Loading...
1/*
2 * linux/kernel/power/swap.c
3 *
4 * This file provides functions for reading the suspend image from
5 * and writing it to a swap partition.
6 *
7 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9 * Copyright (C) 2010 Bojan Smojver <bojan@rexursive.com>
10 *
11 * This file is released under the GPLv2.
12 *
13 */
14
15#include <linux/module.h>
16#include <linux/file.h>
17#include <linux/delay.h>
18#include <linux/bitops.h>
19#include <linux/genhd.h>
20#include <linux/device.h>
21#include <linux/buffer_head.h>
22#include <linux/bio.h>
23#include <linux/blkdev.h>
24#include <linux/swap.h>
25#include <linux/swapops.h>
26#include <linux/pm.h>
27#include <linux/slab.h>
28#include <linux/lzo.h>
29#include <linux/vmalloc.h>
30
31#include "power.h"
32
33#define HIBERNATE_SIG "S1SUSPEND"
34
35/*
36 * The swap map is a data structure used for keeping track of each page
37 * written to a swap partition. It consists of many swap_map_page
38 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
39 * These structures are stored on the swap and linked together with the
40 * help of the .next_swap member.
41 *
42 * The swap map is created during suspend. The swap map pages are
43 * allocated and populated one at a time, so we only need one memory
44 * page to set up the entire structure.
45 *
46 * During resume we also only need to use one swap_map_page structure
47 * at a time.
48 */
49
50#define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1)
51
52struct swap_map_page {
53 sector_t entries[MAP_PAGE_ENTRIES];
54 sector_t next_swap;
55};
56
57/**
58 * The swap_map_handle structure is used for handling swap in
59 * a file-alike way
60 */
61
62struct swap_map_handle {
63 struct swap_map_page *cur;
64 sector_t cur_swap;
65 sector_t first_sector;
66 unsigned int k;
67};
68
69struct swsusp_header {
70 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int)];
71 sector_t image;
72 unsigned int flags; /* Flags to pass to the "boot" kernel */
73 char orig_sig[10];
74 char sig[10];
75} __attribute__((packed));
76
77static struct swsusp_header *swsusp_header;
78
79/**
80 * The following functions are used for tracing the allocated
81 * swap pages, so that they can be freed in case of an error.
82 */
83
84struct swsusp_extent {
85 struct rb_node node;
86 unsigned long start;
87 unsigned long end;
88};
89
90static struct rb_root swsusp_extents = RB_ROOT;
91
92static int swsusp_extents_insert(unsigned long swap_offset)
93{
94 struct rb_node **new = &(swsusp_extents.rb_node);
95 struct rb_node *parent = NULL;
96 struct swsusp_extent *ext;
97
98 /* Figure out where to put the new node */
99 while (*new) {
100 ext = container_of(*new, struct swsusp_extent, node);
101 parent = *new;
102 if (swap_offset < ext->start) {
103 /* Try to merge */
104 if (swap_offset == ext->start - 1) {
105 ext->start--;
106 return 0;
107 }
108 new = &((*new)->rb_left);
109 } else if (swap_offset > ext->end) {
110 /* Try to merge */
111 if (swap_offset == ext->end + 1) {
112 ext->end++;
113 return 0;
114 }
115 new = &((*new)->rb_right);
116 } else {
117 /* It already is in the tree */
118 return -EINVAL;
119 }
120 }
121 /* Add the new node and rebalance the tree. */
122 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
123 if (!ext)
124 return -ENOMEM;
125
126 ext->start = swap_offset;
127 ext->end = swap_offset;
128 rb_link_node(&ext->node, parent, new);
129 rb_insert_color(&ext->node, &swsusp_extents);
130 return 0;
131}
132
133/**
134 * alloc_swapdev_block - allocate a swap page and register that it has
135 * been allocated, so that it can be freed in case of an error.
136 */
137
138sector_t alloc_swapdev_block(int swap)
139{
140 unsigned long offset;
141
142 offset = swp_offset(get_swap_page_of_type(swap));
143 if (offset) {
144 if (swsusp_extents_insert(offset))
145 swap_free(swp_entry(swap, offset));
146 else
147 return swapdev_block(swap, offset);
148 }
149 return 0;
150}
151
152/**
153 * free_all_swap_pages - free swap pages allocated for saving image data.
154 * It also frees the extents used to register which swap entries had been
155 * allocated.
156 */
157
158void free_all_swap_pages(int swap)
159{
160 struct rb_node *node;
161
162 while ((node = swsusp_extents.rb_node)) {
163 struct swsusp_extent *ext;
164 unsigned long offset;
165
166 ext = container_of(node, struct swsusp_extent, node);
167 rb_erase(node, &swsusp_extents);
168 for (offset = ext->start; offset <= ext->end; offset++)
169 swap_free(swp_entry(swap, offset));
170
171 kfree(ext);
172 }
173}
174
175int swsusp_swap_in_use(void)
176{
177 return (swsusp_extents.rb_node != NULL);
178}
179
180/*
181 * General things
182 */
183
184static unsigned short root_swap = 0xffff;
185struct block_device *hib_resume_bdev;
186
187/*
188 * Saving part
189 */
190
191static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
192{
193 int error;
194
195 hib_bio_read_page(swsusp_resume_block, swsusp_header, NULL);
196 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
197 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
198 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
199 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
200 swsusp_header->image = handle->first_sector;
201 swsusp_header->flags = flags;
202 error = hib_bio_write_page(swsusp_resume_block,
203 swsusp_header, NULL);
204 } else {
205 printk(KERN_ERR "PM: Swap header not found!\n");
206 error = -ENODEV;
207 }
208 return error;
209}
210
211/**
212 * swsusp_swap_check - check if the resume device is a swap device
213 * and get its index (if so)
214 *
215 * This is called before saving image
216 */
217static int swsusp_swap_check(void)
218{
219 int res;
220
221 res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
222 &hib_resume_bdev);
223 if (res < 0)
224 return res;
225
226 root_swap = res;
227 res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
228 if (res)
229 return res;
230
231 res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
232 if (res < 0)
233 blkdev_put(hib_resume_bdev, FMODE_WRITE);
234
235 return res;
236}
237
238/**
239 * write_page - Write one page to given swap location.
240 * @buf: Address we're writing.
241 * @offset: Offset of the swap page we're writing to.
242 * @bio_chain: Link the next write BIO here
243 */
244
245static int write_page(void *buf, sector_t offset, struct bio **bio_chain)
246{
247 void *src;
248
249 if (!offset)
250 return -ENOSPC;
251
252 if (bio_chain) {
253 src = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
254 if (src) {
255 copy_page(src, buf);
256 } else {
257 WARN_ON_ONCE(1);
258 bio_chain = NULL; /* Go synchronous */
259 src = buf;
260 }
261 } else {
262 src = buf;
263 }
264 return hib_bio_write_page(offset, src, bio_chain);
265}
266
267static void release_swap_writer(struct swap_map_handle *handle)
268{
269 if (handle->cur)
270 free_page((unsigned long)handle->cur);
271 handle->cur = NULL;
272}
273
274static int get_swap_writer(struct swap_map_handle *handle)
275{
276 int ret;
277
278 ret = swsusp_swap_check();
279 if (ret) {
280 if (ret != -ENOSPC)
281 printk(KERN_ERR "PM: Cannot find swap device, try "
282 "swapon -a.\n");
283 return ret;
284 }
285 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
286 if (!handle->cur) {
287 ret = -ENOMEM;
288 goto err_close;
289 }
290 handle->cur_swap = alloc_swapdev_block(root_swap);
291 if (!handle->cur_swap) {
292 ret = -ENOSPC;
293 goto err_rel;
294 }
295 handle->k = 0;
296 handle->first_sector = handle->cur_swap;
297 return 0;
298err_rel:
299 release_swap_writer(handle);
300err_close:
301 swsusp_close(FMODE_WRITE);
302 return ret;
303}
304
305static int swap_write_page(struct swap_map_handle *handle, void *buf,
306 struct bio **bio_chain)
307{
308 int error = 0;
309 sector_t offset;
310
311 if (!handle->cur)
312 return -EINVAL;
313 offset = alloc_swapdev_block(root_swap);
314 error = write_page(buf, offset, bio_chain);
315 if (error)
316 return error;
317 handle->cur->entries[handle->k++] = offset;
318 if (handle->k >= MAP_PAGE_ENTRIES) {
319 error = hib_wait_on_bio_chain(bio_chain);
320 if (error)
321 goto out;
322 offset = alloc_swapdev_block(root_swap);
323 if (!offset)
324 return -ENOSPC;
325 handle->cur->next_swap = offset;
326 error = write_page(handle->cur, handle->cur_swap, NULL);
327 if (error)
328 goto out;
329 clear_page(handle->cur);
330 handle->cur_swap = offset;
331 handle->k = 0;
332 }
333 out:
334 return error;
335}
336
337static int flush_swap_writer(struct swap_map_handle *handle)
338{
339 if (handle->cur && handle->cur_swap)
340 return write_page(handle->cur, handle->cur_swap, NULL);
341 else
342 return -EINVAL;
343}
344
345static int swap_writer_finish(struct swap_map_handle *handle,
346 unsigned int flags, int error)
347{
348 if (!error) {
349 flush_swap_writer(handle);
350 printk(KERN_INFO "PM: S");
351 error = mark_swapfiles(handle, flags);
352 printk("|\n");
353 }
354
355 if (error)
356 free_all_swap_pages(root_swap);
357 release_swap_writer(handle);
358 swsusp_close(FMODE_WRITE);
359
360 return error;
361}
362
363/* We need to remember how much compressed data we need to read. */
364#define LZO_HEADER sizeof(size_t)
365
366/* Number of pages/bytes we'll compress at one time. */
367#define LZO_UNC_PAGES 32
368#define LZO_UNC_SIZE (LZO_UNC_PAGES * PAGE_SIZE)
369
370/* Number of pages/bytes we need for compressed data (worst case). */
371#define LZO_CMP_PAGES DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
372 LZO_HEADER, PAGE_SIZE)
373#define LZO_CMP_SIZE (LZO_CMP_PAGES * PAGE_SIZE)
374
375/**
376 * save_image - save the suspend image data
377 */
378
379static int save_image(struct swap_map_handle *handle,
380 struct snapshot_handle *snapshot,
381 unsigned int nr_to_write)
382{
383 unsigned int m;
384 int ret;
385 int nr_pages;
386 int err2;
387 struct bio *bio;
388 struct timeval start;
389 struct timeval stop;
390
391 printk(KERN_INFO "PM: Saving image data pages (%u pages) ... ",
392 nr_to_write);
393 m = nr_to_write / 100;
394 if (!m)
395 m = 1;
396 nr_pages = 0;
397 bio = NULL;
398 do_gettimeofday(&start);
399 while (1) {
400 ret = snapshot_read_next(snapshot);
401 if (ret <= 0)
402 break;
403 ret = swap_write_page(handle, data_of(*snapshot), &bio);
404 if (ret)
405 break;
406 if (!(nr_pages % m))
407 printk(KERN_CONT "\b\b\b\b%3d%%", nr_pages / m);
408 nr_pages++;
409 }
410 err2 = hib_wait_on_bio_chain(&bio);
411 do_gettimeofday(&stop);
412 if (!ret)
413 ret = err2;
414 if (!ret)
415 printk(KERN_CONT "\b\b\b\bdone\n");
416 else
417 printk(KERN_CONT "\n");
418 swsusp_show_speed(&start, &stop, nr_to_write, "Wrote");
419 return ret;
420}
421
422
423/**
424 * save_image_lzo - Save the suspend image data compressed with LZO.
425 * @handle: Swap mam handle to use for saving the image.
426 * @snapshot: Image to read data from.
427 * @nr_to_write: Number of pages to save.
428 */
429static int save_image_lzo(struct swap_map_handle *handle,
430 struct snapshot_handle *snapshot,
431 unsigned int nr_to_write)
432{
433 unsigned int m;
434 int ret = 0;
435 int nr_pages;
436 int err2;
437 struct bio *bio;
438 struct timeval start;
439 struct timeval stop;
440 size_t off, unc_len, cmp_len;
441 unsigned char *unc, *cmp, *wrk, *page;
442
443 page = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
444 if (!page) {
445 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
446 return -ENOMEM;
447 }
448
449 wrk = vmalloc(LZO1X_1_MEM_COMPRESS);
450 if (!wrk) {
451 printk(KERN_ERR "PM: Failed to allocate LZO workspace\n");
452 free_page((unsigned long)page);
453 return -ENOMEM;
454 }
455
456 unc = vmalloc(LZO_UNC_SIZE);
457 if (!unc) {
458 printk(KERN_ERR "PM: Failed to allocate LZO uncompressed\n");
459 vfree(wrk);
460 free_page((unsigned long)page);
461 return -ENOMEM;
462 }
463
464 cmp = vmalloc(LZO_CMP_SIZE);
465 if (!cmp) {
466 printk(KERN_ERR "PM: Failed to allocate LZO compressed\n");
467 vfree(unc);
468 vfree(wrk);
469 free_page((unsigned long)page);
470 return -ENOMEM;
471 }
472
473 printk(KERN_INFO
474 "PM: Compressing and saving image data (%u pages) ... ",
475 nr_to_write);
476 m = nr_to_write / 100;
477 if (!m)
478 m = 1;
479 nr_pages = 0;
480 bio = NULL;
481 do_gettimeofday(&start);
482 for (;;) {
483 for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
484 ret = snapshot_read_next(snapshot);
485 if (ret < 0)
486 goto out_finish;
487
488 if (!ret)
489 break;
490
491 memcpy(unc + off, data_of(*snapshot), PAGE_SIZE);
492
493 if (!(nr_pages % m))
494 printk(KERN_CONT "\b\b\b\b%3d%%", nr_pages / m);
495 nr_pages++;
496 }
497
498 if (!off)
499 break;
500
501 unc_len = off;
502 ret = lzo1x_1_compress(unc, unc_len,
503 cmp + LZO_HEADER, &cmp_len, wrk);
504 if (ret < 0) {
505 printk(KERN_ERR "PM: LZO compression failed\n");
506 break;
507 }
508
509 if (unlikely(!cmp_len ||
510 cmp_len > lzo1x_worst_compress(unc_len))) {
511 printk(KERN_ERR "PM: Invalid LZO compressed length\n");
512 ret = -1;
513 break;
514 }
515
516 *(size_t *)cmp = cmp_len;
517
518 /*
519 * Given we are writing one page at a time to disk, we copy
520 * that much from the buffer, although the last bit will likely
521 * be smaller than full page. This is OK - we saved the length
522 * of the compressed data, so any garbage at the end will be
523 * discarded when we read it.
524 */
525 for (off = 0; off < LZO_HEADER + cmp_len; off += PAGE_SIZE) {
526 memcpy(page, cmp + off, PAGE_SIZE);
527
528 ret = swap_write_page(handle, page, &bio);
529 if (ret)
530 goto out_finish;
531 }
532 }
533
534out_finish:
535 err2 = hib_wait_on_bio_chain(&bio);
536 do_gettimeofday(&stop);
537 if (!ret)
538 ret = err2;
539 if (!ret)
540 printk(KERN_CONT "\b\b\b\bdone\n");
541 else
542 printk(KERN_CONT "\n");
543 swsusp_show_speed(&start, &stop, nr_to_write, "Wrote");
544
545 vfree(cmp);
546 vfree(unc);
547 vfree(wrk);
548 free_page((unsigned long)page);
549
550 return ret;
551}
552
553/**
554 * enough_swap - Make sure we have enough swap to save the image.
555 *
556 * Returns TRUE or FALSE after checking the total amount of swap
557 * space avaiable from the resume partition.
558 */
559
560static int enough_swap(unsigned int nr_pages, unsigned int flags)
561{
562 unsigned int free_swap = count_swap_pages(root_swap, 1);
563 unsigned int required;
564
565 pr_debug("PM: Free swap pages: %u\n", free_swap);
566
567 required = PAGES_FOR_IO + ((flags & SF_NOCOMPRESS_MODE) ?
568 nr_pages : (nr_pages * LZO_CMP_PAGES) / LZO_UNC_PAGES + 1);
569 return free_swap > required;
570}
571
572/**
573 * swsusp_write - Write entire image and metadata.
574 * @flags: flags to pass to the "boot" kernel in the image header
575 *
576 * It is important _NOT_ to umount filesystems at this point. We want
577 * them synced (in case something goes wrong) but we DO not want to mark
578 * filesystem clean: it is not. (And it does not matter, if we resume
579 * correctly, we'll mark system clean, anyway.)
580 */
581
582int swsusp_write(unsigned int flags)
583{
584 struct swap_map_handle handle;
585 struct snapshot_handle snapshot;
586 struct swsusp_info *header;
587 unsigned long pages;
588 int error;
589
590 pages = snapshot_get_image_size();
591 error = get_swap_writer(&handle);
592 if (error) {
593 printk(KERN_ERR "PM: Cannot get swap writer\n");
594 return error;
595 }
596 if (!enough_swap(pages, flags)) {
597 printk(KERN_ERR "PM: Not enough free swap\n");
598 error = -ENOSPC;
599 goto out_finish;
600 }
601 memset(&snapshot, 0, sizeof(struct snapshot_handle));
602 error = snapshot_read_next(&snapshot);
603 if (error < PAGE_SIZE) {
604 if (error >= 0)
605 error = -EFAULT;
606
607 goto out_finish;
608 }
609 header = (struct swsusp_info *)data_of(snapshot);
610 error = swap_write_page(&handle, header, NULL);
611 if (!error) {
612 error = (flags & SF_NOCOMPRESS_MODE) ?
613 save_image(&handle, &snapshot, pages - 1) :
614 save_image_lzo(&handle, &snapshot, pages - 1);
615 }
616out_finish:
617 error = swap_writer_finish(&handle, flags, error);
618 return error;
619}
620
621/**
622 * The following functions allow us to read data using a swap map
623 * in a file-alike way
624 */
625
626static void release_swap_reader(struct swap_map_handle *handle)
627{
628 if (handle->cur)
629 free_page((unsigned long)handle->cur);
630 handle->cur = NULL;
631}
632
633static int get_swap_reader(struct swap_map_handle *handle,
634 unsigned int *flags_p)
635{
636 int error;
637
638 *flags_p = swsusp_header->flags;
639
640 if (!swsusp_header->image) /* how can this happen? */
641 return -EINVAL;
642
643 handle->cur = (struct swap_map_page *)get_zeroed_page(__GFP_WAIT | __GFP_HIGH);
644 if (!handle->cur)
645 return -ENOMEM;
646
647 error = hib_bio_read_page(swsusp_header->image, handle->cur, NULL);
648 if (error) {
649 release_swap_reader(handle);
650 return error;
651 }
652 handle->k = 0;
653 return 0;
654}
655
656static int swap_read_page(struct swap_map_handle *handle, void *buf,
657 struct bio **bio_chain)
658{
659 sector_t offset;
660 int error;
661
662 if (!handle->cur)
663 return -EINVAL;
664 offset = handle->cur->entries[handle->k];
665 if (!offset)
666 return -EFAULT;
667 error = hib_bio_read_page(offset, buf, bio_chain);
668 if (error)
669 return error;
670 if (++handle->k >= MAP_PAGE_ENTRIES) {
671 error = hib_wait_on_bio_chain(bio_chain);
672 handle->k = 0;
673 offset = handle->cur->next_swap;
674 if (!offset)
675 release_swap_reader(handle);
676 else if (!error)
677 error = hib_bio_read_page(offset, handle->cur, NULL);
678 }
679 return error;
680}
681
682static int swap_reader_finish(struct swap_map_handle *handle)
683{
684 release_swap_reader(handle);
685
686 return 0;
687}
688
689/**
690 * load_image - load the image using the swap map handle
691 * @handle and the snapshot handle @snapshot
692 * (assume there are @nr_pages pages to load)
693 */
694
695static int load_image(struct swap_map_handle *handle,
696 struct snapshot_handle *snapshot,
697 unsigned int nr_to_read)
698{
699 unsigned int m;
700 int error = 0;
701 struct timeval start;
702 struct timeval stop;
703 struct bio *bio;
704 int err2;
705 unsigned nr_pages;
706
707 printk(KERN_INFO "PM: Loading image data pages (%u pages) ... ",
708 nr_to_read);
709 m = nr_to_read / 100;
710 if (!m)
711 m = 1;
712 nr_pages = 0;
713 bio = NULL;
714 do_gettimeofday(&start);
715 for ( ; ; ) {
716 error = snapshot_write_next(snapshot);
717 if (error <= 0)
718 break;
719 error = swap_read_page(handle, data_of(*snapshot), &bio);
720 if (error)
721 break;
722 if (snapshot->sync_read)
723 error = hib_wait_on_bio_chain(&bio);
724 if (error)
725 break;
726 if (!(nr_pages % m))
727 printk("\b\b\b\b%3d%%", nr_pages / m);
728 nr_pages++;
729 }
730 err2 = hib_wait_on_bio_chain(&bio);
731 do_gettimeofday(&stop);
732 if (!error)
733 error = err2;
734 if (!error) {
735 printk("\b\b\b\bdone\n");
736 snapshot_write_finalize(snapshot);
737 if (!snapshot_image_loaded(snapshot))
738 error = -ENODATA;
739 } else
740 printk("\n");
741 swsusp_show_speed(&start, &stop, nr_to_read, "Read");
742 return error;
743}
744
745/**
746 * load_image_lzo - Load compressed image data and decompress them with LZO.
747 * @handle: Swap map handle to use for loading data.
748 * @snapshot: Image to copy uncompressed data into.
749 * @nr_to_read: Number of pages to load.
750 */
751static int load_image_lzo(struct swap_map_handle *handle,
752 struct snapshot_handle *snapshot,
753 unsigned int nr_to_read)
754{
755 unsigned int m;
756 int error = 0;
757 struct bio *bio;
758 struct timeval start;
759 struct timeval stop;
760 unsigned nr_pages;
761 size_t i, off, unc_len, cmp_len;
762 unsigned char *unc, *cmp, *page[LZO_CMP_PAGES];
763
764 for (i = 0; i < LZO_CMP_PAGES; i++) {
765 page[i] = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
766 if (!page[i]) {
767 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
768
769 while (i)
770 free_page((unsigned long)page[--i]);
771
772 return -ENOMEM;
773 }
774 }
775
776 unc = vmalloc(LZO_UNC_SIZE);
777 if (!unc) {
778 printk(KERN_ERR "PM: Failed to allocate LZO uncompressed\n");
779
780 for (i = 0; i < LZO_CMP_PAGES; i++)
781 free_page((unsigned long)page[i]);
782
783 return -ENOMEM;
784 }
785
786 cmp = vmalloc(LZO_CMP_SIZE);
787 if (!cmp) {
788 printk(KERN_ERR "PM: Failed to allocate LZO compressed\n");
789
790 vfree(unc);
791 for (i = 0; i < LZO_CMP_PAGES; i++)
792 free_page((unsigned long)page[i]);
793
794 return -ENOMEM;
795 }
796
797 printk(KERN_INFO
798 "PM: Loading and decompressing image data (%u pages) ... ",
799 nr_to_read);
800 m = nr_to_read / 100;
801 if (!m)
802 m = 1;
803 nr_pages = 0;
804 bio = NULL;
805 do_gettimeofday(&start);
806
807 error = snapshot_write_next(snapshot);
808 if (error <= 0)
809 goto out_finish;
810
811 for (;;) {
812 error = swap_read_page(handle, page[0], NULL); /* sync */
813 if (error)
814 break;
815
816 cmp_len = *(size_t *)page[0];
817 if (unlikely(!cmp_len ||
818 cmp_len > lzo1x_worst_compress(LZO_UNC_SIZE))) {
819 printk(KERN_ERR "PM: Invalid LZO compressed length\n");
820 error = -1;
821 break;
822 }
823
824 for (off = PAGE_SIZE, i = 1;
825 off < LZO_HEADER + cmp_len; off += PAGE_SIZE, i++) {
826 error = swap_read_page(handle, page[i], &bio);
827 if (error)
828 goto out_finish;
829 }
830
831 error = hib_wait_on_bio_chain(&bio); /* need all data now */
832 if (error)
833 goto out_finish;
834
835 for (off = 0, i = 0;
836 off < LZO_HEADER + cmp_len; off += PAGE_SIZE, i++) {
837 memcpy(cmp + off, page[i], PAGE_SIZE);
838 }
839
840 unc_len = LZO_UNC_SIZE;
841 error = lzo1x_decompress_safe(cmp + LZO_HEADER, cmp_len,
842 unc, &unc_len);
843 if (error < 0) {
844 printk(KERN_ERR "PM: LZO decompression failed\n");
845 break;
846 }
847
848 if (unlikely(!unc_len ||
849 unc_len > LZO_UNC_SIZE ||
850 unc_len & (PAGE_SIZE - 1))) {
851 printk(KERN_ERR "PM: Invalid LZO uncompressed length\n");
852 error = -1;
853 break;
854 }
855
856 for (off = 0; off < unc_len; off += PAGE_SIZE) {
857 memcpy(data_of(*snapshot), unc + off, PAGE_SIZE);
858
859 if (!(nr_pages % m))
860 printk("\b\b\b\b%3d%%", nr_pages / m);
861 nr_pages++;
862
863 error = snapshot_write_next(snapshot);
864 if (error <= 0)
865 goto out_finish;
866 }
867 }
868
869out_finish:
870 do_gettimeofday(&stop);
871 if (!error) {
872 printk("\b\b\b\bdone\n");
873 snapshot_write_finalize(snapshot);
874 if (!snapshot_image_loaded(snapshot))
875 error = -ENODATA;
876 } else
877 printk("\n");
878 swsusp_show_speed(&start, &stop, nr_to_read, "Read");
879
880 vfree(cmp);
881 vfree(unc);
882 for (i = 0; i < LZO_CMP_PAGES; i++)
883 free_page((unsigned long)page[i]);
884
885 return error;
886}
887
888/**
889 * swsusp_read - read the hibernation image.
890 * @flags_p: flags passed by the "frozen" kernel in the image header should
891 * be written into this memory location
892 */
893
894int swsusp_read(unsigned int *flags_p)
895{
896 int error;
897 struct swap_map_handle handle;
898 struct snapshot_handle snapshot;
899 struct swsusp_info *header;
900
901 memset(&snapshot, 0, sizeof(struct snapshot_handle));
902 error = snapshot_write_next(&snapshot);
903 if (error < PAGE_SIZE)
904 return error < 0 ? error : -EFAULT;
905 header = (struct swsusp_info *)data_of(snapshot);
906 error = get_swap_reader(&handle, flags_p);
907 if (error)
908 goto end;
909 if (!error)
910 error = swap_read_page(&handle, header, NULL);
911 if (!error) {
912 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
913 load_image(&handle, &snapshot, header->pages - 1) :
914 load_image_lzo(&handle, &snapshot, header->pages - 1);
915 }
916 swap_reader_finish(&handle);
917end:
918 if (!error)
919 pr_debug("PM: Image successfully loaded\n");
920 else
921 pr_debug("PM: Error %d resuming\n", error);
922 return error;
923}
924
925/**
926 * swsusp_check - Check for swsusp signature in the resume device
927 */
928
929int swsusp_check(void)
930{
931 int error;
932
933 hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
934 FMODE_READ, NULL);
935 if (!IS_ERR(hib_resume_bdev)) {
936 set_blocksize(hib_resume_bdev, PAGE_SIZE);
937 clear_page(swsusp_header);
938 error = hib_bio_read_page(swsusp_resume_block,
939 swsusp_header, NULL);
940 if (error)
941 goto put;
942
943 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
944 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
945 /* Reset swap signature now */
946 error = hib_bio_write_page(swsusp_resume_block,
947 swsusp_header, NULL);
948 } else {
949 error = -EINVAL;
950 }
951
952put:
953 if (error)
954 blkdev_put(hib_resume_bdev, FMODE_READ);
955 else
956 pr_debug("PM: Image signature found, resuming\n");
957 } else {
958 error = PTR_ERR(hib_resume_bdev);
959 }
960
961 if (error)
962 pr_debug("PM: Image not found (code %d)\n", error);
963
964 return error;
965}
966
967/**
968 * swsusp_close - close swap device.
969 */
970
971void swsusp_close(fmode_t mode)
972{
973 if (IS_ERR(hib_resume_bdev)) {
974 pr_debug("PM: Image device not initialised\n");
975 return;
976 }
977
978 blkdev_put(hib_resume_bdev, mode);
979}
980
981static int swsusp_header_init(void)
982{
983 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
984 if (!swsusp_header)
985 panic("Could not allocate memory for swsusp_header\n");
986 return 0;
987}
988
989core_initcall(swsusp_header_init);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/kernel/power/swap.c
4 *
5 * This file provides functions for reading the suspend image from
6 * and writing it to a swap partition.
7 *
8 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
9 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
10 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
11 */
12
13#define pr_fmt(fmt) "PM: " fmt
14
15#include <linux/module.h>
16#include <linux/file.h>
17#include <linux/delay.h>
18#include <linux/bitops.h>
19#include <linux/device.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/swap.h>
23#include <linux/swapops.h>
24#include <linux/pm.h>
25#include <linux/slab.h>
26#include <linux/vmalloc.h>
27#include <linux/cpumask.h>
28#include <linux/atomic.h>
29#include <linux/kthread.h>
30#include <linux/crc32.h>
31#include <linux/ktime.h>
32
33#include "power.h"
34
35#define HIBERNATE_SIG "S1SUSPEND"
36
37u32 swsusp_hardware_signature;
38
39/*
40 * When reading an {un,}compressed image, we may restore pages in place,
41 * in which case some architectures need these pages cleaning before they
42 * can be executed. We don't know which pages these may be, so clean the lot.
43 */
44static bool clean_pages_on_read;
45static bool clean_pages_on_decompress;
46
47/*
48 * The swap map is a data structure used for keeping track of each page
49 * written to a swap partition. It consists of many swap_map_page
50 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
51 * These structures are stored on the swap and linked together with the
52 * help of the .next_swap member.
53 *
54 * The swap map is created during suspend. The swap map pages are
55 * allocated and populated one at a time, so we only need one memory
56 * page to set up the entire structure.
57 *
58 * During resume we pick up all swap_map_page structures into a list.
59 */
60
61#define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1)
62
63/*
64 * Number of free pages that are not high.
65 */
66static inline unsigned long low_free_pages(void)
67{
68 return nr_free_pages() - nr_free_highpages();
69}
70
71/*
72 * Number of pages required to be kept free while writing the image. Always
73 * half of all available low pages before the writing starts.
74 */
75static inline unsigned long reqd_free_pages(void)
76{
77 return low_free_pages() / 2;
78}
79
80struct swap_map_page {
81 sector_t entries[MAP_PAGE_ENTRIES];
82 sector_t next_swap;
83};
84
85struct swap_map_page_list {
86 struct swap_map_page *map;
87 struct swap_map_page_list *next;
88};
89
90/*
91 * The swap_map_handle structure is used for handling swap in
92 * a file-alike way
93 */
94
95struct swap_map_handle {
96 struct swap_map_page *cur;
97 struct swap_map_page_list *maps;
98 sector_t cur_swap;
99 sector_t first_sector;
100 unsigned int k;
101 unsigned long reqd_free_pages;
102 u32 crc32;
103};
104
105struct swsusp_header {
106 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
107 sizeof(u32) - sizeof(u32)];
108 u32 hw_sig;
109 u32 crc32;
110 sector_t image;
111 unsigned int flags; /* Flags to pass to the "boot" kernel */
112 char orig_sig[10];
113 char sig[10];
114} __packed;
115
116static struct swsusp_header *swsusp_header;
117
118/*
119 * The following functions are used for tracing the allocated
120 * swap pages, so that they can be freed in case of an error.
121 */
122
123struct swsusp_extent {
124 struct rb_node node;
125 unsigned long start;
126 unsigned long end;
127};
128
129static struct rb_root swsusp_extents = RB_ROOT;
130
131static int swsusp_extents_insert(unsigned long swap_offset)
132{
133 struct rb_node **new = &(swsusp_extents.rb_node);
134 struct rb_node *parent = NULL;
135 struct swsusp_extent *ext;
136
137 /* Figure out where to put the new node */
138 while (*new) {
139 ext = rb_entry(*new, struct swsusp_extent, node);
140 parent = *new;
141 if (swap_offset < ext->start) {
142 /* Try to merge */
143 if (swap_offset == ext->start - 1) {
144 ext->start--;
145 return 0;
146 }
147 new = &((*new)->rb_left);
148 } else if (swap_offset > ext->end) {
149 /* Try to merge */
150 if (swap_offset == ext->end + 1) {
151 ext->end++;
152 return 0;
153 }
154 new = &((*new)->rb_right);
155 } else {
156 /* It already is in the tree */
157 return -EINVAL;
158 }
159 }
160 /* Add the new node and rebalance the tree. */
161 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
162 if (!ext)
163 return -ENOMEM;
164
165 ext->start = swap_offset;
166 ext->end = swap_offset;
167 rb_link_node(&ext->node, parent, new);
168 rb_insert_color(&ext->node, &swsusp_extents);
169 return 0;
170}
171
172/*
173 * alloc_swapdev_block - allocate a swap page and register that it has
174 * been allocated, so that it can be freed in case of an error.
175 */
176
177sector_t alloc_swapdev_block(int swap)
178{
179 unsigned long offset;
180
181 offset = swp_offset(get_swap_page_of_type(swap));
182 if (offset) {
183 if (swsusp_extents_insert(offset))
184 swap_free(swp_entry(swap, offset));
185 else
186 return swapdev_block(swap, offset);
187 }
188 return 0;
189}
190
191/*
192 * free_all_swap_pages - free swap pages allocated for saving image data.
193 * It also frees the extents used to register which swap entries had been
194 * allocated.
195 */
196
197void free_all_swap_pages(int swap)
198{
199 struct rb_node *node;
200
201 while ((node = swsusp_extents.rb_node)) {
202 struct swsusp_extent *ext;
203
204 ext = rb_entry(node, struct swsusp_extent, node);
205 rb_erase(node, &swsusp_extents);
206 swap_free_nr(swp_entry(swap, ext->start),
207 ext->end - ext->start + 1);
208
209 kfree(ext);
210 }
211}
212
213int swsusp_swap_in_use(void)
214{
215 return (swsusp_extents.rb_node != NULL);
216}
217
218/*
219 * General things
220 */
221
222static unsigned short root_swap = 0xffff;
223static struct file *hib_resume_bdev_file;
224
225struct hib_bio_batch {
226 atomic_t count;
227 wait_queue_head_t wait;
228 blk_status_t error;
229 struct blk_plug plug;
230};
231
232static void hib_init_batch(struct hib_bio_batch *hb)
233{
234 atomic_set(&hb->count, 0);
235 init_waitqueue_head(&hb->wait);
236 hb->error = BLK_STS_OK;
237 blk_start_plug(&hb->plug);
238}
239
240static void hib_finish_batch(struct hib_bio_batch *hb)
241{
242 blk_finish_plug(&hb->plug);
243}
244
245static void hib_end_io(struct bio *bio)
246{
247 struct hib_bio_batch *hb = bio->bi_private;
248 struct page *page = bio_first_page_all(bio);
249
250 if (bio->bi_status) {
251 pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
252 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
253 (unsigned long long)bio->bi_iter.bi_sector);
254 }
255
256 if (bio_data_dir(bio) == WRITE)
257 put_page(page);
258 else if (clean_pages_on_read)
259 flush_icache_range((unsigned long)page_address(page),
260 (unsigned long)page_address(page) + PAGE_SIZE);
261
262 if (bio->bi_status && !hb->error)
263 hb->error = bio->bi_status;
264 if (atomic_dec_and_test(&hb->count))
265 wake_up(&hb->wait);
266
267 bio_put(bio);
268}
269
270static int hib_submit_io(blk_opf_t opf, pgoff_t page_off, void *addr,
271 struct hib_bio_batch *hb)
272{
273 struct page *page = virt_to_page(addr);
274 struct bio *bio;
275 int error = 0;
276
277 bio = bio_alloc(file_bdev(hib_resume_bdev_file), 1, opf,
278 GFP_NOIO | __GFP_HIGH);
279 bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
280
281 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
282 pr_err("Adding page to bio failed at %llu\n",
283 (unsigned long long)bio->bi_iter.bi_sector);
284 bio_put(bio);
285 return -EFAULT;
286 }
287
288 if (hb) {
289 bio->bi_end_io = hib_end_io;
290 bio->bi_private = hb;
291 atomic_inc(&hb->count);
292 submit_bio(bio);
293 } else {
294 error = submit_bio_wait(bio);
295 bio_put(bio);
296 }
297
298 return error;
299}
300
301static int hib_wait_io(struct hib_bio_batch *hb)
302{
303 /*
304 * We are relying on the behavior of blk_plug that a thread with
305 * a plug will flush the plug list before sleeping.
306 */
307 wait_event(hb->wait, atomic_read(&hb->count) == 0);
308 return blk_status_to_errno(hb->error);
309}
310
311/*
312 * Saving part
313 */
314static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
315{
316 int error;
317
318 hib_submit_io(REQ_OP_READ, swsusp_resume_block, swsusp_header, NULL);
319 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
320 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
321 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
322 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
323 swsusp_header->image = handle->first_sector;
324 if (swsusp_hardware_signature) {
325 swsusp_header->hw_sig = swsusp_hardware_signature;
326 flags |= SF_HW_SIG;
327 }
328 swsusp_header->flags = flags;
329 if (flags & SF_CRC32_MODE)
330 swsusp_header->crc32 = handle->crc32;
331 error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
332 swsusp_resume_block, swsusp_header, NULL);
333 } else {
334 pr_err("Swap header not found!\n");
335 error = -ENODEV;
336 }
337 return error;
338}
339
340/*
341 * Hold the swsusp_header flag. This is used in software_resume() in
342 * 'kernel/power/hibernate' to check if the image is compressed and query
343 * for the compression algorithm support(if so).
344 */
345unsigned int swsusp_header_flags;
346
347/**
348 * swsusp_swap_check - check if the resume device is a swap device
349 * and get its index (if so)
350 *
351 * This is called before saving image
352 */
353static int swsusp_swap_check(void)
354{
355 int res;
356
357 if (swsusp_resume_device)
358 res = swap_type_of(swsusp_resume_device, swsusp_resume_block);
359 else
360 res = find_first_swap(&swsusp_resume_device);
361 if (res < 0)
362 return res;
363 root_swap = res;
364
365 hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device,
366 BLK_OPEN_WRITE, NULL, NULL);
367 if (IS_ERR(hib_resume_bdev_file))
368 return PTR_ERR(hib_resume_bdev_file);
369
370 return 0;
371}
372
373/**
374 * write_page - Write one page to given swap location.
375 * @buf: Address we're writing.
376 * @offset: Offset of the swap page we're writing to.
377 * @hb: bio completion batch
378 */
379
380static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
381{
382 void *src;
383 int ret;
384
385 if (!offset)
386 return -ENOSPC;
387
388 if (hb) {
389 src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
390 __GFP_NORETRY);
391 if (src) {
392 copy_page(src, buf);
393 } else {
394 ret = hib_wait_io(hb); /* Free pages */
395 if (ret)
396 return ret;
397 src = (void *)__get_free_page(GFP_NOIO |
398 __GFP_NOWARN |
399 __GFP_NORETRY);
400 if (src) {
401 copy_page(src, buf);
402 } else {
403 WARN_ON_ONCE(1);
404 hb = NULL; /* Go synchronous */
405 src = buf;
406 }
407 }
408 } else {
409 src = buf;
410 }
411 return hib_submit_io(REQ_OP_WRITE | REQ_SYNC, offset, src, hb);
412}
413
414static void release_swap_writer(struct swap_map_handle *handle)
415{
416 if (handle->cur)
417 free_page((unsigned long)handle->cur);
418 handle->cur = NULL;
419}
420
421static int get_swap_writer(struct swap_map_handle *handle)
422{
423 int ret;
424
425 ret = swsusp_swap_check();
426 if (ret) {
427 if (ret != -ENOSPC)
428 pr_err("Cannot find swap device, try swapon -a\n");
429 return ret;
430 }
431 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
432 if (!handle->cur) {
433 ret = -ENOMEM;
434 goto err_close;
435 }
436 handle->cur_swap = alloc_swapdev_block(root_swap);
437 if (!handle->cur_swap) {
438 ret = -ENOSPC;
439 goto err_rel;
440 }
441 handle->k = 0;
442 handle->reqd_free_pages = reqd_free_pages();
443 handle->first_sector = handle->cur_swap;
444 return 0;
445err_rel:
446 release_swap_writer(handle);
447err_close:
448 swsusp_close();
449 return ret;
450}
451
452static int swap_write_page(struct swap_map_handle *handle, void *buf,
453 struct hib_bio_batch *hb)
454{
455 int error;
456 sector_t offset;
457
458 if (!handle->cur)
459 return -EINVAL;
460 offset = alloc_swapdev_block(root_swap);
461 error = write_page(buf, offset, hb);
462 if (error)
463 return error;
464 handle->cur->entries[handle->k++] = offset;
465 if (handle->k >= MAP_PAGE_ENTRIES) {
466 offset = alloc_swapdev_block(root_swap);
467 if (!offset)
468 return -ENOSPC;
469 handle->cur->next_swap = offset;
470 error = write_page(handle->cur, handle->cur_swap, hb);
471 if (error)
472 goto out;
473 clear_page(handle->cur);
474 handle->cur_swap = offset;
475 handle->k = 0;
476
477 if (hb && low_free_pages() <= handle->reqd_free_pages) {
478 error = hib_wait_io(hb);
479 if (error)
480 goto out;
481 /*
482 * Recalculate the number of required free pages, to
483 * make sure we never take more than half.
484 */
485 handle->reqd_free_pages = reqd_free_pages();
486 }
487 }
488 out:
489 return error;
490}
491
492static int flush_swap_writer(struct swap_map_handle *handle)
493{
494 if (handle->cur && handle->cur_swap)
495 return write_page(handle->cur, handle->cur_swap, NULL);
496 else
497 return -EINVAL;
498}
499
500static int swap_writer_finish(struct swap_map_handle *handle,
501 unsigned int flags, int error)
502{
503 if (!error) {
504 pr_info("S");
505 error = mark_swapfiles(handle, flags);
506 pr_cont("|\n");
507 flush_swap_writer(handle);
508 }
509
510 if (error)
511 free_all_swap_pages(root_swap);
512 release_swap_writer(handle);
513 swsusp_close();
514
515 return error;
516}
517
518/*
519 * Bytes we need for compressed data in worst case. We assume(limitation)
520 * this is the worst of all the compression algorithms.
521 */
522#define bytes_worst_compress(x) ((x) + ((x) / 16) + 64 + 3 + 2)
523
524/* We need to remember how much compressed data we need to read. */
525#define CMP_HEADER sizeof(size_t)
526
527/* Number of pages/bytes we'll compress at one time. */
528#define UNC_PAGES 32
529#define UNC_SIZE (UNC_PAGES * PAGE_SIZE)
530
531/* Number of pages we need for compressed data (worst case). */
532#define CMP_PAGES DIV_ROUND_UP(bytes_worst_compress(UNC_SIZE) + \
533 CMP_HEADER, PAGE_SIZE)
534#define CMP_SIZE (CMP_PAGES * PAGE_SIZE)
535
536/* Maximum number of threads for compression/decompression. */
537#define CMP_THREADS 3
538
539/* Minimum/maximum number of pages for read buffering. */
540#define CMP_MIN_RD_PAGES 1024
541#define CMP_MAX_RD_PAGES 8192
542
543/**
544 * save_image - save the suspend image data
545 */
546
547static int save_image(struct swap_map_handle *handle,
548 struct snapshot_handle *snapshot,
549 unsigned int nr_to_write)
550{
551 unsigned int m;
552 int ret;
553 int nr_pages;
554 int err2;
555 struct hib_bio_batch hb;
556 ktime_t start;
557 ktime_t stop;
558
559 hib_init_batch(&hb);
560
561 pr_info("Saving image data pages (%u pages)...\n",
562 nr_to_write);
563 m = nr_to_write / 10;
564 if (!m)
565 m = 1;
566 nr_pages = 0;
567 start = ktime_get();
568 while (1) {
569 ret = snapshot_read_next(snapshot);
570 if (ret <= 0)
571 break;
572 ret = swap_write_page(handle, data_of(*snapshot), &hb);
573 if (ret)
574 break;
575 if (!(nr_pages % m))
576 pr_info("Image saving progress: %3d%%\n",
577 nr_pages / m * 10);
578 nr_pages++;
579 }
580 err2 = hib_wait_io(&hb);
581 hib_finish_batch(&hb);
582 stop = ktime_get();
583 if (!ret)
584 ret = err2;
585 if (!ret)
586 pr_info("Image saving done\n");
587 swsusp_show_speed(start, stop, nr_to_write, "Wrote");
588 return ret;
589}
590
591/*
592 * Structure used for CRC32.
593 */
594struct crc_data {
595 struct task_struct *thr; /* thread */
596 atomic_t ready; /* ready to start flag */
597 atomic_t stop; /* ready to stop flag */
598 unsigned run_threads; /* nr current threads */
599 wait_queue_head_t go; /* start crc update */
600 wait_queue_head_t done; /* crc update done */
601 u32 *crc32; /* points to handle's crc32 */
602 size_t *unc_len[CMP_THREADS]; /* uncompressed lengths */
603 unsigned char *unc[CMP_THREADS]; /* uncompressed data */
604};
605
606/*
607 * CRC32 update function that runs in its own thread.
608 */
609static int crc32_threadfn(void *data)
610{
611 struct crc_data *d = data;
612 unsigned i;
613
614 while (1) {
615 wait_event(d->go, atomic_read_acquire(&d->ready) ||
616 kthread_should_stop());
617 if (kthread_should_stop()) {
618 d->thr = NULL;
619 atomic_set_release(&d->stop, 1);
620 wake_up(&d->done);
621 break;
622 }
623 atomic_set(&d->ready, 0);
624
625 for (i = 0; i < d->run_threads; i++)
626 *d->crc32 = crc32_le(*d->crc32,
627 d->unc[i], *d->unc_len[i]);
628 atomic_set_release(&d->stop, 1);
629 wake_up(&d->done);
630 }
631 return 0;
632}
633/*
634 * Structure used for data compression.
635 */
636struct cmp_data {
637 struct task_struct *thr; /* thread */
638 struct crypto_comp *cc; /* crypto compressor stream */
639 atomic_t ready; /* ready to start flag */
640 atomic_t stop; /* ready to stop flag */
641 int ret; /* return code */
642 wait_queue_head_t go; /* start compression */
643 wait_queue_head_t done; /* compression done */
644 size_t unc_len; /* uncompressed length */
645 size_t cmp_len; /* compressed length */
646 unsigned char unc[UNC_SIZE]; /* uncompressed buffer */
647 unsigned char cmp[CMP_SIZE]; /* compressed buffer */
648};
649
650/* Indicates the image size after compression */
651static atomic_t compressed_size = ATOMIC_INIT(0);
652
653/*
654 * Compression function that runs in its own thread.
655 */
656static int compress_threadfn(void *data)
657{
658 struct cmp_data *d = data;
659 unsigned int cmp_len = 0;
660
661 while (1) {
662 wait_event(d->go, atomic_read_acquire(&d->ready) ||
663 kthread_should_stop());
664 if (kthread_should_stop()) {
665 d->thr = NULL;
666 d->ret = -1;
667 atomic_set_release(&d->stop, 1);
668 wake_up(&d->done);
669 break;
670 }
671 atomic_set(&d->ready, 0);
672
673 cmp_len = CMP_SIZE - CMP_HEADER;
674 d->ret = crypto_comp_compress(d->cc, d->unc, d->unc_len,
675 d->cmp + CMP_HEADER,
676 &cmp_len);
677 d->cmp_len = cmp_len;
678
679 atomic_set(&compressed_size, atomic_read(&compressed_size) + d->cmp_len);
680 atomic_set_release(&d->stop, 1);
681 wake_up(&d->done);
682 }
683 return 0;
684}
685
686/**
687 * save_compressed_image - Save the suspend image data after compression.
688 * @handle: Swap map handle to use for saving the image.
689 * @snapshot: Image to read data from.
690 * @nr_to_write: Number of pages to save.
691 */
692static int save_compressed_image(struct swap_map_handle *handle,
693 struct snapshot_handle *snapshot,
694 unsigned int nr_to_write)
695{
696 unsigned int m;
697 int ret = 0;
698 int nr_pages;
699 int err2;
700 struct hib_bio_batch hb;
701 ktime_t start;
702 ktime_t stop;
703 size_t off;
704 unsigned thr, run_threads, nr_threads;
705 unsigned char *page = NULL;
706 struct cmp_data *data = NULL;
707 struct crc_data *crc = NULL;
708
709 hib_init_batch(&hb);
710
711 atomic_set(&compressed_size, 0);
712
713 /*
714 * We'll limit the number of threads for compression to limit memory
715 * footprint.
716 */
717 nr_threads = num_online_cpus() - 1;
718 nr_threads = clamp_val(nr_threads, 1, CMP_THREADS);
719
720 page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
721 if (!page) {
722 pr_err("Failed to allocate %s page\n", hib_comp_algo);
723 ret = -ENOMEM;
724 goto out_clean;
725 }
726
727 data = vzalloc(array_size(nr_threads, sizeof(*data)));
728 if (!data) {
729 pr_err("Failed to allocate %s data\n", hib_comp_algo);
730 ret = -ENOMEM;
731 goto out_clean;
732 }
733
734 crc = kzalloc(sizeof(*crc), GFP_KERNEL);
735 if (!crc) {
736 pr_err("Failed to allocate crc\n");
737 ret = -ENOMEM;
738 goto out_clean;
739 }
740
741 /*
742 * Start the compression threads.
743 */
744 for (thr = 0; thr < nr_threads; thr++) {
745 init_waitqueue_head(&data[thr].go);
746 init_waitqueue_head(&data[thr].done);
747
748 data[thr].cc = crypto_alloc_comp(hib_comp_algo, 0, 0);
749 if (IS_ERR_OR_NULL(data[thr].cc)) {
750 pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc));
751 ret = -EFAULT;
752 goto out_clean;
753 }
754
755 data[thr].thr = kthread_run(compress_threadfn,
756 &data[thr],
757 "image_compress/%u", thr);
758 if (IS_ERR(data[thr].thr)) {
759 data[thr].thr = NULL;
760 pr_err("Cannot start compression threads\n");
761 ret = -ENOMEM;
762 goto out_clean;
763 }
764 }
765
766 /*
767 * Start the CRC32 thread.
768 */
769 init_waitqueue_head(&crc->go);
770 init_waitqueue_head(&crc->done);
771
772 handle->crc32 = 0;
773 crc->crc32 = &handle->crc32;
774 for (thr = 0; thr < nr_threads; thr++) {
775 crc->unc[thr] = data[thr].unc;
776 crc->unc_len[thr] = &data[thr].unc_len;
777 }
778
779 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
780 if (IS_ERR(crc->thr)) {
781 crc->thr = NULL;
782 pr_err("Cannot start CRC32 thread\n");
783 ret = -ENOMEM;
784 goto out_clean;
785 }
786
787 /*
788 * Adjust the number of required free pages after all allocations have
789 * been done. We don't want to run out of pages when writing.
790 */
791 handle->reqd_free_pages = reqd_free_pages();
792
793 pr_info("Using %u thread(s) for %s compression\n", nr_threads, hib_comp_algo);
794 pr_info("Compressing and saving image data (%u pages)...\n",
795 nr_to_write);
796 m = nr_to_write / 10;
797 if (!m)
798 m = 1;
799 nr_pages = 0;
800 start = ktime_get();
801 for (;;) {
802 for (thr = 0; thr < nr_threads; thr++) {
803 for (off = 0; off < UNC_SIZE; off += PAGE_SIZE) {
804 ret = snapshot_read_next(snapshot);
805 if (ret < 0)
806 goto out_finish;
807
808 if (!ret)
809 break;
810
811 memcpy(data[thr].unc + off,
812 data_of(*snapshot), PAGE_SIZE);
813
814 if (!(nr_pages % m))
815 pr_info("Image saving progress: %3d%%\n",
816 nr_pages / m * 10);
817 nr_pages++;
818 }
819 if (!off)
820 break;
821
822 data[thr].unc_len = off;
823
824 atomic_set_release(&data[thr].ready, 1);
825 wake_up(&data[thr].go);
826 }
827
828 if (!thr)
829 break;
830
831 crc->run_threads = thr;
832 atomic_set_release(&crc->ready, 1);
833 wake_up(&crc->go);
834
835 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
836 wait_event(data[thr].done,
837 atomic_read_acquire(&data[thr].stop));
838 atomic_set(&data[thr].stop, 0);
839
840 ret = data[thr].ret;
841
842 if (ret < 0) {
843 pr_err("%s compression failed\n", hib_comp_algo);
844 goto out_finish;
845 }
846
847 if (unlikely(!data[thr].cmp_len ||
848 data[thr].cmp_len >
849 bytes_worst_compress(data[thr].unc_len))) {
850 pr_err("Invalid %s compressed length\n", hib_comp_algo);
851 ret = -1;
852 goto out_finish;
853 }
854
855 *(size_t *)data[thr].cmp = data[thr].cmp_len;
856
857 /*
858 * Given we are writing one page at a time to disk, we
859 * copy that much from the buffer, although the last
860 * bit will likely be smaller than full page. This is
861 * OK - we saved the length of the compressed data, so
862 * any garbage at the end will be discarded when we
863 * read it.
864 */
865 for (off = 0;
866 off < CMP_HEADER + data[thr].cmp_len;
867 off += PAGE_SIZE) {
868 memcpy(page, data[thr].cmp + off, PAGE_SIZE);
869
870 ret = swap_write_page(handle, page, &hb);
871 if (ret)
872 goto out_finish;
873 }
874 }
875
876 wait_event(crc->done, atomic_read_acquire(&crc->stop));
877 atomic_set(&crc->stop, 0);
878 }
879
880out_finish:
881 err2 = hib_wait_io(&hb);
882 stop = ktime_get();
883 if (!ret)
884 ret = err2;
885 if (!ret)
886 pr_info("Image saving done\n");
887 swsusp_show_speed(start, stop, nr_to_write, "Wrote");
888 pr_info("Image size after compression: %d kbytes\n",
889 (atomic_read(&compressed_size) / 1024));
890
891out_clean:
892 hib_finish_batch(&hb);
893 if (crc) {
894 if (crc->thr)
895 kthread_stop(crc->thr);
896 kfree(crc);
897 }
898 if (data) {
899 for (thr = 0; thr < nr_threads; thr++) {
900 if (data[thr].thr)
901 kthread_stop(data[thr].thr);
902 if (data[thr].cc)
903 crypto_free_comp(data[thr].cc);
904 }
905 vfree(data);
906 }
907 if (page) free_page((unsigned long)page);
908
909 return ret;
910}
911
912/**
913 * enough_swap - Make sure we have enough swap to save the image.
914 *
915 * Returns TRUE or FALSE after checking the total amount of swap
916 * space available from the resume partition.
917 */
918
919static int enough_swap(unsigned int nr_pages)
920{
921 unsigned int free_swap = count_swap_pages(root_swap, 1);
922 unsigned int required;
923
924 pr_debug("Free swap pages: %u\n", free_swap);
925
926 required = PAGES_FOR_IO + nr_pages;
927 return free_swap > required;
928}
929
930/**
931 * swsusp_write - Write entire image and metadata.
932 * @flags: flags to pass to the "boot" kernel in the image header
933 *
934 * It is important _NOT_ to umount filesystems at this point. We want
935 * them synced (in case something goes wrong) but we DO not want to mark
936 * filesystem clean: it is not. (And it does not matter, if we resume
937 * correctly, we'll mark system clean, anyway.)
938 */
939
940int swsusp_write(unsigned int flags)
941{
942 struct swap_map_handle handle;
943 struct snapshot_handle snapshot;
944 struct swsusp_info *header;
945 unsigned long pages;
946 int error;
947
948 pages = snapshot_get_image_size();
949 error = get_swap_writer(&handle);
950 if (error) {
951 pr_err("Cannot get swap writer\n");
952 return error;
953 }
954 if (flags & SF_NOCOMPRESS_MODE) {
955 if (!enough_swap(pages)) {
956 pr_err("Not enough free swap\n");
957 error = -ENOSPC;
958 goto out_finish;
959 }
960 }
961 memset(&snapshot, 0, sizeof(struct snapshot_handle));
962 error = snapshot_read_next(&snapshot);
963 if (error < (int)PAGE_SIZE) {
964 if (error >= 0)
965 error = -EFAULT;
966
967 goto out_finish;
968 }
969 header = (struct swsusp_info *)data_of(snapshot);
970 error = swap_write_page(&handle, header, NULL);
971 if (!error) {
972 error = (flags & SF_NOCOMPRESS_MODE) ?
973 save_image(&handle, &snapshot, pages - 1) :
974 save_compressed_image(&handle, &snapshot, pages - 1);
975 }
976out_finish:
977 error = swap_writer_finish(&handle, flags, error);
978 return error;
979}
980
981/*
982 * The following functions allow us to read data using a swap map
983 * in a file-like way.
984 */
985
986static void release_swap_reader(struct swap_map_handle *handle)
987{
988 struct swap_map_page_list *tmp;
989
990 while (handle->maps) {
991 if (handle->maps->map)
992 free_page((unsigned long)handle->maps->map);
993 tmp = handle->maps;
994 handle->maps = handle->maps->next;
995 kfree(tmp);
996 }
997 handle->cur = NULL;
998}
999
1000static int get_swap_reader(struct swap_map_handle *handle,
1001 unsigned int *flags_p)
1002{
1003 int error;
1004 struct swap_map_page_list *tmp, *last;
1005 sector_t offset;
1006
1007 *flags_p = swsusp_header->flags;
1008
1009 if (!swsusp_header->image) /* how can this happen? */
1010 return -EINVAL;
1011
1012 handle->cur = NULL;
1013 last = handle->maps = NULL;
1014 offset = swsusp_header->image;
1015 while (offset) {
1016 tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
1017 if (!tmp) {
1018 release_swap_reader(handle);
1019 return -ENOMEM;
1020 }
1021 if (!handle->maps)
1022 handle->maps = tmp;
1023 if (last)
1024 last->next = tmp;
1025 last = tmp;
1026
1027 tmp->map = (struct swap_map_page *)
1028 __get_free_page(GFP_NOIO | __GFP_HIGH);
1029 if (!tmp->map) {
1030 release_swap_reader(handle);
1031 return -ENOMEM;
1032 }
1033
1034 error = hib_submit_io(REQ_OP_READ, offset, tmp->map, NULL);
1035 if (error) {
1036 release_swap_reader(handle);
1037 return error;
1038 }
1039 offset = tmp->map->next_swap;
1040 }
1041 handle->k = 0;
1042 handle->cur = handle->maps->map;
1043 return 0;
1044}
1045
1046static int swap_read_page(struct swap_map_handle *handle, void *buf,
1047 struct hib_bio_batch *hb)
1048{
1049 sector_t offset;
1050 int error;
1051 struct swap_map_page_list *tmp;
1052
1053 if (!handle->cur)
1054 return -EINVAL;
1055 offset = handle->cur->entries[handle->k];
1056 if (!offset)
1057 return -EFAULT;
1058 error = hib_submit_io(REQ_OP_READ, offset, buf, hb);
1059 if (error)
1060 return error;
1061 if (++handle->k >= MAP_PAGE_ENTRIES) {
1062 handle->k = 0;
1063 free_page((unsigned long)handle->maps->map);
1064 tmp = handle->maps;
1065 handle->maps = handle->maps->next;
1066 kfree(tmp);
1067 if (!handle->maps)
1068 release_swap_reader(handle);
1069 else
1070 handle->cur = handle->maps->map;
1071 }
1072 return error;
1073}
1074
1075static int swap_reader_finish(struct swap_map_handle *handle)
1076{
1077 release_swap_reader(handle);
1078
1079 return 0;
1080}
1081
1082/**
1083 * load_image - load the image using the swap map handle
1084 * @handle and the snapshot handle @snapshot
1085 * (assume there are @nr_pages pages to load)
1086 */
1087
1088static int load_image(struct swap_map_handle *handle,
1089 struct snapshot_handle *snapshot,
1090 unsigned int nr_to_read)
1091{
1092 unsigned int m;
1093 int ret = 0;
1094 ktime_t start;
1095 ktime_t stop;
1096 struct hib_bio_batch hb;
1097 int err2;
1098 unsigned nr_pages;
1099
1100 hib_init_batch(&hb);
1101
1102 clean_pages_on_read = true;
1103 pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1104 m = nr_to_read / 10;
1105 if (!m)
1106 m = 1;
1107 nr_pages = 0;
1108 start = ktime_get();
1109 for ( ; ; ) {
1110 ret = snapshot_write_next(snapshot);
1111 if (ret <= 0)
1112 break;
1113 ret = swap_read_page(handle, data_of(*snapshot), &hb);
1114 if (ret)
1115 break;
1116 if (snapshot->sync_read)
1117 ret = hib_wait_io(&hb);
1118 if (ret)
1119 break;
1120 if (!(nr_pages % m))
1121 pr_info("Image loading progress: %3d%%\n",
1122 nr_pages / m * 10);
1123 nr_pages++;
1124 }
1125 err2 = hib_wait_io(&hb);
1126 hib_finish_batch(&hb);
1127 stop = ktime_get();
1128 if (!ret)
1129 ret = err2;
1130 if (!ret) {
1131 pr_info("Image loading done\n");
1132 ret = snapshot_write_finalize(snapshot);
1133 if (!ret && !snapshot_image_loaded(snapshot))
1134 ret = -ENODATA;
1135 }
1136 swsusp_show_speed(start, stop, nr_to_read, "Read");
1137 return ret;
1138}
1139
1140/*
1141 * Structure used for data decompression.
1142 */
1143struct dec_data {
1144 struct task_struct *thr; /* thread */
1145 struct crypto_comp *cc; /* crypto compressor stream */
1146 atomic_t ready; /* ready to start flag */
1147 atomic_t stop; /* ready to stop flag */
1148 int ret; /* return code */
1149 wait_queue_head_t go; /* start decompression */
1150 wait_queue_head_t done; /* decompression done */
1151 size_t unc_len; /* uncompressed length */
1152 size_t cmp_len; /* compressed length */
1153 unsigned char unc[UNC_SIZE]; /* uncompressed buffer */
1154 unsigned char cmp[CMP_SIZE]; /* compressed buffer */
1155};
1156
1157/*
1158 * Decompression function that runs in its own thread.
1159 */
1160static int decompress_threadfn(void *data)
1161{
1162 struct dec_data *d = data;
1163 unsigned int unc_len = 0;
1164
1165 while (1) {
1166 wait_event(d->go, atomic_read_acquire(&d->ready) ||
1167 kthread_should_stop());
1168 if (kthread_should_stop()) {
1169 d->thr = NULL;
1170 d->ret = -1;
1171 atomic_set_release(&d->stop, 1);
1172 wake_up(&d->done);
1173 break;
1174 }
1175 atomic_set(&d->ready, 0);
1176
1177 unc_len = UNC_SIZE;
1178 d->ret = crypto_comp_decompress(d->cc, d->cmp + CMP_HEADER, d->cmp_len,
1179 d->unc, &unc_len);
1180 d->unc_len = unc_len;
1181
1182 if (clean_pages_on_decompress)
1183 flush_icache_range((unsigned long)d->unc,
1184 (unsigned long)d->unc + d->unc_len);
1185
1186 atomic_set_release(&d->stop, 1);
1187 wake_up(&d->done);
1188 }
1189 return 0;
1190}
1191
1192/**
1193 * load_compressed_image - Load compressed image data and decompress it.
1194 * @handle: Swap map handle to use for loading data.
1195 * @snapshot: Image to copy uncompressed data into.
1196 * @nr_to_read: Number of pages to load.
1197 */
1198static int load_compressed_image(struct swap_map_handle *handle,
1199 struct snapshot_handle *snapshot,
1200 unsigned int nr_to_read)
1201{
1202 unsigned int m;
1203 int ret = 0;
1204 int eof = 0;
1205 struct hib_bio_batch hb;
1206 ktime_t start;
1207 ktime_t stop;
1208 unsigned nr_pages;
1209 size_t off;
1210 unsigned i, thr, run_threads, nr_threads;
1211 unsigned ring = 0, pg = 0, ring_size = 0,
1212 have = 0, want, need, asked = 0;
1213 unsigned long read_pages = 0;
1214 unsigned char **page = NULL;
1215 struct dec_data *data = NULL;
1216 struct crc_data *crc = NULL;
1217
1218 hib_init_batch(&hb);
1219
1220 /*
1221 * We'll limit the number of threads for decompression to limit memory
1222 * footprint.
1223 */
1224 nr_threads = num_online_cpus() - 1;
1225 nr_threads = clamp_val(nr_threads, 1, CMP_THREADS);
1226
1227 page = vmalloc(array_size(CMP_MAX_RD_PAGES, sizeof(*page)));
1228 if (!page) {
1229 pr_err("Failed to allocate %s page\n", hib_comp_algo);
1230 ret = -ENOMEM;
1231 goto out_clean;
1232 }
1233
1234 data = vzalloc(array_size(nr_threads, sizeof(*data)));
1235 if (!data) {
1236 pr_err("Failed to allocate %s data\n", hib_comp_algo);
1237 ret = -ENOMEM;
1238 goto out_clean;
1239 }
1240
1241 crc = kzalloc(sizeof(*crc), GFP_KERNEL);
1242 if (!crc) {
1243 pr_err("Failed to allocate crc\n");
1244 ret = -ENOMEM;
1245 goto out_clean;
1246 }
1247
1248 clean_pages_on_decompress = true;
1249
1250 /*
1251 * Start the decompression threads.
1252 */
1253 for (thr = 0; thr < nr_threads; thr++) {
1254 init_waitqueue_head(&data[thr].go);
1255 init_waitqueue_head(&data[thr].done);
1256
1257 data[thr].cc = crypto_alloc_comp(hib_comp_algo, 0, 0);
1258 if (IS_ERR_OR_NULL(data[thr].cc)) {
1259 pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc));
1260 ret = -EFAULT;
1261 goto out_clean;
1262 }
1263
1264 data[thr].thr = kthread_run(decompress_threadfn,
1265 &data[thr],
1266 "image_decompress/%u", thr);
1267 if (IS_ERR(data[thr].thr)) {
1268 data[thr].thr = NULL;
1269 pr_err("Cannot start decompression threads\n");
1270 ret = -ENOMEM;
1271 goto out_clean;
1272 }
1273 }
1274
1275 /*
1276 * Start the CRC32 thread.
1277 */
1278 init_waitqueue_head(&crc->go);
1279 init_waitqueue_head(&crc->done);
1280
1281 handle->crc32 = 0;
1282 crc->crc32 = &handle->crc32;
1283 for (thr = 0; thr < nr_threads; thr++) {
1284 crc->unc[thr] = data[thr].unc;
1285 crc->unc_len[thr] = &data[thr].unc_len;
1286 }
1287
1288 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1289 if (IS_ERR(crc->thr)) {
1290 crc->thr = NULL;
1291 pr_err("Cannot start CRC32 thread\n");
1292 ret = -ENOMEM;
1293 goto out_clean;
1294 }
1295
1296 /*
1297 * Set the number of pages for read buffering.
1298 * This is complete guesswork, because we'll only know the real
1299 * picture once prepare_image() is called, which is much later on
1300 * during the image load phase. We'll assume the worst case and
1301 * say that none of the image pages are from high memory.
1302 */
1303 if (low_free_pages() > snapshot_get_image_size())
1304 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1305 read_pages = clamp_val(read_pages, CMP_MIN_RD_PAGES, CMP_MAX_RD_PAGES);
1306
1307 for (i = 0; i < read_pages; i++) {
1308 page[i] = (void *)__get_free_page(i < CMP_PAGES ?
1309 GFP_NOIO | __GFP_HIGH :
1310 GFP_NOIO | __GFP_NOWARN |
1311 __GFP_NORETRY);
1312
1313 if (!page[i]) {
1314 if (i < CMP_PAGES) {
1315 ring_size = i;
1316 pr_err("Failed to allocate %s pages\n", hib_comp_algo);
1317 ret = -ENOMEM;
1318 goto out_clean;
1319 } else {
1320 break;
1321 }
1322 }
1323 }
1324 want = ring_size = i;
1325
1326 pr_info("Using %u thread(s) for %s decompression\n", nr_threads, hib_comp_algo);
1327 pr_info("Loading and decompressing image data (%u pages)...\n",
1328 nr_to_read);
1329 m = nr_to_read / 10;
1330 if (!m)
1331 m = 1;
1332 nr_pages = 0;
1333 start = ktime_get();
1334
1335 ret = snapshot_write_next(snapshot);
1336 if (ret <= 0)
1337 goto out_finish;
1338
1339 for(;;) {
1340 for (i = 0; !eof && i < want; i++) {
1341 ret = swap_read_page(handle, page[ring], &hb);
1342 if (ret) {
1343 /*
1344 * On real read error, finish. On end of data,
1345 * set EOF flag and just exit the read loop.
1346 */
1347 if (handle->cur &&
1348 handle->cur->entries[handle->k]) {
1349 goto out_finish;
1350 } else {
1351 eof = 1;
1352 break;
1353 }
1354 }
1355 if (++ring >= ring_size)
1356 ring = 0;
1357 }
1358 asked += i;
1359 want -= i;
1360
1361 /*
1362 * We are out of data, wait for some more.
1363 */
1364 if (!have) {
1365 if (!asked)
1366 break;
1367
1368 ret = hib_wait_io(&hb);
1369 if (ret)
1370 goto out_finish;
1371 have += asked;
1372 asked = 0;
1373 if (eof)
1374 eof = 2;
1375 }
1376
1377 if (crc->run_threads) {
1378 wait_event(crc->done, atomic_read_acquire(&crc->stop));
1379 atomic_set(&crc->stop, 0);
1380 crc->run_threads = 0;
1381 }
1382
1383 for (thr = 0; have && thr < nr_threads; thr++) {
1384 data[thr].cmp_len = *(size_t *)page[pg];
1385 if (unlikely(!data[thr].cmp_len ||
1386 data[thr].cmp_len >
1387 bytes_worst_compress(UNC_SIZE))) {
1388 pr_err("Invalid %s compressed length\n", hib_comp_algo);
1389 ret = -1;
1390 goto out_finish;
1391 }
1392
1393 need = DIV_ROUND_UP(data[thr].cmp_len + CMP_HEADER,
1394 PAGE_SIZE);
1395 if (need > have) {
1396 if (eof > 1) {
1397 ret = -1;
1398 goto out_finish;
1399 }
1400 break;
1401 }
1402
1403 for (off = 0;
1404 off < CMP_HEADER + data[thr].cmp_len;
1405 off += PAGE_SIZE) {
1406 memcpy(data[thr].cmp + off,
1407 page[pg], PAGE_SIZE);
1408 have--;
1409 want++;
1410 if (++pg >= ring_size)
1411 pg = 0;
1412 }
1413
1414 atomic_set_release(&data[thr].ready, 1);
1415 wake_up(&data[thr].go);
1416 }
1417
1418 /*
1419 * Wait for more data while we are decompressing.
1420 */
1421 if (have < CMP_PAGES && asked) {
1422 ret = hib_wait_io(&hb);
1423 if (ret)
1424 goto out_finish;
1425 have += asked;
1426 asked = 0;
1427 if (eof)
1428 eof = 2;
1429 }
1430
1431 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1432 wait_event(data[thr].done,
1433 atomic_read_acquire(&data[thr].stop));
1434 atomic_set(&data[thr].stop, 0);
1435
1436 ret = data[thr].ret;
1437
1438 if (ret < 0) {
1439 pr_err("%s decompression failed\n", hib_comp_algo);
1440 goto out_finish;
1441 }
1442
1443 if (unlikely(!data[thr].unc_len ||
1444 data[thr].unc_len > UNC_SIZE ||
1445 data[thr].unc_len & (PAGE_SIZE - 1))) {
1446 pr_err("Invalid %s uncompressed length\n", hib_comp_algo);
1447 ret = -1;
1448 goto out_finish;
1449 }
1450
1451 for (off = 0;
1452 off < data[thr].unc_len; off += PAGE_SIZE) {
1453 memcpy(data_of(*snapshot),
1454 data[thr].unc + off, PAGE_SIZE);
1455
1456 if (!(nr_pages % m))
1457 pr_info("Image loading progress: %3d%%\n",
1458 nr_pages / m * 10);
1459 nr_pages++;
1460
1461 ret = snapshot_write_next(snapshot);
1462 if (ret <= 0) {
1463 crc->run_threads = thr + 1;
1464 atomic_set_release(&crc->ready, 1);
1465 wake_up(&crc->go);
1466 goto out_finish;
1467 }
1468 }
1469 }
1470
1471 crc->run_threads = thr;
1472 atomic_set_release(&crc->ready, 1);
1473 wake_up(&crc->go);
1474 }
1475
1476out_finish:
1477 if (crc->run_threads) {
1478 wait_event(crc->done, atomic_read_acquire(&crc->stop));
1479 atomic_set(&crc->stop, 0);
1480 }
1481 stop = ktime_get();
1482 if (!ret) {
1483 pr_info("Image loading done\n");
1484 ret = snapshot_write_finalize(snapshot);
1485 if (!ret && !snapshot_image_loaded(snapshot))
1486 ret = -ENODATA;
1487 if (!ret) {
1488 if (swsusp_header->flags & SF_CRC32_MODE) {
1489 if(handle->crc32 != swsusp_header->crc32) {
1490 pr_err("Invalid image CRC32!\n");
1491 ret = -ENODATA;
1492 }
1493 }
1494 }
1495 }
1496 swsusp_show_speed(start, stop, nr_to_read, "Read");
1497out_clean:
1498 hib_finish_batch(&hb);
1499 for (i = 0; i < ring_size; i++)
1500 free_page((unsigned long)page[i]);
1501 if (crc) {
1502 if (crc->thr)
1503 kthread_stop(crc->thr);
1504 kfree(crc);
1505 }
1506 if (data) {
1507 for (thr = 0; thr < nr_threads; thr++) {
1508 if (data[thr].thr)
1509 kthread_stop(data[thr].thr);
1510 if (data[thr].cc)
1511 crypto_free_comp(data[thr].cc);
1512 }
1513 vfree(data);
1514 }
1515 vfree(page);
1516
1517 return ret;
1518}
1519
1520/**
1521 * swsusp_read - read the hibernation image.
1522 * @flags_p: flags passed by the "frozen" kernel in the image header should
1523 * be written into this memory location
1524 */
1525
1526int swsusp_read(unsigned int *flags_p)
1527{
1528 int error;
1529 struct swap_map_handle handle;
1530 struct snapshot_handle snapshot;
1531 struct swsusp_info *header;
1532
1533 memset(&snapshot, 0, sizeof(struct snapshot_handle));
1534 error = snapshot_write_next(&snapshot);
1535 if (error < (int)PAGE_SIZE)
1536 return error < 0 ? error : -EFAULT;
1537 header = (struct swsusp_info *)data_of(snapshot);
1538 error = get_swap_reader(&handle, flags_p);
1539 if (error)
1540 goto end;
1541 if (!error)
1542 error = swap_read_page(&handle, header, NULL);
1543 if (!error) {
1544 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1545 load_image(&handle, &snapshot, header->pages - 1) :
1546 load_compressed_image(&handle, &snapshot, header->pages - 1);
1547 }
1548 swap_reader_finish(&handle);
1549end:
1550 if (!error)
1551 pr_debug("Image successfully loaded\n");
1552 else
1553 pr_debug("Error %d resuming\n", error);
1554 return error;
1555}
1556
1557static void *swsusp_holder;
1558
1559/**
1560 * swsusp_check - Open the resume device and check for the swsusp signature.
1561 * @exclusive: Open the resume device exclusively.
1562 */
1563
1564int swsusp_check(bool exclusive)
1565{
1566 void *holder = exclusive ? &swsusp_holder : NULL;
1567 int error;
1568
1569 hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device,
1570 BLK_OPEN_READ, holder, NULL);
1571 if (!IS_ERR(hib_resume_bdev_file)) {
1572 clear_page(swsusp_header);
1573 error = hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1574 swsusp_header, NULL);
1575 if (error)
1576 goto put;
1577
1578 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1579 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1580 swsusp_header_flags = swsusp_header->flags;
1581 /* Reset swap signature now */
1582 error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1583 swsusp_resume_block,
1584 swsusp_header, NULL);
1585 } else {
1586 error = -EINVAL;
1587 }
1588 if (!error && swsusp_header->flags & SF_HW_SIG &&
1589 swsusp_header->hw_sig != swsusp_hardware_signature) {
1590 pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n",
1591 swsusp_header->hw_sig, swsusp_hardware_signature);
1592 error = -EINVAL;
1593 }
1594
1595put:
1596 if (error)
1597 bdev_fput(hib_resume_bdev_file);
1598 else
1599 pr_debug("Image signature found, resuming\n");
1600 } else {
1601 error = PTR_ERR(hib_resume_bdev_file);
1602 }
1603
1604 if (error)
1605 pr_debug("Image not found (code %d)\n", error);
1606
1607 return error;
1608}
1609
1610/**
1611 * swsusp_close - close resume device.
1612 */
1613
1614void swsusp_close(void)
1615{
1616 if (IS_ERR(hib_resume_bdev_file)) {
1617 pr_debug("Image device not initialised\n");
1618 return;
1619 }
1620
1621 fput(hib_resume_bdev_file);
1622}
1623
1624/**
1625 * swsusp_unmark - Unmark swsusp signature in the resume device
1626 */
1627
1628#ifdef CONFIG_SUSPEND
1629int swsusp_unmark(void)
1630{
1631 int error;
1632
1633 hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1634 swsusp_header, NULL);
1635 if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1636 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1637 error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1638 swsusp_resume_block,
1639 swsusp_header, NULL);
1640 } else {
1641 pr_err("Cannot find swsusp signature!\n");
1642 error = -ENODEV;
1643 }
1644
1645 /*
1646 * We just returned from suspend, we don't need the image any more.
1647 */
1648 free_all_swap_pages(root_swap);
1649
1650 return error;
1651}
1652#endif
1653
1654static int __init swsusp_header_init(void)
1655{
1656 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1657 if (!swsusp_header)
1658 panic("Could not allocate memory for swsusp_header\n");
1659 return 0;
1660}
1661
1662core_initcall(swsusp_header_init);