Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * linux/mm/page_isolation.c
  3 */
  4
  5#include <linux/mm.h>
  6#include <linux/page-isolation.h>
  7#include <linux/pageblock-flags.h>
 
 
 
 
  8#include "internal.h"
  9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 10static inline struct page *
 11__first_valid_page(unsigned long pfn, unsigned long nr_pages)
 12{
 13	int i;
 14	for (i = 0; i < nr_pages; i++)
 15		if (pfn_valid_within(pfn + i))
 16			break;
 17	if (unlikely(i == nr_pages))
 18		return NULL;
 19	return pfn_to_page(pfn + i);
 
 
 
 
 20}
 21
 22/*
 23 * start_isolate_page_range() -- make page-allocation-type of range of pages
 24 * to be MIGRATE_ISOLATE.
 25 * @start_pfn: The lower PFN of the range to be isolated.
 26 * @end_pfn: The upper PFN of the range to be isolated.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 27 *
 28 * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in
 29 * the range will never be allocated. Any free pages and pages freed in the
 30 * future will not be allocated again.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 31 *
 32 * start_pfn/end_pfn must be aligned to pageblock_order.
 33 * Returns 0 on success and -EBUSY if any part of range cannot be isolated.
 34 */
 35int
 36start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn)
 37{
 38	unsigned long pfn;
 39	unsigned long undo_pfn;
 40	struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 41
 42	BUG_ON((start_pfn) & (pageblock_nr_pages - 1));
 43	BUG_ON((end_pfn) & (pageblock_nr_pages - 1));
 44
 45	for (pfn = start_pfn;
 46	     pfn < end_pfn;
 
 
 
 
 
 
 
 
 
 47	     pfn += pageblock_nr_pages) {
 48		page = __first_valid_page(pfn, pageblock_nr_pages);
 49		if (page && set_migratetype_isolate(page)) {
 50			undo_pfn = pfn;
 51			goto undo;
 
 
 
 
 52		}
 53	}
 54	return 0;
 55undo:
 56	for (pfn = start_pfn;
 57	     pfn < undo_pfn;
 58	     pfn += pageblock_nr_pages)
 59		unset_migratetype_isolate(pfn_to_page(pfn));
 60
 61	return -EBUSY;
 62}
 63
 64/*
 65 * Make isolated pages available again.
 
 
 
 
 
 
 66 */
 67int
 68undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn)
 69{
 70	unsigned long pfn;
 71	struct page *page;
 72	BUG_ON((start_pfn) & (pageblock_nr_pages - 1));
 73	BUG_ON((end_pfn) & (pageblock_nr_pages - 1));
 74	for (pfn = start_pfn;
 75	     pfn < end_pfn;
 
 76	     pfn += pageblock_nr_pages) {
 77		page = __first_valid_page(pfn, pageblock_nr_pages);
 78		if (!page || get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
 79			continue;
 80		unset_migratetype_isolate(page);
 81	}
 82	return 0;
 83}
 84/*
 85 * Test all pages in the range is free(means isolated) or not.
 86 * all pages in [start_pfn...end_pfn) must be in the same zone.
 87 * zone->lock must be held before call this.
 88 *
 89 * Returns 1 if all pages in the range is isolated.
 90 */
 91static int
 92__test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn)
 
 93{
 94	struct page *page;
 95
 96	while (pfn < end_pfn) {
 97		if (!pfn_valid_within(pfn)) {
 98			pfn++;
 99			continue;
100		}
101		page = pfn_to_page(pfn);
102		if (PageBuddy(page))
103			pfn += 1 << page_order(page);
104		else if (page_count(page) == 0 &&
105				page_private(page) == MIGRATE_ISOLATE)
106			pfn += 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
107		else
108			break;
109	}
110	if (pfn < end_pfn)
111		return 0;
112	return 1;
113}
114
115int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116{
117	unsigned long pfn, flags;
118	struct page *page;
119	struct zone *zone;
120	int ret;
121
122	/*
123	 * Note: pageblock_nr_page != MAX_ORDER. Then, chunks of free page
124	 * is not aligned to pageblock_nr_pages.
125	 * Then we just check pagetype fist.
126	 */
127	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
128		page = __first_valid_page(pfn, pageblock_nr_pages);
129		if (page && get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
130			break;
131	}
132	page = __first_valid_page(start_pfn, end_pfn - start_pfn);
133	if ((pfn < end_pfn) || !page)
134		return -EBUSY;
135	/* Check all pages are free or Marked as ISOLATED */
 
 
 
136	zone = page_zone(page);
137	spin_lock_irqsave(&zone->lock, flags);
138	ret = __test_page_isolated_in_pageblock(start_pfn, end_pfn);
139	spin_unlock_irqrestore(&zone->lock, flags);
140	return ret ? 0 : -EBUSY;
 
 
 
 
 
 
141}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * linux/mm/page_isolation.c
  4 */
  5
  6#include <linux/mm.h>
  7#include <linux/page-isolation.h>
  8#include <linux/pageblock-flags.h>
  9#include <linux/memory.h>
 10#include <linux/hugetlb.h>
 11#include <linux/page_owner.h>
 12#include <linux/migrate.h>
 13#include "internal.h"
 14
 15#define CREATE_TRACE_POINTS
 16#include <trace/events/page_isolation.h>
 17
 18/*
 19 * This function checks whether the range [start_pfn, end_pfn) includes
 20 * unmovable pages or not. The range must fall into a single pageblock and
 21 * consequently belong to a single zone.
 22 *
 23 * PageLRU check without isolation or lru_lock could race so that
 24 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 25 * check without lock_page also may miss some movable non-lru pages at
 26 * race condition. So you can't expect this function should be exact.
 27 *
 28 * Returns a page without holding a reference. If the caller wants to
 29 * dereference that page (e.g., dumping), it has to make sure that it
 30 * cannot get removed (e.g., via memory unplug) concurrently.
 31 *
 32 */
 33static struct page *has_unmovable_pages(unsigned long start_pfn, unsigned long end_pfn,
 34				int migratetype, int flags)
 35{
 36	struct page *page = pfn_to_page(start_pfn);
 37	struct zone *zone = page_zone(page);
 38	unsigned long pfn;
 39
 40	VM_BUG_ON(pageblock_start_pfn(start_pfn) !=
 41		  pageblock_start_pfn(end_pfn - 1));
 42
 43	if (is_migrate_cma_page(page)) {
 44		/*
 45		 * CMA allocations (alloc_contig_range) really need to mark
 46		 * isolate CMA pageblocks even when they are not movable in fact
 47		 * so consider them movable here.
 48		 */
 49		if (is_migrate_cma(migratetype))
 50			return NULL;
 51
 52		return page;
 53	}
 54
 55	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
 56		page = pfn_to_page(pfn);
 57
 58		/*
 59		 * Both, bootmem allocations and memory holes are marked
 60		 * PG_reserved and are unmovable. We can even have unmovable
 61		 * allocations inside ZONE_MOVABLE, for example when
 62		 * specifying "movablecore".
 63		 */
 64		if (PageReserved(page))
 65			return page;
 66
 67		/*
 68		 * If the zone is movable and we have ruled out all reserved
 69		 * pages then it should be reasonably safe to assume the rest
 70		 * is movable.
 71		 */
 72		if (zone_idx(zone) == ZONE_MOVABLE)
 73			continue;
 74
 75		/*
 76		 * Hugepages are not in LRU lists, but they're movable.
 77		 * THPs are on the LRU, but need to be counted as #small pages.
 78		 * We need not scan over tail pages because we don't
 79		 * handle each tail page individually in migration.
 80		 */
 81		if (PageHuge(page) || PageTransCompound(page)) {
 82			struct folio *folio = page_folio(page);
 83			unsigned int skip_pages;
 84
 85			if (PageHuge(page)) {
 86				if (!hugepage_migration_supported(folio_hstate(folio)))
 87					return page;
 88			} else if (!folio_test_lru(folio) && !__folio_test_movable(folio)) {
 89				return page;
 90			}
 91
 92			skip_pages = folio_nr_pages(folio) - folio_page_idx(folio, page);
 93			pfn += skip_pages - 1;
 94			continue;
 95		}
 96
 97		/*
 98		 * We can't use page_count without pin a page
 99		 * because another CPU can free compound page.
100		 * This check already skips compound tails of THP
101		 * because their page->_refcount is zero at all time.
102		 */
103		if (!page_ref_count(page)) {
104			if (PageBuddy(page))
105				pfn += (1 << buddy_order(page)) - 1;
106			continue;
107		}
108
109		/*
110		 * The HWPoisoned page may be not in buddy system, and
111		 * page_count() is not 0.
112		 */
113		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
114			continue;
115
116		/*
117		 * We treat all PageOffline() pages as movable when offlining
118		 * to give drivers a chance to decrement their reference count
119		 * in MEM_GOING_OFFLINE in order to indicate that these pages
120		 * can be offlined as there are no direct references anymore.
121		 * For actually unmovable PageOffline() where the driver does
122		 * not support this, we will fail later when trying to actually
123		 * move these pages that still have a reference count > 0.
124		 * (false negatives in this function only)
125		 */
126		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
127			continue;
128
129		if (__PageMovable(page) || PageLRU(page))
130			continue;
131
132		/*
133		 * If there are RECLAIMABLE pages, we need to check
134		 * it.  But now, memory offline itself doesn't call
135		 * shrink_node_slabs() and it still to be fixed.
136		 */
137		return page;
138	}
139	return NULL;
140}
141
142/*
143 * This function set pageblock migratetype to isolate if no unmovable page is
144 * present in [start_pfn, end_pfn). The pageblock must intersect with
145 * [start_pfn, end_pfn).
146 */
147static int set_migratetype_isolate(struct page *page, int migratetype, int isol_flags,
148			unsigned long start_pfn, unsigned long end_pfn)
149{
150	struct zone *zone = page_zone(page);
151	struct page *unmovable;
152	unsigned long flags;
153	unsigned long check_unmovable_start, check_unmovable_end;
154
155	if (PageUnaccepted(page))
156		accept_page(page);
157
158	spin_lock_irqsave(&zone->lock, flags);
159
160	/*
161	 * We assume the caller intended to SET migrate type to isolate.
162	 * If it is already set, then someone else must have raced and
163	 * set it before us.
164	 */
165	if (is_migrate_isolate_page(page)) {
166		spin_unlock_irqrestore(&zone->lock, flags);
167		return -EBUSY;
168	}
169
170	/*
171	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
172	 * We just check MOVABLE pages.
173	 *
174	 * Pass the intersection of [start_pfn, end_pfn) and the page's pageblock
175	 * to avoid redundant checks.
176	 */
177	check_unmovable_start = max(page_to_pfn(page), start_pfn);
178	check_unmovable_end = min(pageblock_end_pfn(page_to_pfn(page)),
179				  end_pfn);
180
181	unmovable = has_unmovable_pages(check_unmovable_start, check_unmovable_end,
182			migratetype, isol_flags);
183	if (!unmovable) {
184		if (!move_freepages_block_isolate(zone, page, MIGRATE_ISOLATE)) {
185			spin_unlock_irqrestore(&zone->lock, flags);
186			return -EBUSY;
187		}
188		zone->nr_isolate_pageblock++;
189		spin_unlock_irqrestore(&zone->lock, flags);
190		return 0;
191	}
192
193	spin_unlock_irqrestore(&zone->lock, flags);
194	if (isol_flags & REPORT_FAILURE) {
195		/*
196		 * printk() with zone->lock held will likely trigger a
197		 * lockdep splat, so defer it here.
198		 */
199		dump_page(unmovable, "unmovable page");
200	}
201
202	return -EBUSY;
203}
204
205static void unset_migratetype_isolate(struct page *page, int migratetype)
206{
207	struct zone *zone;
208	unsigned long flags;
209	bool isolated_page = false;
210	unsigned int order;
211	struct page *buddy;
212
213	zone = page_zone(page);
214	spin_lock_irqsave(&zone->lock, flags);
215	if (!is_migrate_isolate_page(page))
216		goto out;
217
218	/*
219	 * Because freepage with more than pageblock_order on isolated
220	 * pageblock is restricted to merge due to freepage counting problem,
221	 * it is possible that there is free buddy page.
222	 * move_freepages_block() doesn't care of merge so we need other
223	 * approach in order to merge them. Isolation and free will make
224	 * these pages to be merged.
225	 */
226	if (PageBuddy(page)) {
227		order = buddy_order(page);
228		if (order >= pageblock_order && order < MAX_PAGE_ORDER) {
229			buddy = find_buddy_page_pfn(page, page_to_pfn(page),
230						    order, NULL);
231			if (buddy && !is_migrate_isolate_page(buddy)) {
232				isolated_page = !!__isolate_free_page(page, order);
233				/*
234				 * Isolating a free page in an isolated pageblock
235				 * is expected to always work as watermarks don't
236				 * apply here.
237				 */
238				VM_WARN_ON(!isolated_page);
239			}
240		}
241	}
242
243	/*
244	 * If we isolate freepage with more than pageblock_order, there
245	 * should be no freepage in the range, so we could avoid costly
246	 * pageblock scanning for freepage moving.
247	 *
248	 * We didn't actually touch any of the isolated pages, so place them
249	 * to the tail of the freelist. This is an optimization for memory
250	 * onlining - just onlined memory won't immediately be considered for
251	 * allocation.
252	 */
253	if (!isolated_page) {
254		/*
255		 * Isolating this block already succeeded, so this
256		 * should not fail on zone boundaries.
257		 */
258		WARN_ON_ONCE(!move_freepages_block_isolate(zone, page, migratetype));
259	} else {
260		set_pageblock_migratetype(page, migratetype);
261		__putback_isolated_page(page, order, migratetype);
262	}
263	zone->nr_isolate_pageblock--;
264out:
265	spin_unlock_irqrestore(&zone->lock, flags);
266}
267
268static inline struct page *
269__first_valid_page(unsigned long pfn, unsigned long nr_pages)
270{
271	int i;
272
273	for (i = 0; i < nr_pages; i++) {
274		struct page *page;
275
276		page = pfn_to_online_page(pfn + i);
277		if (!page)
278			continue;
279		return page;
280	}
281	return NULL;
282}
283
284/**
285 * isolate_single_pageblock() -- tries to isolate a pageblock that might be
286 * within a free or in-use page.
287 * @boundary_pfn:		pageblock-aligned pfn that a page might cross
288 * @flags:			isolation flags
289 * @gfp_flags:			GFP flags used for migrating pages
290 * @isolate_before:	isolate the pageblock before the boundary_pfn
291 * @skip_isolation:	the flag to skip the pageblock isolation in second
292 *			isolate_single_pageblock()
293 * @migratetype:	migrate type to set in error recovery.
294 *
295 * Free and in-use pages can be as big as MAX_PAGE_ORDER and contain more than one
296 * pageblock. When not all pageblocks within a page are isolated at the same
297 * time, free page accounting can go wrong. For example, in the case of
298 * MAX_PAGE_ORDER = pageblock_order + 1, a MAX_PAGE_ORDER page has two
299 * pagelbocks.
300 * [      MAX_PAGE_ORDER         ]
301 * [  pageblock0  |  pageblock1  ]
302 * When either pageblock is isolated, if it is a free page, the page is not
303 * split into separate migratetype lists, which is supposed to; if it is an
304 * in-use page and freed later, __free_one_page() does not split the free page
305 * either. The function handles this by splitting the free page or migrating
306 * the in-use page then splitting the free page.
307 */
308static int isolate_single_pageblock(unsigned long boundary_pfn, int flags,
309			gfp_t gfp_flags, bool isolate_before, bool skip_isolation,
310			int migratetype)
311{
312	unsigned long start_pfn;
313	unsigned long isolate_pageblock;
314	unsigned long pfn;
315	struct zone *zone;
316	int ret;
317
318	VM_BUG_ON(!pageblock_aligned(boundary_pfn));
319
320	if (isolate_before)
321		isolate_pageblock = boundary_pfn - pageblock_nr_pages;
322	else
323		isolate_pageblock = boundary_pfn;
324
325	/*
326	 * scan at the beginning of MAX_ORDER_NR_PAGES aligned range to avoid
327	 * only isolating a subset of pageblocks from a bigger than pageblock
328	 * free or in-use page. Also make sure all to-be-isolated pageblocks
329	 * are within the same zone.
330	 */
331	zone  = page_zone(pfn_to_page(isolate_pageblock));
332	start_pfn  = max(ALIGN_DOWN(isolate_pageblock, MAX_ORDER_NR_PAGES),
333				      zone->zone_start_pfn);
334
335	if (skip_isolation) {
336		int mt __maybe_unused = get_pageblock_migratetype(pfn_to_page(isolate_pageblock));
337
338		VM_BUG_ON(!is_migrate_isolate(mt));
339	} else {
340		ret = set_migratetype_isolate(pfn_to_page(isolate_pageblock), migratetype,
341				flags, isolate_pageblock, isolate_pageblock + pageblock_nr_pages);
342
343		if (ret)
344			return ret;
345	}
346
347	/*
348	 * Bail out early when the to-be-isolated pageblock does not form
349	 * a free or in-use page across boundary_pfn:
350	 *
351	 * 1. isolate before boundary_pfn: the page after is not online
352	 * 2. isolate after boundary_pfn: the page before is not online
353	 *
354	 * This also ensures correctness. Without it, when isolate after
355	 * boundary_pfn and [start_pfn, boundary_pfn) are not online,
356	 * __first_valid_page() will return unexpected NULL in the for loop
357	 * below.
358	 */
359	if (isolate_before) {
360		if (!pfn_to_online_page(boundary_pfn))
361			return 0;
362	} else {
363		if (!pfn_to_online_page(boundary_pfn - 1))
364			return 0;
365	}
366
367	for (pfn = start_pfn; pfn < boundary_pfn;) {
368		struct page *page = __first_valid_page(pfn, boundary_pfn - pfn);
369
370		VM_BUG_ON(!page);
371		pfn = page_to_pfn(page);
372
373		if (PageUnaccepted(page)) {
374			pfn += MAX_ORDER_NR_PAGES;
375			continue;
376		}
377
378		if (PageBuddy(page)) {
379			int order = buddy_order(page);
380
381			/* move_freepages_block_isolate() handled this */
382			VM_WARN_ON_ONCE(pfn + (1 << order) > boundary_pfn);
383
384			pfn += 1UL << order;
385			continue;
386		}
387
388		/*
389		 * If a compound page is straddling our block, attempt
390		 * to migrate it out of the way.
391		 *
392		 * We don't have to worry about this creating a large
393		 * free page that straddles into our block: gigantic
394		 * pages are freed as order-0 chunks, and LRU pages
395		 * (currently) do not exceed pageblock_order.
396		 *
397		 * The block of interest has already been marked
398		 * MIGRATE_ISOLATE above, so when migration is done it
399		 * will free its pages onto the correct freelists.
400		 */
401		if (PageCompound(page)) {
402			struct page *head = compound_head(page);
403			unsigned long head_pfn = page_to_pfn(head);
404			unsigned long nr_pages = compound_nr(head);
405
406			if (head_pfn + nr_pages <= boundary_pfn ||
407			    PageHuge(page)) {
408				pfn = head_pfn + nr_pages;
409				continue;
410			}
411
412			/*
413			 * These pages are movable too, but they're
414			 * not expected to exceed pageblock_order.
415			 *
416			 * Let us know when they do, so we can add
417			 * proper free and split handling for them.
418			 */
419			VM_WARN_ON_ONCE_PAGE(PageLRU(page), page);
420			VM_WARN_ON_ONCE_PAGE(__PageMovable(page), page);
421
422			goto failed;
423		}
424
425		pfn++;
426	}
427	return 0;
428failed:
429	/* restore the original migratetype */
430	if (!skip_isolation)
431		unset_migratetype_isolate(pfn_to_page(isolate_pageblock), migratetype);
432	return -EBUSY;
433}
434
435/**
436 * start_isolate_page_range() - mark page range MIGRATE_ISOLATE
437 * @start_pfn:		The first PFN of the range to be isolated.
438 * @end_pfn:		The last PFN of the range to be isolated.
439 * @migratetype:	Migrate type to set in error recovery.
440 * @flags:		The following flags are allowed (they can be combined in
441 *			a bit mask)
442 *			MEMORY_OFFLINE - isolate to offline (!allocate) memory
443 *					 e.g., skip over PageHWPoison() pages
444 *					 and PageOffline() pages.
445 *			REPORT_FAILURE - report details about the failure to
446 *			isolate the range
447 * @gfp_flags:		GFP flags used for migrating pages that sit across the
448 *			range boundaries.
449 *
450 * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in
451 * the range will never be allocated. Any free pages and pages freed in the
452 * future will not be allocated again. If specified range includes migrate types
453 * other than MOVABLE or CMA, this will fail with -EBUSY. For isolating all
454 * pages in the range finally, the caller have to free all pages in the range.
455 * test_page_isolated() can be used for test it.
456 *
457 * The function first tries to isolate the pageblocks at the beginning and end
458 * of the range, since there might be pages across the range boundaries.
459 * Afterwards, it isolates the rest of the range.
460 *
461 * There is no high level synchronization mechanism that prevents two threads
462 * from trying to isolate overlapping ranges. If this happens, one thread
463 * will notice pageblocks in the overlapping range already set to isolate.
464 * This happens in set_migratetype_isolate, and set_migratetype_isolate
465 * returns an error. We then clean up by restoring the migration type on
466 * pageblocks we may have modified and return -EBUSY to caller. This
467 * prevents two threads from simultaneously working on overlapping ranges.
468 *
469 * Please note that there is no strong synchronization with the page allocator
470 * either. Pages might be freed while their page blocks are marked ISOLATED.
471 * A call to drain_all_pages() after isolation can flush most of them. However
472 * in some cases pages might still end up on pcp lists and that would allow
473 * for their allocation even when they are in fact isolated already. Depending
474 * on how strong of a guarantee the caller needs, zone_pcp_disable/enable()
475 * might be used to flush and disable pcplist before isolation and enable after
476 * unisolation.
477 *
478 * Return: 0 on success and -EBUSY if any part of range cannot be isolated.
 
479 */
480int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
481			     int migratetype, int flags, gfp_t gfp_flags)
482{
483	unsigned long pfn;
 
484	struct page *page;
485	/* isolation is done at page block granularity */
486	unsigned long isolate_start = pageblock_start_pfn(start_pfn);
487	unsigned long isolate_end = pageblock_align(end_pfn);
488	int ret;
489	bool skip_isolation = false;
490
491	/* isolate [isolate_start, isolate_start + pageblock_nr_pages) pageblock */
492	ret = isolate_single_pageblock(isolate_start, flags, gfp_flags, false,
493			skip_isolation, migratetype);
494	if (ret)
495		return ret;
496
497	if (isolate_start == isolate_end - pageblock_nr_pages)
498		skip_isolation = true;
499
500	/* isolate [isolate_end - pageblock_nr_pages, isolate_end) pageblock */
501	ret = isolate_single_pageblock(isolate_end, flags, gfp_flags, true,
502			skip_isolation, migratetype);
503	if (ret) {
504		unset_migratetype_isolate(pfn_to_page(isolate_start), migratetype);
505		return ret;
506	}
507
508	/* skip isolated pageblocks at the beginning and end */
509	for (pfn = isolate_start + pageblock_nr_pages;
510	     pfn < isolate_end - pageblock_nr_pages;
511	     pfn += pageblock_nr_pages) {
512		page = __first_valid_page(pfn, pageblock_nr_pages);
513		if (page && set_migratetype_isolate(page, migratetype, flags,
514					start_pfn, end_pfn)) {
515			undo_isolate_page_range(isolate_start, pfn, migratetype);
516			unset_migratetype_isolate(
517				pfn_to_page(isolate_end - pageblock_nr_pages),
518				migratetype);
519			return -EBUSY;
520		}
521	}
522	return 0;
 
 
 
 
 
 
 
523}
524
525/**
526 * undo_isolate_page_range - undo effects of start_isolate_page_range()
527 * @start_pfn:		The first PFN of the isolated range
528 * @end_pfn:		The last PFN of the isolated range
529 * @migratetype:	New migrate type to set on the range
530 *
531 * This finds every MIGRATE_ISOLATE page block in the given range
532 * and switches it to @migratetype.
533 */
534void undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
535			    int migratetype)
536{
537	unsigned long pfn;
538	struct page *page;
539	unsigned long isolate_start = pageblock_start_pfn(start_pfn);
540	unsigned long isolate_end = pageblock_align(end_pfn);
541
542	for (pfn = isolate_start;
543	     pfn < isolate_end;
544	     pfn += pageblock_nr_pages) {
545		page = __first_valid_page(pfn, pageblock_nr_pages);
546		if (!page || !is_migrate_isolate_page(page))
547			continue;
548		unset_migratetype_isolate(page, migratetype);
549	}
 
550}
551/*
552 * Test all pages in the range is free(means isolated) or not.
553 * all pages in [start_pfn...end_pfn) must be in the same zone.
554 * zone->lock must be held before call this.
555 *
556 * Returns the last tested pfn.
557 */
558static unsigned long
559__test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn,
560				  int flags)
561{
562	struct page *page;
563
564	while (pfn < end_pfn) {
 
 
 
 
565		page = pfn_to_page(pfn);
566		if (PageBuddy(page))
567			/*
568			 * If the page is on a free list, it has to be on
569			 * the correct MIGRATE_ISOLATE freelist. There is no
570			 * simple way to verify that as VM_BUG_ON(), though.
571			 */
572			pfn += 1 << buddy_order(page);
573		else if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
574			/* A HWPoisoned page cannot be also PageBuddy */
575			pfn++;
576		else if ((flags & MEMORY_OFFLINE) && PageOffline(page) &&
577			 !page_count(page))
578			/*
579			 * The responsible driver agreed to skip PageOffline()
580			 * pages when offlining memory by dropping its
581			 * reference in MEM_GOING_OFFLINE.
582			 */
583			pfn++;
584		else
585			break;
586	}
587
588	return pfn;
 
589}
590
591/**
592 * test_pages_isolated - check if pageblocks in range are isolated
593 * @start_pfn:		The first PFN of the isolated range
594 * @end_pfn:		The first PFN *after* the isolated range
595 * @isol_flags:		Testing mode flags
596 *
597 * This tests if all in the specified range are free.
598 *
599 * If %MEMORY_OFFLINE is specified in @flags, it will consider
600 * poisoned and offlined pages free as well.
601 *
602 * Caller must ensure the requested range doesn't span zones.
603 *
604 * Returns 0 if true, -EBUSY if one or more pages are in use.
605 */
606int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn,
607			int isol_flags)
608{
609	unsigned long pfn, flags;
610	struct page *page;
611	struct zone *zone;
612	int ret;
613
614	/*
615	 * Note: pageblock_nr_pages != MAX_PAGE_ORDER. Then, chunks of free
616	 * pages are not aligned to pageblock_nr_pages.
617	 * Then we just check migratetype first.
618	 */
619	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
620		page = __first_valid_page(pfn, pageblock_nr_pages);
621		if (page && !is_migrate_isolate_page(page))
622			break;
623	}
624	page = __first_valid_page(start_pfn, end_pfn - start_pfn);
625	if ((pfn < end_pfn) || !page) {
626		ret = -EBUSY;
627		goto out;
628	}
629
630	/* Check all pages are free or marked as ISOLATED */
631	zone = page_zone(page);
632	spin_lock_irqsave(&zone->lock, flags);
633	pfn = __test_page_isolated_in_pageblock(start_pfn, end_pfn, isol_flags);
634	spin_unlock_irqrestore(&zone->lock, flags);
635
636	ret = pfn < end_pfn ? -EBUSY : 0;
637
638out:
639	trace_test_pages_isolated(start_pfn, end_pfn, pfn);
640
641	return ret;
642}