Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/* Network filesystem high-level buffered write support.
  3 *
  4 * Copyright (C) 2023 Red Hat, Inc. All Rights Reserved.
  5 * Written by David Howells (dhowells@redhat.com)
  6 */
  7
  8#include <linux/export.h>
  9#include <linux/fs.h>
 10#include <linux/mm.h>
 11#include <linux/pagemap.h>
 12#include <linux/slab.h>
 13#include <linux/pagevec.h>
 14#include "internal.h"
 15
 16static void __netfs_set_group(struct folio *folio, struct netfs_group *netfs_group)
 17{
 18	if (netfs_group)
 19		folio_attach_private(folio, netfs_get_group(netfs_group));
 20}
 21
 22static void netfs_set_group(struct folio *folio, struct netfs_group *netfs_group)
 23{
 24	void *priv = folio_get_private(folio);
 25
 26	if (unlikely(priv != netfs_group)) {
 27		if (netfs_group && (!priv || priv == NETFS_FOLIO_COPY_TO_CACHE))
 28			folio_attach_private(folio, netfs_get_group(netfs_group));
 29		else if (!netfs_group && priv == NETFS_FOLIO_COPY_TO_CACHE)
 30			folio_detach_private(folio);
 31	}
 32}
 33
 34/*
 35 * Grab a folio for writing and lock it.  Attempt to allocate as large a folio
 36 * as possible to hold as much of the remaining length as possible in one go.
 37 */
 38static struct folio *netfs_grab_folio_for_write(struct address_space *mapping,
 39						loff_t pos, size_t part)
 40{
 41	pgoff_t index = pos / PAGE_SIZE;
 42	fgf_t fgp_flags = FGP_WRITEBEGIN;
 43
 44	if (mapping_large_folio_support(mapping))
 45		fgp_flags |= fgf_set_order(pos % PAGE_SIZE + part);
 46
 47	return __filemap_get_folio(mapping, index, fgp_flags,
 48				   mapping_gfp_mask(mapping));
 49}
 50
 51/*
 52 * Update i_size and estimate the update to i_blocks to reflect the additional
 53 * data written into the pagecache until we can find out from the server what
 54 * the values actually are.
 55 */
 56static void netfs_update_i_size(struct netfs_inode *ctx, struct inode *inode,
 57				loff_t i_size, loff_t pos, size_t copied)
 58{
 59	blkcnt_t add;
 60	size_t gap;
 61
 62	if (ctx->ops->update_i_size) {
 63		ctx->ops->update_i_size(inode, pos);
 64		return;
 65	}
 66
 67	i_size_write(inode, pos);
 68#if IS_ENABLED(CONFIG_FSCACHE)
 69	fscache_update_cookie(ctx->cache, NULL, &pos);
 70#endif
 71
 72	gap = SECTOR_SIZE - (i_size & (SECTOR_SIZE - 1));
 73	if (copied > gap) {
 74		add = DIV_ROUND_UP(copied - gap, SECTOR_SIZE);
 75
 76		inode->i_blocks = min_t(blkcnt_t,
 77					DIV_ROUND_UP(pos, SECTOR_SIZE),
 78					inode->i_blocks + add);
 79	}
 80}
 81
 82/**
 83 * netfs_perform_write - Copy data into the pagecache.
 84 * @iocb: The operation parameters
 85 * @iter: The source buffer
 86 * @netfs_group: Grouping for dirty folios (eg. ceph snaps).
 87 *
 88 * Copy data into pagecache folios attached to the inode specified by @iocb.
 89 * The caller must hold appropriate inode locks.
 90 *
 91 * Dirty folios are tagged with a netfs_folio struct if they're not up to date
 92 * to indicate the range modified.  Dirty folios may also be tagged with a
 93 * netfs-specific grouping such that data from an old group gets flushed before
 94 * a new one is started.
 95 */
 96ssize_t netfs_perform_write(struct kiocb *iocb, struct iov_iter *iter,
 97			    struct netfs_group *netfs_group)
 98{
 99	struct file *file = iocb->ki_filp;
100	struct inode *inode = file_inode(file);
101	struct address_space *mapping = inode->i_mapping;
102	struct netfs_inode *ctx = netfs_inode(inode);
103	struct writeback_control wbc = {
104		.sync_mode	= WB_SYNC_NONE,
105		.for_sync	= true,
106		.nr_to_write	= LONG_MAX,
107		.range_start	= iocb->ki_pos,
108		.range_end	= iocb->ki_pos + iter->count,
109	};
110	struct netfs_io_request *wreq = NULL;
111	struct folio *folio = NULL, *writethrough = NULL;
112	unsigned int bdp_flags = (iocb->ki_flags & IOCB_NOWAIT) ? BDP_ASYNC : 0;
113	ssize_t written = 0, ret, ret2;
114	loff_t i_size, pos = iocb->ki_pos;
115	size_t max_chunk = mapping_max_folio_size(mapping);
116	bool maybe_trouble = false;
117
118	if (unlikely(test_bit(NETFS_ICTX_WRITETHROUGH, &ctx->flags) ||
119		     iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC))
120	    ) {
121		wbc_attach_fdatawrite_inode(&wbc, mapping->host);
122
123		ret = filemap_write_and_wait_range(mapping, pos, pos + iter->count);
124		if (ret < 0) {
125			wbc_detach_inode(&wbc);
126			goto out;
127		}
128
129		wreq = netfs_begin_writethrough(iocb, iter->count);
130		if (IS_ERR(wreq)) {
131			wbc_detach_inode(&wbc);
132			ret = PTR_ERR(wreq);
133			wreq = NULL;
134			goto out;
135		}
136		if (!is_sync_kiocb(iocb))
137			wreq->iocb = iocb;
138		netfs_stat(&netfs_n_wh_writethrough);
139	} else {
140		netfs_stat(&netfs_n_wh_buffered_write);
141	}
142
143	do {
144		struct netfs_folio *finfo;
145		struct netfs_group *group;
146		unsigned long long fpos;
147		size_t flen;
148		size_t offset;	/* Offset into pagecache folio */
149		size_t part;	/* Bytes to write to folio */
150		size_t copied;	/* Bytes copied from user */
151
152		offset = pos & (max_chunk - 1);
153		part = min(max_chunk - offset, iov_iter_count(iter));
154
155		/* Bring in the user pages that we will copy from _first_ lest
156		 * we hit a nasty deadlock on copying from the same page as
157		 * we're writing to, without it being marked uptodate.
158		 *
159		 * Not only is this an optimisation, but it is also required to
160		 * check that the address is actually valid, when atomic
161		 * usercopies are used below.
162		 *
163		 * We rely on the page being held onto long enough by the LRU
164		 * that we can grab it below if this causes it to be read.
165		 */
166		ret = -EFAULT;
167		if (unlikely(fault_in_iov_iter_readable(iter, part) == part))
168			break;
169
170		folio = netfs_grab_folio_for_write(mapping, pos, part);
171		if (IS_ERR(folio)) {
172			ret = PTR_ERR(folio);
173			break;
174		}
175
176		flen = folio_size(folio);
177		fpos = folio_pos(folio);
178		offset = pos - fpos;
179		part = min_t(size_t, flen - offset, part);
180
181		/* Wait for writeback to complete.  The writeback engine owns
182		 * the info in folio->private and may change it until it
183		 * removes the WB mark.
184		 */
185		if (folio_get_private(folio) &&
186		    folio_wait_writeback_killable(folio)) {
187			ret = written ? -EINTR : -ERESTARTSYS;
188			goto error_folio_unlock;
189		}
190
191		if (signal_pending(current)) {
192			ret = written ? -EINTR : -ERESTARTSYS;
193			goto error_folio_unlock;
194		}
195
196		/* Decide how we should modify a folio.  We might be attempting
197		 * to do write-streaming, in which case we don't want to a
198		 * local RMW cycle if we can avoid it.  If we're doing local
199		 * caching or content crypto, we award that priority over
200		 * avoiding RMW.  If the file is open readably, then we also
201		 * assume that we may want to read what we wrote.
202		 */
203		finfo = netfs_folio_info(folio);
204		group = netfs_folio_group(folio);
205
206		if (unlikely(group != netfs_group) &&
207		    group != NETFS_FOLIO_COPY_TO_CACHE)
208			goto flush_content;
209
210		if (folio_test_uptodate(folio)) {
211			if (mapping_writably_mapped(mapping))
212				flush_dcache_folio(folio);
213			copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
214			if (unlikely(copied == 0))
215				goto copy_failed;
216			netfs_set_group(folio, netfs_group);
217			trace_netfs_folio(folio, netfs_folio_is_uptodate);
218			goto copied;
219		}
220
221		/* If the page is above the zero-point then we assume that the
222		 * server would just return a block of zeros or a short read if
223		 * we try to read it.
224		 */
225		if (fpos >= ctx->zero_point) {
226			folio_zero_segment(folio, 0, offset);
227			copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
228			if (unlikely(copied == 0))
229				goto copy_failed;
230			folio_zero_segment(folio, offset + copied, flen);
231			__netfs_set_group(folio, netfs_group);
232			folio_mark_uptodate(folio);
233			trace_netfs_folio(folio, netfs_modify_and_clear);
234			goto copied;
235		}
236
237		/* See if we can write a whole folio in one go. */
238		if (!maybe_trouble && offset == 0 && part >= flen) {
239			copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
240			if (unlikely(copied == 0))
241				goto copy_failed;
242			if (unlikely(copied < part)) {
243				maybe_trouble = true;
244				iov_iter_revert(iter, copied);
245				copied = 0;
246				folio_unlock(folio);
247				goto retry;
248			}
249			__netfs_set_group(folio, netfs_group);
250			folio_mark_uptodate(folio);
251			trace_netfs_folio(folio, netfs_whole_folio_modify);
252			goto copied;
253		}
254
255		/* We don't want to do a streaming write on a file that loses
256		 * caching service temporarily because the backing store got
257		 * culled and we don't really want to get a streaming write on
258		 * a file that's open for reading as ->read_folio() then has to
259		 * be able to flush it.
260		 */
261		if ((file->f_mode & FMODE_READ) ||
262		    netfs_is_cache_enabled(ctx)) {
263			if (finfo) {
264				netfs_stat(&netfs_n_wh_wstream_conflict);
265				goto flush_content;
266			}
267			ret = netfs_prefetch_for_write(file, folio, offset, part);
268			if (ret < 0) {
269				_debug("prefetch = %zd", ret);
270				goto error_folio_unlock;
271			}
272			/* Note that copy-to-cache may have been set. */
273
274			copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
275			if (unlikely(copied == 0))
276				goto copy_failed;
277			netfs_set_group(folio, netfs_group);
278			trace_netfs_folio(folio, netfs_just_prefetch);
279			goto copied;
280		}
281
282		if (!finfo) {
283			ret = -EIO;
284			if (WARN_ON(folio_get_private(folio)))
285				goto error_folio_unlock;
286			copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
287			if (unlikely(copied == 0))
288				goto copy_failed;
289			if (offset == 0 && copied == flen) {
290				__netfs_set_group(folio, netfs_group);
291				folio_mark_uptodate(folio);
292				trace_netfs_folio(folio, netfs_streaming_filled_page);
293				goto copied;
294			}
295
296			finfo = kzalloc(sizeof(*finfo), GFP_KERNEL);
297			if (!finfo) {
298				iov_iter_revert(iter, copied);
299				ret = -ENOMEM;
300				goto error_folio_unlock;
301			}
302			finfo->netfs_group = netfs_get_group(netfs_group);
303			finfo->dirty_offset = offset;
304			finfo->dirty_len = copied;
305			folio_attach_private(folio, (void *)((unsigned long)finfo |
306							     NETFS_FOLIO_INFO));
307			trace_netfs_folio(folio, netfs_streaming_write);
308			goto copied;
309		}
310
311		/* We can continue a streaming write only if it continues on
312		 * from the previous.  If it overlaps, we must flush lest we
313		 * suffer a partial copy and disjoint dirty regions.
314		 */
315		if (offset == finfo->dirty_offset + finfo->dirty_len) {
316			copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
317			if (unlikely(copied == 0))
318				goto copy_failed;
319			finfo->dirty_len += copied;
320			if (finfo->dirty_offset == 0 && finfo->dirty_len == flen) {
321				if (finfo->netfs_group)
322					folio_change_private(folio, finfo->netfs_group);
323				else
324					folio_detach_private(folio);
325				folio_mark_uptodate(folio);
326				kfree(finfo);
327				trace_netfs_folio(folio, netfs_streaming_cont_filled_page);
328			} else {
329				trace_netfs_folio(folio, netfs_streaming_write_cont);
330			}
331			goto copied;
332		}
333
334		/* Incompatible write; flush the folio and try again. */
335	flush_content:
336		trace_netfs_folio(folio, netfs_flush_content);
337		folio_unlock(folio);
338		folio_put(folio);
339		ret = filemap_write_and_wait_range(mapping, fpos, fpos + flen - 1);
340		if (ret < 0)
341			goto error_folio_unlock;
342		continue;
343
344	copied:
345		flush_dcache_folio(folio);
346
347		/* Update the inode size if we moved the EOF marker */
348		pos += copied;
349		i_size = i_size_read(inode);
350		if (pos > i_size)
351			netfs_update_i_size(ctx, inode, i_size, pos, copied);
352		written += copied;
353
354		if (likely(!wreq)) {
355			folio_mark_dirty(folio);
356			folio_unlock(folio);
357		} else {
358			netfs_advance_writethrough(wreq, &wbc, folio, copied,
359						   offset + copied == flen,
360						   &writethrough);
361			/* Folio unlocked */
362		}
363	retry:
364		folio_put(folio);
365		folio = NULL;
366
367		ret = balance_dirty_pages_ratelimited_flags(mapping, bdp_flags);
368		if (unlikely(ret < 0))
369			break;
370
371		cond_resched();
372	} while (iov_iter_count(iter));
373
374out:
375	if (likely(written)) {
376		/* Set indication that ctime and mtime got updated in case
377		 * close is deferred.
378		 */
379		set_bit(NETFS_ICTX_MODIFIED_ATTR, &ctx->flags);
380		if (unlikely(ctx->ops->post_modify))
381			ctx->ops->post_modify(inode);
382	}
383
384	if (unlikely(wreq)) {
385		ret2 = netfs_end_writethrough(wreq, &wbc, writethrough);
386		wbc_detach_inode(&wbc);
387		if (ret2 == -EIOCBQUEUED)
388			return ret2;
389		if (ret == 0)
390			ret = ret2;
391	}
392
393	iocb->ki_pos += written;
394	_leave(" = %zd [%zd]", written, ret);
395	return written ? written : ret;
396
397copy_failed:
398	ret = -EFAULT;
399error_folio_unlock:
400	folio_unlock(folio);
401	folio_put(folio);
402	goto out;
403}
404EXPORT_SYMBOL(netfs_perform_write);
405
406/**
407 * netfs_buffered_write_iter_locked - write data to a file
408 * @iocb:	IO state structure (file, offset, etc.)
409 * @from:	iov_iter with data to write
410 * @netfs_group: Grouping for dirty folios (eg. ceph snaps).
411 *
412 * This function does all the work needed for actually writing data to a
413 * file. It does all basic checks, removes SUID from the file, updates
414 * modification times and calls proper subroutines depending on whether we
415 * do direct IO or a standard buffered write.
416 *
417 * The caller must hold appropriate locks around this function and have called
418 * generic_write_checks() already.  The caller is also responsible for doing
419 * any necessary syncing afterwards.
420 *
421 * This function does *not* take care of syncing data in case of O_SYNC write.
422 * A caller has to handle it. This is mainly due to the fact that we want to
423 * avoid syncing under i_rwsem.
424 *
425 * Return:
426 * * number of bytes written, even for truncated writes
427 * * negative error code if no data has been written at all
428 */
429ssize_t netfs_buffered_write_iter_locked(struct kiocb *iocb, struct iov_iter *from,
430					 struct netfs_group *netfs_group)
431{
432	struct file *file = iocb->ki_filp;
433	ssize_t ret;
434
435	trace_netfs_write_iter(iocb, from);
436
437	ret = file_remove_privs(file);
438	if (ret)
439		return ret;
440
441	ret = file_update_time(file);
442	if (ret)
443		return ret;
444
445	return netfs_perform_write(iocb, from, netfs_group);
446}
447EXPORT_SYMBOL(netfs_buffered_write_iter_locked);
448
449/**
450 * netfs_file_write_iter - write data to a file
451 * @iocb: IO state structure
452 * @from: iov_iter with data to write
453 *
454 * Perform a write to a file, writing into the pagecache if possible and doing
455 * an unbuffered write instead if not.
456 *
457 * Return:
458 * * Negative error code if no data has been written at all of
459 *   vfs_fsync_range() failed for a synchronous write
460 * * Number of bytes written, even for truncated writes
461 */
462ssize_t netfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
463{
464	struct file *file = iocb->ki_filp;
465	struct inode *inode = file->f_mapping->host;
466	struct netfs_inode *ictx = netfs_inode(inode);
467	ssize_t ret;
468
469	_enter("%llx,%zx,%llx", iocb->ki_pos, iov_iter_count(from), i_size_read(inode));
470
471	if (!iov_iter_count(from))
472		return 0;
473
474	if ((iocb->ki_flags & IOCB_DIRECT) ||
475	    test_bit(NETFS_ICTX_UNBUFFERED, &ictx->flags))
476		return netfs_unbuffered_write_iter(iocb, from);
477
478	ret = netfs_start_io_write(inode);
479	if (ret < 0)
480		return ret;
481
482	ret = generic_write_checks(iocb, from);
483	if (ret > 0)
484		ret = netfs_buffered_write_iter_locked(iocb, from, NULL);
485	netfs_end_io_write(inode);
486	if (ret > 0)
487		ret = generic_write_sync(iocb, ret);
488	return ret;
489}
490EXPORT_SYMBOL(netfs_file_write_iter);
491
492/*
493 * Notification that a previously read-only page is about to become writable.
494 * The caller indicates the precise page that needs to be written to, but
495 * we only track group on a per-folio basis, so we block more often than
496 * we might otherwise.
497 */
498vm_fault_t netfs_page_mkwrite(struct vm_fault *vmf, struct netfs_group *netfs_group)
499{
500	struct netfs_group *group;
501	struct folio *folio = page_folio(vmf->page);
502	struct file *file = vmf->vma->vm_file;
503	struct address_space *mapping = file->f_mapping;
504	struct inode *inode = file_inode(file);
505	struct netfs_inode *ictx = netfs_inode(inode);
506	vm_fault_t ret = VM_FAULT_NOPAGE;
507	int err;
508
509	_enter("%lx", folio->index);
510
511	sb_start_pagefault(inode->i_sb);
512
513	if (folio_lock_killable(folio) < 0)
514		goto out;
515	if (folio->mapping != mapping)
516		goto unlock;
517	if (folio_wait_writeback_killable(folio) < 0)
518		goto unlock;
519
520	/* Can we see a streaming write here? */
521	if (WARN_ON(!folio_test_uptodate(folio))) {
522		ret = VM_FAULT_SIGBUS;
523		goto unlock;
524	}
525
526	group = netfs_folio_group(folio);
527	if (group != netfs_group && group != NETFS_FOLIO_COPY_TO_CACHE) {
528		folio_unlock(folio);
529		err = filemap_fdatawrite_range(mapping,
530					       folio_pos(folio),
531					       folio_pos(folio) + folio_size(folio));
532		switch (err) {
533		case 0:
534			ret = VM_FAULT_RETRY;
535			goto out;
536		case -ENOMEM:
537			ret = VM_FAULT_OOM;
538			goto out;
539		default:
540			ret = VM_FAULT_SIGBUS;
541			goto out;
542		}
543	}
544
545	if (folio_test_dirty(folio))
546		trace_netfs_folio(folio, netfs_folio_trace_mkwrite_plus);
547	else
548		trace_netfs_folio(folio, netfs_folio_trace_mkwrite);
549	netfs_set_group(folio, netfs_group);
550	file_update_time(file);
551	set_bit(NETFS_ICTX_MODIFIED_ATTR, &ictx->flags);
552	if (ictx->ops->post_modify)
553		ictx->ops->post_modify(inode);
554	ret = VM_FAULT_LOCKED;
555out:
556	sb_end_pagefault(inode->i_sb);
557	return ret;
558unlock:
559	folio_unlock(folio);
560	goto out;
561}
562EXPORT_SYMBOL(netfs_page_mkwrite);