Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Device Memory Migration functionality.
  4 *
  5 * Originally written by Jérôme Glisse.
  6 */
  7#include <linux/export.h>
  8#include <linux/memremap.h>
  9#include <linux/migrate.h>
 10#include <linux/mm.h>
 11#include <linux/mm_inline.h>
 12#include <linux/mmu_notifier.h>
 13#include <linux/oom.h>
 14#include <linux/pagewalk.h>
 15#include <linux/rmap.h>
 16#include <linux/swapops.h>
 17#include <asm/tlbflush.h>
 18#include "internal.h"
 19
 20static int migrate_vma_collect_skip(unsigned long start,
 21				    unsigned long end,
 22				    struct mm_walk *walk)
 23{
 24	struct migrate_vma *migrate = walk->private;
 25	unsigned long addr;
 26
 27	for (addr = start; addr < end; addr += PAGE_SIZE) {
 28		migrate->dst[migrate->npages] = 0;
 29		migrate->src[migrate->npages++] = 0;
 30	}
 31
 32	return 0;
 33}
 34
 35static int migrate_vma_collect_hole(unsigned long start,
 36				    unsigned long end,
 37				    __always_unused int depth,
 38				    struct mm_walk *walk)
 39{
 40	struct migrate_vma *migrate = walk->private;
 41	unsigned long addr;
 42
 43	/* Only allow populating anonymous memory. */
 44	if (!vma_is_anonymous(walk->vma))
 45		return migrate_vma_collect_skip(start, end, walk);
 46
 47	for (addr = start; addr < end; addr += PAGE_SIZE) {
 48		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
 49		migrate->dst[migrate->npages] = 0;
 50		migrate->npages++;
 51		migrate->cpages++;
 52	}
 53
 54	return 0;
 55}
 56
 57static int migrate_vma_collect_pmd(pmd_t *pmdp,
 58				   unsigned long start,
 59				   unsigned long end,
 60				   struct mm_walk *walk)
 61{
 62	struct migrate_vma *migrate = walk->private;
 63	struct vm_area_struct *vma = walk->vma;
 64	struct mm_struct *mm = vma->vm_mm;
 65	unsigned long addr = start, unmapped = 0;
 66	spinlock_t *ptl;
 67	pte_t *ptep;
 68
 69again:
 70	if (pmd_none(*pmdp))
 71		return migrate_vma_collect_hole(start, end, -1, walk);
 72
 73	if (pmd_trans_huge(*pmdp)) {
 74		struct folio *folio;
 75
 76		ptl = pmd_lock(mm, pmdp);
 77		if (unlikely(!pmd_trans_huge(*pmdp))) {
 78			spin_unlock(ptl);
 79			goto again;
 80		}
 81
 82		folio = pmd_folio(*pmdp);
 83		if (is_huge_zero_folio(folio)) {
 84			spin_unlock(ptl);
 85			split_huge_pmd(vma, pmdp, addr);
 86		} else {
 87			int ret;
 88
 89			folio_get(folio);
 90			spin_unlock(ptl);
 91			if (unlikely(!folio_trylock(folio)))
 92				return migrate_vma_collect_skip(start, end,
 93								walk);
 94			ret = split_folio(folio);
 95			folio_unlock(folio);
 96			folio_put(folio);
 97			if (ret)
 98				return migrate_vma_collect_skip(start, end,
 99								walk);
100		}
101	}
102
103	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
104	if (!ptep)
105		goto again;
106	arch_enter_lazy_mmu_mode();
107
108	for (; addr < end; addr += PAGE_SIZE, ptep++) {
109		unsigned long mpfn = 0, pfn;
110		struct folio *folio;
111		struct page *page;
112		swp_entry_t entry;
113		pte_t pte;
114
115		pte = ptep_get(ptep);
116
117		if (pte_none(pte)) {
118			if (vma_is_anonymous(vma)) {
119				mpfn = MIGRATE_PFN_MIGRATE;
120				migrate->cpages++;
121			}
122			goto next;
123		}
124
125		if (!pte_present(pte)) {
126			/*
127			 * Only care about unaddressable device page special
128			 * page table entry. Other special swap entries are not
129			 * migratable, and we ignore regular swapped page.
130			 */
131			entry = pte_to_swp_entry(pte);
132			if (!is_device_private_entry(entry))
133				goto next;
134
135			page = pfn_swap_entry_to_page(entry);
136			if (!(migrate->flags &
137				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
138			    page->pgmap->owner != migrate->pgmap_owner)
139				goto next;
140
141			mpfn = migrate_pfn(page_to_pfn(page)) |
142					MIGRATE_PFN_MIGRATE;
143			if (is_writable_device_private_entry(entry))
144				mpfn |= MIGRATE_PFN_WRITE;
145		} else {
146			pfn = pte_pfn(pte);
147			if (is_zero_pfn(pfn) &&
148			    (migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) {
149				mpfn = MIGRATE_PFN_MIGRATE;
150				migrate->cpages++;
151				goto next;
152			}
153			page = vm_normal_page(migrate->vma, addr, pte);
154			if (page && !is_zone_device_page(page) &&
155			    !(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
156				goto next;
157			else if (page && is_device_coherent_page(page) &&
158			    (!(migrate->flags & MIGRATE_VMA_SELECT_DEVICE_COHERENT) ||
159			     page->pgmap->owner != migrate->pgmap_owner))
160				goto next;
161			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
162			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
163		}
164
165		/* FIXME support THP */
166		if (!page || !page->mapping || PageTransCompound(page)) {
167			mpfn = 0;
168			goto next;
169		}
170
171		/*
172		 * By getting a reference on the folio we pin it and that blocks
173		 * any kind of migration. Side effect is that it "freezes" the
174		 * pte.
175		 *
176		 * We drop this reference after isolating the folio from the lru
177		 * for non device folio (device folio are not on the lru and thus
178		 * can't be dropped from it).
179		 */
180		folio = page_folio(page);
181		folio_get(folio);
182
183		/*
184		 * We rely on folio_trylock() to avoid deadlock between
185		 * concurrent migrations where each is waiting on the others
186		 * folio lock. If we can't immediately lock the folio we fail this
187		 * migration as it is only best effort anyway.
188		 *
189		 * If we can lock the folio it's safe to set up a migration entry
190		 * now. In the common case where the folio is mapped once in a
191		 * single process setting up the migration entry now is an
192		 * optimisation to avoid walking the rmap later with
193		 * try_to_migrate().
194		 */
195		if (folio_trylock(folio)) {
196			bool anon_exclusive;
197			pte_t swp_pte;
198
199			flush_cache_page(vma, addr, pte_pfn(pte));
200			anon_exclusive = folio_test_anon(folio) &&
201					  PageAnonExclusive(page);
202			if (anon_exclusive) {
203				pte = ptep_clear_flush(vma, addr, ptep);
204
205				if (folio_try_share_anon_rmap_pte(folio, page)) {
206					set_pte_at(mm, addr, ptep, pte);
207					folio_unlock(folio);
208					folio_put(folio);
209					mpfn = 0;
210					goto next;
211				}
212			} else {
213				pte = ptep_get_and_clear(mm, addr, ptep);
214			}
215
216			migrate->cpages++;
217
218			/* Set the dirty flag on the folio now the pte is gone. */
219			if (pte_dirty(pte))
220				folio_mark_dirty(folio);
221
222			/* Setup special migration page table entry */
223			if (mpfn & MIGRATE_PFN_WRITE)
224				entry = make_writable_migration_entry(
225							page_to_pfn(page));
226			else if (anon_exclusive)
227				entry = make_readable_exclusive_migration_entry(
228							page_to_pfn(page));
229			else
230				entry = make_readable_migration_entry(
231							page_to_pfn(page));
232			if (pte_present(pte)) {
233				if (pte_young(pte))
234					entry = make_migration_entry_young(entry);
235				if (pte_dirty(pte))
236					entry = make_migration_entry_dirty(entry);
237			}
238			swp_pte = swp_entry_to_pte(entry);
239			if (pte_present(pte)) {
240				if (pte_soft_dirty(pte))
241					swp_pte = pte_swp_mksoft_dirty(swp_pte);
242				if (pte_uffd_wp(pte))
243					swp_pte = pte_swp_mkuffd_wp(swp_pte);
244			} else {
245				if (pte_swp_soft_dirty(pte))
246					swp_pte = pte_swp_mksoft_dirty(swp_pte);
247				if (pte_swp_uffd_wp(pte))
248					swp_pte = pte_swp_mkuffd_wp(swp_pte);
249			}
250			set_pte_at(mm, addr, ptep, swp_pte);
251
252			/*
253			 * This is like regular unmap: we remove the rmap and
254			 * drop the folio refcount. The folio won't be freed, as
255			 * we took a reference just above.
256			 */
257			folio_remove_rmap_pte(folio, page, vma);
258			folio_put(folio);
259
260			if (pte_present(pte))
261				unmapped++;
262		} else {
263			folio_put(folio);
264			mpfn = 0;
265		}
266
267next:
268		migrate->dst[migrate->npages] = 0;
269		migrate->src[migrate->npages++] = mpfn;
270	}
271
272	/* Only flush the TLB if we actually modified any entries */
273	if (unmapped)
274		flush_tlb_range(walk->vma, start, end);
275
276	arch_leave_lazy_mmu_mode();
277	pte_unmap_unlock(ptep - 1, ptl);
278
279	return 0;
280}
281
282static const struct mm_walk_ops migrate_vma_walk_ops = {
283	.pmd_entry		= migrate_vma_collect_pmd,
284	.pte_hole		= migrate_vma_collect_hole,
285	.walk_lock		= PGWALK_RDLOCK,
286};
287
288/*
289 * migrate_vma_collect() - collect pages over a range of virtual addresses
290 * @migrate: migrate struct containing all migration information
291 *
292 * This will walk the CPU page table. For each virtual address backed by a
293 * valid page, it updates the src array and takes a reference on the page, in
294 * order to pin the page until we lock it and unmap it.
295 */
296static void migrate_vma_collect(struct migrate_vma *migrate)
297{
298	struct mmu_notifier_range range;
299
300	/*
301	 * Note that the pgmap_owner is passed to the mmu notifier callback so
302	 * that the registered device driver can skip invalidating device
303	 * private page mappings that won't be migrated.
304	 */
305	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
306		migrate->vma->vm_mm, migrate->start, migrate->end,
307		migrate->pgmap_owner);
308	mmu_notifier_invalidate_range_start(&range);
309
310	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
311			&migrate_vma_walk_ops, migrate);
312
313	mmu_notifier_invalidate_range_end(&range);
314	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
315}
316
317/*
318 * migrate_vma_check_page() - check if page is pinned or not
319 * @page: struct page to check
320 *
321 * Pinned pages cannot be migrated. This is the same test as in
322 * folio_migrate_mapping(), except that here we allow migration of a
323 * ZONE_DEVICE page.
324 */
325static bool migrate_vma_check_page(struct page *page, struct page *fault_page)
326{
327	struct folio *folio = page_folio(page);
328
329	/*
330	 * One extra ref because caller holds an extra reference, either from
331	 * folio_isolate_lru() for a regular folio, or migrate_vma_collect() for
332	 * a device folio.
333	 */
334	int extra = 1 + (page == fault_page);
335
336	/*
337	 * FIXME support THP (transparent huge page), it is bit more complex to
338	 * check them than regular pages, because they can be mapped with a pmd
339	 * or with a pte (split pte mapping).
340	 */
341	if (folio_test_large(folio))
342		return false;
343
344	/* Page from ZONE_DEVICE have one extra reference */
345	if (folio_is_zone_device(folio))
346		extra++;
347
348	/* For file back page */
349	if (folio_mapping(folio))
350		extra += 1 + folio_has_private(folio);
351
352	if ((folio_ref_count(folio) - extra) > folio_mapcount(folio))
353		return false;
354
355	return true;
356}
357
358/*
359 * Unmaps pages for migration. Returns number of source pfns marked as
360 * migrating.
361 */
362static unsigned long migrate_device_unmap(unsigned long *src_pfns,
363					  unsigned long npages,
364					  struct page *fault_page)
365{
366	unsigned long i, restore = 0;
367	bool allow_drain = true;
368	unsigned long unmapped = 0;
369
370	lru_add_drain();
371
372	for (i = 0; i < npages; i++) {
373		struct page *page = migrate_pfn_to_page(src_pfns[i]);
374		struct folio *folio;
375
376		if (!page) {
377			if (src_pfns[i] & MIGRATE_PFN_MIGRATE)
378				unmapped++;
379			continue;
380		}
381
382		folio =	page_folio(page);
383		/* ZONE_DEVICE folios are not on LRU */
384		if (!folio_is_zone_device(folio)) {
385			if (!folio_test_lru(folio) && allow_drain) {
386				/* Drain CPU's lru cache */
387				lru_add_drain_all();
388				allow_drain = false;
389			}
390
391			if (!folio_isolate_lru(folio)) {
392				src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
393				restore++;
394				continue;
395			}
396
397			/* Drop the reference we took in collect */
398			folio_put(folio);
399		}
400
401		if (folio_mapped(folio))
402			try_to_migrate(folio, 0);
403
404		if (folio_mapped(folio) ||
405		    !migrate_vma_check_page(page, fault_page)) {
406			if (!folio_is_zone_device(folio)) {
407				folio_get(folio);
408				folio_putback_lru(folio);
409			}
410
411			src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
412			restore++;
413			continue;
414		}
415
416		unmapped++;
417	}
418
419	for (i = 0; i < npages && restore; i++) {
420		struct page *page = migrate_pfn_to_page(src_pfns[i]);
421		struct folio *folio;
422
423		if (!page || (src_pfns[i] & MIGRATE_PFN_MIGRATE))
424			continue;
425
426		folio = page_folio(page);
427		remove_migration_ptes(folio, folio, 0);
428
429		src_pfns[i] = 0;
430		folio_unlock(folio);
431		folio_put(folio);
432		restore--;
433	}
434
435	return unmapped;
436}
437
438/*
439 * migrate_vma_unmap() - replace page mapping with special migration pte entry
440 * @migrate: migrate struct containing all migration information
441 *
442 * Isolate pages from the LRU and replace mappings (CPU page table pte) with a
443 * special migration pte entry and check if it has been pinned. Pinned pages are
444 * restored because we cannot migrate them.
445 *
446 * This is the last step before we call the device driver callback to allocate
447 * destination memory and copy contents of original page over to new page.
448 */
449static void migrate_vma_unmap(struct migrate_vma *migrate)
450{
451	migrate->cpages = migrate_device_unmap(migrate->src, migrate->npages,
452					migrate->fault_page);
453}
454
455/**
456 * migrate_vma_setup() - prepare to migrate a range of memory
457 * @args: contains the vma, start, and pfns arrays for the migration
458 *
459 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
460 * without an error.
461 *
462 * Prepare to migrate a range of memory virtual address range by collecting all
463 * the pages backing each virtual address in the range, saving them inside the
464 * src array.  Then lock those pages and unmap them. Once the pages are locked
465 * and unmapped, check whether each page is pinned or not.  Pages that aren't
466 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
467 * corresponding src array entry.  Then restores any pages that are pinned, by
468 * remapping and unlocking those pages.
469 *
470 * The caller should then allocate destination memory and copy source memory to
471 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
472 * flag set).  Once these are allocated and copied, the caller must update each
473 * corresponding entry in the dst array with the pfn value of the destination
474 * page and with MIGRATE_PFN_VALID. Destination pages must be locked via
475 * lock_page().
476 *
477 * Note that the caller does not have to migrate all the pages that are marked
478 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
479 * device memory to system memory.  If the caller cannot migrate a device page
480 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
481 * consequences for the userspace process, so it must be avoided if at all
482 * possible.
483 *
484 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
485 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
486 * allowing the caller to allocate device memory for those unbacked virtual
487 * addresses.  For this the caller simply has to allocate device memory and
488 * properly set the destination entry like for regular migration.  Note that
489 * this can still fail, and thus inside the device driver you must check if the
490 * migration was successful for those entries after calling migrate_vma_pages(),
491 * just like for regular migration.
492 *
493 * After that, the callers must call migrate_vma_pages() to go over each entry
494 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
495 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
496 * then migrate_vma_pages() to migrate struct page information from the source
497 * struct page to the destination struct page.  If it fails to migrate the
498 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
499 * src array.
500 *
501 * At this point all successfully migrated pages have an entry in the src
502 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
503 * array entry with MIGRATE_PFN_VALID flag set.
504 *
505 * Once migrate_vma_pages() returns the caller may inspect which pages were
506 * successfully migrated, and which were not.  Successfully migrated pages will
507 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
508 *
509 * It is safe to update device page table after migrate_vma_pages() because
510 * both destination and source page are still locked, and the mmap_lock is held
511 * in read mode (hence no one can unmap the range being migrated).
512 *
513 * Once the caller is done cleaning up things and updating its page table (if it
514 * chose to do so, this is not an obligation) it finally calls
515 * migrate_vma_finalize() to update the CPU page table to point to new pages
516 * for successfully migrated pages or otherwise restore the CPU page table to
517 * point to the original source pages.
518 */
519int migrate_vma_setup(struct migrate_vma *args)
520{
521	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
522
523	args->start &= PAGE_MASK;
524	args->end &= PAGE_MASK;
525	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
526	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
527		return -EINVAL;
528	if (nr_pages <= 0)
529		return -EINVAL;
530	if (args->start < args->vma->vm_start ||
531	    args->start >= args->vma->vm_end)
532		return -EINVAL;
533	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
534		return -EINVAL;
535	if (!args->src || !args->dst)
536		return -EINVAL;
537	if (args->fault_page && !is_device_private_page(args->fault_page))
538		return -EINVAL;
539
540	memset(args->src, 0, sizeof(*args->src) * nr_pages);
541	args->cpages = 0;
542	args->npages = 0;
543
544	migrate_vma_collect(args);
545
546	if (args->cpages)
547		migrate_vma_unmap(args);
548
549	/*
550	 * At this point pages are locked and unmapped, and thus they have
551	 * stable content and can safely be copied to destination memory that
552	 * is allocated by the drivers.
553	 */
554	return 0;
555
556}
557EXPORT_SYMBOL(migrate_vma_setup);
558
559/*
560 * This code closely matches the code in:
561 *   __handle_mm_fault()
562 *     handle_pte_fault()
563 *       do_anonymous_page()
564 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
565 * private or coherent page.
566 */
567static void migrate_vma_insert_page(struct migrate_vma *migrate,
568				    unsigned long addr,
569				    struct page *page,
570				    unsigned long *src)
571{
572	struct folio *folio = page_folio(page);
573	struct vm_area_struct *vma = migrate->vma;
574	struct mm_struct *mm = vma->vm_mm;
575	bool flush = false;
576	spinlock_t *ptl;
577	pte_t entry;
578	pgd_t *pgdp;
579	p4d_t *p4dp;
580	pud_t *pudp;
581	pmd_t *pmdp;
582	pte_t *ptep;
583	pte_t orig_pte;
584
585	/* Only allow populating anonymous memory */
586	if (!vma_is_anonymous(vma))
587		goto abort;
588
589	pgdp = pgd_offset(mm, addr);
590	p4dp = p4d_alloc(mm, pgdp, addr);
591	if (!p4dp)
592		goto abort;
593	pudp = pud_alloc(mm, p4dp, addr);
594	if (!pudp)
595		goto abort;
596	pmdp = pmd_alloc(mm, pudp, addr);
597	if (!pmdp)
598		goto abort;
599	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
600		goto abort;
601	if (pte_alloc(mm, pmdp))
602		goto abort;
603	if (unlikely(anon_vma_prepare(vma)))
604		goto abort;
605	if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
606		goto abort;
607
608	/*
609	 * The memory barrier inside __folio_mark_uptodate makes sure that
610	 * preceding stores to the folio contents become visible before
611	 * the set_pte_at() write.
612	 */
613	__folio_mark_uptodate(folio);
614
615	if (folio_is_device_private(folio)) {
616		swp_entry_t swp_entry;
617
618		if (vma->vm_flags & VM_WRITE)
619			swp_entry = make_writable_device_private_entry(
620						page_to_pfn(page));
621		else
622			swp_entry = make_readable_device_private_entry(
623						page_to_pfn(page));
624		entry = swp_entry_to_pte(swp_entry);
625	} else {
626		if (folio_is_zone_device(folio) &&
627		    !folio_is_device_coherent(folio)) {
628			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
629			goto abort;
630		}
631		entry = mk_pte(page, vma->vm_page_prot);
632		if (vma->vm_flags & VM_WRITE)
633			entry = pte_mkwrite(pte_mkdirty(entry), vma);
634	}
635
636	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
637	if (!ptep)
638		goto abort;
639	orig_pte = ptep_get(ptep);
640
641	if (check_stable_address_space(mm))
642		goto unlock_abort;
643
644	if (pte_present(orig_pte)) {
645		unsigned long pfn = pte_pfn(orig_pte);
646
647		if (!is_zero_pfn(pfn))
648			goto unlock_abort;
649		flush = true;
650	} else if (!pte_none(orig_pte))
651		goto unlock_abort;
652
653	/*
654	 * Check for userfaultfd but do not deliver the fault. Instead,
655	 * just back off.
656	 */
657	if (userfaultfd_missing(vma))
658		goto unlock_abort;
659
660	inc_mm_counter(mm, MM_ANONPAGES);
661	folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
662	if (!folio_is_zone_device(folio))
663		folio_add_lru_vma(folio, vma);
664	folio_get(folio);
665
666	if (flush) {
667		flush_cache_page(vma, addr, pte_pfn(orig_pte));
668		ptep_clear_flush(vma, addr, ptep);
669	}
670	set_pte_at(mm, addr, ptep, entry);
671	update_mmu_cache(vma, addr, ptep);
672
673	pte_unmap_unlock(ptep, ptl);
674	*src = MIGRATE_PFN_MIGRATE;
675	return;
676
677unlock_abort:
678	pte_unmap_unlock(ptep, ptl);
679abort:
680	*src &= ~MIGRATE_PFN_MIGRATE;
681}
682
683static void __migrate_device_pages(unsigned long *src_pfns,
684				unsigned long *dst_pfns, unsigned long npages,
685				struct migrate_vma *migrate)
686{
687	struct mmu_notifier_range range;
688	unsigned long i;
689	bool notified = false;
690
691	for (i = 0; i < npages; i++) {
692		struct page *newpage = migrate_pfn_to_page(dst_pfns[i]);
693		struct page *page = migrate_pfn_to_page(src_pfns[i]);
694		struct address_space *mapping;
695		struct folio *newfolio, *folio;
696		int r, extra_cnt = 0;
697
698		if (!newpage) {
699			src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
700			continue;
701		}
702
703		if (!page) {
704			unsigned long addr;
705
706			if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE))
707				continue;
708
709			/*
710			 * The only time there is no vma is when called from
711			 * migrate_device_coherent_folio(). However this isn't
712			 * called if the page could not be unmapped.
713			 */
714			VM_BUG_ON(!migrate);
715			addr = migrate->start + i*PAGE_SIZE;
716			if (!notified) {
717				notified = true;
718
719				mmu_notifier_range_init_owner(&range,
720					MMU_NOTIFY_MIGRATE, 0,
721					migrate->vma->vm_mm, addr, migrate->end,
722					migrate->pgmap_owner);
723				mmu_notifier_invalidate_range_start(&range);
724			}
725			migrate_vma_insert_page(migrate, addr, newpage,
726						&src_pfns[i]);
727			continue;
728		}
729
730		newfolio = page_folio(newpage);
731		folio = page_folio(page);
732		mapping = folio_mapping(folio);
733
734		if (folio_is_device_private(newfolio) ||
735		    folio_is_device_coherent(newfolio)) {
736			if (mapping) {
737				/*
738				 * For now only support anonymous memory migrating to
739				 * device private or coherent memory.
740				 *
741				 * Try to get rid of swap cache if possible.
742				 */
743				if (!folio_test_anon(folio) ||
744				    !folio_free_swap(folio)) {
745					src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
746					continue;
747				}
748			}
749		} else if (folio_is_zone_device(newfolio)) {
750			/*
751			 * Other types of ZONE_DEVICE page are not supported.
752			 */
753			src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
754			continue;
755		}
756
757		BUG_ON(folio_test_writeback(folio));
758
759		if (migrate && migrate->fault_page == page)
760			extra_cnt = 1;
761		r = folio_migrate_mapping(mapping, newfolio, folio, extra_cnt);
762		if (r != MIGRATEPAGE_SUCCESS)
763			src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
764		else
765			folio_migrate_flags(newfolio, folio);
766	}
767
768	if (notified)
769		mmu_notifier_invalidate_range_end(&range);
770}
771
772/**
773 * migrate_device_pages() - migrate meta-data from src page to dst page
774 * @src_pfns: src_pfns returned from migrate_device_range()
775 * @dst_pfns: array of pfns allocated by the driver to migrate memory to
776 * @npages: number of pages in the range
777 *
778 * Equivalent to migrate_vma_pages(). This is called to migrate struct page
779 * meta-data from source struct page to destination.
780 */
781void migrate_device_pages(unsigned long *src_pfns, unsigned long *dst_pfns,
782			unsigned long npages)
783{
784	__migrate_device_pages(src_pfns, dst_pfns, npages, NULL);
785}
786EXPORT_SYMBOL(migrate_device_pages);
787
788/**
789 * migrate_vma_pages() - migrate meta-data from src page to dst page
790 * @migrate: migrate struct containing all migration information
791 *
792 * This migrates struct page meta-data from source struct page to destination
793 * struct page. This effectively finishes the migration from source page to the
794 * destination page.
795 */
796void migrate_vma_pages(struct migrate_vma *migrate)
797{
798	__migrate_device_pages(migrate->src, migrate->dst, migrate->npages, migrate);
799}
800EXPORT_SYMBOL(migrate_vma_pages);
801
802/*
803 * migrate_device_finalize() - complete page migration
804 * @src_pfns: src_pfns returned from migrate_device_range()
805 * @dst_pfns: array of pfns allocated by the driver to migrate memory to
806 * @npages: number of pages in the range
807 *
808 * Completes migration of the page by removing special migration entries.
809 * Drivers must ensure copying of page data is complete and visible to the CPU
810 * before calling this.
811 */
812void migrate_device_finalize(unsigned long *src_pfns,
813			unsigned long *dst_pfns, unsigned long npages)
814{
815	unsigned long i;
816
817	for (i = 0; i < npages; i++) {
818		struct folio *dst = NULL, *src = NULL;
819		struct page *newpage = migrate_pfn_to_page(dst_pfns[i]);
820		struct page *page = migrate_pfn_to_page(src_pfns[i]);
821
822		if (newpage)
823			dst = page_folio(newpage);
824
825		if (!page) {
826			if (dst) {
827				folio_unlock(dst);
828				folio_put(dst);
829			}
830			continue;
831		}
832
833		src = page_folio(page);
834
835		if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE) || !dst) {
836			if (dst) {
837				folio_unlock(dst);
838				folio_put(dst);
839			}
840			dst = src;
841		}
842
843		if (!folio_is_zone_device(dst))
844			folio_add_lru(dst);
845		remove_migration_ptes(src, dst, 0);
846		folio_unlock(src);
847		folio_put(src);
848
849		if (dst != src) {
850			folio_unlock(dst);
851			folio_put(dst);
852		}
853	}
854}
855EXPORT_SYMBOL(migrate_device_finalize);
856
857/**
858 * migrate_vma_finalize() - restore CPU page table entry
859 * @migrate: migrate struct containing all migration information
860 *
861 * This replaces the special migration pte entry with either a mapping to the
862 * new page if migration was successful for that page, or to the original page
863 * otherwise.
864 *
865 * This also unlocks the pages and puts them back on the lru, or drops the extra
866 * refcount, for device pages.
867 */
868void migrate_vma_finalize(struct migrate_vma *migrate)
869{
870	migrate_device_finalize(migrate->src, migrate->dst, migrate->npages);
871}
872EXPORT_SYMBOL(migrate_vma_finalize);
873
874/**
875 * migrate_device_range() - migrate device private pfns to normal memory.
876 * @src_pfns: array large enough to hold migrating source device private pfns.
877 * @start: starting pfn in the range to migrate.
878 * @npages: number of pages to migrate.
879 *
880 * migrate_vma_setup() is similar in concept to migrate_vma_setup() except that
881 * instead of looking up pages based on virtual address mappings a range of
882 * device pfns that should be migrated to system memory is used instead.
883 *
884 * This is useful when a driver needs to free device memory but doesn't know the
885 * virtual mappings of every page that may be in device memory. For example this
886 * is often the case when a driver is being unloaded or unbound from a device.
887 *
888 * Like migrate_vma_setup() this function will take a reference and lock any
889 * migrating pages that aren't free before unmapping them. Drivers may then
890 * allocate destination pages and start copying data from the device to CPU
891 * memory before calling migrate_device_pages().
892 */
893int migrate_device_range(unsigned long *src_pfns, unsigned long start,
894			unsigned long npages)
895{
896	unsigned long i, pfn;
897
898	for (pfn = start, i = 0; i < npages; pfn++, i++) {
899		struct folio *folio;
900
901		folio = folio_get_nontail_page(pfn_to_page(pfn));
902		if (!folio) {
903			src_pfns[i] = 0;
904			continue;
905		}
906
907		if (!folio_trylock(folio)) {
908			src_pfns[i] = 0;
909			folio_put(folio);
910			continue;
911		}
912
913		src_pfns[i] = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
914	}
915
916	migrate_device_unmap(src_pfns, npages, NULL);
917
918	return 0;
919}
920EXPORT_SYMBOL(migrate_device_range);
921
922/*
923 * Migrate a device coherent folio back to normal memory. The caller should have
924 * a reference on folio which will be copied to the new folio if migration is
925 * successful or dropped on failure.
926 */
927int migrate_device_coherent_folio(struct folio *folio)
928{
929	unsigned long src_pfn, dst_pfn = 0;
930	struct folio *dfolio;
931
932	WARN_ON_ONCE(folio_test_large(folio));
933
934	folio_lock(folio);
935	src_pfn = migrate_pfn(folio_pfn(folio)) | MIGRATE_PFN_MIGRATE;
936
937	/*
938	 * We don't have a VMA and don't need to walk the page tables to find
939	 * the source folio. So call migrate_vma_unmap() directly to unmap the
940	 * folio as migrate_vma_setup() will fail if args.vma == NULL.
941	 */
942	migrate_device_unmap(&src_pfn, 1, NULL);
943	if (!(src_pfn & MIGRATE_PFN_MIGRATE))
944		return -EBUSY;
945
946	dfolio = folio_alloc(GFP_USER | __GFP_NOWARN, 0);
947	if (dfolio) {
948		folio_lock(dfolio);
949		dst_pfn = migrate_pfn(folio_pfn(dfolio));
950	}
951
952	migrate_device_pages(&src_pfn, &dst_pfn, 1);
953	if (src_pfn & MIGRATE_PFN_MIGRATE)
954		folio_copy(dfolio, folio);
955	migrate_device_finalize(&src_pfn, &dst_pfn, 1);
956
957	if (src_pfn & MIGRATE_PFN_MIGRATE)
958		return 0;
959	return -EBUSY;
960}