692	 */
1693	fa_next = hlist_entry_safe(fa_to_delete->fa_list.next,
1694				   struct fib_alias, fa_list);
1695	if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) {
1696		fib_event = FIB_EVENT_ENTRY_REPLACE;
1697		fa_to_notify = fa_next;
1698	} else {
1699		fib_event = FIB_EVENT_ENTRY_DEL;
1700		fa_to_notify = fa_to_delete;
1701	}
1702	call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen,
1703				 fa_to_notify, extack);
1704}
1705
1706/* Caller must hold RTNL. */
1707int fib_table_delete(struct net *net, struct fib_table *tb,
1708		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1709{
1710	struct trie *t = (struct trie *) tb->tb_data;
 
 
 
1711	struct fib_alias *fa, *fa_to_delete;
1712	struct key_vector *l, *tp;
1713	u8 plen = cfg->fc_dst_len;
1714	u8 slen = KEYLENGTH - plen;
1715	dscp_t dscp;
1716	u32 key;
 
1717
1718	key = ntohl(cfg->fc_dst);
 
1719
1720	if (!fib_valid_key_len(key, plen, extack))
1721		return -EINVAL;
1722
1723	l = fib_find_node(t, &tp, key);
 
 
1724	if (!l)
1725		return -ESRCH;
1726
1727	dscp = cfg->fc_dscp;
1728	fa = fib_find_alias(&l->leaf, slen, dscp, 0, tb->tb_id, false);
 
1729	if (!fa)
1730		return -ESRCH;
1731
1732	pr_debug("Deleting %08x/%d dsfield=0x%02x t=%p\n", key, plen,
1733		 inet_dscp_to_dsfield(dscp), t);
1734
1735	fa_to_delete = NULL;
1736	hlist_for_each_entry_from(fa, fa_list) {
 
1737		struct fib_info *fi = fa->fa_info;
1738
1739		if ((fa->fa_slen != slen) ||
1740		    (fa->tb_id != tb->tb_id) ||
1741		    (fa->fa_dscp != dscp))
1742			break;
1743
1744		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1745		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1746		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1747		    (!cfg->fc_prefsrc ||
1748		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1749		    (!cfg->fc_protocol ||
1750		     fi->fib_protocol == cfg->fc_protocol) &&
1751		    fib_nh_match(net, cfg, fi, extack) == 0 &&
1752		    fib_metrics_match(cfg, fi)) {
1753			fa_to_delete = fa;
1754			break;
1755		}
1756	}
1757
1758	if (!fa_to_delete)
1759		return -ESRCH;
1760
1761	fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack);
1762	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1763		  &cfg->fc_nlinfo, 0);
1764
 
 
 
 
 
1765	if (!plen)
1766		tb->tb_num_default--;
1767
1768	fib_remove_alias(t, tp, l, fa_to_delete);
 
 
 
 
 
 
1769
1770	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1771		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1772
1773	fib_release_info(fa_to_delete->fa_info);
1774	alias_free_mem_rcu(fa_to_delete);
1775	return 0;
1776}
1777
1778/* Scan for the next leaf starting at the provided key value */
1779static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1780{
1781	struct key_vector *pn, *n = *tn;
1782	unsigned long cindex;
1783
1784	/* this loop is meant to try and find the key in the trie */
1785	do {
1786		/* record parent and next child index */
1787		pn = n;
1788		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1789
1790		if (cindex >> pn->bits)
1791			break;
1792
1793		/* descend into the next child */
1794		n = get_child_rcu(pn, cindex++);
1795		if (!n)
1796			break;
1797
1798		/* guarantee forward progress on the keys */
1799		if (IS_LEAF(n) && (n->key >= key))
1800			goto found;
1801	} while (IS_TNODE(n));
1802
1803	/* this loop will search for the next leaf with a greater key */
1804	while (!IS_TRIE(pn)) {
1805		/* if we exhausted the parent node we will need to climb */
1806		if (cindex >= (1ul << pn->bits)) {
1807			t_key pkey = pn->key;
1808
1809			pn = node_parent_rcu(pn);
1810			cindex = get_index(pkey, pn) + 1;
1811			continue;
1812		}
1813
1814		/* grab the next available node */
1815		n = get_child_rcu(pn, cindex++);
1816		if (!n)
1817			continue;
1818
1819		/* no need to compare keys since we bumped the index */
1820		if (IS_LEAF(n))
1821			goto found;
1822
1823		/* Rescan start scanning in new node */
1824		pn = n;
1825		cindex = 0;
1826	}
1827
1828	*tn = pn;
1829	return NULL; /* Root of trie */
1830found:
1831	/* if we are at the limit for keys just return NULL for the tnode */
1832	*tn = pn;
1833	return n;
1834}
1835
1836static void fib_trie_free(struct fib_table *tb)
1837{
1838	struct trie *t = (struct trie *)tb->tb_data;
1839	struct key_vector *pn = t->kv;
1840	unsigned long cindex = 1;
1841	struct hlist_node *tmp;
1842	struct fib_alias *fa;
1843
1844	/* walk trie in reverse order and free everything */
1845	for (;;) {
1846		struct key_vector *n;
1847
1848		if (!(cindex--)) {
1849			t_key pkey = pn->key;
1850
1851			if (IS_TRIE(pn))
1852				break;
1853
1854			n = pn;
1855			pn = node_parent(pn);
1856
1857			/* drop emptied tnode */
1858			put_child_root(pn, n->key, NULL);
1859			node_free(n);
1860
1861			cindex = get_index(pkey, pn);
1862
1863			continue;
1864		}
1865
1866		/* grab the next available node */
1867		n = get_child(pn, cindex);
1868		if (!n)
1869			continue;
1870
1871		if (IS_TNODE(n)) {
1872			/* record pn and cindex for leaf walking */
1873			pn = n;
1874			cindex = 1ul << n->bits;
1875
1876			continue;
1877		}
1878
1879		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1880			hlist_del_rcu(&fa->fa_list);
1881			alias_free_mem_rcu(fa);
1882		}
1883
1884		put_child_root(pn, n->key, NULL);
1885		node_free(n);
1886	}
1887
1888#ifdef CONFIG_IP_FIB_TRIE_STATS
1889	free_percpu(t->stats);
1890#endif
1891	kfree(tb);
1892}
1893
1894struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
 
 
 
 
1895{
1896	struct trie *ot = (struct trie *)oldtb->tb_data;
1897	struct key_vector *l, *tp = ot->kv;
1898	struct fib_table *local_tb;
1899	struct fib_alias *fa;
1900	struct trie *lt;
1901	t_key key = 0;
1902
1903	if (oldtb->tb_data == oldtb->__data)
1904		return oldtb;
 
 
1905
1906	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1907	if (!local_tb)
1908		return NULL;
1909
1910	lt = (struct trie *)local_tb->tb_data;
1911
1912	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1913		struct key_vector *local_l = NULL, *local_tp;
1914
1915		hlist_for_each_entry(fa, &l->leaf, fa_list) {
1916			struct fib_alias *new_fa;
1917
1918			if (local_tb->tb_id != fa->tb_id)
1919				continue;
1920
1921			/* clone fa for new local table */
1922			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1923			if (!new_fa)
1924				goto out;
1925
1926			memcpy(new_fa, fa, sizeof(*fa));
1927
1928			/* insert clone into table */
1929			if (!local_l)
1930				local_l = fib_find_node(lt, &local_tp, l->key);
1931
1932			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1933					     NULL, l->key)) {
1934				kmem_cache_free(fn_alias_kmem, new_fa);
1935				goto out;
1936			}
1937		}
1938
1939		/* stop loop if key wrapped back to 0 */
1940		key = l->key + 1;
1941		if (key < l->key)
1942			break;
1943	}
1944
1945	return local_tb;
1946out:
1947	fib_trie_free(local_tb);
1948
1949	return NULL;
1950}
1951
1952/* Caller must hold RTNL */
1953void fib_table_flush_external(struct fib_table *tb)
1954{
1955	struct trie *t = (struct trie *)tb->tb_data;
1956	struct key_vector *pn = t->kv;
1957	unsigned long cindex = 1;
1958	struct hlist_node *tmp;
1959	struct fib_alias *fa;
1960
1961	/* walk trie in reverse order */
1962	for (;;) {
1963		unsigned char slen = 0;
1964		struct key_vector *n;
1965
1966		if (!(cindex--)) {
1967			t_key pkey = pn->key;
1968
1969			/* cannot resize the trie vector */
1970			if (IS_TRIE(pn))
1971				break;
1972
1973			/* update the suffix to address pulled leaves */
1974			if (pn->slen > pn->pos)
1975				update_suffix(pn);
1976
1977			/* resize completed node */
1978			pn = resize(t, pn);
1979			cindex = get_index(pkey, pn);
1980
1981			continue;
1982		}
1983
1984		/* grab the next available node */
1985		n = get_child(pn, cindex);
1986		if (!n)
1987			continue;
1988
1989		if (IS_TNODE(n)) {
1990			/* record pn and cindex for leaf walking */
1991			pn = n;
1992			cindex = 1ul << n->bits;
1993
1994			continue;
1995		}
1996
1997		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1998			/* if alias was cloned to local then we just
1999			 * need to remove the local copy from main
2000			 */
2001			if (tb->tb_id != fa->tb_id) {
2002				hlist_del_rcu(&fa->fa_list);
2003				alias_free_mem_rcu(fa);
2004				continue;
2005			}
2006
2007			/* record local slen */
2008			slen = fa->fa_slen;
2009		}
2010
2011		/* update leaf slen */
2012		n->slen = slen;
2013
2014		if (hlist_empty(&n->leaf)) {
2015			put_child_root(pn, n->key, NULL);
2016			node_free(n);
2017		}
2018	}
2019}
2020
2021/* Caller must hold RTNL. */
2022int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
2023{
2024	struct trie *t = (struct trie *)tb->tb_data;
2025	struct nl_info info = { .nl_net = net };
2026	struct key_vector *pn = t->kv;
2027	unsigned long cindex = 1;
2028	struct hlist_node *tmp;
2029	struct fib_alias *fa;
2030	int found = 0;
2031
2032	/* walk trie in reverse order */
2033	for (;;) {
2034		unsigned char slen = 0;
2035		struct key_vector *n;
2036
2037		if (!(cindex--)) {
2038			t_key pkey = pn->key;
2039
2040			/* cannot resize the trie vector */
2041			if (IS_TRIE(pn))
2042				break;
2043
2044			/* update the suffix to address pulled leaves */
2045			if (pn->slen > pn->pos)
2046				update_suffix(pn);
2047
2048			/* resize completed node */
2049			pn = resize(t, pn);
2050			cindex = get_index(pkey, pn);
2051
2052			continue;
2053		}
2054
2055		/* grab the next available node */
2056		n = get_child(pn, cindex);
2057		if (!n)
2058			continue;
2059
2060		if (IS_TNODE(n)) {
2061			/* record pn and cindex for leaf walking */
2062			pn = n;
2063			cindex = 1ul << n->bits;
2064
2065			continue;
2066		}
2067
2068		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2069			struct fib_info *fi = fa->fa_info;
2070
2071			if (!fi || tb->tb_id != fa->tb_id ||
2072			    (!(fi->fib_flags & RTNH_F_DEAD) &&
2073			     !fib_props[fa->fa_type].error)) {
2074				slen = fa->fa_slen;
2075				continue;
2076			}
2077
2078			/* Do not flush error routes if network namespace is
2079			 * not being dismantled
2080			 */
2081			if (!flush_all && fib_props[fa->fa_type].error) {
2082				slen = fa->fa_slen;
2083				continue;
2084			}
2085
2086			fib_notify_alias_delete(net, n->key, &n->leaf, fa,
2087						NULL);
2088			if (fi->pfsrc_removed)
2089				rtmsg_fib(RTM_DELROUTE, htonl(n->key), fa,
2090					  KEYLENGTH - fa->fa_slen, tb->tb_id, &info, 0);
2091			hlist_del_rcu(&fa->fa_list);
2092			fib_release_info(fa->fa_info);
2093			alias_free_mem_rcu(fa);
2094			found++;
2095		}
2096
2097		/* update leaf slen */
2098		n->slen = slen;
2099
2100		if (hlist_empty(&n->leaf)) {
2101			put_child_root(pn, n->key, NULL);
2102			node_free(n);
2103		}
2104	}
2105
2106	pr_debug("trie_flush found=%d\n", found);
2107	return found;
2108}
2109
2110/* derived from fib_trie_free */
2111static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
2112				     struct nl_info *info)
2113{
2114	struct trie *t = (struct trie *)tb->tb_data;
2115	struct key_vector *pn = t->kv;
2116	unsigned long cindex = 1;
2117	struct fib_alias *fa;
2118
2119	for (;;) {
2120		struct key_vector *n;
2121
2122		if (!(cindex--)) {
2123			t_key pkey = pn->key;
2124
2125			if (IS_TRIE(pn))
2126				break;
2127
2128			pn = node_parent(pn);
2129			cindex = get_index(pkey, pn);
2130			continue;
2131		}
2132
2133		/* grab the next available node */
2134		n = get_child(pn, cindex);
2135		if (!n)
2136			continue;
2137
2138		if (IS_TNODE(n)) {
2139			/* record pn and cindex for leaf walking */
2140			pn = n;
2141			cindex = 1ul << n->bits;
2142
2143			continue;
2144		}
2145
2146		hlist_for_each_entry(fa, &n->leaf, fa_list) {
2147			struct fib_info *fi = fa->fa_info;
2148
2149			if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
2150				continue;
2151
2152			rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
2153				  KEYLENGTH - fa->fa_slen, tb->tb_id,
2154				  info, NLM_F_REPLACE);
2155		}
2156	}
2157}
2158
2159void fib_info_notify_update(struct net *net, struct nl_info *info)
2160{
2161	unsigned int h;
2162
2163	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2164		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2165		struct fib_table *tb;
2166
2167		hlist_for_each_entry_rcu(tb, head, tb_hlist,
2168					 lockdep_rtnl_is_held())
2169			__fib_info_notify_update(net, tb, info);
2170	}
2171}
2172
2173static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2174			   struct notifier_block *nb,
2175			   struct netlink_ext_ack *extack)
2176{
 
2177	struct fib_alias *fa;
2178	int last_slen = -1;
2179	int err;
2180
2181	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2182		struct fib_info *fi = fa->fa_info;
2183
2184		if (!fi)
2185			continue;
2186
2187		/* local and main table can share the same trie,
2188		 * so don't notify twice for the same entry.
2189		 */
2190		if (tb->tb_id != fa->tb_id)
2191			continue;
2192
2193		if (fa->fa_slen == last_slen)
 
 
2194			continue;
 
2195
2196		last_slen = fa->fa_slen;
2197		err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE,
2198					      l->key, KEYLENGTH - fa->fa_slen,
2199					      fa, extack);
2200		if (err)
2201			return err;
2202	}
2203	return 0;
2204}
2205
2206static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2207			    struct netlink_ext_ack *extack)
2208{
2209	struct trie *t = (struct trie *)tb->tb_data;
2210	struct key_vector *l, *tp = t->kv;
2211	t_key key = 0;
2212	int err;
2213
2214	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2215		err = fib_leaf_notify(l, tb, nb, extack);
2216		if (err)
2217			return err;
2218
2219		key = l->key + 1;
2220		/* stop in case of wrap around */
2221		if (key < l->key)
2222			break;
2223	}
2224	return 0;
2225}
2226
2227int fib_notify(struct net *net, struct notifier_block *nb,
2228	       struct netlink_ext_ack *extack)
2229{
2230	unsigned int h;
2231	int err;
2232
2233	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2234		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2235		struct fib_table *tb;
2236
2237		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2238			err = fib_table_notify(tb, nb, extack);
2239			if (err)
2240				return err;
2241		}
 
2242	}
2243	return 0;
 
2244}
2245
2246static void __trie_free_rcu(struct rcu_head *head)
 
2247{
2248	struct fib_table *tb = container_of(head, struct fib_table, rcu);
2249#ifdef CONFIG_IP_FIB_TRIE_STATS
2250	struct trie *t = (struct trie *)tb->tb_data;
2251
2252	if (tb->tb_data == tb->__data)
2253		free_percpu(t->stats);
2254#endif /* CONFIG_IP_FIB_TRIE_STATS */
2255	kfree(tb);
2256}
2257
2258void fib_free_table(struct fib_table *tb)
2259{
2260	call_rcu(&tb->rcu, __trie_free_rcu);
2261}
2262
2263static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2264			     struct sk_buff *skb, struct netlink_callback *cb,
2265			     struct fib_dump_filter *filter)
2266{
2267	unsigned int flags = NLM_F_MULTI;
2268	__be32 xkey = htonl(l->key);
2269	int i, s_i, i_fa, s_fa, err;
2270	struct fib_alias *fa;
2271
2272	if (filter->filter_set ||
2273	    !filter->dump_exceptions || !filter->dump_routes)
2274		flags |= NLM_F_DUMP_FILTERED;
2275
2276	s_i = cb->args[4];
2277	s_fa = cb->args[5];
2278	i = 0;
2279
2280	/* rcu_read_lock is hold by caller */
2281	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2282		struct fib_info *fi = fa->fa_info;
 
 
 
2283
2284		if (i < s_i)
2285			goto next;
2286
2287		i_fa = 0;
2288
2289		if (tb->tb_id != fa->tb_id)
2290			goto next;
2291
2292		if (filter->filter_set) {
2293			if (filter->rt_type && fa->fa_type != filter->rt_type)
2294				goto next;
2295
2296			if ((filter->protocol &&
2297			     fi->fib_protocol != filter->protocol))
2298				goto next;
2299
2300			if (filter->dev &&
2301			    !fib_info_nh_uses_dev(fi, filter->dev))
2302				goto next;
2303		}
2304
2305		if (filter->dump_routes) {
2306			if (!s_fa) {
2307				struct fib_rt_info fri;
2308
2309				fri.fi = fi;
2310				fri.tb_id = tb->tb_id;
2311				fri.dst = xkey;
2312				fri.dst_len = KEYLENGTH - fa->fa_slen;
2313				fri.dscp = fa->fa_dscp;
2314				fri.type = fa->fa_type;
2315				fri.offload = READ_ONCE(fa->offload);
2316				fri.trap = READ_ONCE(fa->trap);
2317				fri.offload_failed = READ_ONCE(fa->offload_failed);
2318				err = fib_dump_info(skb,
2319						    NETLINK_CB(cb->skb).portid,
2320						    cb->nlh->nlmsg_seq,
2321						    RTM_NEWROUTE, &fri, flags);
2322				if (err < 0)
2323					goto stop;
2324			}
2325
2326			i_fa++;
2327		}
2328
2329		if (filter->dump_exceptions) {
2330			err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2331						 &i_fa, s_fa, flags);
2332			if (err < 0)
2333				goto stop;
2334		}
2335
2336next:
2337		i++;
2338	}
2339
2340	cb->args[4] = i;
2341	return skb->len;
2342
2343stop:
2344	cb->args[4] = i;
2345	cb->args[5] = i_fa;
2346	return err;
2347}
2348
2349/* rcu_read_lock needs to be hold by caller from readside */
2350int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2351		   struct netlink_callback *cb, struct fib_dump_filter *filter)
2352{
2353	struct trie *t = (struct trie *)tb->tb_data;
2354	struct key_vector *l, *tp = t->kv;
 
 
 
 
2355	/* Dump starting at last key.
2356	 * Note: 0.0.0.0/0 (ie default) is first key.
2357	 */
2358	int count = cb->args[2];
2359	t_key key = cb->args[3];
2360
2361	/* First time here, count and key are both always 0. Count > 0
2362	 * and key == 0 means the dump has wrapped around and we are done.
2363	 */
2364	if (count && !key)
2365		return 0;
2366
2367	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2368		int err;
2369
2370		err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2371		if (err < 0) {
2372			cb->args[3] = key;
2373			cb->args[2] = count;
2374			return err;
 
2375		}
2376
2377		++count;
2378		key = l->key + 1;
2379
2380		memset(&cb->args[4], 0,
2381		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2382
2383		/* stop loop if key wrapped back to 0 */
2384		if (key < l->key)
2385			break;
2386	}
 
 
2387
2388	cb->args[3] = key;
2389	cb->args[2] = count;
2390
2391	return 0;
2392}
2393
2394void __init fib_trie_init(void)
2395{
2396	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2397					  sizeof(struct fib_alias),
2398					  0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2399
2400	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2401					   LEAF_SIZE,
2402					   0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
 
2403}
2404
2405struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
 
2406{
2407	struct fib_table *tb;
2408	struct trie *t;
2409	size_t sz = sizeof(*tb);
2410
2411	if (!alias)
2412		sz += sizeof(struct trie);
2413
2414	tb = kzalloc(sz, GFP_KERNEL);
2415	if (!tb)
 
2416		return NULL;
2417
2418	tb->tb_id = id;
 
2419	tb->tb_num_default = 0;
2420	tb->tb_data = (alias ? alias->__data : tb->__data);
2421
2422	if (alias)
2423		return tb;
2424
2425	t = (struct trie *) tb->tb_data;
2426	t->kv[0].pos = KEYLENGTH;
2427	t->kv[0].slen = KEYLENGTH;
2428#ifdef CONFIG_IP_FIB_TRIE_STATS
2429	t->stats = alloc_percpu(struct trie_use_stats);
2430	if (!t->stats) {
2431		kfree(tb);
2432		tb = NULL;
2433	}
2434#endif
2435
2436	return tb;
2437}
2438
2439#ifdef CONFIG_PROC_FS
2440/* Depth first Trie walk iterator */
2441struct fib_trie_iter {
2442	struct seq_net_private p;
2443	struct fib_table *tb;
2444	struct key_vector *tnode;
2445	unsigned int index;
2446	unsigned int depth;
2447};
2448
2449static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2450{
2451	unsigned long cindex = iter->index;
2452	struct key_vector *pn = iter->tnode;
2453	t_key pkey;
 
 
 
 
2454
2455	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2456		 iter->tnode, iter->index, iter->depth);
 
 
 
2457
2458	while (!IS_TRIE(pn)) {
2459		while (cindex < child_length(pn)) {
2460			struct key_vector *n = get_child_rcu(pn, cindex++);
2461
2462			if (!n)
2463				continue;
2464
2465			if (IS_LEAF(n)) {
2466				iter->tnode = pn;
2467				iter->index = cindex;
2468			} else {
2469				/* push down one level */
2470				iter->tnode = n;
2471				iter->index = 0;
2472				++iter->depth;
2473			}
2474
2475			return n;
2476		}
2477
2478		/* Current node exhausted, pop back up */
2479		pkey = pn->key;
2480		pn = node_parent_rcu(pn);
2481		cindex = get_index(pkey, pn) + 1;
 
 
 
 
2482		--iter->depth;
 
2483	}
2484
2485	/* record root node so further searches know we are done */
2486	iter->tnode = pn;
2487	iter->index = 0;
2488
2489	return NULL;
2490}
2491
2492static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2493					     struct trie *t)
2494{
2495	struct key_vector *n, *pn;
2496
2497	if (!t)
2498		return NULL;
2499
2500	pn = t->kv;
2501	n = rcu_dereference(pn->tnode[0]);
2502	if (!n)
2503		return NULL;
2504
2505	if (IS_TNODE(n)) {
2506		iter->tnode = n;
2507		iter->index = 0;
2508		iter->depth = 1;
2509	} else {
2510		iter->tnode = pn;
2511		iter->index = 0;
2512		iter->depth = 0;
2513	}
2514
2515	return n;
2516}
2517
2518static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2519{
2520	struct key_vector *n;
2521	struct fib_trie_iter iter;
2522
2523	memset(s, 0, sizeof(*s));
2524
2525	rcu_read_lock();
2526	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2527		if (IS_LEAF(n)) {
2528			struct fib_alias *fa;
 
 
2529
2530			s->leaves++;
2531			s->totdepth += iter.depth;
2532			if (iter.depth > s->maxdepth)
2533				s->maxdepth = iter.depth;
2534
2535			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2536				++s->prefixes;
2537		} else {
 
 
 
2538			s->tnodes++;
2539			if (n->bits < MAX_STAT_DEPTH)
2540				s->nodesizes[n->bits]++;
2541			s->nullpointers += tn_info(n)->empty_children;
 
 
 
2542		}
2543	}
2544	rcu_read_unlock();
2545}
2546
2547/*
2548 *	This outputs /proc/net/fib_triestats
2549 */
2550static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2551{
2552	unsigned int i, max, pointers, bytes, avdepth;
2553
2554	if (stat->leaves)
2555		avdepth = stat->totdepth*100 / stat->leaves;
2556	else
2557		avdepth = 0;
2558
2559	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2560		   avdepth / 100, avdepth % 100);
2561	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2562
2563	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2564	bytes = LEAF_SIZE * stat->leaves;
2565
2566	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2567	bytes += sizeof(struct fib_alias) * stat->prefixes;
2568
2569	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2570	bytes += TNODE_SIZE(0) * stat->tnodes;
2571
2572	max = MAX_STAT_DEPTH;
2573	while (max > 0 && stat->nodesizes[max-1] == 0)
2574		max--;
2575
2576	pointers = 0;
2577	for (i = 1; i < max; i++)
2578		if (stat->nodesizes[i] != 0) {
2579			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2580			pointers += (1<<i) * stat->nodesizes[i];
2581		}
2582	seq_putc(seq, '\n');
2583	seq_printf(seq, "\tPointers: %u\n", pointers);
2584
2585	bytes += sizeof(struct key_vector *) * pointers;
2586	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2587	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2588}
2589
2590#ifdef CONFIG_IP_FIB_TRIE_STATS
2591static void trie_show_usage(struct seq_file *seq,
2592			    const struct trie_use_stats __percpu *stats)
2593{
2594	struct trie_use_stats s = { 0 };
2595	int cpu;
2596
2597	/* loop through all of the CPUs and gather up the stats */
2598	for_each_possible_cpu(cpu) {
2599		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2600
2601		s.gets += pcpu->gets;
2602		s.backtrack += pcpu->backtrack;
2603		s.semantic_match_passed += pcpu->semantic_match_passed;
2604		s.semantic_match_miss += pcpu->semantic_match_miss;
2605		s.null_node_hit += pcpu->null_node_hit;
2606		s.resize_node_skipped += pcpu->resize_node_skipped;
2607	}
2608
2609	seq_printf(seq, "\nCounters:\n---------\n");
2610	seq_printf(seq, "gets = %u\n", s.gets);
2611	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2612	seq_printf(seq, "semantic match passed = %u\n",
2613		   s.semantic_match_passed);
2614	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2615	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2616	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
 
 
2617}
2618#endif /*  CONFIG_IP_FIB_TRIE_STATS */
2619
2620static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2621{
2622	if (tb->tb_id == RT_TABLE_LOCAL)
2623		seq_puts(seq, "Local:\n");
2624	else if (tb->tb_id == RT_TABLE_MAIN)
2625		seq_puts(seq, "Main:\n");
2626	else
2627		seq_printf(seq, "Id %d:\n", tb->tb_id);
2628}
2629
2630
2631static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2632{
2633	struct net *net = seq->private;
2634	unsigned int h;
2635
2636	seq_printf(seq,
2637		   "Basic info: size of leaf:"
2638		   " %zd bytes, size of tnode: %zd bytes.\n",
2639		   LEAF_SIZE, TNODE_SIZE(0));
2640
2641	rcu_read_lock();
2642	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2643		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
 
2644		struct fib_table *tb;
2645
2646		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2647			struct trie *t = (struct trie *) tb->tb_data;
2648			struct trie_stat stat;
2649
2650			if (!t)
2651				continue;
2652
2653			fib_table_print(seq, tb);
2654
2655			trie_collect_stats(t, &stat);
2656			trie_show_stats(seq, &stat);
2657#ifdef CONFIG_IP_FIB_TRIE_STATS
2658			trie_show_usage(seq, t->stats);
2659#endif
2660		}
2661		cond_resched_rcu();
2662	}
2663	rcu_read_unlock();
2664
2665	return 0;
2666}
2667
2668static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
 
 
 
 
 
 
 
 
 
 
 
 
 
2669{
2670	struct fib_trie_iter *iter = seq->private;
2671	struct net *net = seq_file_net(seq);
2672	loff_t idx = 0;
2673	unsigned int h;
2674
2675	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2676		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
 
2677		struct fib_table *tb;
2678
2679		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2680			struct key_vector *n;
2681
2682			for (n = fib_trie_get_first(iter,
2683						    (struct trie *) tb->tb_data);
2684			     n; n = fib_trie_get_next(iter))
2685				if (pos == idx++) {
2686					iter->tb = tb;
2687					return n;
2688				}
2689		}
2690	}
2691
2692	return NULL;
2693}
2694
2695static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2696	__acquires(RCU)
2697{
2698	rcu_read_lock();
2699	return fib_trie_get_idx(seq, *pos);
2700}
2701
2702static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2703{
2704	struct fib_trie_iter *iter = seq->private;
2705	struct net *net = seq_file_net(seq);
2706	struct fib_table *tb = iter->tb;
2707	struct hlist_node *tb_node;
2708	unsigned int h;
2709	struct key_vector *n;
2710
2711	++*pos;
2712	/* next node in same table */
2713	n = fib_trie_get_next(iter);
2714	if (n)
2715		return n;
2716
2717	/* walk rest of this hash chain */
2718	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2719	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2720		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2721		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2722		if (n)
2723			goto found;
2724	}
2725
2726	/* new hash chain */
2727	while (++h < FIB_TABLE_HASHSZ) {
2728		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2729		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2730			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2731			if (n)
2732				goto found;
2733		}
2734	}
2735	return NULL;
2736
2737found:
2738	iter->tb = tb;
2739	return n;
2740}
2741
2742static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2743	__releases(RCU)
2744{
2745	rcu_read_unlock();
2746}
2747
2748static void seq_indent(struct seq_file *seq, int n)
2749{
2750	while (n-- > 0)
2751		seq_puts(seq, "   ");
2752}
2753
2754static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2755{
2756	switch (s) {
2757	case RT_SCOPE_UNIVERSE: return "universe";
2758	case RT_SCOPE_SITE:	return "site";
2759	case RT_SCOPE_LINK:	return "link";
2760	case RT_SCOPE_HOST:	return "host";
2761	case RT_SCOPE_NOWHERE:	return "nowhere";
2762	default:
2763		snprintf(buf, len, "scope=%d", s);
2764		return buf;
2765	}
2766}
2767
2768static const char *const rtn_type_names[__RTN_MAX] = {
2769	[RTN_UNSPEC] = "UNSPEC",
2770	[RTN_UNICAST] = "UNICAST",
2771	[RTN_LOCAL] = "LOCAL",
2772	[RTN_BROADCAST] = "BROADCAST",
2773	[RTN_ANYCAST] = "ANYCAST",
2774	[RTN_MULTICAST] = "MULTICAST",
2775	[RTN_BLACKHOLE] = "BLACKHOLE",
2776	[RTN_UNREACHABLE] = "UNREACHABLE",
2777	[RTN_PROHIBIT] = "PROHIBIT",
2778	[RTN_THROW] = "THROW",
2779	[RTN_NAT] = "NAT",
2780	[RTN_XRESOLVE] = "XRESOLVE",
2781};
2782
2783static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2784{
2785	if (t < __RTN_MAX && rtn_type_names[t])
2786		return rtn_type_names[t];
2787	snprintf(buf, len, "type %u", t);
2788	return buf;
2789}
2790
2791/* Pretty print the trie */
2792static int fib_trie_seq_show(struct seq_file *seq, void *v)
2793{
2794	const struct fib_trie_iter *iter = seq->private;
2795	struct key_vector *n = v;
2796
2797	if (IS_TRIE(node_parent_rcu(n)))
2798		fib_table_print(seq, iter->tb);
2799
2800	if (IS_TNODE(n)) {
2801		__be32 prf = htonl(n->key);
 
2802
2803		seq_indent(seq, iter->depth-1);
2804		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2805			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2806			   tn_info(n)->full_children,
2807			   tn_info(n)->empty_children);
2808	} else {
2809		__be32 val = htonl(n->key);
2810		struct fib_alias *fa;
 
 
2811
2812		seq_indent(seq, iter->depth);
2813		seq_printf(seq, "  |-- %pI4\n", &val);
2814
2815		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2816			char buf1[32], buf2[32];
 
 
 
2817
2818			seq_indent(seq, iter->depth + 1);
2819			seq_printf(seq, "  /%zu %s %s",
2820				   KEYLENGTH - fa->fa_slen,
2821				   rtn_scope(buf1, sizeof(buf1),
2822					     fa->fa_info->fib_scope),
2823				   rtn_type(buf2, sizeof(buf2),
2824					    fa->fa_type));
2825			if (fa->fa_dscp)
2826				seq_printf(seq, " tos=%d",
2827					   inet_dscp_to_dsfield(fa->fa_dscp));
2828			seq_putc(seq, '\n');
2829		}
2830	}
2831
2832	return 0;
2833}
2834
2835static const struct seq_operations fib_trie_seq_ops = {
2836	.start  = fib_trie_seq_start,
2837	.next   = fib_trie_seq_next,
2838	.stop   = fib_trie_seq_stop,
2839	.show   = fib_trie_seq_show,
2840};
2841
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2842struct fib_route_iter {
2843	struct seq_net_private p;
2844	struct fib_table *main_tb;
2845	struct key_vector *tnode;
2846	loff_t	pos;
2847	t_key	key;
2848};
2849
2850static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2851					    loff_t pos)
2852{
2853	struct key_vector *l, **tp = &iter->tnode;
2854	t_key key;
2855
2856	/* use cached location of previously found key */
2857	if (iter->pos > 0 && pos >= iter->pos) {
2858		key = iter->key;
2859	} else {
2860		iter->pos = 1;
2861		key = 0;
2862	}
2863
2864	pos -= iter->pos;
2865
2866	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2867		key = l->key + 1;
2868		iter->pos++;
2869		l = NULL;
2870
2871		/* handle unlikely case of a key wrap */
2872		if (!key)
2873			break;
2874	}
2875
2876	if (l)
2877		iter->key = l->key;	/* remember it */
2878	else
2879		iter->pos = 0;		/* forget it */
2880
2881	return l;
2882}
2883
2884static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2885	__acquires(RCU)
2886{
2887	struct fib_route_iter *iter = seq->private;
2888	struct fib_table *tb;
2889	struct trie *t;
2890
2891	rcu_read_lock();
2892
2893	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2894	if (!tb)
2895		return NULL;
2896
2897	iter->main_tb = tb;
2898	t = (struct trie *)tb->tb_data;
2899	iter->tnode = t->kv;
2900
2901	if (*pos != 0)
2902		return fib_route_get_idx(iter, *pos);
2903
2904	iter->pos = 0;
2905	iter->key = KEY_MAX;
2906
2907	return SEQ_START_TOKEN;
2908}
2909
2910static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2911{
2912	struct fib_route_iter *iter = seq->private;
2913	struct key_vector *l = NULL;
2914	t_key key = iter->key + 1;
2915
2916	++*pos;
 
 
 
 
 
 
 
2917
2918	/* only allow key of 0 for start of sequence */
2919	if ((v == SEQ_START_TOKEN) || key)
2920		l = leaf_walk_rcu(&iter->tnode, key);
2921
2922	if (l) {
2923		iter->key = l->key;
2924		iter->pos++;
2925	} else {
2926		iter->pos = 0;
2927	}
2928
2929	return l;
2930}
2931
2932static void fib_route_seq_stop(struct seq_file *seq, void *v)
2933	__releases(RCU)
2934{
2935	rcu_read_unlock();
2936}
2937
2938static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2939{
2940	unsigned int flags = 0;
2941
2942	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2943		flags = RTF_REJECT;
2944	if (fi) {
2945		const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2946
2947		if (nhc->nhc_gw.ipv4)
2948			flags |= RTF_GATEWAY;
2949	}
2950	if (mask == htonl(0xFFFFFFFF))
2951		flags |= RTF_HOST;
2952	flags |= RTF_UP;
2953	return flags;
2954}
2955
2956/*
2957 *	This outputs /proc/net/route.
2958 *	The format of the file is not supposed to be changed
2959 *	and needs to be same as fib_hash output to avoid breaking
2960 *	legacy utilities
2961 */
2962static int fib_route_seq_show(struct seq_file *seq, void *v)
2963{
2964	struct fib_route_iter *iter = seq->private;
2965	struct fib_table *tb = iter->main_tb;
2966	struct fib_alias *fa;
2967	struct key_vector *l = v;
2968	__be32 prefix;
2969
2970	if (v == SEQ_START_TOKEN) {
2971		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2972			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2973			   "\tWindow\tIRTT");
2974		return 0;
2975	}
2976
2977	prefix = htonl(l->key);
 
 
2978
2979	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2980		struct fib_info *fi = fa->fa_info;
2981		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2982		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2983
2984		if ((fa->fa_type == RTN_BROADCAST) ||
2985		    (fa->fa_type == RTN_MULTICAST))
2986			continue;
 
2987
2988		if (fa->tb_id != tb->tb_id)
2989			continue;
 
2990
2991		seq_setwidth(seq, 127);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2992
2993		if (fi) {
2994			struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2995			__be32 gw = 0;
2996
2997			if (nhc->nhc_gw_family == AF_INET)
2998				gw = nhc->nhc_gw.ipv4;
2999
3000			seq_printf(seq,
3001				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
3002				   "%d\t%08X\t%d\t%u\t%u",
3003				   nhc->nhc_dev ? nhc->nhc_dev->name : "*",
3004				   prefix, gw, flags, 0, 0,
3005				   fi->fib_priority,
3006				   mask,
3007				   (fi->fib_advmss ?
3008				    fi->fib_advmss + 40 : 0),
3009				   fi->fib_window,
3010				   fi->fib_rtt >> 3);
3011		} else {
3012			seq_printf(seq,
3013				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
3014				   "%d\t%08X\t%d\t%u\t%u",
3015				   prefix, 0, flags, 0, 0, 0,
3016				   mask, 0, 0, 0);
3017		}
3018		seq_pad(seq, '\n');
3019	}
3020
3021	return 0;
3022}
3023
3024static const struct seq_operations fib_route_seq_ops = {
3025	.start  = fib_route_seq_start,
3026	.next   = fib_route_seq_next,
3027	.stop   = fib_route_seq_stop,
3028	.show   = fib_route_seq_show,
3029};
3030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3031int __net_init fib_proc_init(struct net *net)
3032{
3033	if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
3034			sizeof(struct fib_trie_iter)))
3035		goto out1;
3036
3037	if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
3038			fib_triestat_seq_show, NULL))
3039		goto out2;
3040
3041	if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
3042			sizeof(struct fib_route_iter)))
3043		goto out3;
3044
3045	return 0;
3046
3047out3:
3048	remove_proc_entry("fib_triestat", net->proc_net);
3049out2:
3050	remove_proc_entry("fib_trie", net->proc_net);
3051out1:
3052	return -ENOMEM;
3053}
3054
3055void __net_exit fib_proc_exit(struct net *net)
3056{
3057	remove_proc_entry("fib_trie", net->proc_net);
3058	remove_proc_entry("fib_triestat", net->proc_net);
3059	remove_proc_entry("route", net->proc_net);
3060}
3061
3062#endif /* CONFIG_PROC_FS */