Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include "messages.h"
   4#include "tree-mod-log.h"
   5#include "disk-io.h"
   6#include "fs.h"
   7#include "accessors.h"
   8#include "tree-checker.h"
   9
  10struct tree_mod_root {
  11	u64 logical;
  12	u8 level;
  13};
  14
  15struct tree_mod_elem {
  16	struct rb_node node;
  17	u64 logical;
  18	u64 seq;
  19	enum btrfs_mod_log_op op;
  20
  21	/*
  22	 * This is used for BTRFS_MOD_LOG_KEY_* and BTRFS_MOD_LOG_MOVE_KEYS
  23	 * operations.
  24	 */
  25	int slot;
  26
  27	/* This is used for BTRFS_MOD_LOG_KEY* and BTRFS_MOD_LOG_ROOT_REPLACE. */
  28	u64 generation;
  29
  30	/* Those are used for op == BTRFS_MOD_LOG_KEY_{REPLACE,REMOVE}. */
  31	struct btrfs_disk_key key;
  32	u64 blockptr;
  33
  34	/* This is used for op == BTRFS_MOD_LOG_MOVE_KEYS. */
  35	struct {
  36		int dst_slot;
  37		int nr_items;
  38	} move;
  39
  40	/* This is used for op == BTRFS_MOD_LOG_ROOT_REPLACE. */
  41	struct tree_mod_root old_root;
  42};
  43
  44/*
  45 * Pull a new tree mod seq number for our operation.
  46 */
  47static u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
  48{
  49	return atomic64_inc_return(&fs_info->tree_mod_seq);
  50}
  51
  52/*
  53 * This adds a new blocker to the tree mod log's blocker list if the @elem
  54 * passed does not already have a sequence number set. So when a caller expects
  55 * to record tree modifications, it should ensure to set elem->seq to zero
  56 * before calling btrfs_get_tree_mod_seq.
  57 * Returns a fresh, unused tree log modification sequence number, even if no new
  58 * blocker was added.
  59 */
  60u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
  61			   struct btrfs_seq_list *elem)
  62{
  63	write_lock(&fs_info->tree_mod_log_lock);
  64	if (!elem->seq) {
  65		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
  66		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
  67		set_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags);
  68	}
  69	write_unlock(&fs_info->tree_mod_log_lock);
  70
  71	return elem->seq;
  72}
  73
  74void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
  75			    struct btrfs_seq_list *elem)
  76{
  77	struct rb_root *tm_root;
  78	struct rb_node *node;
  79	struct rb_node *next;
  80	struct tree_mod_elem *tm;
  81	u64 min_seq = BTRFS_SEQ_LAST;
  82	u64 seq_putting = elem->seq;
  83
  84	if (!seq_putting)
  85		return;
  86
  87	write_lock(&fs_info->tree_mod_log_lock);
  88	list_del(&elem->list);
  89	elem->seq = 0;
  90
  91	if (list_empty(&fs_info->tree_mod_seq_list)) {
  92		clear_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags);
  93	} else {
  94		struct btrfs_seq_list *first;
  95
  96		first = list_first_entry(&fs_info->tree_mod_seq_list,
  97					 struct btrfs_seq_list, list);
  98		if (seq_putting > first->seq) {
  99			/*
 100			 * Blocker with lower sequence number exists, we cannot
 101			 * remove anything from the log.
 102			 */
 103			write_unlock(&fs_info->tree_mod_log_lock);
 104			return;
 105		}
 106		min_seq = first->seq;
 107	}
 108
 109	/*
 110	 * Anything that's lower than the lowest existing (read: blocked)
 111	 * sequence number can be removed from the tree.
 112	 */
 113	tm_root = &fs_info->tree_mod_log;
 114	for (node = rb_first(tm_root); node; node = next) {
 115		next = rb_next(node);
 116		tm = rb_entry(node, struct tree_mod_elem, node);
 117		if (tm->seq >= min_seq)
 118			continue;
 119		rb_erase(node, tm_root);
 120		kfree(tm);
 121	}
 122	write_unlock(&fs_info->tree_mod_log_lock);
 123}
 124
 125/*
 126 * Key order of the log:
 127 *       node/leaf start address -> sequence
 128 *
 129 * The 'start address' is the logical address of the *new* root node for root
 130 * replace operations, or the logical address of the affected block for all
 131 * other operations.
 132 */
 133static noinline int tree_mod_log_insert(struct btrfs_fs_info *fs_info,
 134					struct tree_mod_elem *tm)
 135{
 136	struct rb_root *tm_root;
 137	struct rb_node **new;
 138	struct rb_node *parent = NULL;
 139	struct tree_mod_elem *cur;
 140
 141	lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
 142
 143	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
 144
 145	tm_root = &fs_info->tree_mod_log;
 146	new = &tm_root->rb_node;
 147	while (*new) {
 148		cur = rb_entry(*new, struct tree_mod_elem, node);
 149		parent = *new;
 150		if (cur->logical < tm->logical)
 151			new = &((*new)->rb_left);
 152		else if (cur->logical > tm->logical)
 153			new = &((*new)->rb_right);
 154		else if (cur->seq < tm->seq)
 155			new = &((*new)->rb_left);
 156		else if (cur->seq > tm->seq)
 157			new = &((*new)->rb_right);
 158		else
 159			return -EEXIST;
 160	}
 161
 162	rb_link_node(&tm->node, parent, new);
 163	rb_insert_color(&tm->node, tm_root);
 164	return 0;
 165}
 166
 167/*
 168 * Determines if logging can be omitted. Returns true if it can. Otherwise, it
 169 * returns false with the tree_mod_log_lock acquired. The caller must hold
 170 * this until all tree mod log insertions are recorded in the rb tree and then
 171 * write unlock fs_info::tree_mod_log_lock.
 172 */
 173static bool tree_mod_dont_log(struct btrfs_fs_info *fs_info, const struct extent_buffer *eb)
 174{
 175	if (!test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
 176		return true;
 177	if (eb && btrfs_header_level(eb) == 0)
 178		return true;
 179
 180	write_lock(&fs_info->tree_mod_log_lock);
 181	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
 182		write_unlock(&fs_info->tree_mod_log_lock);
 183		return true;
 184	}
 185
 186	return false;
 187}
 188
 189/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
 190static bool tree_mod_need_log(const struct btrfs_fs_info *fs_info,
 191			      const struct extent_buffer *eb)
 192{
 193	if (!test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
 194		return false;
 195	if (eb && btrfs_header_level(eb) == 0)
 196		return false;
 197
 198	return true;
 199}
 200
 201static struct tree_mod_elem *alloc_tree_mod_elem(const struct extent_buffer *eb,
 202						 int slot,
 203						 enum btrfs_mod_log_op op)
 204{
 205	struct tree_mod_elem *tm;
 206
 207	tm = kzalloc(sizeof(*tm), GFP_NOFS);
 208	if (!tm)
 209		return NULL;
 210
 211	tm->logical = eb->start;
 212	if (op != BTRFS_MOD_LOG_KEY_ADD) {
 213		btrfs_node_key(eb, &tm->key, slot);
 214		tm->blockptr = btrfs_node_blockptr(eb, slot);
 215	}
 216	tm->op = op;
 217	tm->slot = slot;
 218	tm->generation = btrfs_node_ptr_generation(eb, slot);
 219	RB_CLEAR_NODE(&tm->node);
 220
 221	return tm;
 222}
 223
 224int btrfs_tree_mod_log_insert_key(const struct extent_buffer *eb, int slot,
 225				  enum btrfs_mod_log_op op)
 226{
 227	struct tree_mod_elem *tm;
 228	int ret = 0;
 229
 230	if (!tree_mod_need_log(eb->fs_info, eb))
 231		return 0;
 232
 233	tm = alloc_tree_mod_elem(eb, slot, op);
 234	if (!tm)
 235		ret = -ENOMEM;
 236
 237	if (tree_mod_dont_log(eb->fs_info, eb)) {
 238		kfree(tm);
 239		/*
 240		 * Don't error if we failed to allocate memory because we don't
 241		 * need to log.
 242		 */
 243		return 0;
 244	} else if (ret != 0) {
 245		/*
 246		 * We previously failed to allocate memory and we need to log,
 247		 * so we have to fail.
 248		 */
 249		goto out_unlock;
 250	}
 251
 252	ret = tree_mod_log_insert(eb->fs_info, tm);
 253out_unlock:
 254	write_unlock(&eb->fs_info->tree_mod_log_lock);
 255	if (ret)
 256		kfree(tm);
 257
 258	return ret;
 259}
 260
 261static struct tree_mod_elem *tree_mod_log_alloc_move(const struct extent_buffer *eb,
 262						     int dst_slot, int src_slot,
 263						     int nr_items)
 264{
 265	struct tree_mod_elem *tm;
 266
 267	tm = kzalloc(sizeof(*tm), GFP_NOFS);
 268	if (!tm)
 269		return ERR_PTR(-ENOMEM);
 270
 271	tm->logical = eb->start;
 272	tm->slot = src_slot;
 273	tm->move.dst_slot = dst_slot;
 274	tm->move.nr_items = nr_items;
 275	tm->op = BTRFS_MOD_LOG_MOVE_KEYS;
 276	RB_CLEAR_NODE(&tm->node);
 277
 278	return tm;
 279}
 280
 281int btrfs_tree_mod_log_insert_move(const struct extent_buffer *eb,
 282				   int dst_slot, int src_slot,
 283				   int nr_items)
 284{
 285	struct tree_mod_elem *tm = NULL;
 286	struct tree_mod_elem **tm_list = NULL;
 287	int ret = 0;
 288	int i;
 289	bool locked = false;
 290
 291	if (!tree_mod_need_log(eb->fs_info, eb))
 292		return 0;
 293
 294	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
 295	if (!tm_list) {
 296		ret = -ENOMEM;
 297		goto lock;
 298	}
 299
 300	tm = tree_mod_log_alloc_move(eb, dst_slot, src_slot, nr_items);
 301	if (IS_ERR(tm)) {
 302		ret = PTR_ERR(tm);
 303		tm = NULL;
 304		goto lock;
 305	}
 306
 307	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 308		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
 309				BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING);
 310		if (!tm_list[i]) {
 311			ret = -ENOMEM;
 312			goto lock;
 313		}
 314	}
 315
 316lock:
 317	if (tree_mod_dont_log(eb->fs_info, eb)) {
 318		/*
 319		 * Don't error if we failed to allocate memory because we don't
 320		 * need to log.
 321		 */
 322		ret = 0;
 323		goto free_tms;
 324	}
 325	locked = true;
 326
 327	/*
 328	 * We previously failed to allocate memory and we need to log, so we
 329	 * have to fail.
 330	 */
 331	if (ret != 0)
 332		goto free_tms;
 333
 334	/*
 335	 * When we override something during the move, we log these removals.
 336	 * This can only happen when we move towards the beginning of the
 337	 * buffer, i.e. dst_slot < src_slot.
 338	 */
 339	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 340		ret = tree_mod_log_insert(eb->fs_info, tm_list[i]);
 341		if (ret)
 342			goto free_tms;
 343	}
 344
 345	ret = tree_mod_log_insert(eb->fs_info, tm);
 346	if (ret)
 347		goto free_tms;
 348	write_unlock(&eb->fs_info->tree_mod_log_lock);
 349	kfree(tm_list);
 350
 351	return 0;
 352
 353free_tms:
 354	if (tm_list) {
 355		for (i = 0; i < nr_items; i++) {
 356			if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 357				rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
 358			kfree(tm_list[i]);
 359		}
 360	}
 361	if (locked)
 362		write_unlock(&eb->fs_info->tree_mod_log_lock);
 363	kfree(tm_list);
 364	kfree(tm);
 365
 366	return ret;
 367}
 368
 369static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
 370				struct tree_mod_elem **tm_list,
 371				int nritems)
 372{
 373	int i, j;
 374	int ret;
 375
 376	for (i = nritems - 1; i >= 0; i--) {
 377		ret = tree_mod_log_insert(fs_info, tm_list[i]);
 378		if (ret) {
 379			for (j = nritems - 1; j > i; j--)
 380				rb_erase(&tm_list[j]->node,
 381					 &fs_info->tree_mod_log);
 382			return ret;
 383		}
 384	}
 385
 386	return 0;
 387}
 388
 389int btrfs_tree_mod_log_insert_root(struct extent_buffer *old_root,
 390				   struct extent_buffer *new_root,
 391				   bool log_removal)
 392{
 393	struct btrfs_fs_info *fs_info = old_root->fs_info;
 394	struct tree_mod_elem *tm = NULL;
 395	struct tree_mod_elem **tm_list = NULL;
 396	int nritems = 0;
 397	int ret = 0;
 398	int i;
 399
 400	if (!tree_mod_need_log(fs_info, NULL))
 401		return 0;
 402
 403	if (log_removal && btrfs_header_level(old_root) > 0) {
 404		nritems = btrfs_header_nritems(old_root);
 405		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
 406				  GFP_NOFS);
 407		if (!tm_list) {
 408			ret = -ENOMEM;
 409			goto lock;
 410		}
 411		for (i = 0; i < nritems; i++) {
 412			tm_list[i] = alloc_tree_mod_elem(old_root, i,
 413			    BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING);
 414			if (!tm_list[i]) {
 415				ret = -ENOMEM;
 416				goto lock;
 417			}
 418		}
 419	}
 420
 421	tm = kzalloc(sizeof(*tm), GFP_NOFS);
 422	if (!tm) {
 423		ret = -ENOMEM;
 424		goto lock;
 425	}
 426
 427	tm->logical = new_root->start;
 428	tm->old_root.logical = old_root->start;
 429	tm->old_root.level = btrfs_header_level(old_root);
 430	tm->generation = btrfs_header_generation(old_root);
 431	tm->op = BTRFS_MOD_LOG_ROOT_REPLACE;
 432
 433lock:
 434	if (tree_mod_dont_log(fs_info, NULL)) {
 435		/*
 436		 * Don't error if we failed to allocate memory because we don't
 437		 * need to log.
 438		 */
 439		ret = 0;
 440		goto free_tms;
 441	} else if (ret != 0) {
 442		/*
 443		 * We previously failed to allocate memory and we need to log,
 444		 * so we have to fail.
 445		 */
 446		goto out_unlock;
 447	}
 448
 449	if (tm_list)
 450		ret = tree_mod_log_free_eb(fs_info, tm_list, nritems);
 451	if (!ret)
 452		ret = tree_mod_log_insert(fs_info, tm);
 453
 454out_unlock:
 455	write_unlock(&fs_info->tree_mod_log_lock);
 456	if (ret)
 457		goto free_tms;
 458	kfree(tm_list);
 459
 460	return ret;
 461
 462free_tms:
 463	if (tm_list) {
 464		for (i = 0; i < nritems; i++)
 465			kfree(tm_list[i]);
 466		kfree(tm_list);
 467	}
 468	kfree(tm);
 469
 470	return ret;
 471}
 472
 473static struct tree_mod_elem *__tree_mod_log_search(struct btrfs_fs_info *fs_info,
 474						   u64 start, u64 min_seq,
 475						   bool smallest)
 476{
 477	struct rb_root *tm_root;
 478	struct rb_node *node;
 479	struct tree_mod_elem *cur = NULL;
 480	struct tree_mod_elem *found = NULL;
 481
 482	read_lock(&fs_info->tree_mod_log_lock);
 483	tm_root = &fs_info->tree_mod_log;
 484	node = tm_root->rb_node;
 485	while (node) {
 486		cur = rb_entry(node, struct tree_mod_elem, node);
 487		if (cur->logical < start) {
 488			node = node->rb_left;
 489		} else if (cur->logical > start) {
 490			node = node->rb_right;
 491		} else if (cur->seq < min_seq) {
 492			node = node->rb_left;
 493		} else if (!smallest) {
 494			/* We want the node with the highest seq */
 495			if (found)
 496				BUG_ON(found->seq > cur->seq);
 497			found = cur;
 498			node = node->rb_left;
 499		} else if (cur->seq > min_seq) {
 500			/* We want the node with the smallest seq */
 501			if (found)
 502				BUG_ON(found->seq < cur->seq);
 503			found = cur;
 504			node = node->rb_right;
 505		} else {
 506			found = cur;
 507			break;
 508		}
 509	}
 510	read_unlock(&fs_info->tree_mod_log_lock);
 511
 512	return found;
 513}
 514
 515/*
 516 * This returns the element from the log with the smallest time sequence
 517 * value that's in the log (the oldest log item). Any element with a time
 518 * sequence lower than min_seq will be ignored.
 519 */
 520static struct tree_mod_elem *tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info,
 521							u64 start, u64 min_seq)
 522{
 523	return __tree_mod_log_search(fs_info, start, min_seq, true);
 524}
 525
 526/*
 527 * This returns the element from the log with the largest time sequence
 528 * value that's in the log (the most recent log item). Any element with
 529 * a time sequence lower than min_seq will be ignored.
 530 */
 531static struct tree_mod_elem *tree_mod_log_search(struct btrfs_fs_info *fs_info,
 532						 u64 start, u64 min_seq)
 533{
 534	return __tree_mod_log_search(fs_info, start, min_seq, false);
 535}
 536
 537int btrfs_tree_mod_log_eb_copy(struct extent_buffer *dst,
 538			       const struct extent_buffer *src,
 539			       unsigned long dst_offset,
 540			       unsigned long src_offset,
 541			       int nr_items)
 542{
 543	struct btrfs_fs_info *fs_info = dst->fs_info;
 544	int ret = 0;
 545	struct tree_mod_elem **tm_list = NULL;
 546	struct tree_mod_elem **tm_list_add = NULL;
 547	struct tree_mod_elem **tm_list_rem = NULL;
 548	int i;
 549	bool locked = false;
 550	struct tree_mod_elem *dst_move_tm = NULL;
 551	struct tree_mod_elem *src_move_tm = NULL;
 552	u32 dst_move_nr_items = btrfs_header_nritems(dst) - dst_offset;
 553	u32 src_move_nr_items = btrfs_header_nritems(src) - (src_offset + nr_items);
 554
 555	if (!tree_mod_need_log(fs_info, NULL))
 556		return 0;
 557
 558	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
 559		return 0;
 560
 561	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
 562			  GFP_NOFS);
 563	if (!tm_list) {
 564		ret = -ENOMEM;
 565		goto lock;
 566	}
 567
 568	if (dst_move_nr_items) {
 569		dst_move_tm = tree_mod_log_alloc_move(dst, dst_offset + nr_items,
 570						      dst_offset, dst_move_nr_items);
 571		if (IS_ERR(dst_move_tm)) {
 572			ret = PTR_ERR(dst_move_tm);
 573			dst_move_tm = NULL;
 574			goto lock;
 575		}
 576	}
 577	if (src_move_nr_items) {
 578		src_move_tm = tree_mod_log_alloc_move(src, src_offset,
 579						      src_offset + nr_items,
 580						      src_move_nr_items);
 581		if (IS_ERR(src_move_tm)) {
 582			ret = PTR_ERR(src_move_tm);
 583			src_move_tm = NULL;
 584			goto lock;
 585		}
 586	}
 587
 588	tm_list_add = tm_list;
 589	tm_list_rem = tm_list + nr_items;
 590	for (i = 0; i < nr_items; i++) {
 591		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
 592						     BTRFS_MOD_LOG_KEY_REMOVE);
 593		if (!tm_list_rem[i]) {
 594			ret = -ENOMEM;
 595			goto lock;
 596		}
 597
 598		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
 599						     BTRFS_MOD_LOG_KEY_ADD);
 600		if (!tm_list_add[i]) {
 601			ret = -ENOMEM;
 602			goto lock;
 603		}
 604	}
 605
 606lock:
 607	if (tree_mod_dont_log(fs_info, NULL)) {
 608		/*
 609		 * Don't error if we failed to allocate memory because we don't
 610		 * need to log.
 611		 */
 612		ret = 0;
 613		goto free_tms;
 614	}
 615	locked = true;
 616
 617	/*
 618	 * We previously failed to allocate memory and we need to log, so we
 619	 * have to fail.
 620	 */
 621	if (ret != 0)
 622		goto free_tms;
 623
 624	if (dst_move_tm) {
 625		ret = tree_mod_log_insert(fs_info, dst_move_tm);
 626		if (ret)
 627			goto free_tms;
 628	}
 629	for (i = 0; i < nr_items; i++) {
 630		ret = tree_mod_log_insert(fs_info, tm_list_rem[i]);
 631		if (ret)
 632			goto free_tms;
 633		ret = tree_mod_log_insert(fs_info, tm_list_add[i]);
 634		if (ret)
 635			goto free_tms;
 636	}
 637	if (src_move_tm) {
 638		ret = tree_mod_log_insert(fs_info, src_move_tm);
 639		if (ret)
 640			goto free_tms;
 641	}
 642
 643	write_unlock(&fs_info->tree_mod_log_lock);
 644	kfree(tm_list);
 645
 646	return 0;
 647
 648free_tms:
 649	if (dst_move_tm && !RB_EMPTY_NODE(&dst_move_tm->node))
 650		rb_erase(&dst_move_tm->node, &fs_info->tree_mod_log);
 651	kfree(dst_move_tm);
 652	if (src_move_tm && !RB_EMPTY_NODE(&src_move_tm->node))
 653		rb_erase(&src_move_tm->node, &fs_info->tree_mod_log);
 654	kfree(src_move_tm);
 655	if (tm_list) {
 656		for (i = 0; i < nr_items * 2; i++) {
 657			if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 658				rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 659			kfree(tm_list[i]);
 660		}
 661	}
 662	if (locked)
 663		write_unlock(&fs_info->tree_mod_log_lock);
 664	kfree(tm_list);
 665
 666	return ret;
 667}
 668
 669int btrfs_tree_mod_log_free_eb(struct extent_buffer *eb)
 670{
 671	struct tree_mod_elem **tm_list = NULL;
 672	int nritems = 0;
 673	int i;
 674	int ret = 0;
 675
 676	if (!tree_mod_need_log(eb->fs_info, eb))
 677		return 0;
 678
 679	nritems = btrfs_header_nritems(eb);
 680	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
 681	if (!tm_list) {
 682		ret = -ENOMEM;
 683		goto lock;
 684	}
 685
 686	for (i = 0; i < nritems; i++) {
 687		tm_list[i] = alloc_tree_mod_elem(eb, i,
 688				    BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING);
 689		if (!tm_list[i]) {
 690			ret = -ENOMEM;
 691			goto lock;
 692		}
 693	}
 694
 695lock:
 696	if (tree_mod_dont_log(eb->fs_info, eb)) {
 697		/*
 698		 * Don't error if we failed to allocate memory because we don't
 699		 * need to log.
 700		 */
 701		ret = 0;
 702		goto free_tms;
 703	} else if (ret != 0) {
 704		/*
 705		 * We previously failed to allocate memory and we need to log,
 706		 * so we have to fail.
 707		 */
 708		goto out_unlock;
 709	}
 710
 711	ret = tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
 712out_unlock:
 713	write_unlock(&eb->fs_info->tree_mod_log_lock);
 714	if (ret)
 715		goto free_tms;
 716	kfree(tm_list);
 717
 718	return 0;
 719
 720free_tms:
 721	if (tm_list) {
 722		for (i = 0; i < nritems; i++)
 723			kfree(tm_list[i]);
 724		kfree(tm_list);
 725	}
 726
 727	return ret;
 728}
 729
 730/*
 731 * Returns the logical address of the oldest predecessor of the given root.
 732 * Entries older than time_seq are ignored.
 733 */
 734static struct tree_mod_elem *tree_mod_log_oldest_root(struct extent_buffer *eb_root,
 735						      u64 time_seq)
 736{
 737	struct tree_mod_elem *tm;
 738	struct tree_mod_elem *found = NULL;
 739	u64 root_logical = eb_root->start;
 740	bool looped = false;
 741
 742	if (!time_seq)
 743		return NULL;
 744
 745	/*
 746	 * The very last operation that's logged for a root is the replacement
 747	 * operation (if it is replaced at all). This has the logical address
 748	 * of the *new* root, making it the very first operation that's logged
 749	 * for this root.
 750	 */
 751	while (1) {
 752		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
 753						time_seq);
 754		if (!looped && !tm)
 755			return NULL;
 756		/*
 757		 * If there are no tree operation for the oldest root, we simply
 758		 * return it. This should only happen if that (old) root is at
 759		 * level 0.
 760		 */
 761		if (!tm)
 762			break;
 763
 764		/*
 765		 * If there's an operation that's not a root replacement, we
 766		 * found the oldest version of our root. Normally, we'll find a
 767		 * BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
 768		 */
 769		if (tm->op != BTRFS_MOD_LOG_ROOT_REPLACE)
 770			break;
 771
 772		found = tm;
 773		root_logical = tm->old_root.logical;
 774		looped = true;
 775	}
 776
 777	/* If there's no old root to return, return what we found instead */
 778	if (!found)
 779		found = tm;
 780
 781	return found;
 782}
 783
 784
 785/*
 786 * tm is a pointer to the first operation to rewind within eb. Then, all
 787 * previous operations will be rewound (until we reach something older than
 788 * time_seq).
 789 */
 790static void tree_mod_log_rewind(struct btrfs_fs_info *fs_info,
 791				struct extent_buffer *eb,
 792				u64 time_seq,
 793				struct tree_mod_elem *first_tm)
 794{
 795	u32 n;
 796	struct rb_node *next;
 797	struct tree_mod_elem *tm = first_tm;
 798	unsigned long o_dst;
 799	unsigned long o_src;
 800	unsigned long p_size = sizeof(struct btrfs_key_ptr);
 801	/*
 802	 * max_slot tracks the maximum valid slot of the rewind eb at every
 803	 * step of the rewind. This is in contrast with 'n' which eventually
 804	 * matches the number of items, but can be wrong during moves or if
 805	 * removes overlap on already valid slots (which is probably separately
 806	 * a bug). We do this to validate the offsets of memmoves for rewinding
 807	 * moves and detect invalid memmoves.
 808	 *
 809	 * Since a rewind eb can start empty, max_slot is a signed integer with
 810	 * a special meaning for -1, which is that no slot is valid to move out
 811	 * of. Any other negative value is invalid.
 812	 */
 813	int max_slot;
 814	int move_src_end_slot;
 815	int move_dst_end_slot;
 816
 817	n = btrfs_header_nritems(eb);
 818	max_slot = n - 1;
 819	read_lock(&fs_info->tree_mod_log_lock);
 820	while (tm && tm->seq >= time_seq) {
 821		ASSERT(max_slot >= -1);
 822		/*
 823		 * All the operations are recorded with the operator used for
 824		 * the modification. As we're going backwards, we do the
 825		 * opposite of each operation here.
 826		 */
 827		switch (tm->op) {
 828		case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING:
 829			BUG_ON(tm->slot < n);
 830			fallthrough;
 831		case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING:
 832		case BTRFS_MOD_LOG_KEY_REMOVE:
 833			btrfs_set_node_key(eb, &tm->key, tm->slot);
 834			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
 835			btrfs_set_node_ptr_generation(eb, tm->slot,
 836						      tm->generation);
 837			n++;
 838			if (tm->slot > max_slot)
 839				max_slot = tm->slot;
 840			break;
 841		case BTRFS_MOD_LOG_KEY_REPLACE:
 842			BUG_ON(tm->slot >= n);
 843			btrfs_set_node_key(eb, &tm->key, tm->slot);
 844			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
 845			btrfs_set_node_ptr_generation(eb, tm->slot,
 846						      tm->generation);
 847			break;
 848		case BTRFS_MOD_LOG_KEY_ADD:
 849			/*
 850			 * It is possible we could have already removed keys
 851			 * behind the known max slot, so this will be an
 852			 * overestimate. In practice, the copy operation
 853			 * inserts them in increasing order, and overestimating
 854			 * just means we miss some warnings, so it's OK. It
 855			 * isn't worth carefully tracking the full array of
 856			 * valid slots to check against when moving.
 857			 */
 858			if (tm->slot == max_slot)
 859				max_slot--;
 860			/* if a move operation is needed it's in the log */
 861			n--;
 862			break;
 863		case BTRFS_MOD_LOG_MOVE_KEYS:
 864			ASSERT(tm->move.nr_items > 0);
 865			move_src_end_slot = tm->move.dst_slot + tm->move.nr_items - 1;
 866			move_dst_end_slot = tm->slot + tm->move.nr_items - 1;
 867			o_dst = btrfs_node_key_ptr_offset(eb, tm->slot);
 868			o_src = btrfs_node_key_ptr_offset(eb, tm->move.dst_slot);
 869			if (WARN_ON(move_src_end_slot > max_slot ||
 870				    tm->move.nr_items <= 0)) {
 871				btrfs_warn(fs_info,
 872"move from invalid tree mod log slot eb %llu slot %d dst_slot %d nr_items %d seq %llu n %u max_slot %d",
 873					   eb->start, tm->slot,
 874					   tm->move.dst_slot, tm->move.nr_items,
 875					   tm->seq, n, max_slot);
 876			}
 877			memmove_extent_buffer(eb, o_dst, o_src,
 878					      tm->move.nr_items * p_size);
 879			max_slot = move_dst_end_slot;
 880			break;
 881		case BTRFS_MOD_LOG_ROOT_REPLACE:
 882			/*
 883			 * This operation is special. For roots, this must be
 884			 * handled explicitly before rewinding.
 885			 * For non-roots, this operation may exist if the node
 886			 * was a root: root A -> child B; then A gets empty and
 887			 * B is promoted to the new root. In the mod log, we'll
 888			 * have a root-replace operation for B, a tree block
 889			 * that is no root. We simply ignore that operation.
 890			 */
 891			break;
 892		}
 893		next = rb_next(&tm->node);
 894		if (!next)
 895			break;
 896		tm = rb_entry(next, struct tree_mod_elem, node);
 897		if (tm->logical != first_tm->logical)
 898			break;
 899	}
 900	read_unlock(&fs_info->tree_mod_log_lock);
 901	btrfs_set_header_nritems(eb, n);
 902}
 903
 904/*
 905 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
 906 * is returned. If rewind operations happen, a fresh buffer is returned. The
 907 * returned buffer is always read-locked. If the returned buffer is not the
 908 * input buffer, the lock on the input buffer is released and the input buffer
 909 * is freed (its refcount is decremented).
 910 */
 911struct extent_buffer *btrfs_tree_mod_log_rewind(struct btrfs_fs_info *fs_info,
 912						struct extent_buffer *eb,
 913						u64 time_seq)
 914{
 915	struct extent_buffer *eb_rewin;
 916	struct tree_mod_elem *tm;
 917
 918	if (!time_seq)
 919		return eb;
 920
 921	if (btrfs_header_level(eb) == 0)
 922		return eb;
 923
 924	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
 925	if (!tm)
 926		return eb;
 927
 928	if (tm->op == BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
 929		BUG_ON(tm->slot != 0);
 930		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
 931		if (!eb_rewin) {
 932			btrfs_tree_read_unlock(eb);
 933			free_extent_buffer(eb);
 934			return NULL;
 935		}
 936		btrfs_set_header_bytenr(eb_rewin, eb->start);
 937		btrfs_set_header_backref_rev(eb_rewin,
 938					     btrfs_header_backref_rev(eb));
 939		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
 940		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
 941	} else {
 942		eb_rewin = btrfs_clone_extent_buffer(eb);
 943		if (!eb_rewin) {
 944			btrfs_tree_read_unlock(eb);
 945			free_extent_buffer(eb);
 946			return NULL;
 947		}
 948	}
 949
 950	btrfs_tree_read_unlock(eb);
 951	free_extent_buffer(eb);
 952
 953	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin),
 954				       eb_rewin, btrfs_header_level(eb_rewin));
 955	btrfs_tree_read_lock(eb_rewin);
 956	tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
 957	WARN_ON(btrfs_header_nritems(eb_rewin) >
 958		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
 959
 960	return eb_rewin;
 961}
 962
 963/*
 964 * Rewind the state of @root's root node to the given @time_seq value.
 965 * If there are no changes, the current root->root_node is returned. If anything
 966 * changed in between, there's a fresh buffer allocated on which the rewind
 967 * operations are done. In any case, the returned buffer is read locked.
 968 * Returns NULL on error (with no locks held).
 969 */
 970struct extent_buffer *btrfs_get_old_root(struct btrfs_root *root, u64 time_seq)
 971{
 972	struct btrfs_fs_info *fs_info = root->fs_info;
 973	struct tree_mod_elem *tm;
 974	struct extent_buffer *eb = NULL;
 975	struct extent_buffer *eb_root;
 976	u64 eb_root_owner = 0;
 977	struct extent_buffer *old;
 978	struct tree_mod_root *old_root = NULL;
 979	u64 old_generation = 0;
 980	u64 logical;
 981	int level;
 982
 983	eb_root = btrfs_read_lock_root_node(root);
 984	tm = tree_mod_log_oldest_root(eb_root, time_seq);
 985	if (!tm)
 986		return eb_root;
 987
 988	if (tm->op == BTRFS_MOD_LOG_ROOT_REPLACE) {
 989		old_root = &tm->old_root;
 990		old_generation = tm->generation;
 991		logical = old_root->logical;
 992		level = old_root->level;
 993	} else {
 994		logical = eb_root->start;
 995		level = btrfs_header_level(eb_root);
 996	}
 997
 998	tm = tree_mod_log_search(fs_info, logical, time_seq);
 999	if (old_root && tm && tm->op != BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1000		struct btrfs_tree_parent_check check = { 0 };
1001
1002		btrfs_tree_read_unlock(eb_root);
1003		free_extent_buffer(eb_root);
1004
1005		check.level = level;
1006		check.owner_root = btrfs_root_id(root);
1007
1008		old = read_tree_block(fs_info, logical, &check);
1009		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1010			if (!IS_ERR(old))
1011				free_extent_buffer(old);
1012			btrfs_warn(fs_info,
1013				   "failed to read tree block %llu from get_old_root",
1014				   logical);
1015		} else {
1016			struct tree_mod_elem *tm2;
1017
1018			btrfs_tree_read_lock(old);
1019			eb = btrfs_clone_extent_buffer(old);
1020			/*
1021			 * After the lookup for the most recent tree mod operation
1022			 * above and before we locked and cloned the extent buffer
1023			 * 'old', a new tree mod log operation may have been added.
1024			 * So lookup for a more recent one to make sure the number
1025			 * of mod log operations we replay is consistent with the
1026			 * number of items we have in the cloned extent buffer,
1027			 * otherwise we can hit a BUG_ON when rewinding the extent
1028			 * buffer.
1029			 */
1030			tm2 = tree_mod_log_search(fs_info, logical, time_seq);
1031			btrfs_tree_read_unlock(old);
1032			free_extent_buffer(old);
1033			ASSERT(tm2);
1034			ASSERT(tm2 == tm || tm2->seq > tm->seq);
1035			if (!tm2 || tm2->seq < tm->seq) {
1036				free_extent_buffer(eb);
1037				return NULL;
1038			}
1039			tm = tm2;
1040		}
1041	} else if (old_root) {
1042		eb_root_owner = btrfs_header_owner(eb_root);
1043		btrfs_tree_read_unlock(eb_root);
1044		free_extent_buffer(eb_root);
1045		eb = alloc_dummy_extent_buffer(fs_info, logical);
1046	} else {
1047		eb = btrfs_clone_extent_buffer(eb_root);
1048		btrfs_tree_read_unlock(eb_root);
1049		free_extent_buffer(eb_root);
1050	}
1051
1052	if (!eb)
1053		return NULL;
1054	if (old_root) {
1055		btrfs_set_header_bytenr(eb, eb->start);
1056		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1057		btrfs_set_header_owner(eb, eb_root_owner);
1058		btrfs_set_header_level(eb, old_root->level);
1059		btrfs_set_header_generation(eb, old_generation);
1060	}
1061	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb,
1062				       btrfs_header_level(eb));
1063	btrfs_tree_read_lock(eb);
1064	if (tm)
1065		tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1066	else
1067		WARN_ON(btrfs_header_level(eb) != 0);
1068	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1069
1070	return eb;
1071}
1072
1073int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1074{
1075	struct tree_mod_elem *tm;
1076	int level;
1077	struct extent_buffer *eb_root = btrfs_root_node(root);
1078
1079	tm = tree_mod_log_oldest_root(eb_root, time_seq);
1080	if (tm && tm->op == BTRFS_MOD_LOG_ROOT_REPLACE)
1081		level = tm->old_root.level;
1082	else
1083		level = btrfs_header_level(eb_root);
1084
1085	free_extent_buffer(eb_root);
1086
1087	return level;
1088}
1089
1090/*
1091 * Return the lowest sequence number in the tree modification log.
1092 *
1093 * Return the sequence number of the oldest tree modification log user, which
1094 * corresponds to the lowest sequence number of all existing users. If there are
1095 * no users it returns 0.
1096 */
1097u64 btrfs_tree_mod_log_lowest_seq(struct btrfs_fs_info *fs_info)
1098{
1099	u64 ret = 0;
1100
1101	read_lock(&fs_info->tree_mod_log_lock);
1102	if (!list_empty(&fs_info->tree_mod_seq_list)) {
1103		struct btrfs_seq_list *elem;
1104
1105		elem = list_first_entry(&fs_info->tree_mod_seq_list,
1106					struct btrfs_seq_list, list);
1107		ret = elem->seq;
1108	}
1109	read_unlock(&fs_info->tree_mod_log_lock);
1110
1111	return ret;
1112}