Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * mm/percpu-vm.c - vmalloc area based chunk allocation
  3 *
  4 * Copyright (C) 2010		SUSE Linux Products GmbH
  5 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  6 *
  7 * This file is released under the GPLv2.
  8 *
  9 * Chunks are mapped into vmalloc areas and populated page by page.
 10 * This is the default chunk allocator.
 11 */
 
 12
 13static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
 14				    unsigned int cpu, int page_idx)
 15{
 16	/* must not be used on pre-mapped chunk */
 17	WARN_ON(chunk->immutable);
 18
 19	return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
 20}
 21
 22/**
 23 * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
 24 * @chunk: chunk of interest
 25 * @bitmapp: output parameter for bitmap
 26 * @may_alloc: may allocate the array
 27 *
 28 * Returns pointer to array of pointers to struct page and bitmap,
 29 * both of which can be indexed with pcpu_page_idx().  The returned
 30 * array is cleared to zero and *@bitmapp is copied from
 31 * @chunk->populated.  Note that there is only one array and bitmap
 32 * and access exclusion is the caller's responsibility.
 33 *
 34 * CONTEXT:
 35 * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
 36 * Otherwise, don't care.
 37 *
 38 * RETURNS:
 39 * Pointer to temp pages array on success, NULL on failure.
 40 */
 41static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
 42					       unsigned long **bitmapp,
 43					       bool may_alloc)
 44{
 45	static struct page **pages;
 46	static unsigned long *bitmap;
 47	size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
 48	size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
 49			     sizeof(unsigned long);
 50
 51	if (!pages || !bitmap) {
 52		if (may_alloc && !pages)
 53			pages = pcpu_mem_alloc(pages_size);
 54		if (may_alloc && !bitmap)
 55			bitmap = pcpu_mem_alloc(bitmap_size);
 56		if (!pages || !bitmap)
 57			return NULL;
 58	}
 59
 60	memset(pages, 0, pages_size);
 61	bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
 62
 63	*bitmapp = bitmap;
 
 64	return pages;
 65}
 66
 67/**
 68 * pcpu_free_pages - free pages which were allocated for @chunk
 69 * @chunk: chunk pages were allocated for
 70 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
 71 * @populated: populated bitmap
 72 * @page_start: page index of the first page to be freed
 73 * @page_end: page index of the last page to be freed + 1
 74 *
 75 * Free pages [@page_start and @page_end) in @pages for all units.
 76 * The pages were allocated for @chunk.
 77 */
 78static void pcpu_free_pages(struct pcpu_chunk *chunk,
 79			    struct page **pages, unsigned long *populated,
 80			    int page_start, int page_end)
 81{
 82	unsigned int cpu;
 83	int i;
 84
 85	for_each_possible_cpu(cpu) {
 86		for (i = page_start; i < page_end; i++) {
 87			struct page *page = pages[pcpu_page_idx(cpu, i)];
 88
 89			if (page)
 90				__free_page(page);
 91		}
 92	}
 93}
 94
 95/**
 96 * pcpu_alloc_pages - allocates pages for @chunk
 97 * @chunk: target chunk
 98 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
 99 * @populated: populated bitmap
100 * @page_start: page index of the first page to be allocated
101 * @page_end: page index of the last page to be allocated + 1
 
102 *
103 * Allocate pages [@page_start,@page_end) into @pages for all units.
104 * The allocation is for @chunk.  Percpu core doesn't care about the
105 * content of @pages and will pass it verbatim to pcpu_map_pages().
106 */
107static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
108			    struct page **pages, unsigned long *populated,
109			    int page_start, int page_end)
110{
111	const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
112	unsigned int cpu;
113	int i;
114
 
 
115	for_each_possible_cpu(cpu) {
116		for (i = page_start; i < page_end; i++) {
117			struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
118
119			*pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
120			if (!*pagep) {
121				pcpu_free_pages(chunk, pages, populated,
122						page_start, page_end);
123				return -ENOMEM;
124			}
125		}
126	}
127	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
128}
129
130/**
131 * pcpu_pre_unmap_flush - flush cache prior to unmapping
132 * @chunk: chunk the regions to be flushed belongs to
133 * @page_start: page index of the first page to be flushed
134 * @page_end: page index of the last page to be flushed + 1
135 *
136 * Pages in [@page_start,@page_end) of @chunk are about to be
137 * unmapped.  Flush cache.  As each flushing trial can be very
138 * expensive, issue flush on the whole region at once rather than
139 * doing it for each cpu.  This could be an overkill but is more
140 * scalable.
141 */
142static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
143				 int page_start, int page_end)
144{
145	flush_cache_vunmap(
146		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
147		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
148}
149
150static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
151{
152	unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
153}
154
155/**
156 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
157 * @chunk: chunk of interest
158 * @pages: pages array which can be used to pass information to free
159 * @populated: populated bitmap
160 * @page_start: page index of the first page to unmap
161 * @page_end: page index of the last page to unmap + 1
162 *
163 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
164 * Corresponding elements in @pages were cleared by the caller and can
165 * be used to carry information to pcpu_free_pages() which will be
166 * called after all unmaps are finished.  The caller should call
167 * proper pre/post flush functions.
168 */
169static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
170			     struct page **pages, unsigned long *populated,
171			     int page_start, int page_end)
172{
173	unsigned int cpu;
174	int i;
175
176	for_each_possible_cpu(cpu) {
177		for (i = page_start; i < page_end; i++) {
178			struct page *page;
179
180			page = pcpu_chunk_page(chunk, cpu, i);
181			WARN_ON(!page);
182			pages[pcpu_page_idx(cpu, i)] = page;
183		}
184		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
185				   page_end - page_start);
186	}
187
188	for (i = page_start; i < page_end; i++)
189		__clear_bit(i, populated);
190}
191
192/**
193 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
194 * @chunk: pcpu_chunk the regions to be flushed belong to
195 * @page_start: page index of the first page to be flushed
196 * @page_end: page index of the last page to be flushed + 1
197 *
198 * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
199 * TLB for the regions.  This can be skipped if the area is to be
200 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
201 *
202 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
203 * for the whole region.
204 */
205static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
206				      int page_start, int page_end)
207{
208	flush_tlb_kernel_range(
209		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
210		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
211}
212
213static int __pcpu_map_pages(unsigned long addr, struct page **pages,
214			    int nr_pages)
215{
216	return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
217					PAGE_KERNEL, pages);
218}
219
220/**
221 * pcpu_map_pages - map pages into a pcpu_chunk
222 * @chunk: chunk of interest
223 * @pages: pages array containing pages to be mapped
224 * @populated: populated bitmap
225 * @page_start: page index of the first page to map
226 * @page_end: page index of the last page to map + 1
227 *
228 * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
229 * caller is responsible for calling pcpu_post_map_flush() after all
230 * mappings are complete.
231 *
232 * This function is responsible for setting corresponding bits in
233 * @chunk->populated bitmap and whatever is necessary for reverse
234 * lookup (addr -> chunk).
235 */
236static int pcpu_map_pages(struct pcpu_chunk *chunk,
237			  struct page **pages, unsigned long *populated,
238			  int page_start, int page_end)
239{
240	unsigned int cpu, tcpu;
241	int i, err;
242
243	for_each_possible_cpu(cpu) {
244		err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
245				       &pages[pcpu_page_idx(cpu, page_start)],
246				       page_end - page_start);
247		if (err < 0)
248			goto err;
249	}
250
251	/* mapping successful, link chunk and mark populated */
252	for (i = page_start; i < page_end; i++) {
253		for_each_possible_cpu(cpu)
254			pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
255					    chunk);
256		__set_bit(i, populated);
257	}
258
259	return 0;
260
261err:
262	for_each_possible_cpu(tcpu) {
263		if (tcpu == cpu)
264			break;
265		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
266				   page_end - page_start);
 
 
267	}
 
268	return err;
269}
270
271/**
272 * pcpu_post_map_flush - flush cache after mapping
273 * @chunk: pcpu_chunk the regions to be flushed belong to
274 * @page_start: page index of the first page to be flushed
275 * @page_end: page index of the last page to be flushed + 1
276 *
277 * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
278 * cache.
279 *
280 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
281 * for the whole region.
282 */
283static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
284				int page_start, int page_end)
285{
286	flush_cache_vmap(
287		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
288		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
289}
290
291/**
292 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
293 * @chunk: chunk of interest
294 * @off: offset to the area to populate
295 * @size: size of the area to populate in bytes
 
296 *
297 * For each cpu, populate and map pages [@page_start,@page_end) into
298 * @chunk.  The area is cleared on return.
299 *
300 * CONTEXT:
301 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
302 */
303static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
 
304{
305	int page_start = PFN_DOWN(off);
306	int page_end = PFN_UP(off + size);
307	int free_end = page_start, unmap_end = page_start;
308	struct page **pages;
309	unsigned long *populated;
310	unsigned int cpu;
311	int rs, re, rc;
312
313	/* quick path, check whether all pages are already there */
314	rs = page_start;
315	pcpu_next_pop(chunk, &rs, &re, page_end);
316	if (rs == page_start && re == page_end)
317		goto clear;
318
319	/* need to allocate and map pages, this chunk can't be immutable */
320	WARN_ON(chunk->immutable);
321
322	pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
323	if (!pages)
324		return -ENOMEM;
325
326	/* alloc and map */
327	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
328		rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
329		if (rc)
330			goto err_free;
331		free_end = re;
332	}
333
334	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
335		rc = pcpu_map_pages(chunk, pages, populated, rs, re);
336		if (rc)
337			goto err_unmap;
338		unmap_end = re;
339	}
340	pcpu_post_map_flush(chunk, page_start, page_end);
341
342	/* commit new bitmap */
343	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
344clear:
345	for_each_possible_cpu(cpu)
346		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
347	return 0;
348
349err_unmap:
350	pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
351	pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
352		pcpu_unmap_pages(chunk, pages, populated, rs, re);
353	pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
354err_free:
355	pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
356		pcpu_free_pages(chunk, pages, populated, rs, re);
357	return rc;
358}
359
360/**
361 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
362 * @chunk: chunk to depopulate
363 * @off: offset to the area to depopulate
364 * @size: size of the area to depopulate in bytes
365 * @flush: whether to flush cache and tlb or not
366 *
367 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
368 * from @chunk.  If @flush is true, vcache is flushed before unmapping
369 * and tlb after.
 
 
370 *
371 * CONTEXT:
372 * pcpu_alloc_mutex.
373 */
374static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
 
375{
376	int page_start = PFN_DOWN(off);
377	int page_end = PFN_UP(off + size);
378	struct page **pages;
379	unsigned long *populated;
380	int rs, re;
381
382	/* quick path, check whether it's empty already */
383	rs = page_start;
384	pcpu_next_unpop(chunk, &rs, &re, page_end);
385	if (rs == page_start && re == page_end)
386		return;
387
388	/* immutable chunks can't be depopulated */
389	WARN_ON(chunk->immutable);
390
391	/*
392	 * If control reaches here, there must have been at least one
393	 * successful population attempt so the temp pages array must
394	 * be available now.
395	 */
396	pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
397	BUG_ON(!pages);
398
399	/* unmap and free */
400	pcpu_pre_unmap_flush(chunk, page_start, page_end);
401
402	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
403		pcpu_unmap_pages(chunk, pages, populated, rs, re);
404
405	/* no need to flush tlb, vmalloc will handle it lazily */
406
407	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
408		pcpu_free_pages(chunk, pages, populated, rs, re);
409
410	/* commit new bitmap */
411	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
412}
413
414static struct pcpu_chunk *pcpu_create_chunk(void)
415{
416	struct pcpu_chunk *chunk;
417	struct vm_struct **vms;
418
419	chunk = pcpu_alloc_chunk();
420	if (!chunk)
421		return NULL;
422
423	vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
424				pcpu_nr_groups, pcpu_atom_size);
425	if (!vms) {
426		pcpu_free_chunk(chunk);
427		return NULL;
428	}
429
430	chunk->data = vms;
431	chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0];
 
 
 
 
432	return chunk;
433}
434
435static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
436{
437	if (chunk && chunk->data)
 
 
 
 
 
 
438		pcpu_free_vm_areas(chunk->data, pcpu_nr_groups);
439	pcpu_free_chunk(chunk);
440}
441
442static struct page *pcpu_addr_to_page(void *addr)
443{
444	return vmalloc_to_page(addr);
445}
446
447static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai)
448{
449	/* no extra restriction */
450	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
451}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * mm/percpu-vm.c - vmalloc area based chunk allocation
  4 *
  5 * Copyright (C) 2010		SUSE Linux Products GmbH
  6 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  7 *
 
 
  8 * Chunks are mapped into vmalloc areas and populated page by page.
  9 * This is the default chunk allocator.
 10 */
 11#include "internal.h"
 12
 13static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
 14				    unsigned int cpu, int page_idx)
 15{
 16	/* must not be used on pre-mapped chunk */
 17	WARN_ON(chunk->immutable);
 18
 19	return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
 20}
 21
 22/**
 23 * pcpu_get_pages - get temp pages array
 
 
 
 24 *
 25 * Returns pointer to array of pointers to struct page which can be indexed
 26 * with pcpu_page_idx().  Note that there is only one array and accesses
 27 * should be serialized by pcpu_alloc_mutex.
 
 
 
 
 
 
 28 *
 29 * RETURNS:
 30 * Pointer to temp pages array on success.
 31 */
 32static struct page **pcpu_get_pages(void)
 
 
 33{
 34	static struct page **pages;
 
 35	size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
 
 
 36
 37	lockdep_assert_held(&pcpu_alloc_mutex);
 
 
 
 
 
 
 
 
 
 
 38
 39	if (!pages)
 40		pages = pcpu_mem_zalloc(pages_size, GFP_KERNEL);
 41	return pages;
 42}
 43
 44/**
 45 * pcpu_free_pages - free pages which were allocated for @chunk
 46 * @chunk: chunk pages were allocated for
 47 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
 
 48 * @page_start: page index of the first page to be freed
 49 * @page_end: page index of the last page to be freed + 1
 50 *
 51 * Free pages [@page_start and @page_end) in @pages for all units.
 52 * The pages were allocated for @chunk.
 53 */
 54static void pcpu_free_pages(struct pcpu_chunk *chunk,
 55			    struct page **pages, int page_start, int page_end)
 
 56{
 57	unsigned int cpu;
 58	int i;
 59
 60	for_each_possible_cpu(cpu) {
 61		for (i = page_start; i < page_end; i++) {
 62			struct page *page = pages[pcpu_page_idx(cpu, i)];
 63
 64			if (page)
 65				__free_page(page);
 66		}
 67	}
 68}
 69
 70/**
 71 * pcpu_alloc_pages - allocates pages for @chunk
 72 * @chunk: target chunk
 73 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
 
 74 * @page_start: page index of the first page to be allocated
 75 * @page_end: page index of the last page to be allocated + 1
 76 * @gfp: allocation flags passed to the underlying allocator
 77 *
 78 * Allocate pages [@page_start,@page_end) into @pages for all units.
 79 * The allocation is for @chunk.  Percpu core doesn't care about the
 80 * content of @pages and will pass it verbatim to pcpu_map_pages().
 81 */
 82static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
 83			    struct page **pages, int page_start, int page_end,
 84			    gfp_t gfp)
 85{
 86	unsigned int cpu, tcpu;
 
 87	int i;
 88
 89	gfp |= __GFP_HIGHMEM;
 90
 91	for_each_possible_cpu(cpu) {
 92		for (i = page_start; i < page_end; i++) {
 93			struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
 94
 95			*pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
 96			if (!*pagep)
 97				goto err;
 
 
 
 98		}
 99	}
100	return 0;
101
102err:
103	while (--i >= page_start)
104		__free_page(pages[pcpu_page_idx(cpu, i)]);
105
106	for_each_possible_cpu(tcpu) {
107		if (tcpu == cpu)
108			break;
109		for (i = page_start; i < page_end; i++)
110			__free_page(pages[pcpu_page_idx(tcpu, i)]);
111	}
112	return -ENOMEM;
113}
114
115/**
116 * pcpu_pre_unmap_flush - flush cache prior to unmapping
117 * @chunk: chunk the regions to be flushed belongs to
118 * @page_start: page index of the first page to be flushed
119 * @page_end: page index of the last page to be flushed + 1
120 *
121 * Pages in [@page_start,@page_end) of @chunk are about to be
122 * unmapped.  Flush cache.  As each flushing trial can be very
123 * expensive, issue flush on the whole region at once rather than
124 * doing it for each cpu.  This could be an overkill but is more
125 * scalable.
126 */
127static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
128				 int page_start, int page_end)
129{
130	flush_cache_vunmap(
131		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
132		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
133}
134
135static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
136{
137	vunmap_range_noflush(addr, addr + (nr_pages << PAGE_SHIFT));
138}
139
140/**
141 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
142 * @chunk: chunk of interest
143 * @pages: pages array which can be used to pass information to free
 
144 * @page_start: page index of the first page to unmap
145 * @page_end: page index of the last page to unmap + 1
146 *
147 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
148 * Corresponding elements in @pages were cleared by the caller and can
149 * be used to carry information to pcpu_free_pages() which will be
150 * called after all unmaps are finished.  The caller should call
151 * proper pre/post flush functions.
152 */
153static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
154			     struct page **pages, int page_start, int page_end)
 
155{
156	unsigned int cpu;
157	int i;
158
159	for_each_possible_cpu(cpu) {
160		for (i = page_start; i < page_end; i++) {
161			struct page *page;
162
163			page = pcpu_chunk_page(chunk, cpu, i);
164			WARN_ON(!page);
165			pages[pcpu_page_idx(cpu, i)] = page;
166		}
167		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
168				   page_end - page_start);
169	}
 
 
 
170}
171
172/**
173 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
174 * @chunk: pcpu_chunk the regions to be flushed belong to
175 * @page_start: page index of the first page to be flushed
176 * @page_end: page index of the last page to be flushed + 1
177 *
178 * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
179 * TLB for the regions.  This can be skipped if the area is to be
180 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
181 *
182 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
183 * for the whole region.
184 */
185static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
186				      int page_start, int page_end)
187{
188	flush_tlb_kernel_range(
189		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
190		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
191}
192
193static int __pcpu_map_pages(unsigned long addr, struct page **pages,
194			    int nr_pages)
195{
196	return vmap_pages_range_noflush(addr, addr + (nr_pages << PAGE_SHIFT),
197					PAGE_KERNEL, pages, PAGE_SHIFT);
198}
199
200/**
201 * pcpu_map_pages - map pages into a pcpu_chunk
202 * @chunk: chunk of interest
203 * @pages: pages array containing pages to be mapped
 
204 * @page_start: page index of the first page to map
205 * @page_end: page index of the last page to map + 1
206 *
207 * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
208 * caller is responsible for calling pcpu_post_map_flush() after all
209 * mappings are complete.
210 *
211 * This function is responsible for setting up whatever is necessary for
212 * reverse lookup (addr -> chunk).
 
213 */
214static int pcpu_map_pages(struct pcpu_chunk *chunk,
215			  struct page **pages, int page_start, int page_end)
 
216{
217	unsigned int cpu, tcpu;
218	int i, err;
219
220	for_each_possible_cpu(cpu) {
221		err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
222				       &pages[pcpu_page_idx(cpu, page_start)],
223				       page_end - page_start);
224		if (err < 0)
225			goto err;
 
226
227		for (i = page_start; i < page_end; i++)
 
 
228			pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
229					    chunk);
 
230	}
 
231	return 0;
 
232err:
233	for_each_possible_cpu(tcpu) {
 
 
234		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
235				   page_end - page_start);
236		if (tcpu == cpu)
237			break;
238	}
239	pcpu_post_unmap_tlb_flush(chunk, page_start, page_end);
240	return err;
241}
242
243/**
244 * pcpu_post_map_flush - flush cache after mapping
245 * @chunk: pcpu_chunk the regions to be flushed belong to
246 * @page_start: page index of the first page to be flushed
247 * @page_end: page index of the last page to be flushed + 1
248 *
249 * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
250 * cache.
251 *
252 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
253 * for the whole region.
254 */
255static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
256				int page_start, int page_end)
257{
258	flush_cache_vmap(
259		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
260		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
261}
262
263/**
264 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
265 * @chunk: chunk of interest
266 * @page_start: the start page
267 * @page_end: the end page
268 * @gfp: allocation flags passed to the underlying memory allocator
269 *
270 * For each cpu, populate and map pages [@page_start,@page_end) into
271 * @chunk.
272 *
273 * CONTEXT:
274 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
275 */
276static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
277			       int page_start, int page_end, gfp_t gfp)
278{
 
 
 
279	struct page **pages;
 
 
 
 
 
 
 
 
 
280
281	pages = pcpu_get_pages();
 
 
 
282	if (!pages)
283		return -ENOMEM;
284
285	if (pcpu_alloc_pages(chunk, pages, page_start, page_end, gfp))
286		return -ENOMEM;
 
 
 
 
 
287
288	if (pcpu_map_pages(chunk, pages, page_start, page_end)) {
289		pcpu_free_pages(chunk, pages, page_start, page_end);
290		return -ENOMEM;
 
 
291	}
292	pcpu_post_map_flush(chunk, page_start, page_end);
293
 
 
 
 
 
294	return 0;
 
 
 
 
 
 
 
 
 
 
295}
296
297/**
298 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
299 * @chunk: chunk to depopulate
300 * @page_start: the start page
301 * @page_end: the end page
 
302 *
303 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
304 * from @chunk.
305 *
306 * Caller is required to call pcpu_post_unmap_tlb_flush() if not returning the
307 * region back to vmalloc() which will lazily flush the tlb.
308 *
309 * CONTEXT:
310 * pcpu_alloc_mutex.
311 */
312static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
313				  int page_start, int page_end)
314{
 
 
315	struct page **pages;
 
 
 
 
 
 
 
 
 
 
 
316
317	/*
318	 * If control reaches here, there must have been at least one
319	 * successful population attempt so the temp pages array must
320	 * be available now.
321	 */
322	pages = pcpu_get_pages();
323	BUG_ON(!pages);
324
325	/* unmap and free */
326	pcpu_pre_unmap_flush(chunk, page_start, page_end);
327
328	pcpu_unmap_pages(chunk, pages, page_start, page_end);
 
329
330	pcpu_free_pages(chunk, pages, page_start, page_end);
 
 
 
 
 
 
331}
332
333static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp)
334{
335	struct pcpu_chunk *chunk;
336	struct vm_struct **vms;
337
338	chunk = pcpu_alloc_chunk(gfp);
339	if (!chunk)
340		return NULL;
341
342	vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
343				pcpu_nr_groups, pcpu_atom_size);
344	if (!vms) {
345		pcpu_free_chunk(chunk);
346		return NULL;
347	}
348
349	chunk->data = vms;
350	chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0];
351
352	pcpu_stats_chunk_alloc();
353	trace_percpu_create_chunk(chunk->base_addr);
354
355	return chunk;
356}
357
358static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
359{
360	if (!chunk)
361		return;
362
363	pcpu_stats_chunk_dealloc();
364	trace_percpu_destroy_chunk(chunk->base_addr);
365
366	if (chunk->data)
367		pcpu_free_vm_areas(chunk->data, pcpu_nr_groups);
368	pcpu_free_chunk(chunk);
369}
370
371static struct page *pcpu_addr_to_page(void *addr)
372{
373	return vmalloc_to_page(addr);
374}
375
376static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai)
377{
378	/* no extra restriction */
379	return 0;
380}
381
382/**
383 * pcpu_should_reclaim_chunk - determine if a chunk should go into reclaim
384 * @chunk: chunk of interest
385 *
386 * This is the entry point for percpu reclaim.  If a chunk qualifies, it is then
387 * isolated and managed in separate lists at the back of pcpu_slot: sidelined
388 * and to_depopulate respectively.  The to_depopulate list holds chunks slated
389 * for depopulation.  They no longer contribute to pcpu_nr_empty_pop_pages once
390 * they are on this list.  Once depopulated, they are moved onto the sidelined
391 * list which enables them to be pulled back in for allocation if no other chunk
392 * can suffice the allocation.
393 */
394static bool pcpu_should_reclaim_chunk(struct pcpu_chunk *chunk)
395{
396	/* do not reclaim either the first chunk or reserved chunk */
397	if (chunk == pcpu_first_chunk || chunk == pcpu_reserved_chunk)
398		return false;
399
400	/*
401	 * If it is isolated, it may be on the sidelined list so move it back to
402	 * the to_depopulate list.  If we hit at least 1/4 pages empty pages AND
403	 * there is no system-wide shortage of empty pages aside from this
404	 * chunk, move it to the to_depopulate list.
405	 */
406	return ((chunk->isolated && chunk->nr_empty_pop_pages) ||
407		(pcpu_nr_empty_pop_pages >
408		 (PCPU_EMPTY_POP_PAGES_HIGH + chunk->nr_empty_pop_pages) &&
409		 chunk->nr_empty_pop_pages >= chunk->nr_pages / 4));
410}