Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 *  linux/mm/mmu_notifier.c
  3 *
  4 *  Copyright (C) 2008  Qumranet, Inc.
  5 *  Copyright (C) 2008  SGI
  6 *             Christoph Lameter <clameter@sgi.com>
  7 *
  8 *  This work is licensed under the terms of the GNU GPL, version 2. See
  9 *  the COPYING file in the top-level directory.
 10 */
 11
 12#include <linux/rculist.h>
 13#include <linux/mmu_notifier.h>
 14#include <linux/module.h>
 15#include <linux/mm.h>
 16#include <linux/err.h>
 
 
 17#include <linux/rcupdate.h>
 18#include <linux/sched.h>
 
 19#include <linux/slab.h>
 20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 21/*
 22 * This function can't run concurrently against mmu_notifier_register
 23 * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap
 24 * runs with mm_users == 0. Other tasks may still invoke mmu notifiers
 25 * in parallel despite there being no task using this mm any more,
 26 * through the vmas outside of the exit_mmap context, such as with
 27 * vmtruncate. This serializes against mmu_notifier_unregister with
 28 * the mmu_notifier_mm->lock in addition to RCU and it serializes
 29 * against the other mmu notifiers with RCU. struct mmu_notifier_mm
 30 * can't go away from under us as exit_mmap holds an mm_count pin
 31 * itself.
 32 */
 33void __mmu_notifier_release(struct mm_struct *mm)
 
 34{
 35	struct mmu_notifier *mn;
 
 36
 37	spin_lock(&mm->mmu_notifier_mm->lock);
 38	while (unlikely(!hlist_empty(&mm->mmu_notifier_mm->list))) {
 39		mn = hlist_entry(mm->mmu_notifier_mm->list.first,
 40				 struct mmu_notifier,
 41				 hlist);
 42		/*
 43		 * We arrived before mmu_notifier_unregister so
 44		 * mmu_notifier_unregister will do nothing other than
 45		 * to wait ->release to finish and
 46		 * mmu_notifier_unregister to return.
 47		 */
 48		hlist_del_init_rcu(&mn->hlist);
 49		/*
 50		 * RCU here will block mmu_notifier_unregister until
 51		 * ->release returns.
 
 
 52		 */
 53		rcu_read_lock();
 54		spin_unlock(&mm->mmu_notifier_mm->lock);
 
 
 
 
 
 55		/*
 56		 * if ->release runs before mmu_notifier_unregister it
 57		 * must be handled as it's the only way for the driver
 58		 * to flush all existing sptes and stop the driver
 59		 * from establishing any more sptes before all the
 60		 * pages in the mm are freed.
 61		 */
 62		if (mn->ops->release)
 63			mn->ops->release(mn, mm);
 64		rcu_read_unlock();
 65		spin_lock(&mm->mmu_notifier_mm->lock);
 66	}
 67	spin_unlock(&mm->mmu_notifier_mm->lock);
 68
 69	/*
 70	 * synchronize_rcu here prevents mmu_notifier_release to
 71	 * return to exit_mmap (which would proceed freeing all pages
 72	 * in the mm) until the ->release method returns, if it was
 73	 * invoked by mmu_notifier_unregister.
 74	 *
 75	 * The mmu_notifier_mm can't go away from under us because one
 76	 * mm_count is hold by exit_mmap.
 77	 */
 78	synchronize_rcu();
 
 
 
 
 
 
 
 
 
 
 
 
 79}
 80
 81/*
 82 * If no young bitflag is supported by the hardware, ->clear_flush_young can
 83 * unmap the address and return 1 or 0 depending if the mapping previously
 84 * existed or not.
 85 */
 86int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
 87					unsigned long address)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 88{
 89	struct mmu_notifier *mn;
 90	struct hlist_node *n;
 91	int young = 0;
 92
 93	rcu_read_lock();
 94	hlist_for_each_entry_rcu(mn, n, &mm->mmu_notifier_mm->list, hlist) {
 95		if (mn->ops->clear_flush_young)
 96			young |= mn->ops->clear_flush_young(mn, mm, address);
 
 
 97	}
 98	rcu_read_unlock();
 99
100	return young;
101}
102
103int __mmu_notifier_test_young(struct mm_struct *mm,
104			      unsigned long address)
105{
106	struct mmu_notifier *mn;
107	struct hlist_node *n;
108	int young = 0;
109
110	rcu_read_lock();
111	hlist_for_each_entry_rcu(mn, n, &mm->mmu_notifier_mm->list, hlist) {
112		if (mn->ops->test_young) {
113			young = mn->ops->test_young(mn, mm, address);
 
 
114			if (young)
115				break;
116		}
117	}
118	rcu_read_unlock();
119
120	return young;
121}
122
123void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address,
124			       pte_t pte)
125{
126	struct mmu_notifier *mn;
127	struct hlist_node *n;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
129	rcu_read_lock();
130	hlist_for_each_entry_rcu(mn, n, &mm->mmu_notifier_mm->list, hlist) {
131		if (mn->ops->change_pte)
132			mn->ops->change_pte(mn, mm, address, pte);
133		/*
134		 * Some drivers don't have change_pte,
135		 * so we must call invalidate_page in that case.
 
136		 */
137		else if (mn->ops->invalidate_page)
138			mn->ops->invalidate_page(mn, mm, address);
 
 
 
 
 
 
139	}
140	rcu_read_unlock();
 
 
141}
142
143void __mmu_notifier_invalidate_page(struct mm_struct *mm,
144					  unsigned long address)
145{
146	struct mmu_notifier *mn;
147	struct hlist_node *n;
 
148
149	rcu_read_lock();
150	hlist_for_each_entry_rcu(mn, n, &mm->mmu_notifier_mm->list, hlist) {
151		if (mn->ops->invalidate_page)
152			mn->ops->invalidate_page(mn, mm, address);
153	}
154	rcu_read_unlock();
 
 
155}
156
157void __mmu_notifier_invalidate_range_start(struct mm_struct *mm,
158				  unsigned long start, unsigned long end)
 
159{
160	struct mmu_notifier *mn;
161	struct hlist_node *n;
162
163	rcu_read_lock();
164	hlist_for_each_entry_rcu(mn, n, &mm->mmu_notifier_mm->list, hlist) {
165		if (mn->ops->invalidate_range_start)
166			mn->ops->invalidate_range_start(mn, mm, start, end);
 
 
 
 
 
 
 
167	}
168	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169}
170
171void __mmu_notifier_invalidate_range_end(struct mm_struct *mm,
172				  unsigned long start, unsigned long end)
173{
174	struct mmu_notifier *mn;
175	struct hlist_node *n;
176
177	rcu_read_lock();
178	hlist_for_each_entry_rcu(mn, n, &mm->mmu_notifier_mm->list, hlist) {
179		if (mn->ops->invalidate_range_end)
180			mn->ops->invalidate_range_end(mn, mm, start, end);
 
 
 
 
181	}
182	rcu_read_unlock();
183}
184
185static int do_mmu_notifier_register(struct mmu_notifier *mn,
186				    struct mm_struct *mm,
187				    int take_mmap_sem)
 
 
 
 
188{
189	struct mmu_notifier_mm *mmu_notifier_mm;
190	int ret;
191
 
192	BUG_ON(atomic_read(&mm->mm_users) <= 0);
193
194	ret = -ENOMEM;
195	mmu_notifier_mm = kmalloc(sizeof(struct mmu_notifier_mm), GFP_KERNEL);
196	if (unlikely(!mmu_notifier_mm))
197		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198
199	if (take_mmap_sem)
200		down_write(&mm->mmap_sem);
201	ret = mm_take_all_locks(mm);
202	if (unlikely(ret))
203		goto out_cleanup;
204
205	if (!mm_has_notifiers(mm)) {
206		INIT_HLIST_HEAD(&mmu_notifier_mm->list);
207		spin_lock_init(&mmu_notifier_mm->lock);
208		mm->mmu_notifier_mm = mmu_notifier_mm;
209		mmu_notifier_mm = NULL;
210	}
211	atomic_inc(&mm->mm_count);
212
213	/*
214	 * Serialize the update against mmu_notifier_unregister. A
215	 * side note: mmu_notifier_release can't run concurrently with
216	 * us because we hold the mm_users pin (either implicitly as
217	 * current->mm or explicitly with get_task_mm() or similar).
218	 * We can't race against any other mmu notifier method either
219	 * thanks to mm_take_all_locks().
 
 
 
 
 
 
 
 
220	 */
221	spin_lock(&mm->mmu_notifier_mm->lock);
222	hlist_add_head(&mn->hlist, &mm->mmu_notifier_mm->list);
223	spin_unlock(&mm->mmu_notifier_mm->lock);
 
 
 
 
 
 
 
 
 
 
 
 
224
225	mm_drop_all_locks(mm);
226out_cleanup:
227	if (take_mmap_sem)
228		up_write(&mm->mmap_sem);
229	/* kfree() does nothing if mmu_notifier_mm is NULL */
230	kfree(mmu_notifier_mm);
231out:
232	BUG_ON(atomic_read(&mm->mm_users) <= 0);
 
 
 
 
233	return ret;
234}
 
235
236/*
237 * Must not hold mmap_sem nor any other VM related lock when calling
 
 
 
 
238 * this registration function. Must also ensure mm_users can't go down
239 * to zero while this runs to avoid races with mmu_notifier_release,
240 * so mm has to be current->mm or the mm should be pinned safely such
241 * as with get_task_mm(). If the mm is not current->mm, the mm_users
242 * pin should be released by calling mmput after mmu_notifier_register
243 * returns. mmu_notifier_unregister must be always called to
244 * unregister the notifier. mm_count is automatically pinned to allow
245 * mmu_notifier_unregister to safely run at any time later, before or
246 * after exit_mmap. ->release will always be called before exit_mmap
247 * frees the pages.
 
 
248 */
249int mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm)
 
250{
251	return do_mmu_notifier_register(mn, mm, 1);
 
 
 
 
 
252}
253EXPORT_SYMBOL_GPL(mmu_notifier_register);
254
255/*
256 * Same as mmu_notifier_register but here the caller must hold the
257 * mmap_sem in write mode.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258 */
259int __mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm)
 
260{
261	return do_mmu_notifier_register(mn, mm, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
262}
263EXPORT_SYMBOL_GPL(__mmu_notifier_register);
264
265/* this is called after the last mmu_notifier_unregister() returned */
266void __mmu_notifier_mm_destroy(struct mm_struct *mm)
267{
268	BUG_ON(!hlist_empty(&mm->mmu_notifier_mm->list));
269	kfree(mm->mmu_notifier_mm);
270	mm->mmu_notifier_mm = LIST_POISON1; /* debug */
271}
272
273/*
274 * This releases the mm_count pin automatically and frees the mm
275 * structure if it was the last user of it. It serializes against
276 * running mmu notifiers with RCU and against mmu_notifier_unregister
277 * with the unregister lock + RCU. All sptes must be dropped before
278 * calling mmu_notifier_unregister. ->release or any other notifier
279 * method may be invoked concurrently with mmu_notifier_unregister,
280 * and only after mmu_notifier_unregister returned we're guaranteed
281 * that ->release or any other method can't run anymore.
282 */
283void mmu_notifier_unregister(struct mmu_notifier *mn, struct mm_struct *mm)
 
284{
285	BUG_ON(atomic_read(&mm->mm_count) <= 0);
286
287	spin_lock(&mm->mmu_notifier_mm->lock);
288	if (!hlist_unhashed(&mn->hlist)) {
289		hlist_del_rcu(&mn->hlist);
 
 
 
290
 
291		/*
292		 * RCU here will force exit_mmap to wait ->release to finish
293		 * before freeing the pages.
294		 */
295		rcu_read_lock();
296		spin_unlock(&mm->mmu_notifier_mm->lock);
 
 
 
297		/*
298		 * exit_mmap will block in mmu_notifier_release to
299		 * guarantee ->release is called before freeing the
300		 * pages.
301		 */
302		if (mn->ops->release)
303			mn->ops->release(mn, mm);
304		rcu_read_unlock();
305	} else
306		spin_unlock(&mm->mmu_notifier_mm->lock);
307
308	/*
309	 * Wait any running method to finish, of course including
310	 * ->release if it was run by mmu_notifier_relase instead of us.
311	 */
312	synchronize_rcu();
313
314	BUG_ON(atomic_read(&mm->mm_count) <= 0);
315
316	mmdrop(mm);
317}
318EXPORT_SYMBOL_GPL(mmu_notifier_unregister);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/mmu_notifier.c
   4 *
   5 *  Copyright (C) 2008  Qumranet, Inc.
   6 *  Copyright (C) 2008  SGI
   7 *             Christoph Lameter <cl@linux.com>
 
 
 
   8 */
   9
  10#include <linux/rculist.h>
  11#include <linux/mmu_notifier.h>
  12#include <linux/export.h>
  13#include <linux/mm.h>
  14#include <linux/err.h>
  15#include <linux/interval_tree.h>
  16#include <linux/srcu.h>
  17#include <linux/rcupdate.h>
  18#include <linux/sched.h>
  19#include <linux/sched/mm.h>
  20#include <linux/slab.h>
  21
  22#include "vma.h"
  23
  24/* global SRCU for all MMs */
  25DEFINE_STATIC_SRCU(srcu);
  26
  27#ifdef CONFIG_LOCKDEP
  28struct lockdep_map __mmu_notifier_invalidate_range_start_map = {
  29	.name = "mmu_notifier_invalidate_range_start"
  30};
  31#endif
  32
  33/*
  34 * The mmu_notifier_subscriptions structure is allocated and installed in
  35 * mm->notifier_subscriptions inside the mm_take_all_locks() protected
  36 * critical section and it's released only when mm_count reaches zero
  37 * in mmdrop().
  38 */
  39struct mmu_notifier_subscriptions {
  40	/* all mmu notifiers registered in this mm are queued in this list */
  41	struct hlist_head list;
  42	bool has_itree;
  43	/* to serialize the list modifications and hlist_unhashed */
  44	spinlock_t lock;
  45	unsigned long invalidate_seq;
  46	unsigned long active_invalidate_ranges;
  47	struct rb_root_cached itree;
  48	wait_queue_head_t wq;
  49	struct hlist_head deferred_list;
  50};
  51
  52/*
  53 * This is a collision-retry read-side/write-side 'lock', a lot like a
  54 * seqcount, however this allows multiple write-sides to hold it at
  55 * once. Conceptually the write side is protecting the values of the PTEs in
  56 * this mm, such that PTES cannot be read into SPTEs (shadow PTEs) while any
  57 * writer exists.
  58 *
  59 * Note that the core mm creates nested invalidate_range_start()/end() regions
  60 * within the same thread, and runs invalidate_range_start()/end() in parallel
  61 * on multiple CPUs. This is designed to not reduce concurrency or block
  62 * progress on the mm side.
  63 *
  64 * As a secondary function, holding the full write side also serves to prevent
  65 * writers for the itree, this is an optimization to avoid extra locking
  66 * during invalidate_range_start/end notifiers.
  67 *
  68 * The write side has two states, fully excluded:
  69 *  - mm->active_invalidate_ranges != 0
  70 *  - subscriptions->invalidate_seq & 1 == True (odd)
  71 *  - some range on the mm_struct is being invalidated
  72 *  - the itree is not allowed to change
  73 *
  74 * And partially excluded:
  75 *  - mm->active_invalidate_ranges != 0
  76 *  - subscriptions->invalidate_seq & 1 == False (even)
  77 *  - some range on the mm_struct is being invalidated
  78 *  - the itree is allowed to change
  79 *
  80 * Operations on notifier_subscriptions->invalidate_seq (under spinlock):
  81 *    seq |= 1  # Begin writing
  82 *    seq++     # Release the writing state
  83 *    seq & 1   # True if a writer exists
  84 *
  85 * The later state avoids some expensive work on inv_end in the common case of
  86 * no mmu_interval_notifier monitoring the VA.
  87 */
  88static bool
  89mn_itree_is_invalidating(struct mmu_notifier_subscriptions *subscriptions)
  90{
  91	lockdep_assert_held(&subscriptions->lock);
  92	return subscriptions->invalidate_seq & 1;
  93}
  94
  95static struct mmu_interval_notifier *
  96mn_itree_inv_start_range(struct mmu_notifier_subscriptions *subscriptions,
  97			 const struct mmu_notifier_range *range,
  98			 unsigned long *seq)
  99{
 100	struct interval_tree_node *node;
 101	struct mmu_interval_notifier *res = NULL;
 102
 103	spin_lock(&subscriptions->lock);
 104	subscriptions->active_invalidate_ranges++;
 105	node = interval_tree_iter_first(&subscriptions->itree, range->start,
 106					range->end - 1);
 107	if (node) {
 108		subscriptions->invalidate_seq |= 1;
 109		res = container_of(node, struct mmu_interval_notifier,
 110				   interval_tree);
 111	}
 112
 113	*seq = subscriptions->invalidate_seq;
 114	spin_unlock(&subscriptions->lock);
 115	return res;
 116}
 117
 118static struct mmu_interval_notifier *
 119mn_itree_inv_next(struct mmu_interval_notifier *interval_sub,
 120		  const struct mmu_notifier_range *range)
 121{
 122	struct interval_tree_node *node;
 123
 124	node = interval_tree_iter_next(&interval_sub->interval_tree,
 125				       range->start, range->end - 1);
 126	if (!node)
 127		return NULL;
 128	return container_of(node, struct mmu_interval_notifier, interval_tree);
 129}
 130
 131static void mn_itree_inv_end(struct mmu_notifier_subscriptions *subscriptions)
 132{
 133	struct mmu_interval_notifier *interval_sub;
 134	struct hlist_node *next;
 135
 136	spin_lock(&subscriptions->lock);
 137	if (--subscriptions->active_invalidate_ranges ||
 138	    !mn_itree_is_invalidating(subscriptions)) {
 139		spin_unlock(&subscriptions->lock);
 140		return;
 141	}
 142
 143	/* Make invalidate_seq even */
 144	subscriptions->invalidate_seq++;
 145
 146	/*
 147	 * The inv_end incorporates a deferred mechanism like rtnl_unlock().
 148	 * Adds and removes are queued until the final inv_end happens then
 149	 * they are progressed. This arrangement for tree updates is used to
 150	 * avoid using a blocking lock during invalidate_range_start.
 151	 */
 152	hlist_for_each_entry_safe(interval_sub, next,
 153				  &subscriptions->deferred_list,
 154				  deferred_item) {
 155		if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb))
 156			interval_tree_insert(&interval_sub->interval_tree,
 157					     &subscriptions->itree);
 158		else
 159			interval_tree_remove(&interval_sub->interval_tree,
 160					     &subscriptions->itree);
 161		hlist_del(&interval_sub->deferred_item);
 162	}
 163	spin_unlock(&subscriptions->lock);
 164
 165	wake_up_all(&subscriptions->wq);
 166}
 167
 168/**
 169 * mmu_interval_read_begin - Begin a read side critical section against a VA
 170 *                           range
 171 * @interval_sub: The interval subscription
 172 *
 173 * mmu_iterval_read_begin()/mmu_iterval_read_retry() implement a
 174 * collision-retry scheme similar to seqcount for the VA range under
 175 * subscription. If the mm invokes invalidation during the critical section
 176 * then mmu_interval_read_retry() will return true.
 177 *
 178 * This is useful to obtain shadow PTEs where teardown or setup of the SPTEs
 179 * require a blocking context.  The critical region formed by this can sleep,
 180 * and the required 'user_lock' can also be a sleeping lock.
 181 *
 182 * The caller is required to provide a 'user_lock' to serialize both teardown
 183 * and setup.
 184 *
 185 * The return value should be passed to mmu_interval_read_retry().
 186 */
 187unsigned long
 188mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub)
 189{
 190	struct mmu_notifier_subscriptions *subscriptions =
 191		interval_sub->mm->notifier_subscriptions;
 192	unsigned long seq;
 193	bool is_invalidating;
 194
 195	/*
 196	 * If the subscription has a different seq value under the user_lock
 197	 * than we started with then it has collided.
 198	 *
 199	 * If the subscription currently has the same seq value as the
 200	 * subscriptions seq, then it is currently between
 201	 * invalidate_start/end and is colliding.
 202	 *
 203	 * The locking looks broadly like this:
 204	 *   mn_itree_inv_start():                 mmu_interval_read_begin():
 205	 *                                         spin_lock
 206	 *                                          seq = READ_ONCE(interval_sub->invalidate_seq);
 207	 *                                          seq == subs->invalidate_seq
 208	 *                                         spin_unlock
 209	 *    spin_lock
 210	 *     seq = ++subscriptions->invalidate_seq
 211	 *    spin_unlock
 212	 *     op->invalidate():
 213	 *       user_lock
 214	 *        mmu_interval_set_seq()
 215	 *         interval_sub->invalidate_seq = seq
 216	 *       user_unlock
 217	 *
 218	 *                          [Required: mmu_interval_read_retry() == true]
 219	 *
 220	 *   mn_itree_inv_end():
 221	 *    spin_lock
 222	 *     seq = ++subscriptions->invalidate_seq
 223	 *    spin_unlock
 224	 *
 225	 *                                        user_lock
 226	 *                                         mmu_interval_read_retry():
 227	 *                                          interval_sub->invalidate_seq != seq
 228	 *                                        user_unlock
 229	 *
 230	 * Barriers are not needed here as any races here are closed by an
 231	 * eventual mmu_interval_read_retry(), which provides a barrier via the
 232	 * user_lock.
 233	 */
 234	spin_lock(&subscriptions->lock);
 235	/* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */
 236	seq = READ_ONCE(interval_sub->invalidate_seq);
 237	is_invalidating = seq == subscriptions->invalidate_seq;
 238	spin_unlock(&subscriptions->lock);
 239
 240	/*
 241	 * interval_sub->invalidate_seq must always be set to an odd value via
 242	 * mmu_interval_set_seq() using the provided cur_seq from
 243	 * mn_itree_inv_start_range(). This ensures that if seq does wrap we
 244	 * will always clear the below sleep in some reasonable time as
 245	 * subscriptions->invalidate_seq is even in the idle state.
 246	 */
 247	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
 248	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
 249	if (is_invalidating)
 250		wait_event(subscriptions->wq,
 251			   READ_ONCE(subscriptions->invalidate_seq) != seq);
 252
 253	/*
 254	 * Notice that mmu_interval_read_retry() can already be true at this
 255	 * point, avoiding loops here allows the caller to provide a global
 256	 * time bound.
 257	 */
 258
 259	return seq;
 260}
 261EXPORT_SYMBOL_GPL(mmu_interval_read_begin);
 262
 263static void mn_itree_release(struct mmu_notifier_subscriptions *subscriptions,
 264			     struct mm_struct *mm)
 265{
 266	struct mmu_notifier_range range = {
 267		.flags = MMU_NOTIFIER_RANGE_BLOCKABLE,
 268		.event = MMU_NOTIFY_RELEASE,
 269		.mm = mm,
 270		.start = 0,
 271		.end = ULONG_MAX,
 272	};
 273	struct mmu_interval_notifier *interval_sub;
 274	unsigned long cur_seq;
 275	bool ret;
 276
 277	for (interval_sub =
 278		     mn_itree_inv_start_range(subscriptions, &range, &cur_seq);
 279	     interval_sub;
 280	     interval_sub = mn_itree_inv_next(interval_sub, &range)) {
 281		ret = interval_sub->ops->invalidate(interval_sub, &range,
 282						    cur_seq);
 283		WARN_ON(!ret);
 284	}
 285
 286	mn_itree_inv_end(subscriptions);
 287}
 288
 289/*
 290 * This function can't run concurrently against mmu_notifier_register
 291 * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap
 292 * runs with mm_users == 0. Other tasks may still invoke mmu notifiers
 293 * in parallel despite there being no task using this mm any more,
 294 * through the vmas outside of the exit_mmap context, such as with
 295 * vmtruncate. This serializes against mmu_notifier_unregister with
 296 * the notifier_subscriptions->lock in addition to SRCU and it serializes
 297 * against the other mmu notifiers with SRCU. struct mmu_notifier_subscriptions
 298 * can't go away from under us as exit_mmap holds an mm_count pin
 299 * itself.
 300 */
 301static void mn_hlist_release(struct mmu_notifier_subscriptions *subscriptions,
 302			     struct mm_struct *mm)
 303{
 304	struct mmu_notifier *subscription;
 305	int id;
 306
 307	/*
 308	 * SRCU here will block mmu_notifier_unregister until
 309	 * ->release returns.
 310	 */
 311	id = srcu_read_lock(&srcu);
 312	hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
 313				 srcu_read_lock_held(&srcu))
 
 
 
 
 
 314		/*
 315		 * If ->release runs before mmu_notifier_unregister it must be
 316		 * handled, as it's the only way for the driver to flush all
 317		 * existing sptes and stop the driver from establishing any more
 318		 * sptes before all the pages in the mm are freed.
 319		 */
 320		if (subscription->ops->release)
 321			subscription->ops->release(subscription, mm);
 322
 323	spin_lock(&subscriptions->lock);
 324	while (unlikely(!hlist_empty(&subscriptions->list))) {
 325		subscription = hlist_entry(subscriptions->list.first,
 326					   struct mmu_notifier, hlist);
 327		/*
 328		 * We arrived before mmu_notifier_unregister so
 329		 * mmu_notifier_unregister will do nothing other than to wait
 330		 * for ->release to finish and for mmu_notifier_unregister to
 331		 * return.
 
 332		 */
 333		hlist_del_init_rcu(&subscription->hlist);
 334	}
 335	spin_unlock(&subscriptions->lock);
 336	srcu_read_unlock(&srcu, id);
 
 
 337
 338	/*
 339	 * synchronize_srcu here prevents mmu_notifier_release from returning to
 340	 * exit_mmap (which would proceed with freeing all pages in the mm)
 341	 * until the ->release method returns, if it was invoked by
 342	 * mmu_notifier_unregister.
 343	 *
 344	 * The notifier_subscriptions can't go away from under us because
 345	 * one mm_count is held by exit_mmap.
 346	 */
 347	synchronize_srcu(&srcu);
 348}
 349
 350void __mmu_notifier_release(struct mm_struct *mm)
 351{
 352	struct mmu_notifier_subscriptions *subscriptions =
 353		mm->notifier_subscriptions;
 354
 355	if (subscriptions->has_itree)
 356		mn_itree_release(subscriptions, mm);
 357
 358	if (!hlist_empty(&subscriptions->list))
 359		mn_hlist_release(subscriptions, mm);
 360}
 361
 362/*
 363 * If no young bitflag is supported by the hardware, ->clear_flush_young can
 364 * unmap the address and return 1 or 0 depending if the mapping previously
 365 * existed or not.
 366 */
 367int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
 368					unsigned long start,
 369					unsigned long end)
 370{
 371	struct mmu_notifier *subscription;
 372	int young = 0, id;
 373
 374	id = srcu_read_lock(&srcu);
 375	hlist_for_each_entry_rcu(subscription,
 376				 &mm->notifier_subscriptions->list, hlist,
 377				 srcu_read_lock_held(&srcu)) {
 378		if (subscription->ops->clear_flush_young)
 379			young |= subscription->ops->clear_flush_young(
 380				subscription, mm, start, end);
 381	}
 382	srcu_read_unlock(&srcu, id);
 383
 384	return young;
 385}
 386
 387int __mmu_notifier_clear_young(struct mm_struct *mm,
 388			       unsigned long start,
 389			       unsigned long end)
 390{
 391	struct mmu_notifier *subscription;
 392	int young = 0, id;
 393
 394	id = srcu_read_lock(&srcu);
 395	hlist_for_each_entry_rcu(subscription,
 396				 &mm->notifier_subscriptions->list, hlist,
 397				 srcu_read_lock_held(&srcu)) {
 398		if (subscription->ops->clear_young)
 399			young |= subscription->ops->clear_young(subscription,
 400								mm, start, end);
 401	}
 402	srcu_read_unlock(&srcu, id);
 403
 404	return young;
 405}
 406
 407int __mmu_notifier_test_young(struct mm_struct *mm,
 408			      unsigned long address)
 409{
 410	struct mmu_notifier *subscription;
 411	int young = 0, id;
 412
 413	id = srcu_read_lock(&srcu);
 414	hlist_for_each_entry_rcu(subscription,
 415				 &mm->notifier_subscriptions->list, hlist,
 416				 srcu_read_lock_held(&srcu)) {
 417		if (subscription->ops->test_young) {
 418			young = subscription->ops->test_young(subscription, mm,
 419							      address);
 420			if (young)
 421				break;
 422		}
 423	}
 424	srcu_read_unlock(&srcu, id);
 425
 426	return young;
 427}
 428
 429static int mn_itree_invalidate(struct mmu_notifier_subscriptions *subscriptions,
 430			       const struct mmu_notifier_range *range)
 431{
 432	struct mmu_interval_notifier *interval_sub;
 433	unsigned long cur_seq;
 434
 435	for (interval_sub =
 436		     mn_itree_inv_start_range(subscriptions, range, &cur_seq);
 437	     interval_sub;
 438	     interval_sub = mn_itree_inv_next(interval_sub, range)) {
 439		bool ret;
 440
 441		ret = interval_sub->ops->invalidate(interval_sub, range,
 442						    cur_seq);
 443		if (!ret) {
 444			if (WARN_ON(mmu_notifier_range_blockable(range)))
 445				continue;
 446			goto out_would_block;
 447		}
 448	}
 449	return 0;
 450
 451out_would_block:
 452	/*
 453	 * On -EAGAIN the non-blocking caller is not allowed to call
 454	 * invalidate_range_end()
 455	 */
 456	mn_itree_inv_end(subscriptions);
 457	return -EAGAIN;
 458}
 459
 460static int mn_hlist_invalidate_range_start(
 461	struct mmu_notifier_subscriptions *subscriptions,
 462	struct mmu_notifier_range *range)
 463{
 464	struct mmu_notifier *subscription;
 465	int ret = 0;
 466	int id;
 467
 468	id = srcu_read_lock(&srcu);
 469	hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
 470				 srcu_read_lock_held(&srcu)) {
 471		const struct mmu_notifier_ops *ops = subscription->ops;
 472
 473		if (ops->invalidate_range_start) {
 474			int _ret;
 475
 476			if (!mmu_notifier_range_blockable(range))
 477				non_block_start();
 478			_ret = ops->invalidate_range_start(subscription, range);
 479			if (!mmu_notifier_range_blockable(range))
 480				non_block_end();
 481			if (_ret) {
 482				pr_info("%pS callback failed with %d in %sblockable context.\n",
 483					ops->invalidate_range_start, _ret,
 484					!mmu_notifier_range_blockable(range) ?
 485						"non-" :
 486						"");
 487				WARN_ON(mmu_notifier_range_blockable(range) ||
 488					_ret != -EAGAIN);
 489				/*
 490				 * We call all the notifiers on any EAGAIN,
 491				 * there is no way for a notifier to know if
 492				 * its start method failed, thus a start that
 493				 * does EAGAIN can't also do end.
 494				 */
 495				WARN_ON(ops->invalidate_range_end);
 496				ret = _ret;
 497			}
 498		}
 499	}
 500
 501	if (ret) {
 
 
 
 502		/*
 503		 * Must be non-blocking to get here.  If there are multiple
 504		 * notifiers and one or more failed start, any that succeeded
 505		 * start are expecting their end to be called.  Do so now.
 506		 */
 507		hlist_for_each_entry_rcu(subscription, &subscriptions->list,
 508					 hlist, srcu_read_lock_held(&srcu)) {
 509			if (!subscription->ops->invalidate_range_end)
 510				continue;
 511
 512			subscription->ops->invalidate_range_end(subscription,
 513								range);
 514		}
 515	}
 516	srcu_read_unlock(&srcu, id);
 517
 518	return ret;
 519}
 520
 521int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
 
 522{
 523	struct mmu_notifier_subscriptions *subscriptions =
 524		range->mm->notifier_subscriptions;
 525	int ret;
 526
 527	if (subscriptions->has_itree) {
 528		ret = mn_itree_invalidate(subscriptions, range);
 529		if (ret)
 530			return ret;
 531	}
 532	if (!hlist_empty(&subscriptions->list))
 533		return mn_hlist_invalidate_range_start(subscriptions, range);
 534	return 0;
 535}
 536
 537static void
 538mn_hlist_invalidate_end(struct mmu_notifier_subscriptions *subscriptions,
 539			struct mmu_notifier_range *range)
 540{
 541	struct mmu_notifier *subscription;
 542	int id;
 543
 544	id = srcu_read_lock(&srcu);
 545	hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
 546				 srcu_read_lock_held(&srcu)) {
 547		if (subscription->ops->invalidate_range_end) {
 548			if (!mmu_notifier_range_blockable(range))
 549				non_block_start();
 550			subscription->ops->invalidate_range_end(subscription,
 551								range);
 552			if (!mmu_notifier_range_blockable(range))
 553				non_block_end();
 554		}
 555	}
 556	srcu_read_unlock(&srcu, id);
 557}
 558
 559void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range)
 560{
 561	struct mmu_notifier_subscriptions *subscriptions =
 562		range->mm->notifier_subscriptions;
 563
 564	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
 565	if (subscriptions->has_itree)
 566		mn_itree_inv_end(subscriptions);
 567
 568	if (!hlist_empty(&subscriptions->list))
 569		mn_hlist_invalidate_end(subscriptions, range);
 570	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
 571}
 572
 573void __mmu_notifier_arch_invalidate_secondary_tlbs(struct mm_struct *mm,
 574					unsigned long start, unsigned long end)
 575{
 576	struct mmu_notifier *subscription;
 577	int id;
 578
 579	id = srcu_read_lock(&srcu);
 580	hlist_for_each_entry_rcu(subscription,
 581				 &mm->notifier_subscriptions->list, hlist,
 582				 srcu_read_lock_held(&srcu)) {
 583		if (subscription->ops->arch_invalidate_secondary_tlbs)
 584			subscription->ops->arch_invalidate_secondary_tlbs(
 585				subscription, mm,
 586				start, end);
 587	}
 588	srcu_read_unlock(&srcu, id);
 589}
 590
 591/*
 592 * Same as mmu_notifier_register but here the caller must hold the mmap_lock in
 593 * write mode. A NULL mn signals the notifier is being registered for itree
 594 * mode.
 595 */
 596int __mmu_notifier_register(struct mmu_notifier *subscription,
 597			    struct mm_struct *mm)
 598{
 599	struct mmu_notifier_subscriptions *subscriptions = NULL;
 600	int ret;
 601
 602	mmap_assert_write_locked(mm);
 603	BUG_ON(atomic_read(&mm->mm_users) <= 0);
 604
 605	/*
 606	 * Subsystems should only register for invalidate_secondary_tlbs() or
 607	 * invalidate_range_start()/end() callbacks, not both.
 608	 */
 609	if (WARN_ON_ONCE(subscription &&
 610			 (subscription->ops->arch_invalidate_secondary_tlbs &&
 611			 (subscription->ops->invalidate_range_start ||
 612			  subscription->ops->invalidate_range_end))))
 613		return -EINVAL;
 614
 615	if (!mm->notifier_subscriptions) {
 616		/*
 617		 * kmalloc cannot be called under mm_take_all_locks(), but we
 618		 * know that mm->notifier_subscriptions can't change while we
 619		 * hold the write side of the mmap_lock.
 620		 */
 621		subscriptions = kzalloc(
 622			sizeof(struct mmu_notifier_subscriptions), GFP_KERNEL);
 623		if (!subscriptions)
 624			return -ENOMEM;
 625
 626		INIT_HLIST_HEAD(&subscriptions->list);
 627		spin_lock_init(&subscriptions->lock);
 628		subscriptions->invalidate_seq = 2;
 629		subscriptions->itree = RB_ROOT_CACHED;
 630		init_waitqueue_head(&subscriptions->wq);
 631		INIT_HLIST_HEAD(&subscriptions->deferred_list);
 632	}
 633
 
 
 634	ret = mm_take_all_locks(mm);
 635	if (unlikely(ret))
 636		goto out_clean;
 
 
 
 
 
 
 
 
 637
 638	/*
 639	 * Serialize the update against mmu_notifier_unregister. A
 640	 * side note: mmu_notifier_release can't run concurrently with
 641	 * us because we hold the mm_users pin (either implicitly as
 642	 * current->mm or explicitly with get_task_mm() or similar).
 643	 * We can't race against any other mmu notifier method either
 644	 * thanks to mm_take_all_locks().
 645	 *
 646	 * release semantics on the initialization of the
 647	 * mmu_notifier_subscriptions's contents are provided for unlocked
 648	 * readers.  acquire can only be used while holding the mmgrab or
 649	 * mmget, and is safe because once created the
 650	 * mmu_notifier_subscriptions is not freed until the mm is destroyed.
 651	 * As above, users holding the mmap_lock or one of the
 652	 * mm_take_all_locks() do not need to use acquire semantics.
 653	 */
 654	if (subscriptions)
 655		smp_store_release(&mm->notifier_subscriptions, subscriptions);
 656
 657	if (subscription) {
 658		/* Pairs with the mmdrop in mmu_notifier_unregister_* */
 659		mmgrab(mm);
 660		subscription->mm = mm;
 661		subscription->users = 1;
 662
 663		spin_lock(&mm->notifier_subscriptions->lock);
 664		hlist_add_head_rcu(&subscription->hlist,
 665				   &mm->notifier_subscriptions->list);
 666		spin_unlock(&mm->notifier_subscriptions->lock);
 667	} else
 668		mm->notifier_subscriptions->has_itree = true;
 669
 670	mm_drop_all_locks(mm);
 
 
 
 
 
 
 671	BUG_ON(atomic_read(&mm->mm_users) <= 0);
 672	return 0;
 673
 674out_clean:
 675	kfree(subscriptions);
 676	return ret;
 677}
 678EXPORT_SYMBOL_GPL(__mmu_notifier_register);
 679
 680/**
 681 * mmu_notifier_register - Register a notifier on a mm
 682 * @subscription: The notifier to attach
 683 * @mm: The mm to attach the notifier to
 684 *
 685 * Must not hold mmap_lock nor any other VM related lock when calling
 686 * this registration function. Must also ensure mm_users can't go down
 687 * to zero while this runs to avoid races with mmu_notifier_release,
 688 * so mm has to be current->mm or the mm should be pinned safely such
 689 * as with get_task_mm(). If the mm is not current->mm, the mm_users
 690 * pin should be released by calling mmput after mmu_notifier_register
 691 * returns.
 692 *
 693 * mmu_notifier_unregister() or mmu_notifier_put() must be always called to
 694 * unregister the notifier.
 695 *
 696 * While the caller has a mmu_notifier get the subscription->mm pointer will remain
 697 * valid, and can be converted to an active mm pointer via mmget_not_zero().
 698 */
 699int mmu_notifier_register(struct mmu_notifier *subscription,
 700			  struct mm_struct *mm)
 701{
 702	int ret;
 703
 704	mmap_write_lock(mm);
 705	ret = __mmu_notifier_register(subscription, mm);
 706	mmap_write_unlock(mm);
 707	return ret;
 708}
 709EXPORT_SYMBOL_GPL(mmu_notifier_register);
 710
 711static struct mmu_notifier *
 712find_get_mmu_notifier(struct mm_struct *mm, const struct mmu_notifier_ops *ops)
 713{
 714	struct mmu_notifier *subscription;
 715
 716	spin_lock(&mm->notifier_subscriptions->lock);
 717	hlist_for_each_entry_rcu(subscription,
 718				 &mm->notifier_subscriptions->list, hlist,
 719				 lockdep_is_held(&mm->notifier_subscriptions->lock)) {
 720		if (subscription->ops != ops)
 721			continue;
 722
 723		if (likely(subscription->users != UINT_MAX))
 724			subscription->users++;
 725		else
 726			subscription = ERR_PTR(-EOVERFLOW);
 727		spin_unlock(&mm->notifier_subscriptions->lock);
 728		return subscription;
 729	}
 730	spin_unlock(&mm->notifier_subscriptions->lock);
 731	return NULL;
 732}
 733
 734/**
 735 * mmu_notifier_get_locked - Return the single struct mmu_notifier for
 736 *                           the mm & ops
 737 * @ops: The operations struct being subscribe with
 738 * @mm : The mm to attach notifiers too
 739 *
 740 * This function either allocates a new mmu_notifier via
 741 * ops->alloc_notifier(), or returns an already existing notifier on the
 742 * list. The value of the ops pointer is used to determine when two notifiers
 743 * are the same.
 744 *
 745 * Each call to mmu_notifier_get() must be paired with a call to
 746 * mmu_notifier_put(). The caller must hold the write side of mm->mmap_lock.
 747 *
 748 * While the caller has a mmu_notifier get the mm pointer will remain valid,
 749 * and can be converted to an active mm pointer via mmget_not_zero().
 750 */
 751struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops,
 752					     struct mm_struct *mm)
 753{
 754	struct mmu_notifier *subscription;
 755	int ret;
 756
 757	mmap_assert_write_locked(mm);
 758
 759	if (mm->notifier_subscriptions) {
 760		subscription = find_get_mmu_notifier(mm, ops);
 761		if (subscription)
 762			return subscription;
 763	}
 764
 765	subscription = ops->alloc_notifier(mm);
 766	if (IS_ERR(subscription))
 767		return subscription;
 768	subscription->ops = ops;
 769	ret = __mmu_notifier_register(subscription, mm);
 770	if (ret)
 771		goto out_free;
 772	return subscription;
 773out_free:
 774	subscription->ops->free_notifier(subscription);
 775	return ERR_PTR(ret);
 776}
 777EXPORT_SYMBOL_GPL(mmu_notifier_get_locked);
 778
 779/* this is called after the last mmu_notifier_unregister() returned */
 780void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm)
 781{
 782	BUG_ON(!hlist_empty(&mm->notifier_subscriptions->list));
 783	kfree(mm->notifier_subscriptions);
 784	mm->notifier_subscriptions = LIST_POISON1; /* debug */
 785}
 786
 787/*
 788 * This releases the mm_count pin automatically and frees the mm
 789 * structure if it was the last user of it. It serializes against
 790 * running mmu notifiers with SRCU and against mmu_notifier_unregister
 791 * with the unregister lock + SRCU. All sptes must be dropped before
 792 * calling mmu_notifier_unregister. ->release or any other notifier
 793 * method may be invoked concurrently with mmu_notifier_unregister,
 794 * and only after mmu_notifier_unregister returned we're guaranteed
 795 * that ->release or any other method can't run anymore.
 796 */
 797void mmu_notifier_unregister(struct mmu_notifier *subscription,
 798			     struct mm_struct *mm)
 799{
 800	BUG_ON(atomic_read(&mm->mm_count) <= 0);
 801
 802	if (!hlist_unhashed(&subscription->hlist)) {
 803		/*
 804		 * SRCU here will force exit_mmap to wait for ->release to
 805		 * finish before freeing the pages.
 806		 */
 807		int id;
 808
 809		id = srcu_read_lock(&srcu);
 810		/*
 811		 * exit_mmap will block in mmu_notifier_release to guarantee
 812		 * that ->release is called before freeing the pages.
 813		 */
 814		if (subscription->ops->release)
 815			subscription->ops->release(subscription, mm);
 816		srcu_read_unlock(&srcu, id);
 817
 818		spin_lock(&mm->notifier_subscriptions->lock);
 819		/*
 820		 * Can not use list_del_rcu() since __mmu_notifier_release
 821		 * can delete it before we hold the lock.
 
 822		 */
 823		hlist_del_init_rcu(&subscription->hlist);
 824		spin_unlock(&mm->notifier_subscriptions->lock);
 825	}
 
 
 826
 827	/*
 828	 * Wait for any running method to finish, of course including
 829	 * ->release if it was run by mmu_notifier_release instead of us.
 830	 */
 831	synchronize_srcu(&srcu);
 832
 833	BUG_ON(atomic_read(&mm->mm_count) <= 0);
 834
 835	mmdrop(mm);
 836}
 837EXPORT_SYMBOL_GPL(mmu_notifier_unregister);
 838
 839static void mmu_notifier_free_rcu(struct rcu_head *rcu)
 840{
 841	struct mmu_notifier *subscription =
 842		container_of(rcu, struct mmu_notifier, rcu);
 843	struct mm_struct *mm = subscription->mm;
 844
 845	subscription->ops->free_notifier(subscription);
 846	/* Pairs with the get in __mmu_notifier_register() */
 847	mmdrop(mm);
 848}
 849
 850/**
 851 * mmu_notifier_put - Release the reference on the notifier
 852 * @subscription: The notifier to act on
 853 *
 854 * This function must be paired with each mmu_notifier_get(), it releases the
 855 * reference obtained by the get. If this is the last reference then process
 856 * to free the notifier will be run asynchronously.
 857 *
 858 * Unlike mmu_notifier_unregister() the get/put flow only calls ops->release
 859 * when the mm_struct is destroyed. Instead free_notifier is always called to
 860 * release any resources held by the user.
 861 *
 862 * As ops->release is not guaranteed to be called, the user must ensure that
 863 * all sptes are dropped, and no new sptes can be established before
 864 * mmu_notifier_put() is called.
 865 *
 866 * This function can be called from the ops->release callback, however the
 867 * caller must still ensure it is called pairwise with mmu_notifier_get().
 868 *
 869 * Modules calling this function must call mmu_notifier_synchronize() in
 870 * their __exit functions to ensure the async work is completed.
 871 */
 872void mmu_notifier_put(struct mmu_notifier *subscription)
 873{
 874	struct mm_struct *mm = subscription->mm;
 875
 876	spin_lock(&mm->notifier_subscriptions->lock);
 877	if (WARN_ON(!subscription->users) || --subscription->users)
 878		goto out_unlock;
 879	hlist_del_init_rcu(&subscription->hlist);
 880	spin_unlock(&mm->notifier_subscriptions->lock);
 881
 882	call_srcu(&srcu, &subscription->rcu, mmu_notifier_free_rcu);
 883	return;
 884
 885out_unlock:
 886	spin_unlock(&mm->notifier_subscriptions->lock);
 887}
 888EXPORT_SYMBOL_GPL(mmu_notifier_put);
 889
 890static int __mmu_interval_notifier_insert(
 891	struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
 892	struct mmu_notifier_subscriptions *subscriptions, unsigned long start,
 893	unsigned long length, const struct mmu_interval_notifier_ops *ops)
 894{
 895	interval_sub->mm = mm;
 896	interval_sub->ops = ops;
 897	RB_CLEAR_NODE(&interval_sub->interval_tree.rb);
 898	interval_sub->interval_tree.start = start;
 899	/*
 900	 * Note that the representation of the intervals in the interval tree
 901	 * considers the ending point as contained in the interval.
 902	 */
 903	if (length == 0 ||
 904	    check_add_overflow(start, length - 1,
 905			       &interval_sub->interval_tree.last))
 906		return -EOVERFLOW;
 907
 908	/* Must call with a mmget() held */
 909	if (WARN_ON(atomic_read(&mm->mm_users) <= 0))
 910		return -EINVAL;
 911
 912	/* pairs with mmdrop in mmu_interval_notifier_remove() */
 913	mmgrab(mm);
 914
 915	/*
 916	 * If some invalidate_range_start/end region is going on in parallel
 917	 * we don't know what VA ranges are affected, so we must assume this
 918	 * new range is included.
 919	 *
 920	 * If the itree is invalidating then we are not allowed to change
 921	 * it. Retrying until invalidation is done is tricky due to the
 922	 * possibility for live lock, instead defer the add to
 923	 * mn_itree_inv_end() so this algorithm is deterministic.
 924	 *
 925	 * In all cases the value for the interval_sub->invalidate_seq should be
 926	 * odd, see mmu_interval_read_begin()
 927	 */
 928	spin_lock(&subscriptions->lock);
 929	if (subscriptions->active_invalidate_ranges) {
 930		if (mn_itree_is_invalidating(subscriptions))
 931			hlist_add_head(&interval_sub->deferred_item,
 932				       &subscriptions->deferred_list);
 933		else {
 934			subscriptions->invalidate_seq |= 1;
 935			interval_tree_insert(&interval_sub->interval_tree,
 936					     &subscriptions->itree);
 937		}
 938		interval_sub->invalidate_seq = subscriptions->invalidate_seq;
 939	} else {
 940		WARN_ON(mn_itree_is_invalidating(subscriptions));
 941		/*
 942		 * The starting seq for a subscription not under invalidation
 943		 * should be odd, not equal to the current invalidate_seq and
 944		 * invalidate_seq should not 'wrap' to the new seq any time
 945		 * soon.
 946		 */
 947		interval_sub->invalidate_seq =
 948			subscriptions->invalidate_seq - 1;
 949		interval_tree_insert(&interval_sub->interval_tree,
 950				     &subscriptions->itree);
 951	}
 952	spin_unlock(&subscriptions->lock);
 953	return 0;
 954}
 955
 956/**
 957 * mmu_interval_notifier_insert - Insert an interval notifier
 958 * @interval_sub: Interval subscription to register
 959 * @start: Starting virtual address to monitor
 960 * @length: Length of the range to monitor
 961 * @mm: mm_struct to attach to
 962 * @ops: Interval notifier operations to be called on matching events
 963 *
 964 * This function subscribes the interval notifier for notifications from the
 965 * mm.  Upon return the ops related to mmu_interval_notifier will be called
 966 * whenever an event that intersects with the given range occurs.
 967 *
 968 * Upon return the range_notifier may not be present in the interval tree yet.
 969 * The caller must use the normal interval notifier read flow via
 970 * mmu_interval_read_begin() to establish SPTEs for this range.
 971 */
 972int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub,
 973				 struct mm_struct *mm, unsigned long start,
 974				 unsigned long length,
 975				 const struct mmu_interval_notifier_ops *ops)
 976{
 977	struct mmu_notifier_subscriptions *subscriptions;
 978	int ret;
 979
 980	might_lock(&mm->mmap_lock);
 981
 982	subscriptions = smp_load_acquire(&mm->notifier_subscriptions);
 983	if (!subscriptions || !subscriptions->has_itree) {
 984		ret = mmu_notifier_register(NULL, mm);
 985		if (ret)
 986			return ret;
 987		subscriptions = mm->notifier_subscriptions;
 988	}
 989	return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions,
 990					      start, length, ops);
 991}
 992EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert);
 993
 994int mmu_interval_notifier_insert_locked(
 995	struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
 996	unsigned long start, unsigned long length,
 997	const struct mmu_interval_notifier_ops *ops)
 998{
 999	struct mmu_notifier_subscriptions *subscriptions =
1000		mm->notifier_subscriptions;
1001	int ret;
1002
1003	mmap_assert_write_locked(mm);
1004
1005	if (!subscriptions || !subscriptions->has_itree) {
1006		ret = __mmu_notifier_register(NULL, mm);
1007		if (ret)
1008			return ret;
1009		subscriptions = mm->notifier_subscriptions;
1010	}
1011	return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions,
1012					      start, length, ops);
1013}
1014EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert_locked);
1015
1016static bool
1017mmu_interval_seq_released(struct mmu_notifier_subscriptions *subscriptions,
1018			  unsigned long seq)
1019{
1020	bool ret;
1021
1022	spin_lock(&subscriptions->lock);
1023	ret = subscriptions->invalidate_seq != seq;
1024	spin_unlock(&subscriptions->lock);
1025	return ret;
1026}
1027
1028/**
1029 * mmu_interval_notifier_remove - Remove a interval notifier
1030 * @interval_sub: Interval subscription to unregister
1031 *
1032 * This function must be paired with mmu_interval_notifier_insert(). It cannot
1033 * be called from any ops callback.
1034 *
1035 * Once this returns ops callbacks are no longer running on other CPUs and
1036 * will not be called in future.
1037 */
1038void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub)
1039{
1040	struct mm_struct *mm = interval_sub->mm;
1041	struct mmu_notifier_subscriptions *subscriptions =
1042		mm->notifier_subscriptions;
1043	unsigned long seq = 0;
1044
1045	might_sleep();
1046
1047	spin_lock(&subscriptions->lock);
1048	if (mn_itree_is_invalidating(subscriptions)) {
1049		/*
1050		 * remove is being called after insert put this on the
1051		 * deferred list, but before the deferred list was processed.
1052		 */
1053		if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb)) {
1054			hlist_del(&interval_sub->deferred_item);
1055		} else {
1056			hlist_add_head(&interval_sub->deferred_item,
1057				       &subscriptions->deferred_list);
1058			seq = subscriptions->invalidate_seq;
1059		}
1060	} else {
1061		WARN_ON(RB_EMPTY_NODE(&interval_sub->interval_tree.rb));
1062		interval_tree_remove(&interval_sub->interval_tree,
1063				     &subscriptions->itree);
1064	}
1065	spin_unlock(&subscriptions->lock);
1066
1067	/*
1068	 * The possible sleep on progress in the invalidation requires the
1069	 * caller not hold any locks held by invalidation callbacks.
1070	 */
1071	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
1072	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
1073	if (seq)
1074		wait_event(subscriptions->wq,
1075			   mmu_interval_seq_released(subscriptions, seq));
1076
1077	/* pairs with mmgrab in mmu_interval_notifier_insert() */
1078	mmdrop(mm);
1079}
1080EXPORT_SYMBOL_GPL(mmu_interval_notifier_remove);
1081
1082/**
1083 * mmu_notifier_synchronize - Ensure all mmu_notifiers are freed
1084 *
1085 * This function ensures that all outstanding async SRU work from
1086 * mmu_notifier_put() is completed. After it returns any mmu_notifier_ops
1087 * associated with an unused mmu_notifier will no longer be called.
1088 *
1089 * Before using the caller must ensure that all of its mmu_notifiers have been
1090 * fully released via mmu_notifier_put().
1091 *
1092 * Modules using the mmu_notifier_put() API should call this in their __exit
1093 * function to avoid module unloading races.
1094 */
1095void mmu_notifier_synchronize(void)
1096{
1097	synchronize_srcu(&srcu);
1098}
1099EXPORT_SYMBOL_GPL(mmu_notifier_synchronize);