Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * AEAD: Authenticated Encryption with Associated Data
  3 * 
  4 * Copyright (c) 2007 Herbert Xu <herbert@gondor.apana.org.au>
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms of the GNU General Public License as published by the Free
  8 * Software Foundation; either version 2 of the License, or (at your option) 
  9 * any later version.
 10 *
 11 */
 12
 13#ifndef _CRYPTO_AEAD_H
 14#define _CRYPTO_AEAD_H
 15
 
 
 16#include <linux/crypto.h>
 17#include <linux/kernel.h>
 18#include <linux/slab.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 19
 20/**
 21 *	struct aead_givcrypt_request - AEAD request with IV generation
 22 *	@seq: Sequence number for IV generation
 23 *	@giv: Space for generated IV
 24 *	@areq: The AEAD request itself
 25 */
 26struct aead_givcrypt_request {
 27	u64 seq;
 28	u8 *giv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 29
 30	struct aead_request areq;
 
 
 
 
 31};
 32
 33static inline struct crypto_aead *aead_givcrypt_reqtfm(
 34	struct aead_givcrypt_request *req)
 35{
 36	return crypto_aead_reqtfm(&req->areq);
 37}
 38
 39static inline int crypto_aead_givencrypt(struct aead_givcrypt_request *req)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 40{
 41	struct aead_tfm *crt = crypto_aead_crt(aead_givcrypt_reqtfm(req));
 42	return crt->givencrypt(req);
 43};
 44
 45static inline int crypto_aead_givdecrypt(struct aead_givcrypt_request *req)
 
 
 
 
 
 
 46{
 47	struct aead_tfm *crt = crypto_aead_crt(aead_givcrypt_reqtfm(req));
 48	return crt->givdecrypt(req);
 49};
 
 
 
 
 
 
 
 
 
 
 
 50
 51static inline void aead_givcrypt_set_tfm(struct aead_givcrypt_request *req,
 52					 struct crypto_aead *tfm)
 53{
 54	req->areq.base.tfm = crypto_aead_tfm(tfm);
 55}
 56
 57static inline struct aead_givcrypt_request *aead_givcrypt_alloc(
 58	struct crypto_aead *tfm, gfp_t gfp)
 59{
 60	struct aead_givcrypt_request *req;
 
 
 61
 62	req = kmalloc(sizeof(struct aead_givcrypt_request) +
 63		      crypto_aead_reqsize(tfm), gfp);
 
 
 64
 65	if (likely(req))
 66		aead_givcrypt_set_tfm(req, tfm);
 
 
 
 
 
 
 
 
 
 
 
 67
 68	return req;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 69}
 70
 71static inline void aead_givcrypt_free(struct aead_givcrypt_request *req)
 72{
 73	kfree(req);
 74}
 75
 76static inline void aead_givcrypt_set_callback(
 77	struct aead_givcrypt_request *req, u32 flags,
 78	crypto_completion_t complete, void *data)
 79{
 80	aead_request_set_callback(&req->areq, flags, complete, data);
 81}
 82
 83static inline void aead_givcrypt_set_crypt(struct aead_givcrypt_request *req,
 84					   struct scatterlist *src,
 85					   struct scatterlist *dst,
 86					   unsigned int nbytes, void *iv)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 87{
 88	aead_request_set_crypt(&req->areq, src, dst, nbytes, iv);
 89}
 90
 91static inline void aead_givcrypt_set_assoc(struct aead_givcrypt_request *req,
 92					   struct scatterlist *assoc,
 93					   unsigned int assoclen)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 94{
 95	aead_request_set_assoc(&req->areq, assoc, assoclen);
 96}
 97
 98static inline void aead_givcrypt_set_giv(struct aead_givcrypt_request *req,
 99					 u8 *giv, u64 seq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100{
101	req->giv = giv;
102	req->seq = seq;
103}
104
105#endif	/* _CRYPTO_AEAD_H */
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0-or-later */
  2/*
  3 * AEAD: Authenticated Encryption with Associated Data
  4 * 
  5 * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
 
 
 
 
 
 
  6 */
  7
  8#ifndef _CRYPTO_AEAD_H
  9#define _CRYPTO_AEAD_H
 10
 11#include <linux/atomic.h>
 12#include <linux/container_of.h>
 13#include <linux/crypto.h>
 
 14#include <linux/slab.h>
 15#include <linux/types.h>
 16
 17/**
 18 * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API
 19 *
 20 * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD
 21 * (listed as type "aead" in /proc/crypto)
 22 *
 23 * The most prominent examples for this type of encryption is GCM and CCM.
 24 * However, the kernel supports other types of AEAD ciphers which are defined
 25 * with the following cipher string:
 26 *
 27 *	authenc(keyed message digest, block cipher)
 28 *
 29 * For example: authenc(hmac(sha256), cbc(aes))
 30 *
 31 * The example code provided for the symmetric key cipher operation applies
 32 * here as well. Naturally all *skcipher* symbols must be exchanged the *aead*
 33 * pendants discussed in the following. In addition, for the AEAD operation,
 34 * the aead_request_set_ad function must be used to set the pointer to the
 35 * associated data memory location before performing the encryption or
 36 * decryption operation. Another deviation from the asynchronous block cipher
 37 * operation is that the caller should explicitly check for -EBADMSG of the
 38 * crypto_aead_decrypt. That error indicates an authentication error, i.e.
 39 * a breach in the integrity of the message. In essence, that -EBADMSG error
 40 * code is the key bonus an AEAD cipher has over "standard" block chaining
 41 * modes.
 42 *
 43 * Memory Structure:
 44 *
 45 * The source scatterlist must contain the concatenation of
 46 * associated data || plaintext or ciphertext.
 47 *
 48 * The destination scatterlist has the same layout, except that the plaintext
 49 * (resp. ciphertext) will grow (resp. shrink) by the authentication tag size
 50 * during encryption (resp. decryption). The authentication tag is generated
 51 * during the encryption operation and appended to the ciphertext. During
 52 * decryption, the authentication tag is consumed along with the ciphertext and
 53 * used to verify the integrity of the plaintext and the associated data.
 54 *
 55 * In-place encryption/decryption is enabled by using the same scatterlist
 56 * pointer for both the source and destination.
 57 *
 58 * Even in the out-of-place case, space must be reserved in the destination for
 59 * the associated data, even though it won't be written to.  This makes the
 60 * in-place and out-of-place cases more consistent.  It is permissible for the
 61 * "destination" associated data to alias the "source" associated data.
 62 *
 63 * As with the other scatterlist crypto APIs, zero-length scatterlist elements
 64 * are not allowed in the used part of the scatterlist.  Thus, if there is no
 65 * associated data, the first element must point to the plaintext/ciphertext.
 66 *
 67 * To meet the needs of IPsec, a special quirk applies to rfc4106, rfc4309,
 68 * rfc4543, and rfc7539esp ciphers.  For these ciphers, the final 'ivsize' bytes
 69 * of the associated data buffer must contain a second copy of the IV.  This is
 70 * in addition to the copy passed to aead_request_set_crypt().  These two IV
 71 * copies must not differ; different implementations of the same algorithm may
 72 * behave differently in that case.  Note that the algorithm might not actually
 73 * treat the IV as associated data; nevertheless the length passed to
 74 * aead_request_set_ad() must include it.
 75 */
 76
 77struct crypto_aead;
 78struct scatterlist;
 79
 80/**
 81 *	struct aead_request - AEAD request
 82 *	@base: Common attributes for async crypto requests
 83 *	@assoclen: Length in bytes of associated data for authentication
 84 *	@cryptlen: Length of data to be encrypted or decrypted
 85 *	@iv: Initialisation vector
 86 *	@src: Source data
 87 *	@dst: Destination data
 88 *	@__ctx: Start of private context data
 89 */
 90struct aead_request {
 91	struct crypto_async_request base;
 92
 93	unsigned int assoclen;
 94	unsigned int cryptlen;
 95
 96	u8 *iv;
 97
 98	struct scatterlist *src;
 99	struct scatterlist *dst;
100
101	void *__ctx[] CRYPTO_MINALIGN_ATTR;
102};
103
104/**
105 * struct aead_alg - AEAD cipher definition
106 * @maxauthsize: Set the maximum authentication tag size supported by the
107 *		 transformation. A transformation may support smaller tag sizes.
108 *		 As the authentication tag is a message digest to ensure the
109 *		 integrity of the encrypted data, a consumer typically wants the
110 *		 largest authentication tag possible as defined by this
111 *		 variable.
112 * @setauthsize: Set authentication size for the AEAD transformation. This
113 *		 function is used to specify the consumer requested size of the
114 * 		 authentication tag to be either generated by the transformation
115 *		 during encryption or the size of the authentication tag to be
116 *		 supplied during the decryption operation. This function is also
117 *		 responsible for checking the authentication tag size for
118 *		 validity.
119 * @setkey: see struct skcipher_alg
120 * @encrypt: see struct skcipher_alg
121 * @decrypt: see struct skcipher_alg
122 * @ivsize: see struct skcipher_alg
123 * @chunksize: see struct skcipher_alg
124 * @init: Initialize the cryptographic transformation object. This function
125 *	  is used to initialize the cryptographic transformation object.
126 *	  This function is called only once at the instantiation time, right
127 *	  after the transformation context was allocated. In case the
128 *	  cryptographic hardware has some special requirements which need to
129 *	  be handled by software, this function shall check for the precise
130 *	  requirement of the transformation and put any software fallbacks
131 *	  in place.
132 * @exit: Deinitialize the cryptographic transformation object. This is a
133 *	  counterpart to @init, used to remove various changes set in
134 *	  @init.
135 * @base: Definition of a generic crypto cipher algorithm.
136 *
137 * All fields except @ivsize is mandatory and must be filled.
138 */
139struct aead_alg {
140	int (*setkey)(struct crypto_aead *tfm, const u8 *key,
141	              unsigned int keylen);
142	int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize);
143	int (*encrypt)(struct aead_request *req);
144	int (*decrypt)(struct aead_request *req);
145	int (*init)(struct crypto_aead *tfm);
146	void (*exit)(struct crypto_aead *tfm);
147
148	unsigned int ivsize;
149	unsigned int maxauthsize;
150	unsigned int chunksize;
151
152	struct crypto_alg base;
153};
154
155struct crypto_aead {
156	unsigned int authsize;
157	unsigned int reqsize;
158
159	struct crypto_tfm base;
160};
161
162static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm)
 
163{
164	return container_of(tfm, struct crypto_aead, base);
165}
166
167/**
168 * crypto_alloc_aead() - allocate AEAD cipher handle
169 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
170 *	     AEAD cipher
171 * @type: specifies the type of the cipher
172 * @mask: specifies the mask for the cipher
173 *
174 * Allocate a cipher handle for an AEAD. The returned struct
175 * crypto_aead is the cipher handle that is required for any subsequent
176 * API invocation for that AEAD.
177 *
178 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
179 *	   of an error, PTR_ERR() returns the error code.
180 */
181struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask);
182
183static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm)
184{
185	return &tfm->base;
186}
 
187
188/**
189 * crypto_free_aead() - zeroize and free aead handle
190 * @tfm: cipher handle to be freed
191 *
192 * If @tfm is a NULL or error pointer, this function does nothing.
193 */
194static inline void crypto_free_aead(struct crypto_aead *tfm)
195{
196	crypto_destroy_tfm(tfm, crypto_aead_tfm(tfm));
197}
198
199/**
200 * crypto_has_aead() - Search for the availability of an aead.
201 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
202 *	      aead
203 * @type: specifies the type of the aead
204 * @mask: specifies the mask for the aead
205 *
206 * Return: true when the aead is known to the kernel crypto API; false
207 *	   otherwise
208 */
209int crypto_has_aead(const char *alg_name, u32 type, u32 mask);
210
211static inline const char *crypto_aead_driver_name(struct crypto_aead *tfm)
 
212{
213	return crypto_tfm_alg_driver_name(crypto_aead_tfm(tfm));
214}
215
216static inline struct aead_alg *crypto_aead_alg(struct crypto_aead *tfm)
 
217{
218	return container_of(crypto_aead_tfm(tfm)->__crt_alg,
219			    struct aead_alg, base);
220}
221
222static inline unsigned int crypto_aead_alg_ivsize(struct aead_alg *alg)
223{
224	return alg->ivsize;
225}
226
227/**
228 * crypto_aead_ivsize() - obtain IV size
229 * @tfm: cipher handle
230 *
231 * The size of the IV for the aead referenced by the cipher handle is
232 * returned. This IV size may be zero if the cipher does not need an IV.
233 *
234 * Return: IV size in bytes
235 */
236static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm)
237{
238	return crypto_aead_alg_ivsize(crypto_aead_alg(tfm));
239}
240
241/**
242 * crypto_aead_authsize() - obtain maximum authentication data size
243 * @tfm: cipher handle
244 *
245 * The maximum size of the authentication data for the AEAD cipher referenced
246 * by the AEAD cipher handle is returned. The authentication data size may be
247 * zero if the cipher implements a hard-coded maximum.
248 *
249 * The authentication data may also be known as "tag value".
250 *
251 * Return: authentication data size / tag size in bytes
252 */
253static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm)
254{
255	return tfm->authsize;
256}
257
258static inline unsigned int crypto_aead_alg_maxauthsize(struct aead_alg *alg)
259{
260	return alg->maxauthsize;
261}
262
263static inline unsigned int crypto_aead_maxauthsize(struct crypto_aead *aead)
264{
265	return crypto_aead_alg_maxauthsize(crypto_aead_alg(aead));
266}
267
268/**
269 * crypto_aead_blocksize() - obtain block size of cipher
270 * @tfm: cipher handle
271 *
272 * The block size for the AEAD referenced with the cipher handle is returned.
273 * The caller may use that information to allocate appropriate memory for the
274 * data returned by the encryption or decryption operation
275 *
276 * Return: block size of cipher
277 */
278static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm)
279{
280	return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm));
281}
282
283static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm)
284{
285	return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm));
286}
287
288static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm)
289{
290	return crypto_tfm_get_flags(crypto_aead_tfm(tfm));
291}
292
293static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags)
 
 
294{
295	crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags);
296}
297
298static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags)
299{
300	crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags);
301}
302
303/**
304 * crypto_aead_setkey() - set key for cipher
305 * @tfm: cipher handle
306 * @key: buffer holding the key
307 * @keylen: length of the key in bytes
308 *
309 * The caller provided key is set for the AEAD referenced by the cipher
310 * handle.
311 *
312 * Note, the key length determines the cipher type. Many block ciphers implement
313 * different cipher modes depending on the key size, such as AES-128 vs AES-192
314 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
315 * is performed.
316 *
317 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
318 */
319int crypto_aead_setkey(struct crypto_aead *tfm,
320		       const u8 *key, unsigned int keylen);
321
322/**
323 * crypto_aead_setauthsize() - set authentication data size
324 * @tfm: cipher handle
325 * @authsize: size of the authentication data / tag in bytes
326 *
327 * Set the authentication data size / tag size. AEAD requires an authentication
328 * tag (or MAC) in addition to the associated data.
329 *
330 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
331 */
332int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize);
333
334static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req)
335{
336	return __crypto_aead_cast(req->base.tfm);
337}
338
339/**
340 * crypto_aead_encrypt() - encrypt plaintext
341 * @req: reference to the aead_request handle that holds all information
342 *	 needed to perform the cipher operation
343 *
344 * Encrypt plaintext data using the aead_request handle. That data structure
345 * and how it is filled with data is discussed with the aead_request_*
346 * functions.
347 *
348 * IMPORTANT NOTE The encryption operation creates the authentication data /
349 *		  tag. That data is concatenated with the created ciphertext.
350 *		  The ciphertext memory size is therefore the given number of
351 *		  block cipher blocks + the size defined by the
352 *		  crypto_aead_setauthsize invocation. The caller must ensure
353 *		  that sufficient memory is available for the ciphertext and
354 *		  the authentication tag.
355 *
356 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
357 */
358int crypto_aead_encrypt(struct aead_request *req);
359
360/**
361 * crypto_aead_decrypt() - decrypt ciphertext
362 * @req: reference to the aead_request handle that holds all information
363 *	 needed to perform the cipher operation
364 *
365 * Decrypt ciphertext data using the aead_request handle. That data structure
366 * and how it is filled with data is discussed with the aead_request_*
367 * functions.
368 *
369 * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the
370 *		  authentication data / tag. That authentication data / tag
371 *		  must have the size defined by the crypto_aead_setauthsize
372 *		  invocation.
373 *
374 *
375 * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD
376 *	   cipher operation performs the authentication of the data during the
377 *	   decryption operation. Therefore, the function returns this error if
378 *	   the authentication of the ciphertext was unsuccessful (i.e. the
379 *	   integrity of the ciphertext or the associated data was violated);
380 *	   < 0 if an error occurred.
381 */
382int crypto_aead_decrypt(struct aead_request *req);
383
384/**
385 * DOC: Asynchronous AEAD Request Handle
386 *
387 * The aead_request data structure contains all pointers to data required for
388 * the AEAD cipher operation. This includes the cipher handle (which can be
389 * used by multiple aead_request instances), pointer to plaintext and
390 * ciphertext, asynchronous callback function, etc. It acts as a handle to the
391 * aead_request_* API calls in a similar way as AEAD handle to the
392 * crypto_aead_* API calls.
393 */
394
395/**
396 * crypto_aead_reqsize() - obtain size of the request data structure
397 * @tfm: cipher handle
398 *
399 * Return: number of bytes
400 */
401static inline unsigned int crypto_aead_reqsize(struct crypto_aead *tfm)
402{
403	return tfm->reqsize;
404}
405
406/**
407 * aead_request_set_tfm() - update cipher handle reference in request
408 * @req: request handle to be modified
409 * @tfm: cipher handle that shall be added to the request handle
410 *
411 * Allow the caller to replace the existing aead handle in the request
412 * data structure with a different one.
413 */
414static inline void aead_request_set_tfm(struct aead_request *req,
415					struct crypto_aead *tfm)
416{
417	req->base.tfm = crypto_aead_tfm(tfm);
418}
419
420/**
421 * aead_request_alloc() - allocate request data structure
422 * @tfm: cipher handle to be registered with the request
423 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
424 *
425 * Allocate the request data structure that must be used with the AEAD
426 * encrypt and decrypt API calls. During the allocation, the provided aead
427 * handle is registered in the request data structure.
428 *
429 * Return: allocated request handle in case of success, or NULL if out of memory
430 */
431static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm,
432						      gfp_t gfp)
433{
434	struct aead_request *req;
435
436	req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp);
437
438	if (likely(req))
439		aead_request_set_tfm(req, tfm);
440
441	return req;
442}
443
444/**
445 * aead_request_free() - zeroize and free request data structure
446 * @req: request data structure cipher handle to be freed
447 */
448static inline void aead_request_free(struct aead_request *req)
449{
450	kfree_sensitive(req);
451}
452
453/**
454 * aead_request_set_callback() - set asynchronous callback function
455 * @req: request handle
456 * @flags: specify zero or an ORing of the flags
457 *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
458 *	   increase the wait queue beyond the initial maximum size;
459 *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
460 * @compl: callback function pointer to be registered with the request handle
461 * @data: The data pointer refers to memory that is not used by the kernel
462 *	  crypto API, but provided to the callback function for it to use. Here,
463 *	  the caller can provide a reference to memory the callback function can
464 *	  operate on. As the callback function is invoked asynchronously to the
465 *	  related functionality, it may need to access data structures of the
466 *	  related functionality which can be referenced using this pointer. The
467 *	  callback function can access the memory via the "data" field in the
468 *	  crypto_async_request data structure provided to the callback function.
469 *
470 * Setting the callback function that is triggered once the cipher operation
471 * completes
472 *
473 * The callback function is registered with the aead_request handle and
474 * must comply with the following template::
475 *
476 *	void callback_function(struct crypto_async_request *req, int error)
477 */
478static inline void aead_request_set_callback(struct aead_request *req,
479					     u32 flags,
480					     crypto_completion_t compl,
481					     void *data)
482{
483	req->base.complete = compl;
484	req->base.data = data;
485	req->base.flags = flags;
486}
487
488/**
489 * aead_request_set_crypt - set data buffers
490 * @req: request handle
491 * @src: source scatter / gather list
492 * @dst: destination scatter / gather list
493 * @cryptlen: number of bytes to process from @src
494 * @iv: IV for the cipher operation which must comply with the IV size defined
495 *      by crypto_aead_ivsize()
496 *
497 * Setting the source data and destination data scatter / gather lists which
498 * hold the associated data concatenated with the plaintext or ciphertext. See
499 * below for the authentication tag.
500 *
501 * For encryption, the source is treated as the plaintext and the
502 * destination is the ciphertext. For a decryption operation, the use is
503 * reversed - the source is the ciphertext and the destination is the plaintext.
504 *
505 * The memory structure for cipher operation has the following structure:
506 *
507 * - AEAD encryption input:  assoc data || plaintext
508 * - AEAD encryption output: assoc data || ciphertext || auth tag
509 * - AEAD decryption input:  assoc data || ciphertext || auth tag
510 * - AEAD decryption output: assoc data || plaintext
511 *
512 * Albeit the kernel requires the presence of the AAD buffer, however,
513 * the kernel does not fill the AAD buffer in the output case. If the
514 * caller wants to have that data buffer filled, the caller must either
515 * use an in-place cipher operation (i.e. same memory location for
516 * input/output memory location).
517 */
518static inline void aead_request_set_crypt(struct aead_request *req,
519					  struct scatterlist *src,
520					  struct scatterlist *dst,
521					  unsigned int cryptlen, u8 *iv)
522{
523	req->src = src;
524	req->dst = dst;
525	req->cryptlen = cryptlen;
526	req->iv = iv;
527}
528
529/**
530 * aead_request_set_ad - set associated data information
531 * @req: request handle
532 * @assoclen: number of bytes in associated data
533 *
534 * Setting the AD information.  This function sets the length of
535 * the associated data.
536 */
537static inline void aead_request_set_ad(struct aead_request *req,
538				       unsigned int assoclen)
539{
540	req->assoclen = assoclen;
 
541}
542
543#endif	/* _CRYPTO_AEAD_H */