Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
   3 * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
   4 *
   5 * This code is *strongly* based on EHCI-HCD code by David Brownell since
   6 * the chip is a quasi-EHCI compatible.
   7 *
   8 * This program is free software; you can redistribute it and/or modify it
   9 * under the terms of the GNU General Public License as published by the
  10 * Free Software Foundation; either version 2 of the License, or (at your
  11 * option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/module.h>
  24#include <linux/pci.h>
  25#include <linux/dmapool.h>
  26#include <linux/kernel.h>
  27#include <linux/delay.h>
  28#include <linux/ioport.h>
  29#include <linux/sched.h>
  30#include <linux/slab.h>
  31#include <linux/errno.h>
  32#include <linux/init.h>
  33#include <linux/timer.h>
  34#include <linux/list.h>
  35#include <linux/interrupt.h>
  36#include <linux/usb.h>
  37#include <linux/usb/hcd.h>
  38#include <linux/moduleparam.h>
  39#include <linux/dma-mapping.h>
  40#include <linux/io.h>
 
  41
  42#include <asm/irq.h>
  43#include <asm/system.h>
  44#include <asm/unaligned.h>
  45
  46#include <linux/irq.h>
  47#include <linux/platform_device.h>
  48
  49#include "oxu210hp.h"
  50
  51#define DRIVER_VERSION "0.0.50"
  52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  53/*
  54 * Main defines
  55 */
  56
  57#define oxu_dbg(oxu, fmt, args...) \
  58		dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
  59#define oxu_err(oxu, fmt, args...) \
  60		dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
  61#define oxu_info(oxu, fmt, args...) \
  62		dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
  63
 
 
 
 
  64static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu)
  65{
  66	return container_of((void *) oxu, struct usb_hcd, hcd_priv);
  67}
  68
  69static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd)
  70{
  71	return (struct oxu_hcd *) (hcd->hcd_priv);
  72}
  73
  74/*
  75 * Debug stuff
  76 */
  77
  78#undef OXU_URB_TRACE
  79#undef OXU_VERBOSE_DEBUG
  80
  81#ifdef OXU_VERBOSE_DEBUG
  82#define oxu_vdbg			oxu_dbg
  83#else
  84#define oxu_vdbg(oxu, fmt, args...)	/* Nop */
  85#endif
  86
  87#ifdef DEBUG
  88
  89static int __attribute__((__unused__))
  90dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
  91{
  92	return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
  93		label, label[0] ? " " : "", status,
  94		(status & STS_ASS) ? " Async" : "",
  95		(status & STS_PSS) ? " Periodic" : "",
  96		(status & STS_RECL) ? " Recl" : "",
  97		(status & STS_HALT) ? " Halt" : "",
  98		(status & STS_IAA) ? " IAA" : "",
  99		(status & STS_FATAL) ? " FATAL" : "",
 100		(status & STS_FLR) ? " FLR" : "",
 101		(status & STS_PCD) ? " PCD" : "",
 102		(status & STS_ERR) ? " ERR" : "",
 103		(status & STS_INT) ? " INT" : ""
 104		);
 105}
 106
 107static int __attribute__((__unused__))
 108dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
 109{
 110	return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
 111		label, label[0] ? " " : "", enable,
 112		(enable & STS_IAA) ? " IAA" : "",
 113		(enable & STS_FATAL) ? " FATAL" : "",
 114		(enable & STS_FLR) ? " FLR" : "",
 115		(enable & STS_PCD) ? " PCD" : "",
 116		(enable & STS_ERR) ? " ERR" : "",
 117		(enable & STS_INT) ? " INT" : ""
 118		);
 119}
 120
 121static const char *const fls_strings[] =
 122    { "1024", "512", "256", "??" };
 123
 124static int dbg_command_buf(char *buf, unsigned len,
 125				const char *label, u32 command)
 126{
 127	return scnprintf(buf, len,
 128		"%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
 129		label, label[0] ? " " : "", command,
 130		(command & CMD_PARK) ? "park" : "(park)",
 131		CMD_PARK_CNT(command),
 132		(command >> 16) & 0x3f,
 133		(command & CMD_LRESET) ? " LReset" : "",
 134		(command & CMD_IAAD) ? " IAAD" : "",
 135		(command & CMD_ASE) ? " Async" : "",
 136		(command & CMD_PSE) ? " Periodic" : "",
 137		fls_strings[(command >> 2) & 0x3],
 138		(command & CMD_RESET) ? " Reset" : "",
 139		(command & CMD_RUN) ? "RUN" : "HALT"
 140		);
 141}
 142
 143static int dbg_port_buf(char *buf, unsigned len, const char *label,
 144				int port, u32 status)
 145{
 146	char	*sig;
 147
 148	/* signaling state */
 149	switch (status & (3 << 10)) {
 150	case 0 << 10:
 151		sig = "se0";
 152		break;
 153	case 1 << 10:
 154		sig = "k";	/* low speed */
 155		break;
 156	case 2 << 10:
 157		sig = "j";
 158		break;
 159	default:
 160		sig = "?";
 161		break;
 162	}
 163
 164	return scnprintf(buf, len,
 165		"%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
 166		label, label[0] ? " " : "", port, status,
 167		(status & PORT_POWER) ? " POWER" : "",
 168		(status & PORT_OWNER) ? " OWNER" : "",
 169		sig,
 170		(status & PORT_RESET) ? " RESET" : "",
 171		(status & PORT_SUSPEND) ? " SUSPEND" : "",
 172		(status & PORT_RESUME) ? " RESUME" : "",
 173		(status & PORT_OCC) ? " OCC" : "",
 174		(status & PORT_OC) ? " OC" : "",
 175		(status & PORT_PEC) ? " PEC" : "",
 176		(status & PORT_PE) ? " PE" : "",
 177		(status & PORT_CSC) ? " CSC" : "",
 178		(status & PORT_CONNECT) ? " CONNECT" : ""
 179	    );
 180}
 181
 182#else
 183
 184static inline int __attribute__((__unused__))
 185dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
 186{ return 0; }
 187
 188static inline int __attribute__((__unused__))
 189dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
 190{ return 0; }
 191
 192static inline int __attribute__((__unused__))
 193dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
 194{ return 0; }
 195
 196static inline int __attribute__((__unused__))
 197dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
 198{ return 0; }
 199
 200#endif /* DEBUG */
 201
 202/* functions have the "wrong" filename when they're output... */
 203#define dbg_status(oxu, label, status) { \
 204	char _buf[80]; \
 205	dbg_status_buf(_buf, sizeof _buf, label, status); \
 206	oxu_dbg(oxu, "%s\n", _buf); \
 207}
 208
 209#define dbg_cmd(oxu, label, command) { \
 210	char _buf[80]; \
 211	dbg_command_buf(_buf, sizeof _buf, label, command); \
 212	oxu_dbg(oxu, "%s\n", _buf); \
 213}
 214
 215#define dbg_port(oxu, label, port, status) { \
 216	char _buf[80]; \
 217	dbg_port_buf(_buf, sizeof _buf, label, port, status); \
 218	oxu_dbg(oxu, "%s\n", _buf); \
 219}
 220
 221/*
 222 * Module parameters
 223 */
 224
 225/* Initial IRQ latency: faster than hw default */
 226static int log2_irq_thresh;			/* 0 to 6 */
 227module_param(log2_irq_thresh, int, S_IRUGO);
 228MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
 229
 230/* Initial park setting: slower than hw default */
 231static unsigned park;
 232module_param(park, uint, S_IRUGO);
 233MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
 234
 235/* For flakey hardware, ignore overcurrent indicators */
 236static int ignore_oc;
 237module_param(ignore_oc, bool, S_IRUGO);
 238MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications");
 239
 240
 241static void ehci_work(struct oxu_hcd *oxu);
 242static int oxu_hub_control(struct usb_hcd *hcd,
 243				u16 typeReq, u16 wValue, u16 wIndex,
 244				char *buf, u16 wLength);
 245
 246/*
 247 * Local functions
 248 */
 249
 250/* Low level read/write registers functions */
 251static inline u32 oxu_readl(void *base, u32 reg)
 252{
 253	return readl(base + reg);
 254}
 255
 256static inline void oxu_writel(void *base, u32 reg, u32 val)
 257{
 258	writel(val, base + reg);
 259}
 260
 261static inline void timer_action_done(struct oxu_hcd *oxu,
 262					enum ehci_timer_action action)
 263{
 264	clear_bit(action, &oxu->actions);
 265}
 266
 267static inline void timer_action(struct oxu_hcd *oxu,
 268					enum ehci_timer_action action)
 269{
 270	if (!test_and_set_bit(action, &oxu->actions)) {
 271		unsigned long t;
 272
 273		switch (action) {
 274		case TIMER_IAA_WATCHDOG:
 275			t = EHCI_IAA_JIFFIES;
 276			break;
 277		case TIMER_IO_WATCHDOG:
 278			t = EHCI_IO_JIFFIES;
 279			break;
 280		case TIMER_ASYNC_OFF:
 281			t = EHCI_ASYNC_JIFFIES;
 282			break;
 283		case TIMER_ASYNC_SHRINK:
 284		default:
 285			t = EHCI_SHRINK_JIFFIES;
 286			break;
 287		}
 288		t += jiffies;
 289		/* all timings except IAA watchdog can be overridden.
 290		 * async queue SHRINK often precedes IAA.  while it's ready
 291		 * to go OFF neither can matter, and afterwards the IO
 292		 * watchdog stops unless there's still periodic traffic.
 293		 */
 294		if (action != TIMER_IAA_WATCHDOG
 295				&& t > oxu->watchdog.expires
 296				&& timer_pending(&oxu->watchdog))
 297			return;
 298		mod_timer(&oxu->watchdog, t);
 299	}
 300}
 301
 302/*
 303 * handshake - spin reading hc until handshake completes or fails
 304 * @ptr: address of hc register to be read
 305 * @mask: bits to look at in result of read
 306 * @done: value of those bits when handshake succeeds
 307 * @usec: timeout in microseconds
 308 *
 309 * Returns negative errno, or zero on success
 310 *
 311 * Success happens when the "mask" bits have the specified value (hardware
 312 * handshake done).  There are two failure modes:  "usec" have passed (major
 313 * hardware flakeout), or the register reads as all-ones (hardware removed).
 314 *
 315 * That last failure should_only happen in cases like physical cardbus eject
 316 * before driver shutdown. But it also seems to be caused by bugs in cardbus
 317 * bridge shutdown:  shutting down the bridge before the devices using it.
 318 */
 319static int handshake(struct oxu_hcd *oxu, void __iomem *ptr,
 320					u32 mask, u32 done, int usec)
 321{
 322	u32 result;
 
 323
 324	do {
 325		result = readl(ptr);
 326		if (result == ~(u32)0)		/* card removed */
 327			return -ENODEV;
 328		result &= mask;
 329		if (result == done)
 330			return 0;
 331		udelay(1);
 332		usec--;
 333	} while (usec > 0);
 334	return -ETIMEDOUT;
 335}
 336
 337/* Force HC to halt state from unknown (EHCI spec section 2.3) */
 338static int ehci_halt(struct oxu_hcd *oxu)
 339{
 340	u32	temp = readl(&oxu->regs->status);
 341
 342	/* disable any irqs left enabled by previous code */
 343	writel(0, &oxu->regs->intr_enable);
 344
 345	if ((temp & STS_HALT) != 0)
 346		return 0;
 347
 348	temp = readl(&oxu->regs->command);
 349	temp &= ~CMD_RUN;
 350	writel(temp, &oxu->regs->command);
 351	return handshake(oxu, &oxu->regs->status,
 352			  STS_HALT, STS_HALT, 16 * 125);
 353}
 354
 355/* Put TDI/ARC silicon into EHCI mode */
 356static void tdi_reset(struct oxu_hcd *oxu)
 357{
 358	u32 __iomem *reg_ptr;
 359	u32 tmp;
 360
 361	reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68);
 362	tmp = readl(reg_ptr);
 363	tmp |= 0x3;
 364	writel(tmp, reg_ptr);
 365}
 366
 367/* Reset a non-running (STS_HALT == 1) controller */
 368static int ehci_reset(struct oxu_hcd *oxu)
 369{
 370	int	retval;
 371	u32	command = readl(&oxu->regs->command);
 372
 373	command |= CMD_RESET;
 374	dbg_cmd(oxu, "reset", command);
 375	writel(command, &oxu->regs->command);
 376	oxu_to_hcd(oxu)->state = HC_STATE_HALT;
 377	oxu->next_statechange = jiffies;
 378	retval = handshake(oxu, &oxu->regs->command,
 379			    CMD_RESET, 0, 250 * 1000);
 380
 381	if (retval)
 382		return retval;
 383
 384	tdi_reset(oxu);
 385
 386	return retval;
 387}
 388
 389/* Idle the controller (from running) */
 390static void ehci_quiesce(struct oxu_hcd *oxu)
 391{
 392	u32	temp;
 393
 394#ifdef DEBUG
 395	if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
 396		BUG();
 397#endif
 398
 399	/* wait for any schedule enables/disables to take effect */
 400	temp = readl(&oxu->regs->command) << 10;
 401	temp &= STS_ASS | STS_PSS;
 402	if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
 403				temp, 16 * 125) != 0) {
 404		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
 405		return;
 406	}
 407
 408	/* then disable anything that's still active */
 409	temp = readl(&oxu->regs->command);
 410	temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE);
 411	writel(temp, &oxu->regs->command);
 412
 413	/* hardware can take 16 microframes to turn off ... */
 414	if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
 415				0, 16 * 125) != 0) {
 416		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
 417		return;
 418	}
 419}
 420
 421static int check_reset_complete(struct oxu_hcd *oxu, int index,
 422				u32 __iomem *status_reg, int port_status)
 423{
 424	if (!(port_status & PORT_CONNECT)) {
 425		oxu->reset_done[index] = 0;
 426		return port_status;
 427	}
 428
 429	/* if reset finished and it's still not enabled -- handoff */
 430	if (!(port_status & PORT_PE)) {
 431		oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n",
 432				index+1);
 433		return port_status;
 434	} else
 435		oxu_dbg(oxu, "port %d high speed\n", index + 1);
 436
 437	return port_status;
 438}
 439
 440static void ehci_hub_descriptor(struct oxu_hcd *oxu,
 441				struct usb_hub_descriptor *desc)
 442{
 443	int ports = HCS_N_PORTS(oxu->hcs_params);
 444	u16 temp;
 445
 446	desc->bDescriptorType = 0x29;
 447	desc->bPwrOn2PwrGood = 10;	/* oxu 1.0, 2.3.9 says 20ms max */
 448	desc->bHubContrCurrent = 0;
 449
 450	desc->bNbrPorts = ports;
 451	temp = 1 + (ports / 8);
 452	desc->bDescLength = 7 + 2 * temp;
 453
 454	/* ports removable, and usb 1.0 legacy PortPwrCtrlMask */
 455	memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
 456	memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
 457
 458	temp = 0x0008;			/* per-port overcurrent reporting */
 459	if (HCS_PPC(oxu->hcs_params))
 460		temp |= 0x0001;		/* per-port power control */
 461	else
 462		temp |= 0x0002;		/* no power switching */
 463	desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp);
 464}
 465
 466
 467/* Allocate an OXU210HP on-chip memory data buffer
 468 *
 469 * An on-chip memory data buffer is required for each OXU210HP USB transfer.
 470 * Each transfer descriptor has one or more on-chip memory data buffers.
 471 *
 472 * Data buffers are allocated from a fix sized pool of data blocks.
 473 * To minimise fragmentation and give reasonable memory utlisation,
 474 * data buffers are allocated with sizes the power of 2 multiples of
 475 * the block size, starting on an address a multiple of the allocated size.
 476 *
 477 * FIXME: callers of this function require a buffer to be allocated for
 478 * len=0. This is a waste of on-chip memory and should be fix. Then this
 479 * function should be changed to not allocate a buffer for len=0.
 480 */
 481static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len)
 482{
 483	int n_blocks;	/* minium blocks needed to hold len */
 484	int a_blocks;	/* blocks allocated */
 485	int i, j;
 486
 487	/* Don't allocte bigger than supported */
 488	if (len > BUFFER_SIZE * BUFFER_NUM) {
 489		oxu_err(oxu, "buffer too big (%d)\n", len);
 490		return -ENOMEM;
 491	}
 492
 493	spin_lock(&oxu->mem_lock);
 494
 495	/* Number of blocks needed to hold len */
 496	n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE;
 497
 498	/* Round the number of blocks up to the power of 2 */
 499	for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1)
 500		;
 501
 502	/* Find a suitable available data buffer */
 503	for (i = 0; i < BUFFER_NUM;
 504			i += max(a_blocks, (int)oxu->db_used[i])) {
 505
 506		/* Check all the required blocks are available */
 507		for (j = 0; j < a_blocks; j++)
 508			if (oxu->db_used[i + j])
 509				break;
 510
 511		if (j != a_blocks)
 512			continue;
 513
 514		/* Allocate blocks found! */
 515		qtd->buffer = (void *) &oxu->mem->db_pool[i];
 516		qtd->buffer_dma = virt_to_phys(qtd->buffer);
 517
 518		qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks;
 519		oxu->db_used[i] = a_blocks;
 520
 521		spin_unlock(&oxu->mem_lock);
 522
 523		return 0;
 524	}
 525
 526	/* Failed */
 527
 528	spin_unlock(&oxu->mem_lock);
 529
 530	return -ENOMEM;
 531}
 532
 533static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
 534{
 535	int index;
 536
 537	spin_lock(&oxu->mem_lock);
 538
 539	index = (qtd->buffer - (void *) &oxu->mem->db_pool[0])
 540							 / BUFFER_SIZE;
 541	oxu->db_used[index] = 0;
 542	qtd->qtd_buffer_len = 0;
 543	qtd->buffer_dma = 0;
 544	qtd->buffer = NULL;
 545
 546	spin_unlock(&oxu->mem_lock);
 547}
 548
 549static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma)
 550{
 551	memset(qtd, 0, sizeof *qtd);
 552	qtd->qtd_dma = dma;
 553	qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
 554	qtd->hw_next = EHCI_LIST_END;
 555	qtd->hw_alt_next = EHCI_LIST_END;
 556	INIT_LIST_HEAD(&qtd->qtd_list);
 557}
 558
 559static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
 560{
 561	int index;
 562
 563	if (qtd->buffer)
 564		oxu_buf_free(oxu, qtd);
 565
 566	spin_lock(&oxu->mem_lock);
 567
 568	index = qtd - &oxu->mem->qtd_pool[0];
 569	oxu->qtd_used[index] = 0;
 570
 571	spin_unlock(&oxu->mem_lock);
 572}
 573
 574static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu)
 575{
 576	int i;
 577	struct ehci_qtd *qtd = NULL;
 578
 579	spin_lock(&oxu->mem_lock);
 580
 581	for (i = 0; i < QTD_NUM; i++)
 582		if (!oxu->qtd_used[i])
 583			break;
 584
 585	if (i < QTD_NUM) {
 586		qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i];
 587		memset(qtd, 0, sizeof *qtd);
 588
 589		qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
 590		qtd->hw_next = EHCI_LIST_END;
 591		qtd->hw_alt_next = EHCI_LIST_END;
 592		INIT_LIST_HEAD(&qtd->qtd_list);
 593
 594		qtd->qtd_dma = virt_to_phys(qtd);
 595
 596		oxu->qtd_used[i] = 1;
 597	}
 598
 599	spin_unlock(&oxu->mem_lock);
 600
 601	return qtd;
 602}
 603
 604static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh)
 605{
 606	int index;
 607
 608	spin_lock(&oxu->mem_lock);
 609
 610	index = qh - &oxu->mem->qh_pool[0];
 611	oxu->qh_used[index] = 0;
 612
 613	spin_unlock(&oxu->mem_lock);
 614}
 615
 616static void qh_destroy(struct kref *kref)
 617{
 618	struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref);
 619	struct oxu_hcd *oxu = qh->oxu;
 620
 621	/* clean qtds first, and know this is not linked */
 622	if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
 623		oxu_dbg(oxu, "unused qh not empty!\n");
 624		BUG();
 625	}
 626	if (qh->dummy)
 627		oxu_qtd_free(oxu, qh->dummy);
 628	oxu_qh_free(oxu, qh);
 629}
 630
 631static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu)
 632{
 633	int i;
 634	struct ehci_qh *qh = NULL;
 635
 636	spin_lock(&oxu->mem_lock);
 637
 638	for (i = 0; i < QHEAD_NUM; i++)
 639		if (!oxu->qh_used[i])
 640			break;
 641
 642	if (i < QHEAD_NUM) {
 643		qh = (struct ehci_qh *) &oxu->mem->qh_pool[i];
 644		memset(qh, 0, sizeof *qh);
 645
 646		kref_init(&qh->kref);
 647		qh->oxu = oxu;
 648		qh->qh_dma = virt_to_phys(qh);
 649		INIT_LIST_HEAD(&qh->qtd_list);
 650
 651		/* dummy td enables safe urb queuing */
 652		qh->dummy = ehci_qtd_alloc(oxu);
 653		if (qh->dummy == NULL) {
 654			oxu_dbg(oxu, "no dummy td\n");
 655			oxu->qh_used[i] = 0;
 656			qh = NULL;
 657			goto unlock;
 658		}
 659
 660		oxu->qh_used[i] = 1;
 661	}
 662unlock:
 663	spin_unlock(&oxu->mem_lock);
 664
 665	return qh;
 666}
 667
 668/* to share a qh (cpu threads, or hc) */
 669static inline struct ehci_qh *qh_get(struct ehci_qh *qh)
 670{
 671	kref_get(&qh->kref);
 672	return qh;
 673}
 674
 675static inline void qh_put(struct ehci_qh *qh)
 676{
 677	kref_put(&qh->kref, qh_destroy);
 678}
 679
 680static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb)
 681{
 682	int index;
 683
 684	spin_lock(&oxu->mem_lock);
 685
 686	index = murb - &oxu->murb_pool[0];
 687	oxu->murb_used[index] = 0;
 688
 689	spin_unlock(&oxu->mem_lock);
 690}
 691
 692static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu)
 693
 694{
 695	int i;
 696	struct oxu_murb *murb = NULL;
 697
 698	spin_lock(&oxu->mem_lock);
 699
 700	for (i = 0; i < MURB_NUM; i++)
 701		if (!oxu->murb_used[i])
 702			break;
 703
 704	if (i < MURB_NUM) {
 705		murb = &(oxu->murb_pool)[i];
 706
 707		oxu->murb_used[i] = 1;
 708	}
 709
 710	spin_unlock(&oxu->mem_lock);
 711
 712	return murb;
 713}
 714
 715/* The queue heads and transfer descriptors are managed from pools tied
 716 * to each of the "per device" structures.
 717 * This is the initialisation and cleanup code.
 718 */
 719static void ehci_mem_cleanup(struct oxu_hcd *oxu)
 720{
 721	kfree(oxu->murb_pool);
 722	oxu->murb_pool = NULL;
 723
 724	if (oxu->async)
 725		qh_put(oxu->async);
 726	oxu->async = NULL;
 727
 728	del_timer(&oxu->urb_timer);
 729
 730	oxu->periodic = NULL;
 731
 732	/* shadow periodic table */
 733	kfree(oxu->pshadow);
 734	oxu->pshadow = NULL;
 735}
 736
 737/* Remember to add cleanup code (above) if you add anything here.
 738 */
 739static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags)
 740{
 741	int i;
 742
 743	for (i = 0; i < oxu->periodic_size; i++)
 744		oxu->mem->frame_list[i] = EHCI_LIST_END;
 745	for (i = 0; i < QHEAD_NUM; i++)
 746		oxu->qh_used[i] = 0;
 747	for (i = 0; i < QTD_NUM; i++)
 748		oxu->qtd_used[i] = 0;
 749
 750	oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags);
 751	if (!oxu->murb_pool)
 752		goto fail;
 753
 754	for (i = 0; i < MURB_NUM; i++)
 755		oxu->murb_used[i] = 0;
 756
 757	oxu->async = oxu_qh_alloc(oxu);
 758	if (!oxu->async)
 759		goto fail;
 760
 761	oxu->periodic = (__le32 *) &oxu->mem->frame_list;
 762	oxu->periodic_dma = virt_to_phys(oxu->periodic);
 763
 764	for (i = 0; i < oxu->periodic_size; i++)
 765		oxu->periodic[i] = EHCI_LIST_END;
 766
 767	/* software shadow of hardware table */
 768	oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags);
 769	if (oxu->pshadow != NULL)
 770		return 0;
 771
 772fail:
 773	oxu_dbg(oxu, "couldn't init memory\n");
 774	ehci_mem_cleanup(oxu);
 775	return -ENOMEM;
 776}
 777
 778/* Fill a qtd, returning how much of the buffer we were able to queue up.
 779 */
 780static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
 781				int token, int maxpacket)
 782{
 783	int i, count;
 784	u64 addr = buf;
 785
 786	/* one buffer entry per 4K ... first might be short or unaligned */
 787	qtd->hw_buf[0] = cpu_to_le32((u32)addr);
 788	qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32));
 789	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
 790	if (likely(len < count))		/* ... iff needed */
 791		count = len;
 792	else {
 793		buf +=  0x1000;
 794		buf &= ~0x0fff;
 795
 796		/* per-qtd limit: from 16K to 20K (best alignment) */
 797		for (i = 1; count < len && i < 5; i++) {
 798			addr = buf;
 799			qtd->hw_buf[i] = cpu_to_le32((u32)addr);
 800			qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32));
 801			buf += 0x1000;
 802			if ((count + 0x1000) < len)
 803				count += 0x1000;
 804			else
 805				count = len;
 806		}
 807
 808		/* short packets may only terminate transfers */
 809		if (count != len)
 810			count -= (count % maxpacket);
 811	}
 812	qtd->hw_token = cpu_to_le32((count << 16) | token);
 813	qtd->length = count;
 814
 815	return count;
 816}
 817
 818static inline void qh_update(struct oxu_hcd *oxu,
 819				struct ehci_qh *qh, struct ehci_qtd *qtd)
 820{
 821	/* writes to an active overlay are unsafe */
 822	BUG_ON(qh->qh_state != QH_STATE_IDLE);
 823
 824	qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma);
 825	qh->hw_alt_next = EHCI_LIST_END;
 826
 827	/* Except for control endpoints, we make hardware maintain data
 828	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
 829	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
 830	 * ever clear it.
 831	 */
 832	if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
 833		unsigned	is_out, epnum;
 834
 835		is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
 836		epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
 837		if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
 838			qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE);
 839			usb_settoggle(qh->dev, epnum, is_out, 1);
 840		}
 841	}
 842
 843	/* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
 844	wmb();
 845	qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING);
 846}
 847
 848/* If it weren't for a common silicon quirk (writing the dummy into the qh
 849 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
 850 * recovery (including urb dequeue) would need software changes to a QH...
 851 */
 852static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh)
 853{
 854	struct ehci_qtd *qtd;
 855
 856	if (list_empty(&qh->qtd_list))
 857		qtd = qh->dummy;
 858	else {
 859		qtd = list_entry(qh->qtd_list.next,
 860				struct ehci_qtd, qtd_list);
 861		/* first qtd may already be partially processed */
 862		if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current)
 863			qtd = NULL;
 864	}
 865
 866	if (qtd)
 867		qh_update(oxu, qh, qtd);
 868}
 869
 870static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb,
 871				size_t length, u32 token)
 872{
 873	/* count IN/OUT bytes, not SETUP (even short packets) */
 874	if (likely(QTD_PID(token) != 2))
 875		urb->actual_length += length - QTD_LENGTH(token);
 876
 877	/* don't modify error codes */
 878	if (unlikely(urb->status != -EINPROGRESS))
 879		return;
 880
 881	/* force cleanup after short read; not always an error */
 882	if (unlikely(IS_SHORT_READ(token)))
 883		urb->status = -EREMOTEIO;
 884
 885	/* serious "can't proceed" faults reported by the hardware */
 886	if (token & QTD_STS_HALT) {
 887		if (token & QTD_STS_BABBLE) {
 888			/* FIXME "must" disable babbling device's port too */
 889			urb->status = -EOVERFLOW;
 890		} else if (token & QTD_STS_MMF) {
 891			/* fs/ls interrupt xfer missed the complete-split */
 892			urb->status = -EPROTO;
 893		} else if (token & QTD_STS_DBE) {
 894			urb->status = (QTD_PID(token) == 1) /* IN ? */
 895				? -ENOSR  /* hc couldn't read data */
 896				: -ECOMM; /* hc couldn't write data */
 897		} else if (token & QTD_STS_XACT) {
 898			/* timeout, bad crc, wrong PID, etc; retried */
 899			if (QTD_CERR(token))
 900				urb->status = -EPIPE;
 901			else {
 902				oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n",
 903					urb->dev->devpath,
 904					usb_pipeendpoint(urb->pipe),
 905					usb_pipein(urb->pipe) ? "in" : "out");
 906				urb->status = -EPROTO;
 907			}
 908		/* CERR nonzero + no errors + halt --> stall */
 909		} else if (QTD_CERR(token))
 910			urb->status = -EPIPE;
 911		else	/* unknown */
 912			urb->status = -EPROTO;
 913
 914		oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n",
 915			usb_pipedevice(urb->pipe),
 916			usb_pipeendpoint(urb->pipe),
 917			usb_pipein(urb->pipe) ? "in" : "out",
 918			token, urb->status);
 919	}
 920}
 921
 922static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb)
 923__releases(oxu->lock)
 924__acquires(oxu->lock)
 925{
 926	if (likely(urb->hcpriv != NULL)) {
 927		struct ehci_qh	*qh = (struct ehci_qh *) urb->hcpriv;
 928
 929		/* S-mask in a QH means it's an interrupt urb */
 930		if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) {
 931
 932			/* ... update hc-wide periodic stats (for usbfs) */
 933			oxu_to_hcd(oxu)->self.bandwidth_int_reqs--;
 934		}
 935		qh_put(qh);
 936	}
 937
 938	urb->hcpriv = NULL;
 939	switch (urb->status) {
 940	case -EINPROGRESS:		/* success */
 941		urb->status = 0;
 
 942	default:			/* fault */
 943		break;
 944	case -EREMOTEIO:		/* fault or normal */
 945		if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
 946			urb->status = 0;
 947		break;
 948	case -ECONNRESET:		/* canceled */
 949	case -ENOENT:
 950		break;
 951	}
 952
 953#ifdef OXU_URB_TRACE
 954	oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n",
 955		__func__, urb->dev->devpath, urb,
 956		usb_pipeendpoint(urb->pipe),
 957		usb_pipein(urb->pipe) ? "in" : "out",
 958		urb->status,
 959		urb->actual_length, urb->transfer_buffer_length);
 960#endif
 961
 962	/* complete() can reenter this HCD */
 963	spin_unlock(&oxu->lock);
 964	usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status);
 965	spin_lock(&oxu->lock);
 966}
 967
 968static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
 969static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
 970
 971static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
 972static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
 973
 974#define HALT_BIT cpu_to_le32(QTD_STS_HALT)
 975
 976/* Process and free completed qtds for a qh, returning URBs to drivers.
 977 * Chases up to qh->hw_current.  Returns number of completions called,
 978 * indicating how much "real" work we did.
 979 */
 980static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh)
 981{
 982	struct ehci_qtd *last = NULL, *end = qh->dummy;
 983	struct list_head *entry, *tmp;
 984	int stopped;
 985	unsigned count = 0;
 986	int do_status = 0;
 987	u8 state;
 988	struct oxu_murb *murb = NULL;
 989
 990	if (unlikely(list_empty(&qh->qtd_list)))
 991		return count;
 992
 993	/* completions (or tasks on other cpus) must never clobber HALT
 994	 * till we've gone through and cleaned everything up, even when
 995	 * they add urbs to this qh's queue or mark them for unlinking.
 996	 *
 997	 * NOTE:  unlinking expects to be done in queue order.
 998	 */
 999	state = qh->qh_state;
1000	qh->qh_state = QH_STATE_COMPLETING;
1001	stopped = (state == QH_STATE_IDLE);
1002
1003	/* remove de-activated QTDs from front of queue.
1004	 * after faults (including short reads), cleanup this urb
1005	 * then let the queue advance.
1006	 * if queue is stopped, handles unlinks.
1007	 */
1008	list_for_each_safe(entry, tmp, &qh->qtd_list) {
1009		struct ehci_qtd	*qtd;
1010		struct urb *urb;
1011		u32 token = 0;
1012
1013		qtd = list_entry(entry, struct ehci_qtd, qtd_list);
1014		urb = qtd->urb;
1015
1016		/* Clean up any state from previous QTD ...*/
1017		if (last) {
1018			if (likely(last->urb != urb)) {
1019				if (last->urb->complete == NULL) {
1020					murb = (struct oxu_murb *) last->urb;
1021					last->urb = murb->main;
1022					if (murb->last) {
1023						ehci_urb_done(oxu, last->urb);
1024						count++;
1025					}
1026					oxu_murb_free(oxu, murb);
1027				} else {
1028					ehci_urb_done(oxu, last->urb);
1029					count++;
1030				}
1031			}
1032			oxu_qtd_free(oxu, last);
1033			last = NULL;
1034		}
1035
1036		/* ignore urbs submitted during completions we reported */
1037		if (qtd == end)
1038			break;
1039
1040		/* hardware copies qtd out of qh overlay */
1041		rmb();
1042		token = le32_to_cpu(qtd->hw_token);
1043
1044		/* always clean up qtds the hc de-activated */
1045		if ((token & QTD_STS_ACTIVE) == 0) {
1046
1047			if ((token & QTD_STS_HALT) != 0) {
1048				stopped = 1;
1049
1050			/* magic dummy for some short reads; qh won't advance.
1051			 * that silicon quirk can kick in with this dummy too.
1052			 */
1053			} else if (IS_SHORT_READ(token) &&
1054					!(qtd->hw_alt_next & EHCI_LIST_END)) {
1055				stopped = 1;
1056				goto halt;
1057			}
1058
1059		/* stop scanning when we reach qtds the hc is using */
1060		} else if (likely(!stopped &&
1061				HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) {
1062			break;
1063
1064		} else {
1065			stopped = 1;
1066
1067			if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)))
1068				urb->status = -ESHUTDOWN;
1069
1070			/* ignore active urbs unless some previous qtd
1071			 * for the urb faulted (including short read) or
1072			 * its urb was canceled.  we may patch qh or qtds.
1073			 */
1074			if (likely(urb->status == -EINPROGRESS))
1075				continue;
1076
1077			/* issue status after short control reads */
1078			if (unlikely(do_status != 0)
1079					&& QTD_PID(token) == 0 /* OUT */) {
1080				do_status = 0;
1081				continue;
1082			}
1083
1084			/* token in overlay may be most current */
1085			if (state == QH_STATE_IDLE
1086					&& cpu_to_le32(qtd->qtd_dma)
1087						== qh->hw_current)
1088				token = le32_to_cpu(qh->hw_token);
1089
1090			/* force halt for unlinked or blocked qh, so we'll
1091			 * patch the qh later and so that completions can't
1092			 * activate it while we "know" it's stopped.
1093			 */
1094			if ((HALT_BIT & qh->hw_token) == 0) {
1095halt:
1096				qh->hw_token |= HALT_BIT;
1097				wmb();
1098			}
1099		}
1100
1101		/* Remove it from the queue */
1102		qtd_copy_status(oxu, urb->complete ?
1103					urb : ((struct oxu_murb *) urb)->main,
1104				qtd->length, token);
1105		if ((usb_pipein(qtd->urb->pipe)) &&
1106				(NULL != qtd->transfer_buffer))
1107			memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length);
1108		do_status = (urb->status == -EREMOTEIO)
1109				&& usb_pipecontrol(urb->pipe);
1110
1111		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
1112			last = list_entry(qtd->qtd_list.prev,
1113					struct ehci_qtd, qtd_list);
1114			last->hw_next = qtd->hw_next;
1115		}
1116		list_del(&qtd->qtd_list);
1117		last = qtd;
1118	}
1119
1120	/* last urb's completion might still need calling */
1121	if (likely(last != NULL)) {
1122		if (last->urb->complete == NULL) {
1123			murb = (struct oxu_murb *) last->urb;
1124			last->urb = murb->main;
1125			if (murb->last) {
1126				ehci_urb_done(oxu, last->urb);
1127				count++;
1128			}
1129			oxu_murb_free(oxu, murb);
1130		} else {
1131			ehci_urb_done(oxu, last->urb);
1132			count++;
1133		}
1134		oxu_qtd_free(oxu, last);
1135	}
1136
1137	/* restore original state; caller must unlink or relink */
1138	qh->qh_state = state;
1139
1140	/* be sure the hardware's done with the qh before refreshing
1141	 * it after fault cleanup, or recovering from silicon wrongly
1142	 * overlaying the dummy qtd (which reduces DMA chatter).
1143	 */
1144	if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
1145		switch (state) {
1146		case QH_STATE_IDLE:
1147			qh_refresh(oxu, qh);
1148			break;
1149		case QH_STATE_LINKED:
1150			/* should be rare for periodic transfers,
1151			 * except maybe high bandwidth ...
1152			 */
1153			if ((cpu_to_le32(QH_SMASK)
1154					& qh->hw_info2) != 0) {
1155				intr_deschedule(oxu, qh);
1156				(void) qh_schedule(oxu, qh);
1157			} else
1158				unlink_async(oxu, qh);
1159			break;
1160		/* otherwise, unlink already started */
1161		}
1162	}
1163
1164	return count;
1165}
1166
1167/* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1168#define hb_mult(wMaxPacketSize)		(1 + (((wMaxPacketSize) >> 11) & 0x03))
1169/* ... and packet size, for any kind of endpoint descriptor */
1170#define max_packet(wMaxPacketSize)	((wMaxPacketSize) & 0x07ff)
1171
1172/* Reverse of qh_urb_transaction: free a list of TDs.
1173 * used for cleanup after errors, before HC sees an URB's TDs.
1174 */
1175static void qtd_list_free(struct oxu_hcd *oxu,
1176				struct urb *urb, struct list_head *qtd_list)
1177{
1178	struct list_head *entry, *temp;
1179
1180	list_for_each_safe(entry, temp, qtd_list) {
1181		struct ehci_qtd	*qtd;
1182
1183		qtd = list_entry(entry, struct ehci_qtd, qtd_list);
1184		list_del(&qtd->qtd_list);
1185		oxu_qtd_free(oxu, qtd);
1186	}
1187}
1188
1189/* Create a list of filled qtds for this URB; won't link into qh.
1190 */
1191static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu,
1192						struct urb *urb,
1193						struct list_head *head,
1194						gfp_t flags)
1195{
1196	struct ehci_qtd	*qtd, *qtd_prev;
1197	dma_addr_t buf;
1198	int len, maxpacket;
1199	int is_input;
1200	u32 token;
1201	void *transfer_buf = NULL;
1202	int ret;
1203
1204	/*
1205	 * URBs map to sequences of QTDs: one logical transaction
1206	 */
1207	qtd = ehci_qtd_alloc(oxu);
1208	if (unlikely(!qtd))
1209		return NULL;
1210	list_add_tail(&qtd->qtd_list, head);
1211	qtd->urb = urb;
1212
1213	token = QTD_STS_ACTIVE;
1214	token |= (EHCI_TUNE_CERR << 10);
1215	/* for split transactions, SplitXState initialized to zero */
1216
1217	len = urb->transfer_buffer_length;
1218	is_input = usb_pipein(urb->pipe);
1219	if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input)
1220		urb->transfer_buffer = phys_to_virt(urb->transfer_dma);
1221
1222	if (usb_pipecontrol(urb->pipe)) {
1223		/* SETUP pid */
1224		ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest));
1225		if (ret)
1226			goto cleanup;
1227
1228		qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest),
1229				token | (2 /* "setup" */ << 8), 8);
1230		memcpy(qtd->buffer, qtd->urb->setup_packet,
1231				sizeof(struct usb_ctrlrequest));
1232
1233		/* ... and always at least one more pid */
1234		token ^= QTD_TOGGLE;
1235		qtd_prev = qtd;
1236		qtd = ehci_qtd_alloc(oxu);
1237		if (unlikely(!qtd))
1238			goto cleanup;
1239		qtd->urb = urb;
1240		qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1241		list_add_tail(&qtd->qtd_list, head);
1242
1243		/* for zero length DATA stages, STATUS is always IN */
1244		if (len == 0)
1245			token |= (1 /* "in" */ << 8);
1246	}
1247
1248	/*
1249	 * Data transfer stage: buffer setup
1250	 */
1251
1252	ret = oxu_buf_alloc(oxu, qtd, len);
1253	if (ret)
1254		goto cleanup;
1255
1256	buf = qtd->buffer_dma;
1257	transfer_buf = urb->transfer_buffer;
1258
1259	if (!is_input)
1260		memcpy(qtd->buffer, qtd->urb->transfer_buffer, len);
1261
1262	if (is_input)
1263		token |= (1 /* "in" */ << 8);
1264	/* else it's already initted to "out" pid (0 << 8) */
1265
1266	maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
1267
1268	/*
1269	 * buffer gets wrapped in one or more qtds;
1270	 * last one may be "short" (including zero len)
1271	 * and may serve as a control status ack
1272	 */
1273	for (;;) {
1274		int this_qtd_len;
1275
1276		this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket);
1277		qtd->transfer_buffer = transfer_buf;
1278		len -= this_qtd_len;
1279		buf += this_qtd_len;
1280		transfer_buf += this_qtd_len;
1281		if (is_input)
1282			qtd->hw_alt_next = oxu->async->hw_alt_next;
1283
1284		/* qh makes control packets use qtd toggle; maybe switch it */
1285		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
1286			token ^= QTD_TOGGLE;
1287
1288		if (likely(len <= 0))
1289			break;
1290
1291		qtd_prev = qtd;
1292		qtd = ehci_qtd_alloc(oxu);
1293		if (unlikely(!qtd))
1294			goto cleanup;
1295		if (likely(len > 0)) {
1296			ret = oxu_buf_alloc(oxu, qtd, len);
1297			if (ret)
1298				goto cleanup;
1299		}
1300		qtd->urb = urb;
1301		qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1302		list_add_tail(&qtd->qtd_list, head);
1303	}
1304
1305	/* unless the bulk/interrupt caller wants a chance to clean
1306	 * up after short reads, hc should advance qh past this urb
1307	 */
1308	if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
1309				|| usb_pipecontrol(urb->pipe)))
1310		qtd->hw_alt_next = EHCI_LIST_END;
1311
1312	/*
1313	 * control requests may need a terminating data "status" ack;
1314	 * bulk ones may need a terminating short packet (zero length).
1315	 */
1316	if (likely(urb->transfer_buffer_length != 0)) {
1317		int	one_more = 0;
1318
1319		if (usb_pipecontrol(urb->pipe)) {
1320			one_more = 1;
1321			token ^= 0x0100;	/* "in" <--> "out"  */
1322			token |= QTD_TOGGLE;	/* force DATA1 */
1323		} else if (usb_pipebulk(urb->pipe)
1324				&& (urb->transfer_flags & URB_ZERO_PACKET)
1325				&& !(urb->transfer_buffer_length % maxpacket)) {
1326			one_more = 1;
1327		}
1328		if (one_more) {
1329			qtd_prev = qtd;
1330			qtd = ehci_qtd_alloc(oxu);
1331			if (unlikely(!qtd))
1332				goto cleanup;
1333			qtd->urb = urb;
1334			qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1335			list_add_tail(&qtd->qtd_list, head);
1336
1337			/* never any data in such packets */
1338			qtd_fill(qtd, 0, 0, token, 0);
1339		}
1340	}
1341
1342	/* by default, enable interrupt on urb completion */
1343		qtd->hw_token |= cpu_to_le32(QTD_IOC);
1344	return head;
1345
1346cleanup:
1347	qtd_list_free(oxu, urb, head);
1348	return NULL;
1349}
1350
1351/* Each QH holds a qtd list; a QH is used for everything except iso.
1352 *
1353 * For interrupt urbs, the scheduler must set the microframe scheduling
1354 * mask(s) each time the QH gets scheduled.  For highspeed, that's
1355 * just one microframe in the s-mask.  For split interrupt transactions
1356 * there are additional complications: c-mask, maybe FSTNs.
1357 */
1358static struct ehci_qh *qh_make(struct oxu_hcd *oxu,
1359				struct urb *urb, gfp_t flags)
1360{
1361	struct ehci_qh *qh = oxu_qh_alloc(oxu);
1362	u32 info1 = 0, info2 = 0;
1363	int is_input, type;
1364	int maxp = 0;
1365
1366	if (!qh)
1367		return qh;
1368
1369	/*
1370	 * init endpoint/device data for this QH
1371	 */
1372	info1 |= usb_pipeendpoint(urb->pipe) << 8;
1373	info1 |= usb_pipedevice(urb->pipe) << 0;
1374
1375	is_input = usb_pipein(urb->pipe);
1376	type = usb_pipetype(urb->pipe);
1377	maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
1378
1379	/* Compute interrupt scheduling parameters just once, and save.
1380	 * - allowing for high bandwidth, how many nsec/uframe are used?
1381	 * - split transactions need a second CSPLIT uframe; same question
1382	 * - splits also need a schedule gap (for full/low speed I/O)
1383	 * - qh has a polling interval
1384	 *
1385	 * For control/bulk requests, the HC or TT handles these.
1386	 */
1387	if (type == PIPE_INTERRUPT) {
1388		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
1389								is_input, 0,
1390				hb_mult(maxp) * max_packet(maxp)));
1391		qh->start = NO_FRAME;
1392
1393		if (urb->dev->speed == USB_SPEED_HIGH) {
1394			qh->c_usecs = 0;
1395			qh->gap_uf = 0;
1396
1397			qh->period = urb->interval >> 3;
1398			if (qh->period == 0 && urb->interval != 1) {
1399				/* NOTE interval 2 or 4 uframes could work.
1400				 * But interval 1 scheduling is simpler, and
1401				 * includes high bandwidth.
1402				 */
1403				dbg("intr period %d uframes, NYET!",
1404						urb->interval);
1405				goto done;
1406			}
1407		} else {
1408			struct usb_tt	*tt = urb->dev->tt;
1409			int		think_time;
1410
1411			/* gap is f(FS/LS transfer times) */
1412			qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
1413					is_input, 0, maxp) / (125 * 1000);
1414
1415			/* FIXME this just approximates SPLIT/CSPLIT times */
1416			if (is_input) {		/* SPLIT, gap, CSPLIT+DATA */
1417				qh->c_usecs = qh->usecs + HS_USECS(0);
1418				qh->usecs = HS_USECS(1);
1419			} else {		/* SPLIT+DATA, gap, CSPLIT */
1420				qh->usecs += HS_USECS(1);
1421				qh->c_usecs = HS_USECS(0);
1422			}
1423
1424			think_time = tt ? tt->think_time : 0;
1425			qh->tt_usecs = NS_TO_US(think_time +
1426					usb_calc_bus_time(urb->dev->speed,
1427					is_input, 0, max_packet(maxp)));
1428			qh->period = urb->interval;
1429		}
1430	}
1431
1432	/* support for tt scheduling, and access to toggles */
1433	qh->dev = urb->dev;
1434
1435	/* using TT? */
1436	switch (urb->dev->speed) {
1437	case USB_SPEED_LOW:
1438		info1 |= (1 << 12);	/* EPS "low" */
1439		/* FALL THROUGH */
1440
1441	case USB_SPEED_FULL:
1442		/* EPS 0 means "full" */
1443		if (type != PIPE_INTERRUPT)
1444			info1 |= (EHCI_TUNE_RL_TT << 28);
1445		if (type == PIPE_CONTROL) {
1446			info1 |= (1 << 27);	/* for TT */
1447			info1 |= 1 << 14;	/* toggle from qtd */
1448		}
1449		info1 |= maxp << 16;
1450
1451		info2 |= (EHCI_TUNE_MULT_TT << 30);
1452		info2 |= urb->dev->ttport << 23;
1453
1454		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1455
1456		break;
1457
1458	case USB_SPEED_HIGH:		/* no TT involved */
1459		info1 |= (2 << 12);	/* EPS "high" */
1460		if (type == PIPE_CONTROL) {
1461			info1 |= (EHCI_TUNE_RL_HS << 28);
1462			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
1463			info1 |= 1 << 14;	/* toggle from qtd */
1464			info2 |= (EHCI_TUNE_MULT_HS << 30);
1465		} else if (type == PIPE_BULK) {
1466			info1 |= (EHCI_TUNE_RL_HS << 28);
1467			info1 |= 512 << 16;	/* usb2 fixed maxpacket */
1468			info2 |= (EHCI_TUNE_MULT_HS << 30);
1469		} else {		/* PIPE_INTERRUPT */
1470			info1 |= max_packet(maxp) << 16;
1471			info2 |= hb_mult(maxp) << 30;
1472		}
1473		break;
1474	default:
1475		dbg("bogus dev %p speed %d", urb->dev, urb->dev->speed);
1476done:
1477		qh_put(qh);
1478		return NULL;
1479	}
1480
1481	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1482
1483	/* init as live, toggle clear, advance to dummy */
1484	qh->qh_state = QH_STATE_IDLE;
1485	qh->hw_info1 = cpu_to_le32(info1);
1486	qh->hw_info2 = cpu_to_le32(info2);
1487	usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
1488	qh_refresh(oxu, qh);
1489	return qh;
1490}
1491
1492/* Move qh (and its qtds) onto async queue; maybe enable queue.
1493 */
1494static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1495{
1496	__le32 dma = QH_NEXT(qh->qh_dma);
1497	struct ehci_qh *head;
1498
1499	/* (re)start the async schedule? */
1500	head = oxu->async;
1501	timer_action_done(oxu, TIMER_ASYNC_OFF);
1502	if (!head->qh_next.qh) {
1503		u32	cmd = readl(&oxu->regs->command);
1504
1505		if (!(cmd & CMD_ASE)) {
1506			/* in case a clear of CMD_ASE didn't take yet */
1507			(void)handshake(oxu, &oxu->regs->status,
1508					STS_ASS, 0, 150);
1509			cmd |= CMD_ASE | CMD_RUN;
1510			writel(cmd, &oxu->regs->command);
1511			oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1512			/* posted write need not be known to HC yet ... */
1513		}
1514	}
1515
1516	/* clear halt and/or toggle; and maybe recover from silicon quirk */
1517	if (qh->qh_state == QH_STATE_IDLE)
1518		qh_refresh(oxu, qh);
1519
1520	/* splice right after start */
1521	qh->qh_next = head->qh_next;
1522	qh->hw_next = head->hw_next;
1523	wmb();
1524
1525	head->qh_next.qh = qh;
1526	head->hw_next = dma;
1527
1528	qh->qh_state = QH_STATE_LINKED;
1529	/* qtd completions reported later by interrupt */
1530}
1531
1532#define	QH_ADDR_MASK	cpu_to_le32(0x7f)
1533
1534/*
1535 * For control/bulk/interrupt, return QH with these TDs appended.
1536 * Allocates and initializes the QH if necessary.
1537 * Returns null if it can't allocate a QH it needs to.
1538 * If the QH has TDs (urbs) already, that's great.
1539 */
1540static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu,
1541				struct urb *urb, struct list_head *qtd_list,
1542				int epnum, void	**ptr)
1543{
1544	struct ehci_qh *qh = NULL;
1545
1546	qh = (struct ehci_qh *) *ptr;
1547	if (unlikely(qh == NULL)) {
1548		/* can't sleep here, we have oxu->lock... */
1549		qh = qh_make(oxu, urb, GFP_ATOMIC);
1550		*ptr = qh;
1551	}
1552	if (likely(qh != NULL)) {
1553		struct ehci_qtd	*qtd;
1554
1555		if (unlikely(list_empty(qtd_list)))
1556			qtd = NULL;
1557		else
1558			qtd = list_entry(qtd_list->next, struct ehci_qtd,
1559					qtd_list);
1560
1561		/* control qh may need patching ... */
1562		if (unlikely(epnum == 0)) {
1563
1564			/* usb_reset_device() briefly reverts to address 0 */
1565			if (usb_pipedevice(urb->pipe) == 0)
1566				qh->hw_info1 &= ~QH_ADDR_MASK;
1567		}
1568
1569		/* just one way to queue requests: swap with the dummy qtd.
1570		 * only hc or qh_refresh() ever modify the overlay.
1571		 */
1572		if (likely(qtd != NULL)) {
1573			struct ehci_qtd	*dummy;
1574			dma_addr_t dma;
1575			__le32 token;
1576
1577			/* to avoid racing the HC, use the dummy td instead of
1578			 * the first td of our list (becomes new dummy).  both
1579			 * tds stay deactivated until we're done, when the
1580			 * HC is allowed to fetch the old dummy (4.10.2).
1581			 */
1582			token = qtd->hw_token;
1583			qtd->hw_token = HALT_BIT;
1584			wmb();
1585			dummy = qh->dummy;
1586
1587			dma = dummy->qtd_dma;
1588			*dummy = *qtd;
1589			dummy->qtd_dma = dma;
1590
1591			list_del(&qtd->qtd_list);
1592			list_add(&dummy->qtd_list, qtd_list);
1593			list_splice(qtd_list, qh->qtd_list.prev);
1594
1595			ehci_qtd_init(qtd, qtd->qtd_dma);
1596			qh->dummy = qtd;
1597
1598			/* hc must see the new dummy at list end */
1599			dma = qtd->qtd_dma;
1600			qtd = list_entry(qh->qtd_list.prev,
1601					struct ehci_qtd, qtd_list);
1602			qtd->hw_next = QTD_NEXT(dma);
1603
1604			/* let the hc process these next qtds */
1605			dummy->hw_token = (token & ~(0x80));
1606			wmb();
1607			dummy->hw_token = token;
1608
1609			urb->hcpriv = qh_get(qh);
1610		}
1611	}
1612	return qh;
1613}
1614
1615static int submit_async(struct oxu_hcd	*oxu, struct urb *urb,
1616			struct list_head *qtd_list, gfp_t mem_flags)
1617{
1618	struct ehci_qtd	*qtd;
1619	int epnum;
1620	unsigned long flags;
1621	struct ehci_qh *qh = NULL;
1622	int rc = 0;
 
 
1623
1624	qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1625	epnum = urb->ep->desc.bEndpointAddress;
1626
1627#ifdef OXU_URB_TRACE
1628	oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1629		__func__, urb->dev->devpath, urb,
1630		epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1631		urb->transfer_buffer_length,
1632		qtd, urb->ep->hcpriv);
1633#endif
1634
1635	spin_lock_irqsave(&oxu->lock, flags);
1636	if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
1637		rc = -ESHUTDOWN;
1638		goto done;
1639	}
1640
1641	qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
1642	if (unlikely(qh == NULL)) {
1643		rc = -ENOMEM;
1644		goto done;
1645	}
1646
1647	/* Control/bulk operations through TTs don't need scheduling,
1648	 * the HC and TT handle it when the TT has a buffer ready.
1649	 */
1650	if (likely(qh->qh_state == QH_STATE_IDLE))
1651		qh_link_async(oxu, qh_get(qh));
1652done:
1653	spin_unlock_irqrestore(&oxu->lock, flags);
1654	if (unlikely(qh == NULL))
1655		qtd_list_free(oxu, urb, qtd_list);
1656	return rc;
1657}
1658
1659/* The async qh for the qtds being reclaimed are now unlinked from the HC */
1660
1661static void end_unlink_async(struct oxu_hcd *oxu)
1662{
1663	struct ehci_qh *qh = oxu->reclaim;
1664	struct ehci_qh *next;
1665
1666	timer_action_done(oxu, TIMER_IAA_WATCHDOG);
1667
1668	qh->qh_state = QH_STATE_IDLE;
1669	qh->qh_next.qh = NULL;
1670	qh_put(qh);			/* refcount from reclaim */
1671
1672	/* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
1673	next = qh->reclaim;
1674	oxu->reclaim = next;
1675	oxu->reclaim_ready = 0;
1676	qh->reclaim = NULL;
1677
1678	qh_completions(oxu, qh);
1679
1680	if (!list_empty(&qh->qtd_list)
1681			&& HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
1682		qh_link_async(oxu, qh);
1683	else {
1684		qh_put(qh);		/* refcount from async list */
1685
1686		/* it's not free to turn the async schedule on/off; leave it
1687		 * active but idle for a while once it empties.
1688		 */
1689		if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)
1690				&& oxu->async->qh_next.qh == NULL)
1691			timer_action(oxu, TIMER_ASYNC_OFF);
1692	}
1693
1694	if (next) {
1695		oxu->reclaim = NULL;
1696		start_unlink_async(oxu, next);
1697	}
1698}
1699
1700/* makes sure the async qh will become idle */
1701/* caller must own oxu->lock */
1702
1703static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1704{
1705	int cmd = readl(&oxu->regs->command);
1706	struct ehci_qh *prev;
1707
1708#ifdef DEBUG
1709	assert_spin_locked(&oxu->lock);
1710	if (oxu->reclaim || (qh->qh_state != QH_STATE_LINKED
1711				&& qh->qh_state != QH_STATE_UNLINK_WAIT))
1712		BUG();
1713#endif
1714
1715	/* stop async schedule right now? */
1716	if (unlikely(qh == oxu->async)) {
1717		/* can't get here without STS_ASS set */
1718		if (oxu_to_hcd(oxu)->state != HC_STATE_HALT
1719				&& !oxu->reclaim) {
1720			/* ... and CMD_IAAD clear */
1721			writel(cmd & ~CMD_ASE, &oxu->regs->command);
1722			wmb();
1723			/* handshake later, if we need to */
1724			timer_action_done(oxu, TIMER_ASYNC_OFF);
1725		}
1726		return;
1727	}
1728
1729	qh->qh_state = QH_STATE_UNLINK;
1730	oxu->reclaim = qh = qh_get(qh);
1731
1732	prev = oxu->async;
1733	while (prev->qh_next.qh != qh)
1734		prev = prev->qh_next.qh;
1735
1736	prev->hw_next = qh->hw_next;
1737	prev->qh_next = qh->qh_next;
1738	wmb();
1739
1740	if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) {
1741		/* if (unlikely(qh->reclaim != 0))
1742		 *	this will recurse, probably not much
1743		 */
1744		end_unlink_async(oxu);
1745		return;
1746	}
1747
1748	oxu->reclaim_ready = 0;
1749	cmd |= CMD_IAAD;
1750	writel(cmd, &oxu->regs->command);
1751	(void) readl(&oxu->regs->command);
1752	timer_action(oxu, TIMER_IAA_WATCHDOG);
1753}
1754
1755static void scan_async(struct oxu_hcd *oxu)
1756{
1757	struct ehci_qh *qh;
1758	enum ehci_timer_action action = TIMER_IO_WATCHDOG;
1759
1760	if (!++(oxu->stamp))
1761		oxu->stamp++;
1762	timer_action_done(oxu, TIMER_ASYNC_SHRINK);
1763rescan:
1764	qh = oxu->async->qh_next.qh;
1765	if (likely(qh != NULL)) {
1766		do {
1767			/* clean any finished work for this qh */
1768			if (!list_empty(&qh->qtd_list)
1769					&& qh->stamp != oxu->stamp) {
1770				int temp;
1771
1772				/* unlinks could happen here; completion
1773				 * reporting drops the lock.  rescan using
1774				 * the latest schedule, but don't rescan
1775				 * qhs we already finished (no looping).
1776				 */
1777				qh = qh_get(qh);
1778				qh->stamp = oxu->stamp;
1779				temp = qh_completions(oxu, qh);
1780				qh_put(qh);
1781				if (temp != 0)
1782					goto rescan;
1783			}
1784
1785			/* unlink idle entries, reducing HC PCI usage as well
1786			 * as HCD schedule-scanning costs.  delay for any qh
1787			 * we just scanned, there's a not-unusual case that it
1788			 * doesn't stay idle for long.
1789			 * (plus, avoids some kind of re-activation race.)
1790			 */
1791			if (list_empty(&qh->qtd_list)) {
1792				if (qh->stamp == oxu->stamp)
1793					action = TIMER_ASYNC_SHRINK;
1794				else if (!oxu->reclaim
1795					    && qh->qh_state == QH_STATE_LINKED)
1796					start_unlink_async(oxu, qh);
1797			}
1798
1799			qh = qh->qh_next.qh;
1800		} while (qh);
1801	}
1802	if (action == TIMER_ASYNC_SHRINK)
1803		timer_action(oxu, TIMER_ASYNC_SHRINK);
1804}
1805
1806/*
1807 * periodic_next_shadow - return "next" pointer on shadow list
1808 * @periodic: host pointer to qh/itd/sitd
1809 * @tag: hardware tag for type of this record
1810 */
1811static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic,
1812						__le32 tag)
1813{
1814	switch (tag) {
1815	default:
1816	case Q_TYPE_QH:
1817		return &periodic->qh->qh_next;
1818	}
1819}
1820
1821/* caller must hold oxu->lock */
1822static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr)
1823{
1824	union ehci_shadow *prev_p = &oxu->pshadow[frame];
1825	__le32 *hw_p = &oxu->periodic[frame];
1826	union ehci_shadow here = *prev_p;
1827
1828	/* find predecessor of "ptr"; hw and shadow lists are in sync */
1829	while (here.ptr && here.ptr != ptr) {
1830		prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p));
1831		hw_p = here.hw_next;
1832		here = *prev_p;
1833	}
1834	/* an interrupt entry (at list end) could have been shared */
1835	if (!here.ptr)
1836		return;
1837
1838	/* update shadow and hardware lists ... the old "next" pointers
1839	 * from ptr may still be in use, the caller updates them.
1840	 */
1841	*prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p));
1842	*hw_p = *here.hw_next;
1843}
1844
1845/* how many of the uframe's 125 usecs are allocated? */
1846static unsigned short periodic_usecs(struct oxu_hcd *oxu,
1847					unsigned frame, unsigned uframe)
1848{
1849	__le32 *hw_p = &oxu->periodic[frame];
1850	union ehci_shadow *q = &oxu->pshadow[frame];
1851	unsigned usecs = 0;
1852
1853	while (q->ptr) {
1854		switch (Q_NEXT_TYPE(*hw_p)) {
1855		case Q_TYPE_QH:
1856		default:
1857			/* is it in the S-mask? */
1858			if (q->qh->hw_info2 & cpu_to_le32(1 << uframe))
1859				usecs += q->qh->usecs;
1860			/* ... or C-mask? */
1861			if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe)))
1862				usecs += q->qh->c_usecs;
1863			hw_p = &q->qh->hw_next;
1864			q = &q->qh->qh_next;
1865			break;
1866		}
1867	}
1868#ifdef DEBUG
1869	if (usecs > 100)
1870		oxu_err(oxu, "uframe %d sched overrun: %d usecs\n",
1871						frame * 8 + uframe, usecs);
1872#endif
1873	return usecs;
1874}
1875
1876static int enable_periodic(struct oxu_hcd *oxu)
1877{
1878	u32 cmd;
1879	int status;
1880
1881	/* did clearing PSE did take effect yet?
1882	 * takes effect only at frame boundaries...
1883	 */
1884	status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125);
1885	if (status != 0) {
1886		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
1887		usb_hc_died(oxu_to_hcd(oxu));
1888		return status;
1889	}
1890
1891	cmd = readl(&oxu->regs->command) | CMD_PSE;
1892	writel(cmd, &oxu->regs->command);
1893	/* posted write ... PSS happens later */
1894	oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1895
1896	/* make sure ehci_work scans these */
1897	oxu->next_uframe = readl(&oxu->regs->frame_index)
1898		% (oxu->periodic_size << 3);
1899	return 0;
1900}
1901
1902static int disable_periodic(struct oxu_hcd *oxu)
1903{
1904	u32 cmd;
1905	int status;
1906
1907	/* did setting PSE not take effect yet?
1908	 * takes effect only at frame boundaries...
1909	 */
1910	status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125);
1911	if (status != 0) {
1912		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
1913		usb_hc_died(oxu_to_hcd(oxu));
1914		return status;
1915	}
1916
1917	cmd = readl(&oxu->regs->command) & ~CMD_PSE;
1918	writel(cmd, &oxu->regs->command);
1919	/* posted write ... */
1920
1921	oxu->next_uframe = -1;
1922	return 0;
1923}
1924
1925/* periodic schedule slots have iso tds (normal or split) first, then a
1926 * sparse tree for active interrupt transfers.
1927 *
1928 * this just links in a qh; caller guarantees uframe masks are set right.
1929 * no FSTN support (yet; oxu 0.96+)
1930 */
1931static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
1932{
1933	unsigned i;
1934	unsigned period = qh->period;
1935
1936	dev_dbg(&qh->dev->dev,
1937		"link qh%d-%04x/%p start %d [%d/%d us]\n",
1938		period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
1939		qh, qh->start, qh->usecs, qh->c_usecs);
1940
1941	/* high bandwidth, or otherwise every microframe */
1942	if (period == 0)
1943		period = 1;
1944
1945	for (i = qh->start; i < oxu->periodic_size; i += period) {
1946		union ehci_shadow	*prev = &oxu->pshadow[i];
1947		__le32			*hw_p = &oxu->periodic[i];
1948		union ehci_shadow	here = *prev;
1949		__le32			type = 0;
1950
1951		/* skip the iso nodes at list head */
1952		while (here.ptr) {
1953			type = Q_NEXT_TYPE(*hw_p);
1954			if (type == Q_TYPE_QH)
1955				break;
1956			prev = periodic_next_shadow(prev, type);
1957			hw_p = &here.qh->hw_next;
1958			here = *prev;
1959		}
1960
1961		/* sorting each branch by period (slow-->fast)
1962		 * enables sharing interior tree nodes
1963		 */
1964		while (here.ptr && qh != here.qh) {
1965			if (qh->period > here.qh->period)
1966				break;
1967			prev = &here.qh->qh_next;
1968			hw_p = &here.qh->hw_next;
1969			here = *prev;
1970		}
1971		/* link in this qh, unless some earlier pass did that */
1972		if (qh != here.qh) {
1973			qh->qh_next = here;
1974			if (here.qh)
1975				qh->hw_next = *hw_p;
1976			wmb();
1977			prev->qh = qh;
1978			*hw_p = QH_NEXT(qh->qh_dma);
1979		}
1980	}
1981	qh->qh_state = QH_STATE_LINKED;
1982	qh_get(qh);
1983
1984	/* update per-qh bandwidth for usbfs */
1985	oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period
1986		? ((qh->usecs + qh->c_usecs) / qh->period)
1987		: (qh->usecs * 8);
1988
1989	/* maybe enable periodic schedule processing */
1990	if (!oxu->periodic_sched++)
1991		return enable_periodic(oxu);
1992
1993	return 0;
1994}
1995
1996static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
1997{
1998	unsigned i;
1999	unsigned period;
2000
2001	/* FIXME:
2002	 *   IF this isn't high speed
2003	 *   and this qh is active in the current uframe
2004	 *   (and overlay token SplitXstate is false?)
2005	 * THEN
2006	 *   qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
2007	 */
2008
2009	/* high bandwidth, or otherwise part of every microframe */
2010	period = qh->period;
2011	if (period == 0)
2012		period = 1;
2013
2014	for (i = qh->start; i < oxu->periodic_size; i += period)
2015		periodic_unlink(oxu, i, qh);
2016
2017	/* update per-qh bandwidth for usbfs */
2018	oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period
2019		? ((qh->usecs + qh->c_usecs) / qh->period)
2020		: (qh->usecs * 8);
2021
2022	dev_dbg(&qh->dev->dev,
2023		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2024		qh->period,
2025		le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2026		qh, qh->start, qh->usecs, qh->c_usecs);
2027
2028	/* qh->qh_next still "live" to HC */
2029	qh->qh_state = QH_STATE_UNLINK;
2030	qh->qh_next.ptr = NULL;
2031	qh_put(qh);
2032
2033	/* maybe turn off periodic schedule */
2034	oxu->periodic_sched--;
2035	if (!oxu->periodic_sched)
2036		(void) disable_periodic(oxu);
2037}
2038
2039static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2040{
2041	unsigned wait;
2042
2043	qh_unlink_periodic(oxu, qh);
2044
2045	/* simple/paranoid:  always delay, expecting the HC needs to read
2046	 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2047	 * expect khubd to clean up after any CSPLITs we won't issue.
2048	 * active high speed queues may need bigger delays...
2049	 */
2050	if (list_empty(&qh->qtd_list)
2051		|| (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0)
2052		wait = 2;
2053	else
2054		wait = 55;	/* worst case: 3 * 1024 */
2055
2056	udelay(wait);
2057	qh->qh_state = QH_STATE_IDLE;
2058	qh->hw_next = EHCI_LIST_END;
2059	wmb();
2060}
2061
2062static int check_period(struct oxu_hcd *oxu,
2063			unsigned frame, unsigned uframe,
2064			unsigned period, unsigned usecs)
2065{
2066	int claimed;
2067
2068	/* complete split running into next frame?
2069	 * given FSTN support, we could sometimes check...
2070	 */
2071	if (uframe >= 8)
2072		return 0;
2073
2074	/*
2075	 * 80% periodic == 100 usec/uframe available
2076	 * convert "usecs we need" to "max already claimed"
2077	 */
2078	usecs = 100 - usecs;
2079
2080	/* we "know" 2 and 4 uframe intervals were rejected; so
2081	 * for period 0, check _every_ microframe in the schedule.
2082	 */
2083	if (unlikely(period == 0)) {
2084		do {
2085			for (uframe = 0; uframe < 7; uframe++) {
2086				claimed = periodic_usecs(oxu, frame, uframe);
2087				if (claimed > usecs)
2088					return 0;
2089			}
2090		} while ((frame += 1) < oxu->periodic_size);
2091
2092	/* just check the specified uframe, at that period */
2093	} else {
2094		do {
2095			claimed = periodic_usecs(oxu, frame, uframe);
2096			if (claimed > usecs)
2097				return 0;
2098		} while ((frame += period) < oxu->periodic_size);
2099	}
2100
2101	return 1;
2102}
2103
2104static int check_intr_schedule(struct oxu_hcd	*oxu,
2105				unsigned frame, unsigned uframe,
2106				const struct ehci_qh *qh, __le32 *c_maskp)
2107{
2108	int retval = -ENOSPC;
2109
2110	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
2111		goto done;
2112
2113	if (!check_period(oxu, frame, uframe, qh->period, qh->usecs))
2114		goto done;
2115	if (!qh->c_usecs) {
2116		retval = 0;
2117		*c_maskp = 0;
2118		goto done;
2119	}
2120
2121done:
2122	return retval;
2123}
2124
2125/* "first fit" scheduling policy used the first time through,
2126 * or when the previous schedule slot can't be re-used.
2127 */
2128static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2129{
2130	int		status;
2131	unsigned	uframe;
2132	__le32		c_mask;
2133	unsigned	frame;		/* 0..(qh->period - 1), or NO_FRAME */
2134
2135	qh_refresh(oxu, qh);
2136	qh->hw_next = EHCI_LIST_END;
2137	frame = qh->start;
2138
2139	/* reuse the previous schedule slots, if we can */
2140	if (frame < qh->period) {
2141		uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK);
2142		status = check_intr_schedule(oxu, frame, --uframe,
2143				qh, &c_mask);
2144	} else {
2145		uframe = 0;
2146		c_mask = 0;
2147		status = -ENOSPC;
2148	}
2149
2150	/* else scan the schedule to find a group of slots such that all
2151	 * uframes have enough periodic bandwidth available.
2152	 */
2153	if (status) {
2154		/* "normal" case, uframing flexible except with splits */
2155		if (qh->period) {
2156			frame = qh->period - 1;
2157			do {
2158				for (uframe = 0; uframe < 8; uframe++) {
2159					status = check_intr_schedule(oxu,
2160							frame, uframe, qh,
2161							&c_mask);
2162					if (status == 0)
2163						break;
2164				}
2165			} while (status && frame--);
2166
2167		/* qh->period == 0 means every uframe */
2168		} else {
2169			frame = 0;
2170			status = check_intr_schedule(oxu, 0, 0, qh, &c_mask);
2171		}
2172		if (status)
2173			goto done;
2174		qh->start = frame;
2175
2176		/* reset S-frame and (maybe) C-frame masks */
2177		qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK));
2178		qh->hw_info2 |= qh->period
2179			? cpu_to_le32(1 << uframe)
2180			: cpu_to_le32(QH_SMASK);
2181		qh->hw_info2 |= c_mask;
2182	} else
2183		oxu_dbg(oxu, "reused qh %p schedule\n", qh);
2184
2185	/* stuff into the periodic schedule */
2186	status = qh_link_periodic(oxu, qh);
2187done:
2188	return status;
2189}
2190
2191static int intr_submit(struct oxu_hcd *oxu, struct urb *urb,
2192			struct list_head *qtd_list, gfp_t mem_flags)
2193{
2194	unsigned epnum;
2195	unsigned long flags;
2196	struct ehci_qh *qh;
2197	int status = 0;
2198	struct list_head	empty;
2199
2200	/* get endpoint and transfer/schedule data */
2201	epnum = urb->ep->desc.bEndpointAddress;
2202
2203	spin_lock_irqsave(&oxu->lock, flags);
2204
2205	if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2206		status = -ESHUTDOWN;
2207		goto done;
2208	}
2209
2210	/* get qh and force any scheduling errors */
2211	INIT_LIST_HEAD(&empty);
2212	qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv);
2213	if (qh == NULL) {
2214		status = -ENOMEM;
2215		goto done;
2216	}
2217	if (qh->qh_state == QH_STATE_IDLE) {
2218		status = qh_schedule(oxu, qh);
2219		if (status != 0)
2220			goto done;
2221	}
2222
2223	/* then queue the urb's tds to the qh */
2224	qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2225	BUG_ON(qh == NULL);
2226
2227	/* ... update usbfs periodic stats */
2228	oxu_to_hcd(oxu)->self.bandwidth_int_reqs++;
2229
2230done:
2231	spin_unlock_irqrestore(&oxu->lock, flags);
2232	if (status)
2233		qtd_list_free(oxu, urb, qtd_list);
2234
2235	return status;
2236}
2237
2238static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb,
2239						gfp_t mem_flags)
2240{
2241	oxu_dbg(oxu, "iso support is missing!\n");
2242	return -ENOSYS;
2243}
2244
2245static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb,
2246						gfp_t mem_flags)
2247{
2248	oxu_dbg(oxu, "split iso support is missing!\n");
2249	return -ENOSYS;
2250}
2251
2252static void scan_periodic(struct oxu_hcd *oxu)
2253{
2254	unsigned frame, clock, now_uframe, mod;
2255	unsigned modified;
2256
2257	mod = oxu->periodic_size << 3;
2258
2259	/*
2260	 * When running, scan from last scan point up to "now"
2261	 * else clean up by scanning everything that's left.
2262	 * Touches as few pages as possible:  cache-friendly.
2263	 */
2264	now_uframe = oxu->next_uframe;
2265	if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2266		clock = readl(&oxu->regs->frame_index);
2267	else
2268		clock = now_uframe + mod - 1;
2269	clock %= mod;
2270
2271	for (;;) {
2272		union ehci_shadow	q, *q_p;
2273		__le32			type, *hw_p;
2274		unsigned		uframes;
2275
2276		/* don't scan past the live uframe */
2277		frame = now_uframe >> 3;
2278		if (frame == (clock >> 3))
2279			uframes = now_uframe & 0x07;
2280		else {
2281			/* safe to scan the whole frame at once */
2282			now_uframe |= 0x07;
2283			uframes = 8;
2284		}
2285
2286restart:
2287		/* scan each element in frame's queue for completions */
2288		q_p = &oxu->pshadow[frame];
2289		hw_p = &oxu->periodic[frame];
2290		q.ptr = q_p->ptr;
2291		type = Q_NEXT_TYPE(*hw_p);
2292		modified = 0;
2293
2294		while (q.ptr != NULL) {
2295			union ehci_shadow temp;
2296			int live;
2297
2298			live = HC_IS_RUNNING(oxu_to_hcd(oxu)->state);
2299			switch (type) {
2300			case Q_TYPE_QH:
2301				/* handle any completions */
2302				temp.qh = qh_get(q.qh);
2303				type = Q_NEXT_TYPE(q.qh->hw_next);
2304				q = q.qh->qh_next;
2305				modified = qh_completions(oxu, temp.qh);
2306				if (unlikely(list_empty(&temp.qh->qtd_list)))
2307					intr_deschedule(oxu, temp.qh);
2308				qh_put(temp.qh);
2309				break;
2310			default:
2311				dbg("corrupt type %d frame %d shadow %p",
2312					type, frame, q.ptr);
2313				q.ptr = NULL;
2314			}
2315
2316			/* assume completion callbacks modify the queue */
2317			if (unlikely(modified))
2318				goto restart;
2319		}
2320
2321		/* Stop when we catch up to the HC */
2322
2323		/* FIXME:  this assumes we won't get lapped when
2324		 * latencies climb; that should be rare, but...
2325		 * detect it, and just go all the way around.
2326		 * FLR might help detect this case, so long as latencies
2327		 * don't exceed periodic_size msec (default 1.024 sec).
2328		 */
2329
2330		/* FIXME: likewise assumes HC doesn't halt mid-scan */
2331
2332		if (now_uframe == clock) {
2333			unsigned	now;
2334
2335			if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2336				break;
2337			oxu->next_uframe = now_uframe;
2338			now = readl(&oxu->regs->frame_index) % mod;
2339			if (now_uframe == now)
2340				break;
2341
2342			/* rescan the rest of this frame, then ... */
2343			clock = now;
2344		} else {
2345			now_uframe++;
2346			now_uframe %= mod;
2347		}
2348	}
2349}
2350
2351/* On some systems, leaving remote wakeup enabled prevents system shutdown.
2352 * The firmware seems to think that powering off is a wakeup event!
2353 * This routine turns off remote wakeup and everything else, on all ports.
2354 */
2355static void ehci_turn_off_all_ports(struct oxu_hcd *oxu)
2356{
2357	int port = HCS_N_PORTS(oxu->hcs_params);
2358
2359	while (port--)
2360		writel(PORT_RWC_BITS, &oxu->regs->port_status[port]);
2361}
2362
2363static void ehci_port_power(struct oxu_hcd *oxu, int is_on)
2364{
2365	unsigned port;
2366
2367	if (!HCS_PPC(oxu->hcs_params))
2368		return;
2369
2370	oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down");
2371	for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; )
2372		(void) oxu_hub_control(oxu_to_hcd(oxu),
2373				is_on ? SetPortFeature : ClearPortFeature,
2374				USB_PORT_FEAT_POWER,
2375				port--, NULL, 0);
 
 
 
 
2376	msleep(20);
2377}
2378
2379/* Called from some interrupts, timers, and so on.
2380 * It calls driver completion functions, after dropping oxu->lock.
2381 */
2382static void ehci_work(struct oxu_hcd *oxu)
2383{
2384	timer_action_done(oxu, TIMER_IO_WATCHDOG);
2385	if (oxu->reclaim_ready)
2386		end_unlink_async(oxu);
2387
2388	/* another CPU may drop oxu->lock during a schedule scan while
2389	 * it reports urb completions.  this flag guards against bogus
2390	 * attempts at re-entrant schedule scanning.
2391	 */
2392	if (oxu->scanning)
2393		return;
2394	oxu->scanning = 1;
2395	scan_async(oxu);
2396	if (oxu->next_uframe != -1)
2397		scan_periodic(oxu);
2398	oxu->scanning = 0;
2399
2400	/* the IO watchdog guards against hardware or driver bugs that
2401	 * misplace IRQs, and should let us run completely without IRQs.
2402	 * such lossage has been observed on both VT6202 and VT8235.
2403	 */
2404	if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) &&
2405			(oxu->async->qh_next.ptr != NULL ||
2406			 oxu->periodic_sched != 0))
2407		timer_action(oxu, TIMER_IO_WATCHDOG);
2408}
2409
2410static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2411{
2412	/* if we need to use IAA and it's busy, defer */
2413	if (qh->qh_state == QH_STATE_LINKED
2414			&& oxu->reclaim
2415			&& HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) {
2416		struct ehci_qh		*last;
2417
2418		for (last = oxu->reclaim;
2419				last->reclaim;
2420				last = last->reclaim)
2421			continue;
2422		qh->qh_state = QH_STATE_UNLINK_WAIT;
2423		last->reclaim = qh;
2424
2425	/* bypass IAA if the hc can't care */
2426	} else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim)
2427		end_unlink_async(oxu);
2428
2429	/* something else might have unlinked the qh by now */
2430	if (qh->qh_state == QH_STATE_LINKED)
2431		start_unlink_async(oxu, qh);
2432}
2433
2434/*
2435 * USB host controller methods
2436 */
2437
2438static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd)
2439{
2440	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2441	u32 status, pcd_status = 0;
2442	int bh;
2443
2444	spin_lock(&oxu->lock);
2445
2446	status = readl(&oxu->regs->status);
2447
2448	/* e.g. cardbus physical eject */
2449	if (status == ~(u32) 0) {
2450		oxu_dbg(oxu, "device removed\n");
2451		goto dead;
2452	}
2453
2454	/* Shared IRQ? */
2455	status &= INTR_MASK;
2456	if (!status || unlikely(hcd->state == HC_STATE_HALT)) {
2457		spin_unlock(&oxu->lock);
2458		return IRQ_NONE;
2459	}
2460
2461	/* clear (just) interrupts */
2462	writel(status, &oxu->regs->status);
2463	readl(&oxu->regs->command);	/* unblock posted write */
2464	bh = 0;
2465
2466#ifdef OXU_VERBOSE_DEBUG
2467	/* unrequested/ignored: Frame List Rollover */
2468	dbg_status(oxu, "irq", status);
2469#endif
2470
2471	/* INT, ERR, and IAA interrupt rates can be throttled */
2472
2473	/* normal [4.15.1.2] or error [4.15.1.1] completion */
2474	if (likely((status & (STS_INT|STS_ERR)) != 0))
2475		bh = 1;
2476
2477	/* complete the unlinking of some qh [4.15.2.3] */
2478	if (status & STS_IAA) {
2479		oxu->reclaim_ready = 1;
2480		bh = 1;
2481	}
2482
2483	/* remote wakeup [4.3.1] */
2484	if (status & STS_PCD) {
2485		unsigned i = HCS_N_PORTS(oxu->hcs_params);
2486		pcd_status = status;
2487
2488		/* resume root hub? */
2489		if (!(readl(&oxu->regs->command) & CMD_RUN))
2490			usb_hcd_resume_root_hub(hcd);
2491
2492		while (i--) {
2493			int pstatus = readl(&oxu->regs->port_status[i]);
2494
2495			if (pstatus & PORT_OWNER)
2496				continue;
2497			if (!(pstatus & PORT_RESUME)
2498					|| oxu->reset_done[i] != 0)
2499				continue;
2500
2501			/* start 20 msec resume signaling from this port,
2502			 * and make khubd collect PORT_STAT_C_SUSPEND to
2503			 * stop that signaling.
2504			 */
2505			oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
 
2506			oxu_dbg(oxu, "port %d remote wakeup\n", i + 1);
2507			mod_timer(&hcd->rh_timer, oxu->reset_done[i]);
2508		}
2509	}
2510
2511	/* PCI errors [4.15.2.4] */
2512	if (unlikely((status & STS_FATAL) != 0)) {
2513		/* bogus "fatal" IRQs appear on some chips... why?  */
2514		status = readl(&oxu->regs->status);
2515		dbg_cmd(oxu, "fatal", readl(&oxu->regs->command));
2516		dbg_status(oxu, "fatal", status);
2517		if (status & STS_HALT) {
2518			oxu_err(oxu, "fatal error\n");
2519dead:
2520			ehci_reset(oxu);
2521			writel(0, &oxu->regs->configured_flag);
2522			usb_hc_died(hcd);
2523			/* generic layer kills/unlinks all urbs, then
2524			 * uses oxu_stop to clean up the rest
2525			 */
2526			bh = 1;
2527		}
2528	}
2529
2530	if (bh)
2531		ehci_work(oxu);
2532	spin_unlock(&oxu->lock);
2533	if (pcd_status & STS_PCD)
2534		usb_hcd_poll_rh_status(hcd);
2535	return IRQ_HANDLED;
2536}
2537
2538static irqreturn_t oxu_irq(struct usb_hcd *hcd)
2539{
2540	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2541	int ret = IRQ_HANDLED;
2542
2543	u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS);
2544	u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET);
2545
2546	/* Disable all interrupt */
2547	oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable);
2548
2549	if ((oxu->is_otg && (status & OXU_USBOTGI)) ||
2550		(!oxu->is_otg && (status & OXU_USBSPHI)))
2551		oxu210_hcd_irq(hcd);
2552	else
2553		ret = IRQ_NONE;
2554
2555	/* Enable all interrupt back */
2556	oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable);
2557
2558	return ret;
2559}
2560
2561static void oxu_watchdog(unsigned long param)
2562{
2563	struct oxu_hcd	*oxu = (struct oxu_hcd *) param;
2564	unsigned long flags;
2565
2566	spin_lock_irqsave(&oxu->lock, flags);
2567
2568	/* lost IAA irqs wedge things badly; seen with a vt8235 */
2569	if (oxu->reclaim) {
2570		u32 status = readl(&oxu->regs->status);
2571		if (status & STS_IAA) {
2572			oxu_vdbg(oxu, "lost IAA\n");
2573			writel(STS_IAA, &oxu->regs->status);
2574			oxu->reclaim_ready = 1;
2575		}
2576	}
2577
2578	/* stop async processing after it's idled a bit */
2579	if (test_bit(TIMER_ASYNC_OFF, &oxu->actions))
2580		start_unlink_async(oxu, oxu->async);
2581
2582	/* oxu could run by timer, without IRQs ... */
2583	ehci_work(oxu);
2584
2585	spin_unlock_irqrestore(&oxu->lock, flags);
2586}
2587
2588/* One-time init, only for memory state.
2589 */
2590static int oxu_hcd_init(struct usb_hcd *hcd)
2591{
2592	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2593	u32 temp;
2594	int retval;
2595	u32 hcc_params;
2596
2597	spin_lock_init(&oxu->lock);
2598
2599	init_timer(&oxu->watchdog);
2600	oxu->watchdog.function = oxu_watchdog;
2601	oxu->watchdog.data = (unsigned long) oxu;
2602
2603	/*
2604	 * hw default: 1K periodic list heads, one per frame.
2605	 * periodic_size can shrink by USBCMD update if hcc_params allows.
2606	 */
2607	oxu->periodic_size = DEFAULT_I_TDPS;
2608	retval = ehci_mem_init(oxu, GFP_KERNEL);
2609	if (retval < 0)
2610		return retval;
2611
2612	/* controllers may cache some of the periodic schedule ... */
2613	hcc_params = readl(&oxu->caps->hcc_params);
2614	if (HCC_ISOC_CACHE(hcc_params))		/* full frame cache */
2615		oxu->i_thresh = 8;
2616	else					/* N microframes cached */
2617		oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params);
2618
2619	oxu->reclaim = NULL;
2620	oxu->reclaim_ready = 0;
2621	oxu->next_uframe = -1;
2622
2623	/*
2624	 * dedicate a qh for the async ring head, since we couldn't unlink
2625	 * a 'real' qh without stopping the async schedule [4.8].  use it
2626	 * as the 'reclamation list head' too.
2627	 * its dummy is used in hw_alt_next of many tds, to prevent the qh
2628	 * from automatically advancing to the next td after short reads.
2629	 */
2630	oxu->async->qh_next.qh = NULL;
2631	oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma);
2632	oxu->async->hw_info1 = cpu_to_le32(QH_HEAD);
2633	oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT);
2634	oxu->async->hw_qtd_next = EHCI_LIST_END;
2635	oxu->async->qh_state = QH_STATE_LINKED;
2636	oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma);
2637
2638	/* clear interrupt enables, set irq latency */
2639	if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
2640		log2_irq_thresh = 0;
2641	temp = 1 << (16 + log2_irq_thresh);
2642	if (HCC_CANPARK(hcc_params)) {
2643		/* HW default park == 3, on hardware that supports it (like
2644		 * NVidia and ALI silicon), maximizes throughput on the async
2645		 * schedule by avoiding QH fetches between transfers.
2646		 *
2647		 * With fast usb storage devices and NForce2, "park" seems to
2648		 * make problems:  throughput reduction (!), data errors...
2649		 */
2650		if (park) {
2651			park = min(park, (unsigned) 3);
2652			temp |= CMD_PARK;
2653			temp |= park << 8;
2654		}
2655		oxu_dbg(oxu, "park %d\n", park);
2656	}
2657	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
2658		/* periodic schedule size can be smaller than default */
2659		temp &= ~(3 << 2);
2660		temp |= (EHCI_TUNE_FLS << 2);
2661	}
2662	oxu->command = temp;
2663
2664	return 0;
2665}
2666
2667/* Called during probe() after chip reset completes.
2668 */
2669static int oxu_reset(struct usb_hcd *hcd)
2670{
2671	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2672	int ret;
2673
2674	spin_lock_init(&oxu->mem_lock);
2675	INIT_LIST_HEAD(&oxu->urb_list);
2676	oxu->urb_len = 0;
2677
2678	/* FIMXE */
2679	hcd->self.controller->dma_mask = NULL;
2680
2681	if (oxu->is_otg) {
2682		oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET;
2683		oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \
2684			HC_LENGTH(readl(&oxu->caps->hc_capbase));
2685
2686		oxu->mem = hcd->regs + OXU_SPH_MEM;
2687	} else {
2688		oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET;
2689		oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \
2690			HC_LENGTH(readl(&oxu->caps->hc_capbase));
2691
2692		oxu->mem = hcd->regs + OXU_OTG_MEM;
2693	}
2694
2695	oxu->hcs_params = readl(&oxu->caps->hcs_params);
2696	oxu->sbrn = 0x20;
2697
2698	ret = oxu_hcd_init(hcd);
2699	if (ret)
2700		return ret;
2701
2702	return 0;
2703}
2704
2705static int oxu_run(struct usb_hcd *hcd)
2706{
2707	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2708	int retval;
2709	u32 temp, hcc_params;
2710
2711	hcd->uses_new_polling = 1;
2712
2713	/* EHCI spec section 4.1 */
2714	retval = ehci_reset(oxu);
2715	if (retval != 0) {
2716		ehci_mem_cleanup(oxu);
2717		return retval;
2718	}
2719	writel(oxu->periodic_dma, &oxu->regs->frame_list);
2720	writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
2721
2722	/* hcc_params controls whether oxu->regs->segment must (!!!)
2723	 * be used; it constrains QH/ITD/SITD and QTD locations.
2724	 * pci_pool consistent memory always uses segment zero.
2725	 * streaming mappings for I/O buffers, like pci_map_single(),
2726	 * can return segments above 4GB, if the device allows.
2727	 *
2728	 * NOTE:  the dma mask is visible through dma_supported(), so
2729	 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
2730	 * Scsi_Host.highmem_io, and so forth.  It's readonly to all
2731	 * host side drivers though.
2732	 */
2733	hcc_params = readl(&oxu->caps->hcc_params);
2734	if (HCC_64BIT_ADDR(hcc_params))
2735		writel(0, &oxu->regs->segment);
2736
2737	oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE |
2738				CMD_ASE | CMD_RESET);
2739	oxu->command |= CMD_RUN;
2740	writel(oxu->command, &oxu->regs->command);
2741	dbg_cmd(oxu, "init", oxu->command);
2742
2743	/*
2744	 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
2745	 * are explicitly handed to companion controller(s), so no TT is
2746	 * involved with the root hub.  (Except where one is integrated,
2747	 * and there's no companion controller unless maybe for USB OTG.)
2748	 */
2749	hcd->state = HC_STATE_RUNNING;
2750	writel(FLAG_CF, &oxu->regs->configured_flag);
2751	readl(&oxu->regs->command);	/* unblock posted writes */
2752
2753	temp = HC_VERSION(readl(&oxu->caps->hc_capbase));
2754	oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
2755		((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f),
2756		temp >> 8, temp & 0xff, DRIVER_VERSION,
2757		ignore_oc ? ", overcurrent ignored" : "");
2758
2759	writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */
2760
2761	return 0;
2762}
2763
2764static void oxu_stop(struct usb_hcd *hcd)
2765{
2766	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2767
2768	/* Turn off port power on all root hub ports. */
2769	ehci_port_power(oxu, 0);
2770
2771	/* no more interrupts ... */
2772	del_timer_sync(&oxu->watchdog);
2773
2774	spin_lock_irq(&oxu->lock);
2775	if (HC_IS_RUNNING(hcd->state))
2776		ehci_quiesce(oxu);
2777
2778	ehci_reset(oxu);
2779	writel(0, &oxu->regs->intr_enable);
2780	spin_unlock_irq(&oxu->lock);
2781
2782	/* let companion controllers work when we aren't */
2783	writel(0, &oxu->regs->configured_flag);
2784
2785	/* root hub is shut down separately (first, when possible) */
2786	spin_lock_irq(&oxu->lock);
2787	if (oxu->async)
2788		ehci_work(oxu);
2789	spin_unlock_irq(&oxu->lock);
2790	ehci_mem_cleanup(oxu);
2791
2792	dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status));
2793}
2794
2795/* Kick in for silicon on any bus (not just pci, etc).
2796 * This forcibly disables dma and IRQs, helping kexec and other cases
2797 * where the next system software may expect clean state.
2798 */
2799static void oxu_shutdown(struct usb_hcd *hcd)
2800{
2801	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2802
2803	(void) ehci_halt(oxu);
2804	ehci_turn_off_all_ports(oxu);
2805
2806	/* make BIOS/etc use companion controller during reboot */
2807	writel(0, &oxu->regs->configured_flag);
2808
2809	/* unblock posted writes */
2810	readl(&oxu->regs->configured_flag);
2811}
2812
2813/* Non-error returns are a promise to giveback() the urb later
2814 * we drop ownership so next owner (or urb unlink) can get it
2815 *
2816 * urb + dev is in hcd.self.controller.urb_list
2817 * we're queueing TDs onto software and hardware lists
2818 *
2819 * hcd-specific init for hcpriv hasn't been done yet
2820 *
2821 * NOTE:  control, bulk, and interrupt share the same code to append TDs
2822 * to a (possibly active) QH, and the same QH scanning code.
2823 */
2824static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
2825				gfp_t mem_flags)
2826{
2827	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2828	struct list_head qtd_list;
2829
2830	INIT_LIST_HEAD(&qtd_list);
2831
2832	switch (usb_pipetype(urb->pipe)) {
2833	case PIPE_CONTROL:
2834	case PIPE_BULK:
2835	default:
2836		if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
2837			return -ENOMEM;
2838		return submit_async(oxu, urb, &qtd_list, mem_flags);
2839
2840	case PIPE_INTERRUPT:
2841		if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
2842			return -ENOMEM;
2843		return intr_submit(oxu, urb, &qtd_list, mem_flags);
2844
2845	case PIPE_ISOCHRONOUS:
2846		if (urb->dev->speed == USB_SPEED_HIGH)
2847			return itd_submit(oxu, urb, mem_flags);
2848		else
2849			return sitd_submit(oxu, urb, mem_flags);
2850	}
2851}
2852
2853/* This function is responsible for breaking URBs with big data size
2854 * into smaller size and processing small urbs in sequence.
2855 */
2856static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
2857				gfp_t mem_flags)
2858{
2859	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2860	int num, rem;
2861	int transfer_buffer_length;
2862	void *transfer_buffer;
2863	struct urb *murb;
2864	int i, ret;
2865
2866	/* If not bulk pipe just enqueue the URB */
2867	if (!usb_pipebulk(urb->pipe))
2868		return __oxu_urb_enqueue(hcd, urb, mem_flags);
2869
2870	/* Otherwise we should verify the USB transfer buffer size! */
2871	transfer_buffer = urb->transfer_buffer;
2872	transfer_buffer_length = urb->transfer_buffer_length;
2873
2874	num = urb->transfer_buffer_length / 4096;
2875	rem = urb->transfer_buffer_length % 4096;
2876	if (rem != 0)
2877		num++;
2878
2879	/* If URB is smaller than 4096 bytes just enqueue it! */
2880	if (num == 1)
2881		return __oxu_urb_enqueue(hcd, urb, mem_flags);
2882
2883	/* Ok, we have more job to do! :) */
2884
2885	for (i = 0; i < num - 1; i++) {
2886		/* Get free micro URB poll till a free urb is received */
2887
2888		do {
2889			murb = (struct urb *) oxu_murb_alloc(oxu);
2890			if (!murb)
2891				schedule();
2892		} while (!murb);
2893
2894		/* Coping the urb */
2895		memcpy(murb, urb, sizeof(struct urb));
2896
2897		murb->transfer_buffer_length = 4096;
2898		murb->transfer_buffer = transfer_buffer + i * 4096;
2899
2900		/* Null pointer for the encodes that this is a micro urb */
2901		murb->complete = NULL;
2902
2903		((struct oxu_murb *) murb)->main = urb;
2904		((struct oxu_murb *) murb)->last = 0;
2905
2906		/* This loop is to guarantee urb to be processed when there's
2907		 * not enough resources at a particular time by retrying.
2908		 */
2909		do {
2910			ret  = __oxu_urb_enqueue(hcd, murb, mem_flags);
2911			if (ret)
2912				schedule();
2913		} while (ret);
2914	}
2915
2916	/* Last urb requires special handling  */
2917
2918	/* Get free micro URB poll till a free urb is received */
2919	do {
2920		murb = (struct urb *) oxu_murb_alloc(oxu);
2921		if (!murb)
2922			schedule();
2923	} while (!murb);
2924
2925	/* Coping the urb */
2926	memcpy(murb, urb, sizeof(struct urb));
2927
2928	murb->transfer_buffer_length = rem > 0 ? rem : 4096;
2929	murb->transfer_buffer = transfer_buffer + (num - 1) * 4096;
2930
2931	/* Null pointer for the encodes that this is a micro urb */
2932	murb->complete = NULL;
2933
2934	((struct oxu_murb *) murb)->main = urb;
2935	((struct oxu_murb *) murb)->last = 1;
2936
2937	do {
2938		ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
2939		if (ret)
2940			schedule();
2941	} while (ret);
2942
2943	return ret;
2944}
2945
2946/* Remove from hardware lists.
2947 * Completions normally happen asynchronously
2948 */
2949static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
2950{
2951	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2952	struct ehci_qh *qh;
2953	unsigned long flags;
2954
2955	spin_lock_irqsave(&oxu->lock, flags);
2956	switch (usb_pipetype(urb->pipe)) {
2957	case PIPE_CONTROL:
2958	case PIPE_BULK:
2959	default:
2960		qh = (struct ehci_qh *) urb->hcpriv;
2961		if (!qh)
2962			break;
2963		unlink_async(oxu, qh);
2964		break;
2965
2966	case PIPE_INTERRUPT:
2967		qh = (struct ehci_qh *) urb->hcpriv;
2968		if (!qh)
2969			break;
2970		switch (qh->qh_state) {
2971		case QH_STATE_LINKED:
2972			intr_deschedule(oxu, qh);
2973			/* FALL THROUGH */
2974		case QH_STATE_IDLE:
2975			qh_completions(oxu, qh);
2976			break;
2977		default:
2978			oxu_dbg(oxu, "bogus qh %p state %d\n",
2979					qh, qh->qh_state);
2980			goto done;
2981		}
2982
2983		/* reschedule QH iff another request is queued */
2984		if (!list_empty(&qh->qtd_list)
2985				&& HC_IS_RUNNING(hcd->state)) {
2986			int status;
2987
2988			status = qh_schedule(oxu, qh);
2989			spin_unlock_irqrestore(&oxu->lock, flags);
2990
2991			if (status != 0) {
2992				/* shouldn't happen often, but ...
2993				 * FIXME kill those tds' urbs
2994				 */
2995				err("can't reschedule qh %p, err %d",
2996					qh, status);
 
2997			}
2998			return status;
2999		}
3000		break;
3001	}
3002done:
3003	spin_unlock_irqrestore(&oxu->lock, flags);
3004	return 0;
3005}
3006
3007/* Bulk qh holds the data toggle */
3008static void oxu_endpoint_disable(struct usb_hcd *hcd,
3009					struct usb_host_endpoint *ep)
3010{
3011	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3012	unsigned long		flags;
3013	struct ehci_qh		*qh, *tmp;
3014
3015	/* ASSERT:  any requests/urbs are being unlinked */
3016	/* ASSERT:  nobody can be submitting urbs for this any more */
3017
3018rescan:
3019	spin_lock_irqsave(&oxu->lock, flags);
3020	qh = ep->hcpriv;
3021	if (!qh)
3022		goto done;
3023
3024	/* endpoints can be iso streams.  for now, we don't
3025	 * accelerate iso completions ... so spin a while.
3026	 */
3027	if (qh->hw_info1 == 0) {
3028		oxu_vdbg(oxu, "iso delay\n");
3029		goto idle_timeout;
3030	}
3031
3032	if (!HC_IS_RUNNING(hcd->state))
3033		qh->qh_state = QH_STATE_IDLE;
3034	switch (qh->qh_state) {
3035	case QH_STATE_LINKED:
3036		for (tmp = oxu->async->qh_next.qh;
3037				tmp && tmp != qh;
3038				tmp = tmp->qh_next.qh)
3039			continue;
3040		/* periodic qh self-unlinks on empty */
3041		if (!tmp)
3042			goto nogood;
3043		unlink_async(oxu, qh);
3044		/* FALL THROUGH */
3045	case QH_STATE_UNLINK:		/* wait for hw to finish? */
3046idle_timeout:
3047		spin_unlock_irqrestore(&oxu->lock, flags);
3048		schedule_timeout_uninterruptible(1);
3049		goto rescan;
3050	case QH_STATE_IDLE:		/* fully unlinked */
3051		if (list_empty(&qh->qtd_list)) {
3052			qh_put(qh);
3053			break;
3054		}
3055		/* else FALL THROUGH */
3056	default:
3057nogood:
3058		/* caller was supposed to have unlinked any requests;
3059		 * that's not our job.  just leak this memory.
3060		 */
3061		oxu_err(oxu, "qh %p (#%02x) state %d%s\n",
3062			qh, ep->desc.bEndpointAddress, qh->qh_state,
3063			list_empty(&qh->qtd_list) ? "" : "(has tds)");
3064		break;
3065	}
3066	ep->hcpriv = NULL;
3067done:
3068	spin_unlock_irqrestore(&oxu->lock, flags);
3069}
3070
3071static int oxu_get_frame(struct usb_hcd *hcd)
3072{
3073	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3074
3075	return (readl(&oxu->regs->frame_index) >> 3) %
3076		oxu->periodic_size;
3077}
3078
3079/* Build "status change" packet (one or two bytes) from HC registers */
3080static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf)
3081{
3082	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3083	u32 temp, mask, status = 0;
3084	int ports, i, retval = 1;
3085	unsigned long flags;
3086
3087	/* if !USB_SUSPEND, root hub timers won't get shut down ... */
3088	if (!HC_IS_RUNNING(hcd->state))
3089		return 0;
3090
3091	/* init status to no-changes */
3092	buf[0] = 0;
3093	ports = HCS_N_PORTS(oxu->hcs_params);
3094	if (ports > 7) {
3095		buf[1] = 0;
3096		retval++;
3097	}
3098
3099	/* Some boards (mostly VIA?) report bogus overcurrent indications,
3100	 * causing massive log spam unless we completely ignore them.  It
3101	 * may be relevant that VIA VT8235 controllers, where PORT_POWER is
3102	 * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3103	 * PORT_POWER; that's surprising, but maybe within-spec.
3104	 */
3105	if (!ignore_oc)
3106		mask = PORT_CSC | PORT_PEC | PORT_OCC;
3107	else
3108		mask = PORT_CSC | PORT_PEC;
3109
3110	/* no hub change reports (bit 0) for now (power, ...) */
3111
3112	/* port N changes (bit N)? */
3113	spin_lock_irqsave(&oxu->lock, flags);
3114	for (i = 0; i < ports; i++) {
3115		temp = readl(&oxu->regs->port_status[i]);
3116
3117		/*
3118		 * Return status information even for ports with OWNER set.
3119		 * Otherwise khubd wouldn't see the disconnect event when a
3120		 * high-speed device is switched over to the companion
3121		 * controller by the user.
3122		 */
3123
3124		if (!(temp & PORT_CONNECT))
3125			oxu->reset_done[i] = 0;
3126		if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 &&
3127				time_after_eq(jiffies, oxu->reset_done[i]))) {
3128			if (i < 7)
3129				buf[0] |= 1 << (i + 1);
3130			else
3131				buf[1] |= 1 << (i - 7);
3132			status = STS_PCD;
3133		}
3134	}
3135	/* FIXME autosuspend idle root hubs */
3136	spin_unlock_irqrestore(&oxu->lock, flags);
3137	return status ? retval : 0;
3138}
3139
3140/* Returns the speed of a device attached to a port on the root hub. */
3141static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu,
3142						unsigned int portsc)
3143{
3144	switch ((portsc >> 26) & 3) {
3145	case 0:
3146		return 0;
3147	case 1:
3148		return USB_PORT_STAT_LOW_SPEED;
3149	case 2:
3150	default:
3151		return USB_PORT_STAT_HIGH_SPEED;
3152	}
3153}
3154
3155#define	PORT_WAKE_BITS	(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
3156static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq,
3157				u16 wValue, u16 wIndex, char *buf, u16 wLength)
3158{
3159	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3160	int ports = HCS_N_PORTS(oxu->hcs_params);
3161	u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1];
3162	u32 temp, status;
3163	unsigned long	flags;
3164	int retval = 0;
3165	unsigned selector;
3166
3167	/*
3168	 * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3169	 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3170	 * (track current state ourselves) ... blink for diagnostics,
3171	 * power, "this is the one", etc.  EHCI spec supports this.
3172	 */
3173
3174	spin_lock_irqsave(&oxu->lock, flags);
3175	switch (typeReq) {
3176	case ClearHubFeature:
3177		switch (wValue) {
3178		case C_HUB_LOCAL_POWER:
3179		case C_HUB_OVER_CURRENT:
3180			/* no hub-wide feature/status flags */
3181			break;
3182		default:
3183			goto error;
3184		}
3185		break;
3186	case ClearPortFeature:
3187		if (!wIndex || wIndex > ports)
3188			goto error;
3189		wIndex--;
3190		temp = readl(status_reg);
3191
3192		/*
3193		 * Even if OWNER is set, so the port is owned by the
3194		 * companion controller, khubd needs to be able to clear
3195		 * the port-change status bits (especially
3196		 * USB_PORT_STAT_C_CONNECTION).
3197		 */
3198
3199		switch (wValue) {
3200		case USB_PORT_FEAT_ENABLE:
3201			writel(temp & ~PORT_PE, status_reg);
3202			break;
3203		case USB_PORT_FEAT_C_ENABLE:
3204			writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg);
3205			break;
3206		case USB_PORT_FEAT_SUSPEND:
3207			if (temp & PORT_RESET)
3208				goto error;
3209			if (temp & PORT_SUSPEND) {
3210				if ((temp & PORT_PE) == 0)
3211					goto error;
3212				/* resume signaling for 20 msec */
3213				temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS);
3214				writel(temp | PORT_RESUME, status_reg);
3215				oxu->reset_done[wIndex] = jiffies
3216						+ msecs_to_jiffies(20);
3217			}
3218			break;
3219		case USB_PORT_FEAT_C_SUSPEND:
3220			/* we auto-clear this feature */
3221			break;
3222		case USB_PORT_FEAT_POWER:
3223			if (HCS_PPC(oxu->hcs_params))
3224				writel(temp & ~(PORT_RWC_BITS | PORT_POWER),
3225					  status_reg);
3226			break;
3227		case USB_PORT_FEAT_C_CONNECTION:
3228			writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg);
3229			break;
3230		case USB_PORT_FEAT_C_OVER_CURRENT:
3231			writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg);
3232			break;
3233		case USB_PORT_FEAT_C_RESET:
3234			/* GetPortStatus clears reset */
3235			break;
3236		default:
3237			goto error;
3238		}
3239		readl(&oxu->regs->command);	/* unblock posted write */
3240		break;
3241	case GetHubDescriptor:
3242		ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *)
3243			buf);
3244		break;
3245	case GetHubStatus:
3246		/* no hub-wide feature/status flags */
3247		memset(buf, 0, 4);
3248		break;
3249	case GetPortStatus:
3250		if (!wIndex || wIndex > ports)
3251			goto error;
3252		wIndex--;
3253		status = 0;
3254		temp = readl(status_reg);
3255
3256		/* wPortChange bits */
3257		if (temp & PORT_CSC)
3258			status |= USB_PORT_STAT_C_CONNECTION << 16;
3259		if (temp & PORT_PEC)
3260			status |= USB_PORT_STAT_C_ENABLE << 16;
3261		if ((temp & PORT_OCC) && !ignore_oc)
3262			status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3263
3264		/* whoever resumes must GetPortStatus to complete it!! */
3265		if (temp & PORT_RESUME) {
3266
3267			/* Remote Wakeup received? */
3268			if (!oxu->reset_done[wIndex]) {
3269				/* resume signaling for 20 msec */
3270				oxu->reset_done[wIndex] = jiffies
3271						+ msecs_to_jiffies(20);
3272				/* check the port again */
3273				mod_timer(&oxu_to_hcd(oxu)->rh_timer,
3274						oxu->reset_done[wIndex]);
3275			}
3276
3277			/* resume completed? */
3278			else if (time_after_eq(jiffies,
3279					oxu->reset_done[wIndex])) {
3280				status |= USB_PORT_STAT_C_SUSPEND << 16;
3281				oxu->reset_done[wIndex] = 0;
3282
3283				/* stop resume signaling */
3284				temp = readl(status_reg);
3285				writel(temp & ~(PORT_RWC_BITS | PORT_RESUME),
3286					status_reg);
3287				retval = handshake(oxu, status_reg,
3288					   PORT_RESUME, 0, 2000 /* 2msec */);
3289				if (retval != 0) {
3290					oxu_err(oxu,
3291						"port %d resume error %d\n",
3292						wIndex + 1, retval);
3293					goto error;
3294				}
3295				temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
3296			}
3297		}
3298
3299		/* whoever resets must GetPortStatus to complete it!! */
3300		if ((temp & PORT_RESET)
3301				&& time_after_eq(jiffies,
3302					oxu->reset_done[wIndex])) {
3303			status |= USB_PORT_STAT_C_RESET << 16;
3304			oxu->reset_done[wIndex] = 0;
3305
3306			/* force reset to complete */
3307			writel(temp & ~(PORT_RWC_BITS | PORT_RESET),
3308					status_reg);
3309			/* REVISIT:  some hardware needs 550+ usec to clear
3310			 * this bit; seems too long to spin routinely...
3311			 */
3312			retval = handshake(oxu, status_reg,
3313					PORT_RESET, 0, 750);
3314			if (retval != 0) {
3315				oxu_err(oxu, "port %d reset error %d\n",
3316					wIndex + 1, retval);
3317				goto error;
3318			}
3319
3320			/* see what we found out */
3321			temp = check_reset_complete(oxu, wIndex, status_reg,
3322					readl(status_reg));
3323		}
3324
3325		/* transfer dedicated ports to the companion hc */
3326		if ((temp & PORT_CONNECT) &&
3327				test_bit(wIndex, &oxu->companion_ports)) {
3328			temp &= ~PORT_RWC_BITS;
3329			temp |= PORT_OWNER;
3330			writel(temp, status_reg);
3331			oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1);
3332			temp = readl(status_reg);
3333		}
3334
3335		/*
3336		 * Even if OWNER is set, there's no harm letting khubd
3337		 * see the wPortStatus values (they should all be 0 except
3338		 * for PORT_POWER anyway).
3339		 */
3340
3341		if (temp & PORT_CONNECT) {
3342			status |= USB_PORT_STAT_CONNECTION;
3343			/* status may be from integrated TT */
3344			status |= oxu_port_speed(oxu, temp);
3345		}
3346		if (temp & PORT_PE)
3347			status |= USB_PORT_STAT_ENABLE;
3348		if (temp & (PORT_SUSPEND|PORT_RESUME))
3349			status |= USB_PORT_STAT_SUSPEND;
3350		if (temp & PORT_OC)
3351			status |= USB_PORT_STAT_OVERCURRENT;
3352		if (temp & PORT_RESET)
3353			status |= USB_PORT_STAT_RESET;
3354		if (temp & PORT_POWER)
3355			status |= USB_PORT_STAT_POWER;
3356
3357#ifndef	OXU_VERBOSE_DEBUG
3358	if (status & ~0xffff)	/* only if wPortChange is interesting */
3359#endif
3360		dbg_port(oxu, "GetStatus", wIndex + 1, temp);
3361		put_unaligned(cpu_to_le32(status), (__le32 *) buf);
3362		break;
3363	case SetHubFeature:
3364		switch (wValue) {
3365		case C_HUB_LOCAL_POWER:
3366		case C_HUB_OVER_CURRENT:
3367			/* no hub-wide feature/status flags */
3368			break;
3369		default:
3370			goto error;
3371		}
3372		break;
3373	case SetPortFeature:
3374		selector = wIndex >> 8;
3375		wIndex &= 0xff;
3376		if (!wIndex || wIndex > ports)
3377			goto error;
3378		wIndex--;
3379		temp = readl(status_reg);
3380		if (temp & PORT_OWNER)
3381			break;
3382
3383		temp &= ~PORT_RWC_BITS;
3384		switch (wValue) {
3385		case USB_PORT_FEAT_SUSPEND:
3386			if ((temp & PORT_PE) == 0
3387					|| (temp & PORT_RESET) != 0)
3388				goto error;
3389			if (device_may_wakeup(&hcd->self.root_hub->dev))
3390				temp |= PORT_WAKE_BITS;
3391			writel(temp | PORT_SUSPEND, status_reg);
3392			break;
3393		case USB_PORT_FEAT_POWER:
3394			if (HCS_PPC(oxu->hcs_params))
3395				writel(temp | PORT_POWER, status_reg);
3396			break;
3397		case USB_PORT_FEAT_RESET:
3398			if (temp & PORT_RESUME)
3399				goto error;
3400			/* line status bits may report this as low speed,
3401			 * which can be fine if this root hub has a
3402			 * transaction translator built in.
3403			 */
3404			oxu_vdbg(oxu, "port %d reset\n", wIndex + 1);
3405			temp |= PORT_RESET;
3406			temp &= ~PORT_PE;
3407
3408			/*
3409			 * caller must wait, then call GetPortStatus
3410			 * usb 2.0 spec says 50 ms resets on root
3411			 */
3412			oxu->reset_done[wIndex] = jiffies
3413					+ msecs_to_jiffies(50);
3414			writel(temp, status_reg);
3415			break;
3416
3417		/* For downstream facing ports (these):  one hub port is put
3418		 * into test mode according to USB2 11.24.2.13, then the hub
3419		 * must be reset (which for root hub now means rmmod+modprobe,
3420		 * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
3421		 * about the EHCI-specific stuff.
3422		 */
3423		case USB_PORT_FEAT_TEST:
3424			if (!selector || selector > 5)
3425				goto error;
3426			ehci_quiesce(oxu);
3427			ehci_halt(oxu);
3428			temp |= selector << 16;
3429			writel(temp, status_reg);
3430			break;
3431
3432		default:
3433			goto error;
3434		}
3435		readl(&oxu->regs->command);	/* unblock posted writes */
3436		break;
3437
3438	default:
3439error:
3440		/* "stall" on error */
3441		retval = -EPIPE;
3442	}
3443	spin_unlock_irqrestore(&oxu->lock, flags);
3444	return retval;
3445}
3446
3447#ifdef CONFIG_PM
3448
3449static int oxu_bus_suspend(struct usb_hcd *hcd)
3450{
3451	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3452	int port;
3453	int mask;
3454
3455	oxu_dbg(oxu, "suspend root hub\n");
3456
3457	if (time_before(jiffies, oxu->next_statechange))
3458		msleep(5);
3459
3460	port = HCS_N_PORTS(oxu->hcs_params);
3461	spin_lock_irq(&oxu->lock);
3462
3463	/* stop schedules, clean any completed work */
3464	if (HC_IS_RUNNING(hcd->state)) {
3465		ehci_quiesce(oxu);
3466		hcd->state = HC_STATE_QUIESCING;
3467	}
3468	oxu->command = readl(&oxu->regs->command);
3469	if (oxu->reclaim)
3470		oxu->reclaim_ready = 1;
3471	ehci_work(oxu);
3472
3473	/* Unlike other USB host controller types, EHCI doesn't have
3474	 * any notion of "global" or bus-wide suspend.  The driver has
3475	 * to manually suspend all the active unsuspended ports, and
3476	 * then manually resume them in the bus_resume() routine.
3477	 */
3478	oxu->bus_suspended = 0;
3479	while (port--) {
3480		u32 __iomem *reg = &oxu->regs->port_status[port];
3481		u32 t1 = readl(reg) & ~PORT_RWC_BITS;
3482		u32 t2 = t1;
3483
3484		/* keep track of which ports we suspend */
3485		if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) &&
3486				!(t1 & PORT_SUSPEND)) {
3487			t2 |= PORT_SUSPEND;
3488			set_bit(port, &oxu->bus_suspended);
3489		}
3490
3491		/* enable remote wakeup on all ports */
3492		if (device_may_wakeup(&hcd->self.root_hub->dev))
3493			t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E;
3494		else
3495			t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E);
3496
3497		if (t1 != t2) {
3498			oxu_vdbg(oxu, "port %d, %08x -> %08x\n",
3499				port + 1, t1, t2);
3500			writel(t2, reg);
3501		}
3502	}
3503
 
3504	/* turn off now-idle HC */
3505	del_timer_sync(&oxu->watchdog);
 
3506	ehci_halt(oxu);
3507	hcd->state = HC_STATE_SUSPENDED;
3508
3509	/* allow remote wakeup */
3510	mask = INTR_MASK;
3511	if (!device_may_wakeup(&hcd->self.root_hub->dev))
3512		mask &= ~STS_PCD;
3513	writel(mask, &oxu->regs->intr_enable);
3514	readl(&oxu->regs->intr_enable);
3515
3516	oxu->next_statechange = jiffies + msecs_to_jiffies(10);
3517	spin_unlock_irq(&oxu->lock);
3518	return 0;
3519}
3520
3521/* Caller has locked the root hub, and should reset/reinit on error */
3522static int oxu_bus_resume(struct usb_hcd *hcd)
3523{
3524	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3525	u32 temp;
3526	int i;
3527
3528	if (time_before(jiffies, oxu->next_statechange))
3529		msleep(5);
3530	spin_lock_irq(&oxu->lock);
3531
3532	/* Ideally and we've got a real resume here, and no port's power
3533	 * was lost.  (For PCI, that means Vaux was maintained.)  But we
3534	 * could instead be restoring a swsusp snapshot -- so that BIOS was
3535	 * the last user of the controller, not reset/pm hardware keeping
3536	 * state we gave to it.
3537	 */
3538	temp = readl(&oxu->regs->intr_enable);
3539	oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss");
3540
3541	/* at least some APM implementations will try to deliver
3542	 * IRQs right away, so delay them until we're ready.
3543	 */
3544	writel(0, &oxu->regs->intr_enable);
3545
3546	/* re-init operational registers */
3547	writel(0, &oxu->regs->segment);
3548	writel(oxu->periodic_dma, &oxu->regs->frame_list);
3549	writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3550
3551	/* restore CMD_RUN, framelist size, and irq threshold */
3552	writel(oxu->command, &oxu->regs->command);
3553
3554	/* Some controller/firmware combinations need a delay during which
3555	 * they set up the port statuses.  See Bugzilla #8190. */
3556	mdelay(8);
3557
3558	/* manually resume the ports we suspended during bus_suspend() */
3559	i = HCS_N_PORTS(oxu->hcs_params);
3560	while (i--) {
3561		temp = readl(&oxu->regs->port_status[i]);
3562		temp &= ~(PORT_RWC_BITS
3563			| PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E);
3564		if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3565			oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
3566			temp |= PORT_RESUME;
3567		}
3568		writel(temp, &oxu->regs->port_status[i]);
3569	}
3570	i = HCS_N_PORTS(oxu->hcs_params);
3571	mdelay(20);
3572	while (i--) {
3573		temp = readl(&oxu->regs->port_status[i]);
3574		if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3575			temp &= ~(PORT_RWC_BITS | PORT_RESUME);
3576			writel(temp, &oxu->regs->port_status[i]);
3577			oxu_vdbg(oxu, "resumed port %d\n", i + 1);
3578		}
3579	}
3580	(void) readl(&oxu->regs->command);
3581
3582	/* maybe re-activate the schedule(s) */
3583	temp = 0;
3584	if (oxu->async->qh_next.qh)
3585		temp |= CMD_ASE;
3586	if (oxu->periodic_sched)
3587		temp |= CMD_PSE;
3588	if (temp) {
3589		oxu->command |= temp;
3590		writel(oxu->command, &oxu->regs->command);
3591	}
3592
3593	oxu->next_statechange = jiffies + msecs_to_jiffies(5);
3594	hcd->state = HC_STATE_RUNNING;
3595
3596	/* Now we can safely re-enable irqs */
3597	writel(INTR_MASK, &oxu->regs->intr_enable);
3598
3599	spin_unlock_irq(&oxu->lock);
3600	return 0;
3601}
3602
3603#else
3604
3605static int oxu_bus_suspend(struct usb_hcd *hcd)
3606{
3607	return 0;
3608}
3609
3610static int oxu_bus_resume(struct usb_hcd *hcd)
3611{
3612	return 0;
3613}
3614
3615#endif	/* CONFIG_PM */
3616
3617static const struct hc_driver oxu_hc_driver = {
3618	.description =		"oxu210hp_hcd",
3619	.product_desc =		"oxu210hp HCD",
3620	.hcd_priv_size =	sizeof(struct oxu_hcd),
3621
3622	/*
3623	 * Generic hardware linkage
3624	 */
3625	.irq =			oxu_irq,
3626	.flags =		HCD_MEMORY | HCD_USB2,
3627
3628	/*
3629	 * Basic lifecycle operations
3630	 */
3631	.reset =		oxu_reset,
3632	.start =		oxu_run,
3633	.stop =			oxu_stop,
3634	.shutdown =		oxu_shutdown,
3635
3636	/*
3637	 * Managing i/o requests and associated device resources
3638	 */
3639	.urb_enqueue =		oxu_urb_enqueue,
3640	.urb_dequeue =		oxu_urb_dequeue,
3641	.endpoint_disable =	oxu_endpoint_disable,
3642
3643	/*
3644	 * Scheduling support
3645	 */
3646	.get_frame_number =	oxu_get_frame,
3647
3648	/*
3649	 * Root hub support
3650	 */
3651	.hub_status_data =	oxu_hub_status_data,
3652	.hub_control =		oxu_hub_control,
3653	.bus_suspend =		oxu_bus_suspend,
3654	.bus_resume =		oxu_bus_resume,
3655};
3656
3657/*
3658 * Module stuff
3659 */
3660
3661static void oxu_configuration(struct platform_device *pdev, void *base)
3662{
3663	u32 tmp;
3664
3665	/* Initialize top level registers.
3666	 * First write ever
3667	 */
3668	oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
3669	oxu_writel(base, OXU_SOFTRESET, OXU_SRESET);
3670	oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
3671
3672	tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL);
3673	oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040);
3674
3675	oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN |
3676					OXU_COMPARATOR | OXU_ASO_OP);
3677
3678	tmp = oxu_readl(base, OXU_CLKCTRL_SET);
3679	oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN);
3680
3681	/* Clear all top interrupt enable */
3682	oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff);
3683
3684	/* Clear all top interrupt status */
3685	oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff);
3686
3687	/* Enable all needed top interrupt except OTG SPH core */
3688	oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI);
3689}
3690
3691static int oxu_verify_id(struct platform_device *pdev, void *base)
3692{
3693	u32 id;
3694	static const char * const bo[] = {
3695		"reserved",
3696		"128-pin LQFP",
3697		"84-pin TFBGA",
3698		"reserved",
3699	};
3700
3701	/* Read controller signature register to find a match */
3702	id = oxu_readl(base, OXU_DEVICEID);
3703	dev_info(&pdev->dev, "device ID %x\n", id);
3704	if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT))
3705		return -1;
3706
3707	dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n",
3708		id >> OXU_REV_SHIFT,
3709		bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT],
3710		(id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT,
3711		(id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT);
3712
3713	return 0;
3714}
3715
3716static const struct hc_driver oxu_hc_driver;
3717static struct usb_hcd *oxu_create(struct platform_device *pdev,
3718				unsigned long memstart, unsigned long memlen,
3719				void *base, int irq, int otg)
3720{
3721	struct device *dev = &pdev->dev;
3722
3723	struct usb_hcd *hcd;
3724	struct oxu_hcd *oxu;
3725	int ret;
3726
3727	/* Set endian mode and host mode */
3728	oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET),
3729				OXU_USBMODE,
3730				OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS);
3731
3732	hcd = usb_create_hcd(&oxu_hc_driver, dev,
3733				otg ? "oxu210hp_otg" : "oxu210hp_sph");
3734	if (!hcd)
3735		return ERR_PTR(-ENOMEM);
3736
3737	hcd->rsrc_start = memstart;
3738	hcd->rsrc_len = memlen;
3739	hcd->regs = base;
3740	hcd->irq = irq;
3741	hcd->state = HC_STATE_HALT;
3742
3743	oxu = hcd_to_oxu(hcd);
3744	oxu->is_otg = otg;
3745
3746	ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
3747	if (ret < 0)
 
3748		return ERR_PTR(ret);
 
3749
 
3750	return hcd;
3751}
3752
3753static int oxu_init(struct platform_device *pdev,
3754				unsigned long memstart, unsigned long memlen,
3755				void *base, int irq)
3756{
3757	struct oxu_info *info = platform_get_drvdata(pdev);
3758	struct usb_hcd *hcd;
3759	int ret;
3760
3761	/* First time configuration at start up */
3762	oxu_configuration(pdev, base);
3763
3764	ret = oxu_verify_id(pdev, base);
3765	if (ret) {
3766		dev_err(&pdev->dev, "no devices found!\n");
3767		return -ENODEV;
3768	}
3769
3770	/* Create the OTG controller */
3771	hcd = oxu_create(pdev, memstart, memlen, base, irq, 1);
3772	if (IS_ERR(hcd)) {
3773		dev_err(&pdev->dev, "cannot create OTG controller!\n");
3774		ret = PTR_ERR(hcd);
3775		goto error_create_otg;
3776	}
3777	info->hcd[0] = hcd;
3778
3779	/* Create the SPH host controller */
3780	hcd = oxu_create(pdev, memstart, memlen, base, irq, 0);
3781	if (IS_ERR(hcd)) {
3782		dev_err(&pdev->dev, "cannot create SPH controller!\n");
3783		ret = PTR_ERR(hcd);
3784		goto error_create_sph;
3785	}
3786	info->hcd[1] = hcd;
3787
3788	oxu_writel(base, OXU_CHIPIRQEN_SET,
3789		oxu_readl(base, OXU_CHIPIRQEN_SET) | 3);
3790
3791	return 0;
3792
3793error_create_sph:
3794	usb_remove_hcd(info->hcd[0]);
3795	usb_put_hcd(info->hcd[0]);
3796
3797error_create_otg:
3798	return ret;
3799}
3800
3801static int oxu_drv_probe(struct platform_device *pdev)
3802{
3803	struct resource *res;
3804	void *base;
3805	unsigned long memstart, memlen;
3806	int irq, ret;
3807	struct oxu_info *info;
3808
3809	if (usb_disabled())
3810		return -ENODEV;
3811
3812	/*
3813	 * Get the platform resources
3814	 */
3815	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
3816	if (!res) {
3817		dev_err(&pdev->dev,
3818			"no IRQ! Check %s setup!\n", dev_name(&pdev->dev));
3819		return -ENODEV;
3820	}
3821	irq = res->start;
3822	dev_dbg(&pdev->dev, "IRQ resource %d\n", irq);
3823
3824	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3825	if (!res) {
3826		dev_err(&pdev->dev, "no registers address! Check %s setup!\n",
3827			dev_name(&pdev->dev));
3828		return -ENODEV;
3829	}
3830	memstart = res->start;
3831	memlen = resource_size(res);
3832	dev_dbg(&pdev->dev, "MEM resource %lx-%lx\n", memstart, memlen);
3833	if (!request_mem_region(memstart, memlen,
3834				oxu_hc_driver.description)) {
3835		dev_dbg(&pdev->dev, "memory area already in use\n");
3836		return -EBUSY;
3837	}
3838
3839	ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING);
3840	if (ret) {
3841		dev_err(&pdev->dev, "error setting irq type\n");
3842		ret = -EFAULT;
3843		goto error_set_irq_type;
3844	}
3845
3846	base = ioremap(memstart, memlen);
3847	if (!base) {
3848		dev_dbg(&pdev->dev, "error mapping memory\n");
3849		ret = -EFAULT;
3850		goto error_ioremap;
3851	}
3852
3853	/* Allocate a driver data struct to hold useful info for both
3854	 * SPH & OTG devices
3855	 */
3856	info = kzalloc(sizeof(struct oxu_info), GFP_KERNEL);
3857	if (!info) {
3858		dev_dbg(&pdev->dev, "error allocating memory\n");
3859		ret = -EFAULT;
3860		goto error_alloc;
3861	}
3862	platform_set_drvdata(pdev, info);
3863
3864	ret = oxu_init(pdev, memstart, memlen, base, irq);
3865	if (ret < 0) {
3866		dev_dbg(&pdev->dev, "cannot init USB devices\n");
3867		goto error_init;
3868	}
3869
3870	dev_info(&pdev->dev, "devices enabled and running\n");
3871	platform_set_drvdata(pdev, info);
3872
3873	return 0;
3874
3875error_init:
3876	kfree(info);
3877	platform_set_drvdata(pdev, NULL);
3878
3879error_alloc:
3880	iounmap(base);
3881
3882error_set_irq_type:
3883error_ioremap:
3884	release_mem_region(memstart, memlen);
3885
3886	dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret);
3887	return ret;
3888}
3889
3890static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd)
3891{
3892	usb_remove_hcd(hcd);
3893	usb_put_hcd(hcd);
3894}
3895
3896static int oxu_drv_remove(struct platform_device *pdev)
3897{
3898	struct oxu_info *info = platform_get_drvdata(pdev);
3899	unsigned long memstart = info->hcd[0]->rsrc_start,
3900			memlen = info->hcd[0]->rsrc_len;
3901	void *base = info->hcd[0]->regs;
3902
3903	oxu_remove(pdev, info->hcd[0]);
3904	oxu_remove(pdev, info->hcd[1]);
3905
3906	iounmap(base);
3907	release_mem_region(memstart, memlen);
3908
3909	kfree(info);
3910	platform_set_drvdata(pdev, NULL);
3911
3912	return 0;
3913}
3914
3915static void oxu_drv_shutdown(struct platform_device *pdev)
3916{
3917	oxu_drv_remove(pdev);
3918}
3919
3920#if 0
3921/* FIXME: TODO */
3922static int oxu_drv_suspend(struct device *dev)
3923{
3924	struct platform_device *pdev = to_platform_device(dev);
3925	struct usb_hcd *hcd = dev_get_drvdata(dev);
3926
3927	return 0;
3928}
3929
3930static int oxu_drv_resume(struct device *dev)
3931{
3932	struct platform_device *pdev = to_platform_device(dev);
3933	struct usb_hcd *hcd = dev_get_drvdata(dev);
3934
3935	return 0;
3936}
3937#else
3938#define oxu_drv_suspend	NULL
3939#define oxu_drv_resume	NULL
3940#endif
3941
3942static struct platform_driver oxu_driver = {
3943	.probe		= oxu_drv_probe,
3944	.remove		= oxu_drv_remove,
3945	.shutdown	= oxu_drv_shutdown,
3946	.suspend	= oxu_drv_suspend,
3947	.resume		= oxu_drv_resume,
3948	.driver = {
3949		.name = "oxu210hp-hcd",
3950		.bus = &platform_bus_type
3951	}
3952};
3953
3954static int __init oxu_module_init(void)
3955{
3956	int retval = 0;
3957
3958	retval = platform_driver_register(&oxu_driver);
3959	if (retval < 0)
3960		return retval;
3961
3962	return retval;
3963}
3964
3965static void __exit oxu_module_cleanup(void)
3966{
3967	platform_driver_unregister(&oxu_driver);
3968}
3969
3970module_init(oxu_module_init);
3971module_exit(oxu_module_cleanup);
3972
3973MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION);
3974MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
3975MODULE_LICENSE("GPL");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
   4 * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
   5 *
   6 * This code is *strongly* based on EHCI-HCD code by David Brownell since
   7 * the chip is a quasi-EHCI compatible.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   8 */
   9
  10#include <linux/module.h>
  11#include <linux/pci.h>
  12#include <linux/dmapool.h>
  13#include <linux/kernel.h>
  14#include <linux/delay.h>
  15#include <linux/ioport.h>
  16#include <linux/sched.h>
  17#include <linux/slab.h>
  18#include <linux/errno.h>
 
  19#include <linux/timer.h>
  20#include <linux/list.h>
  21#include <linux/interrupt.h>
  22#include <linux/usb.h>
  23#include <linux/usb/hcd.h>
  24#include <linux/moduleparam.h>
  25#include <linux/dma-mapping.h>
  26#include <linux/io.h>
  27#include <linux/iopoll.h>
  28
  29#include <asm/irq.h>
  30#include <linux/unaligned.h>
 
  31
  32#include <linux/irq.h>
  33#include <linux/platform_device.h>
  34
 
 
  35#define DRIVER_VERSION "0.0.50"
  36
  37#define OXU_DEVICEID			0x00
  38	#define OXU_REV_MASK		0xffff0000
  39	#define OXU_REV_SHIFT		16
  40	#define OXU_REV_2100		0x2100
  41	#define OXU_BO_SHIFT		8
  42	#define OXU_BO_MASK		(0x3 << OXU_BO_SHIFT)
  43	#define OXU_MAJ_REV_SHIFT	4
  44	#define OXU_MAJ_REV_MASK	(0xf << OXU_MAJ_REV_SHIFT)
  45	#define OXU_MIN_REV_SHIFT	0
  46	#define OXU_MIN_REV_MASK	(0xf << OXU_MIN_REV_SHIFT)
  47#define OXU_HOSTIFCONFIG		0x04
  48#define OXU_SOFTRESET			0x08
  49	#define OXU_SRESET		(1 << 0)
  50
  51#define OXU_PIOBURSTREADCTRL		0x0C
  52
  53#define OXU_CHIPIRQSTATUS		0x10
  54#define OXU_CHIPIRQEN_SET		0x14
  55#define OXU_CHIPIRQEN_CLR		0x18
  56	#define OXU_USBSPHLPWUI		0x00000080
  57	#define OXU_USBOTGLPWUI		0x00000040
  58	#define OXU_USBSPHI		0x00000002
  59	#define OXU_USBOTGI		0x00000001
  60
  61#define OXU_CLKCTRL_SET			0x1C
  62	#define OXU_SYSCLKEN		0x00000008
  63	#define OXU_USBSPHCLKEN		0x00000002
  64	#define OXU_USBOTGCLKEN		0x00000001
  65
  66#define OXU_ASO				0x68
  67	#define OXU_SPHPOEN		0x00000100
  68	#define OXU_OVRCCURPUPDEN	0x00000800
  69	#define OXU_ASO_OP		(1 << 10)
  70	#define OXU_COMPARATOR		0x000004000
  71
  72#define OXU_USBMODE			0x1A8
  73	#define OXU_VBPS		0x00000020
  74	#define OXU_ES_LITTLE		0x00000000
  75	#define OXU_CM_HOST_ONLY	0x00000003
  76
  77/*
  78 * Proper EHCI structs & defines
  79 */
  80
  81/* Magic numbers that can affect system performance */
  82#define EHCI_TUNE_CERR		3	/* 0-3 qtd retries; 0 == don't stop */
  83#define EHCI_TUNE_RL_HS		4	/* nak throttle; see 4.9 */
  84#define EHCI_TUNE_RL_TT		0
  85#define EHCI_TUNE_MULT_HS	1	/* 1-3 transactions/uframe; 4.10.3 */
  86#define EHCI_TUNE_MULT_TT	1
  87#define EHCI_TUNE_FLS		2	/* (small) 256 frame schedule */
  88
  89struct oxu_hcd;
  90
  91/* EHCI register interface, corresponds to EHCI Revision 0.95 specification */
  92
  93/* Section 2.2 Host Controller Capability Registers */
  94struct ehci_caps {
  95	/* these fields are specified as 8 and 16 bit registers,
  96	 * but some hosts can't perform 8 or 16 bit PCI accesses.
  97	 */
  98	u32		hc_capbase;
  99#define HC_LENGTH(p)		(((p)>>00)&0x00ff)	/* bits 7:0 */
 100#define HC_VERSION(p)		(((p)>>16)&0xffff)	/* bits 31:16 */
 101	u32		hcs_params;     /* HCSPARAMS - offset 0x4 */
 102#define HCS_DEBUG_PORT(p)	(((p)>>20)&0xf)	/* bits 23:20, debug port? */
 103#define HCS_INDICATOR(p)	((p)&(1 << 16))	/* true: has port indicators */
 104#define HCS_N_CC(p)		(((p)>>12)&0xf)	/* bits 15:12, #companion HCs */
 105#define HCS_N_PCC(p)		(((p)>>8)&0xf)	/* bits 11:8, ports per CC */
 106#define HCS_PORTROUTED(p)	((p)&(1 << 7))	/* true: port routing */
 107#define HCS_PPC(p)		((p)&(1 << 4))	/* true: port power control */
 108#define HCS_N_PORTS(p)		(((p)>>0)&0xf)	/* bits 3:0, ports on HC */
 109
 110	u32		hcc_params;      /* HCCPARAMS - offset 0x8 */
 111#define HCC_EXT_CAPS(p)		(((p)>>8)&0xff)	/* for pci extended caps */
 112#define HCC_ISOC_CACHE(p)       ((p)&(1 << 7))  /* true: can cache isoc frame */
 113#define HCC_ISOC_THRES(p)       (((p)>>4)&0x7)  /* bits 6:4, uframes cached */
 114#define HCC_CANPARK(p)		((p)&(1 << 2))  /* true: can park on async qh */
 115#define HCC_PGM_FRAMELISTLEN(p) ((p)&(1 << 1))  /* true: periodic_size changes*/
 116#define HCC_64BIT_ADDR(p)       ((p)&(1))       /* true: can use 64-bit addr */
 117	u8		portroute[8];	 /* nibbles for routing - offset 0xC */
 118} __packed;
 119
 120
 121/* Section 2.3 Host Controller Operational Registers */
 122struct ehci_regs {
 123	/* USBCMD: offset 0x00 */
 124	u32		command;
 125/* 23:16 is r/w intr rate, in microframes; default "8" == 1/msec */
 126#define CMD_PARK	(1<<11)		/* enable "park" on async qh */
 127#define CMD_PARK_CNT(c)	(((c)>>8)&3)	/* how many transfers to park for */
 128#define CMD_LRESET	(1<<7)		/* partial reset (no ports, etc) */
 129#define CMD_IAAD	(1<<6)		/* "doorbell" interrupt async advance */
 130#define CMD_ASE		(1<<5)		/* async schedule enable */
 131#define CMD_PSE		(1<<4)		/* periodic schedule enable */
 132/* 3:2 is periodic frame list size */
 133#define CMD_RESET	(1<<1)		/* reset HC not bus */
 134#define CMD_RUN		(1<<0)		/* start/stop HC */
 135
 136	/* USBSTS: offset 0x04 */
 137	u32		status;
 138#define STS_ASS		(1<<15)		/* Async Schedule Status */
 139#define STS_PSS		(1<<14)		/* Periodic Schedule Status */
 140#define STS_RECL	(1<<13)		/* Reclamation */
 141#define STS_HALT	(1<<12)		/* Not running (any reason) */
 142/* some bits reserved */
 143	/* these STS_* flags are also intr_enable bits (USBINTR) */
 144#define STS_IAA		(1<<5)		/* Interrupted on async advance */
 145#define STS_FATAL	(1<<4)		/* such as some PCI access errors */
 146#define STS_FLR		(1<<3)		/* frame list rolled over */
 147#define STS_PCD		(1<<2)		/* port change detect */
 148#define STS_ERR		(1<<1)		/* "error" completion (overflow, ...) */
 149#define STS_INT		(1<<0)		/* "normal" completion (short, ...) */
 150
 151#define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
 152
 153	/* USBINTR: offset 0x08 */
 154	u32		intr_enable;
 155
 156	/* FRINDEX: offset 0x0C */
 157	u32		frame_index;	/* current microframe number */
 158	/* CTRLDSSEGMENT: offset 0x10 */
 159	u32		segment;	/* address bits 63:32 if needed */
 160	/* PERIODICLISTBASE: offset 0x14 */
 161	u32		frame_list;	/* points to periodic list */
 162	/* ASYNCLISTADDR: offset 0x18 */
 163	u32		async_next;	/* address of next async queue head */
 164
 165	u32		reserved[9];
 166
 167	/* CONFIGFLAG: offset 0x40 */
 168	u32		configured_flag;
 169#define FLAG_CF		(1<<0)		/* true: we'll support "high speed" */
 170
 171	/* PORTSC: offset 0x44 */
 172	u32		port_status[];	/* up to N_PORTS */
 173/* 31:23 reserved */
 174#define PORT_WKOC_E	(1<<22)		/* wake on overcurrent (enable) */
 175#define PORT_WKDISC_E	(1<<21)		/* wake on disconnect (enable) */
 176#define PORT_WKCONN_E	(1<<20)		/* wake on connect (enable) */
 177/* 19:16 for port testing */
 178#define PORT_LED_OFF	(0<<14)
 179#define PORT_LED_AMBER	(1<<14)
 180#define PORT_LED_GREEN	(2<<14)
 181#define PORT_LED_MASK	(3<<14)
 182#define PORT_OWNER	(1<<13)		/* true: companion hc owns this port */
 183#define PORT_POWER	(1<<12)		/* true: has power (see PPC) */
 184#define PORT_USB11(x) (((x)&(3<<10)) == (1<<10))	/* USB 1.1 device */
 185/* 11:10 for detecting lowspeed devices (reset vs release ownership) */
 186/* 9 reserved */
 187#define PORT_RESET	(1<<8)		/* reset port */
 188#define PORT_SUSPEND	(1<<7)		/* suspend port */
 189#define PORT_RESUME	(1<<6)		/* resume it */
 190#define PORT_OCC	(1<<5)		/* over current change */
 191#define PORT_OC		(1<<4)		/* over current active */
 192#define PORT_PEC	(1<<3)		/* port enable change */
 193#define PORT_PE		(1<<2)		/* port enable */
 194#define PORT_CSC	(1<<1)		/* connect status change */
 195#define PORT_CONNECT	(1<<0)		/* device connected */
 196#define PORT_RWC_BITS   (PORT_CSC | PORT_PEC | PORT_OCC)
 197} __packed;
 198
 199#define	QTD_NEXT(dma)	cpu_to_le32((u32)dma)
 200
 201/*
 202 * EHCI Specification 0.95 Section 3.5
 203 * QTD: describe data transfer components (buffer, direction, ...)
 204 * See Fig 3-6 "Queue Element Transfer Descriptor Block Diagram".
 205 *
 206 * These are associated only with "QH" (Queue Head) structures,
 207 * used with control, bulk, and interrupt transfers.
 208 */
 209struct ehci_qtd {
 210	/* first part defined by EHCI spec */
 211	__le32			hw_next;		/* see EHCI 3.5.1 */
 212	__le32			hw_alt_next;		/* see EHCI 3.5.2 */
 213	__le32			hw_token;		/* see EHCI 3.5.3 */
 214#define	QTD_TOGGLE	(1 << 31)	/* data toggle */
 215#define	QTD_LENGTH(tok)	(((tok)>>16) & 0x7fff)
 216#define	QTD_IOC		(1 << 15)	/* interrupt on complete */
 217#define	QTD_CERR(tok)	(((tok)>>10) & 0x3)
 218#define	QTD_PID(tok)	(((tok)>>8) & 0x3)
 219#define	QTD_STS_ACTIVE	(1 << 7)	/* HC may execute this */
 220#define	QTD_STS_HALT	(1 << 6)	/* halted on error */
 221#define	QTD_STS_DBE	(1 << 5)	/* data buffer error (in HC) */
 222#define	QTD_STS_BABBLE	(1 << 4)	/* device was babbling (qtd halted) */
 223#define	QTD_STS_XACT	(1 << 3)	/* device gave illegal response */
 224#define	QTD_STS_MMF	(1 << 2)	/* incomplete split transaction */
 225#define	QTD_STS_STS	(1 << 1)	/* split transaction state */
 226#define	QTD_STS_PING	(1 << 0)	/* issue PING? */
 227	__le32			hw_buf[5];		/* see EHCI 3.5.4 */
 228	__le32			hw_buf_hi[5];		/* Appendix B */
 229
 230	/* the rest is HCD-private */
 231	dma_addr_t		qtd_dma;		/* qtd address */
 232	struct list_head	qtd_list;		/* sw qtd list */
 233	struct urb		*urb;			/* qtd's urb */
 234	size_t			length;			/* length of buffer */
 235
 236	u32			qtd_buffer_len;
 237	void			*buffer;
 238	dma_addr_t		buffer_dma;
 239	void			*transfer_buffer;
 240	void			*transfer_dma;
 241} __aligned(32);
 242
 243/* mask NakCnt+T in qh->hw_alt_next */
 244#define QTD_MASK cpu_to_le32 (~0x1f)
 245
 246#define IS_SHORT_READ(token) (QTD_LENGTH(token) != 0 && QTD_PID(token) == 1)
 247
 248/* Type tag from {qh, itd, sitd, fstn}->hw_next */
 249#define Q_NEXT_TYPE(dma) ((dma) & cpu_to_le32 (3 << 1))
 250
 251/* values for that type tag */
 252#define Q_TYPE_QH	cpu_to_le32 (1 << 1)
 253
 254/* next async queue entry, or pointer to interrupt/periodic QH */
 255#define	QH_NEXT(dma)	(cpu_to_le32(((u32)dma)&~0x01f)|Q_TYPE_QH)
 256
 257/* for periodic/async schedules and qtd lists, mark end of list */
 258#define	EHCI_LIST_END	cpu_to_le32(1) /* "null pointer" to hw */
 259
 260/*
 261 * Entries in periodic shadow table are pointers to one of four kinds
 262 * of data structure.  That's dictated by the hardware; a type tag is
 263 * encoded in the low bits of the hardware's periodic schedule.  Use
 264 * Q_NEXT_TYPE to get the tag.
 265 *
 266 * For entries in the async schedule, the type tag always says "qh".
 267 */
 268union ehci_shadow {
 269	struct ehci_qh		*qh;		/* Q_TYPE_QH */
 270	__le32			*hw_next;	/* (all types) */
 271	void			*ptr;
 272};
 273
 274/*
 275 * EHCI Specification 0.95 Section 3.6
 276 * QH: describes control/bulk/interrupt endpoints
 277 * See Fig 3-7 "Queue Head Structure Layout".
 278 *
 279 * These appear in both the async and (for interrupt) periodic schedules.
 280 */
 281
 282struct ehci_qh {
 283	/* first part defined by EHCI spec */
 284	__le32			hw_next;	 /* see EHCI 3.6.1 */
 285	__le32			hw_info1;	/* see EHCI 3.6.2 */
 286#define	QH_HEAD		0x00008000
 287	__le32			hw_info2;	/* see EHCI 3.6.2 */
 288#define	QH_SMASK	0x000000ff
 289#define	QH_CMASK	0x0000ff00
 290#define	QH_HUBADDR	0x007f0000
 291#define	QH_HUBPORT	0x3f800000
 292#define	QH_MULT		0xc0000000
 293	__le32			hw_current;	 /* qtd list - see EHCI 3.6.4 */
 294
 295	/* qtd overlay (hardware parts of a struct ehci_qtd) */
 296	__le32			hw_qtd_next;
 297	__le32			hw_alt_next;
 298	__le32			hw_token;
 299	__le32			hw_buf[5];
 300	__le32			hw_buf_hi[5];
 301
 302	/* the rest is HCD-private */
 303	dma_addr_t		qh_dma;		/* address of qh */
 304	union ehci_shadow	qh_next;	/* ptr to qh; or periodic */
 305	struct list_head	qtd_list;	/* sw qtd list */
 306	struct ehci_qtd		*dummy;
 307	struct ehci_qh		*reclaim;	/* next to reclaim */
 308
 309	struct oxu_hcd		*oxu;
 310	struct kref		kref;
 311	unsigned int		stamp;
 312
 313	u8			qh_state;
 314#define	QH_STATE_LINKED		1		/* HC sees this */
 315#define	QH_STATE_UNLINK		2		/* HC may still see this */
 316#define	QH_STATE_IDLE		3		/* HC doesn't see this */
 317#define	QH_STATE_UNLINK_WAIT	4		/* LINKED and on reclaim q */
 318#define	QH_STATE_COMPLETING	5		/* don't touch token.HALT */
 319
 320	/* periodic schedule info */
 321	u8			usecs;		/* intr bandwidth */
 322	u8			gap_uf;		/* uframes split/csplit gap */
 323	u8			c_usecs;	/* ... split completion bw */
 324	u16			tt_usecs;	/* tt downstream bandwidth */
 325	unsigned short		period;		/* polling interval */
 326	unsigned short		start;		/* where polling starts */
 327#define NO_FRAME ((unsigned short)~0)			/* pick new start */
 328	struct usb_device	*dev;		/* access to TT */
 329} __aligned(32);
 330
 331/*
 332 * Proper OXU210HP structs
 333 */
 334
 335#define OXU_OTG_CORE_OFFSET	0x00400
 336#define OXU_OTG_CAP_OFFSET	(OXU_OTG_CORE_OFFSET + 0x100)
 337#define OXU_SPH_CORE_OFFSET	0x00800
 338#define OXU_SPH_CAP_OFFSET	(OXU_SPH_CORE_OFFSET + 0x100)
 339
 340#define OXU_OTG_MEM		0xE000
 341#define OXU_SPH_MEM		0x16000
 342
 343/* Only how many elements & element structure are specifies here. */
 344/* 2 host controllers are enabled - total size <= 28 kbytes */
 345#define	DEFAULT_I_TDPS		1024
 346#define QHEAD_NUM		16
 347#define QTD_NUM			32
 348#define SITD_NUM		8
 349#define MURB_NUM		8
 350
 351#define BUFFER_NUM		8
 352#define BUFFER_SIZE		512
 353
 354struct oxu_info {
 355	struct usb_hcd *hcd[2];
 356};
 357
 358struct oxu_buf {
 359	u8			buffer[BUFFER_SIZE];
 360} __aligned(BUFFER_SIZE);
 361
 362struct oxu_onchip_mem {
 363	struct oxu_buf		db_pool[BUFFER_NUM];
 364
 365	u32			frame_list[DEFAULT_I_TDPS];
 366	struct ehci_qh		qh_pool[QHEAD_NUM];
 367	struct ehci_qtd		qtd_pool[QTD_NUM];
 368} __aligned(4 << 10);
 369
 370#define	EHCI_MAX_ROOT_PORTS	15		/* see HCS_N_PORTS */
 371
 372struct oxu_murb {
 373	struct urb		urb;
 374	struct urb		*main;
 375	u8			last;
 376};
 377
 378struct oxu_hcd {				/* one per controller */
 379	unsigned int		is_otg:1;
 380
 381	u8			qh_used[QHEAD_NUM];
 382	u8			qtd_used[QTD_NUM];
 383	u8			db_used[BUFFER_NUM];
 384	u8			murb_used[MURB_NUM];
 385
 386	struct oxu_onchip_mem	__iomem *mem;
 387	spinlock_t		mem_lock;
 388
 389	struct timer_list	urb_timer;
 390
 391	struct ehci_caps __iomem *caps;
 392	struct ehci_regs __iomem *regs;
 393
 394	u32			hcs_params;	/* cached register copy */
 395	spinlock_t		lock;
 396
 397	/* async schedule support */
 398	struct ehci_qh		*async;
 399	struct ehci_qh		*reclaim;
 400	unsigned int		reclaim_ready:1;
 401	unsigned int		scanning:1;
 402
 403	/* periodic schedule support */
 404	unsigned int		periodic_size;
 405	__le32			*periodic;	/* hw periodic table */
 406	dma_addr_t		periodic_dma;
 407	unsigned int		i_thresh;	/* uframes HC might cache */
 408
 409	union ehci_shadow	*pshadow;	/* mirror hw periodic table */
 410	int			next_uframe;	/* scan periodic, start here */
 411	unsigned int		periodic_sched;	/* periodic activity count */
 412
 413	/* per root hub port */
 414	unsigned long		reset_done[EHCI_MAX_ROOT_PORTS];
 415	/* bit vectors (one bit per port) */
 416	unsigned long		bus_suspended;	/* which ports were
 417						 * already suspended at the
 418						 * start of a bus suspend
 419						 */
 420	unsigned long		companion_ports;/* which ports are dedicated
 421						 * to the companion controller
 422						 */
 423
 424	struct timer_list	watchdog;
 425	unsigned long		actions;
 426	unsigned int		stamp;
 427	unsigned long		next_statechange;
 428	u32			command;
 429
 430	/* SILICON QUIRKS */
 431	struct list_head	urb_list;	/* this is the head to urb
 432						 * queue that didn't get enough
 433						 * resources
 434						 */
 435	struct oxu_murb		*murb_pool;	/* murb per split big urb */
 436	unsigned int		urb_len;
 437
 438	u8			sbrn;		/* packed release number */
 439};
 440
 441#define EHCI_IAA_JIFFIES	(HZ/100)	/* arbitrary; ~10 msec */
 442#define EHCI_IO_JIFFIES		(HZ/10)		/* io watchdog > irq_thresh */
 443#define EHCI_ASYNC_JIFFIES      (HZ/20)		/* async idle timeout */
 444#define EHCI_SHRINK_JIFFIES     (HZ/200)	/* async qh unlink delay */
 445
 446enum ehci_timer_action {
 447	TIMER_IO_WATCHDOG,
 448	TIMER_IAA_WATCHDOG,
 449	TIMER_ASYNC_SHRINK,
 450	TIMER_ASYNC_OFF,
 451};
 452
 453/*
 454 * Main defines
 455 */
 456
 457#define oxu_dbg(oxu, fmt, args...) \
 458		dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
 459#define oxu_err(oxu, fmt, args...) \
 460		dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
 461#define oxu_info(oxu, fmt, args...) \
 462		dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
 463
 464#ifdef CONFIG_DYNAMIC_DEBUG
 465#define DEBUG
 466#endif
 467
 468static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu)
 469{
 470	return container_of((void *) oxu, struct usb_hcd, hcd_priv);
 471}
 472
 473static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd)
 474{
 475	return (struct oxu_hcd *) (hcd->hcd_priv);
 476}
 477
 478/*
 479 * Debug stuff
 480 */
 481
 482#undef OXU_URB_TRACE
 483#undef OXU_VERBOSE_DEBUG
 484
 485#ifdef OXU_VERBOSE_DEBUG
 486#define oxu_vdbg			oxu_dbg
 487#else
 488#define oxu_vdbg(oxu, fmt, args...)	/* Nop */
 489#endif
 490
 491#ifdef DEBUG
 492
 493static int __attribute__((__unused__))
 494dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
 495{
 496	return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
 497		label, label[0] ? " " : "", status,
 498		(status & STS_ASS) ? " Async" : "",
 499		(status & STS_PSS) ? " Periodic" : "",
 500		(status & STS_RECL) ? " Recl" : "",
 501		(status & STS_HALT) ? " Halt" : "",
 502		(status & STS_IAA) ? " IAA" : "",
 503		(status & STS_FATAL) ? " FATAL" : "",
 504		(status & STS_FLR) ? " FLR" : "",
 505		(status & STS_PCD) ? " PCD" : "",
 506		(status & STS_ERR) ? " ERR" : "",
 507		(status & STS_INT) ? " INT" : ""
 508		);
 509}
 510
 511static int __attribute__((__unused__))
 512dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
 513{
 514	return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
 515		label, label[0] ? " " : "", enable,
 516		(enable & STS_IAA) ? " IAA" : "",
 517		(enable & STS_FATAL) ? " FATAL" : "",
 518		(enable & STS_FLR) ? " FLR" : "",
 519		(enable & STS_PCD) ? " PCD" : "",
 520		(enable & STS_ERR) ? " ERR" : "",
 521		(enable & STS_INT) ? " INT" : ""
 522		);
 523}
 524
 525static const char *const fls_strings[] =
 526    { "1024", "512", "256", "??" };
 527
 528static int dbg_command_buf(char *buf, unsigned len,
 529				const char *label, u32 command)
 530{
 531	return scnprintf(buf, len,
 532		"%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
 533		label, label[0] ? " " : "", command,
 534		(command & CMD_PARK) ? "park" : "(park)",
 535		CMD_PARK_CNT(command),
 536		(command >> 16) & 0x3f,
 537		(command & CMD_LRESET) ? " LReset" : "",
 538		(command & CMD_IAAD) ? " IAAD" : "",
 539		(command & CMD_ASE) ? " Async" : "",
 540		(command & CMD_PSE) ? " Periodic" : "",
 541		fls_strings[(command >> 2) & 0x3],
 542		(command & CMD_RESET) ? " Reset" : "",
 543		(command & CMD_RUN) ? "RUN" : "HALT"
 544		);
 545}
 546
 547static int dbg_port_buf(char *buf, unsigned len, const char *label,
 548				int port, u32 status)
 549{
 550	char	*sig;
 551
 552	/* signaling state */
 553	switch (status & (3 << 10)) {
 554	case 0 << 10:
 555		sig = "se0";
 556		break;
 557	case 1 << 10:
 558		sig = "k";	/* low speed */
 559		break;
 560	case 2 << 10:
 561		sig = "j";
 562		break;
 563	default:
 564		sig = "?";
 565		break;
 566	}
 567
 568	return scnprintf(buf, len,
 569		"%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
 570		label, label[0] ? " " : "", port, status,
 571		(status & PORT_POWER) ? " POWER" : "",
 572		(status & PORT_OWNER) ? " OWNER" : "",
 573		sig,
 574		(status & PORT_RESET) ? " RESET" : "",
 575		(status & PORT_SUSPEND) ? " SUSPEND" : "",
 576		(status & PORT_RESUME) ? " RESUME" : "",
 577		(status & PORT_OCC) ? " OCC" : "",
 578		(status & PORT_OC) ? " OC" : "",
 579		(status & PORT_PEC) ? " PEC" : "",
 580		(status & PORT_PE) ? " PE" : "",
 581		(status & PORT_CSC) ? " CSC" : "",
 582		(status & PORT_CONNECT) ? " CONNECT" : ""
 583	    );
 584}
 585
 586#else
 587
 588static inline int __attribute__((__unused__))
 589dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
 590{ return 0; }
 591
 592static inline int __attribute__((__unused__))
 593dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
 594{ return 0; }
 595
 596static inline int __attribute__((__unused__))
 597dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
 598{ return 0; }
 599
 600static inline int __attribute__((__unused__))
 601dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
 602{ return 0; }
 603
 604#endif /* DEBUG */
 605
 606/* functions have the "wrong" filename when they're output... */
 607#define dbg_status(oxu, label, status) { \
 608	char _buf[80]; \
 609	dbg_status_buf(_buf, sizeof _buf, label, status); \
 610	oxu_dbg(oxu, "%s\n", _buf); \
 611}
 612
 613#define dbg_cmd(oxu, label, command) { \
 614	char _buf[80]; \
 615	dbg_command_buf(_buf, sizeof _buf, label, command); \
 616	oxu_dbg(oxu, "%s\n", _buf); \
 617}
 618
 619#define dbg_port(oxu, label, port, status) { \
 620	char _buf[80]; \
 621	dbg_port_buf(_buf, sizeof _buf, label, port, status); \
 622	oxu_dbg(oxu, "%s\n", _buf); \
 623}
 624
 625/*
 626 * Module parameters
 627 */
 628
 629/* Initial IRQ latency: faster than hw default */
 630static int log2_irq_thresh;			/* 0 to 6 */
 631module_param(log2_irq_thresh, int, S_IRUGO);
 632MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
 633
 634/* Initial park setting: slower than hw default */
 635static unsigned park;
 636module_param(park, uint, S_IRUGO);
 637MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
 638
 639/* For flakey hardware, ignore overcurrent indicators */
 640static bool ignore_oc;
 641module_param(ignore_oc, bool, S_IRUGO);
 642MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications");
 643
 644
 645static void ehci_work(struct oxu_hcd *oxu);
 646static int oxu_hub_control(struct usb_hcd *hcd,
 647				u16 typeReq, u16 wValue, u16 wIndex,
 648				char *buf, u16 wLength);
 649
 650/*
 651 * Local functions
 652 */
 653
 654/* Low level read/write registers functions */
 655static inline u32 oxu_readl(void __iomem *base, u32 reg)
 656{
 657	return readl(base + reg);
 658}
 659
 660static inline void oxu_writel(void __iomem *base, u32 reg, u32 val)
 661{
 662	writel(val, base + reg);
 663}
 664
 665static inline void timer_action_done(struct oxu_hcd *oxu,
 666					enum ehci_timer_action action)
 667{
 668	clear_bit(action, &oxu->actions);
 669}
 670
 671static inline void timer_action(struct oxu_hcd *oxu,
 672					enum ehci_timer_action action)
 673{
 674	if (!test_and_set_bit(action, &oxu->actions)) {
 675		unsigned long t;
 676
 677		switch (action) {
 678		case TIMER_IAA_WATCHDOG:
 679			t = EHCI_IAA_JIFFIES;
 680			break;
 681		case TIMER_IO_WATCHDOG:
 682			t = EHCI_IO_JIFFIES;
 683			break;
 684		case TIMER_ASYNC_OFF:
 685			t = EHCI_ASYNC_JIFFIES;
 686			break;
 687		case TIMER_ASYNC_SHRINK:
 688		default:
 689			t = EHCI_SHRINK_JIFFIES;
 690			break;
 691		}
 692		t += jiffies;
 693		/* all timings except IAA watchdog can be overridden.
 694		 * async queue SHRINK often precedes IAA.  while it's ready
 695		 * to go OFF neither can matter, and afterwards the IO
 696		 * watchdog stops unless there's still periodic traffic.
 697		 */
 698		if (action != TIMER_IAA_WATCHDOG
 699				&& t > oxu->watchdog.expires
 700				&& timer_pending(&oxu->watchdog))
 701			return;
 702		mod_timer(&oxu->watchdog, t);
 703	}
 704}
 705
 706/*
 707 * handshake - spin reading hc until handshake completes or fails
 708 * @ptr: address of hc register to be read
 709 * @mask: bits to look at in result of read
 710 * @done: value of those bits when handshake succeeds
 711 * @usec: timeout in microseconds
 712 *
 713 * Returns negative errno, or zero on success
 714 *
 715 * Success happens when the "mask" bits have the specified value (hardware
 716 * handshake done).  There are two failure modes:  "usec" have passed (major
 717 * hardware flakeout), or the register reads as all-ones (hardware removed).
 718 *
 719 * That last failure should_only happen in cases like physical cardbus eject
 720 * before driver shutdown. But it also seems to be caused by bugs in cardbus
 721 * bridge shutdown:  shutting down the bridge before the devices using it.
 722 */
 723static int handshake(struct oxu_hcd *oxu, void __iomem *ptr,
 724					u32 mask, u32 done, int usec)
 725{
 726	u32 result;
 727	int ret;
 728
 729	ret = readl_poll_timeout_atomic(ptr, result,
 730					((result & mask) == done ||
 731					 result == U32_MAX),
 732					1, usec);
 733	if (result == U32_MAX)		/* card removed */
 734		return -ENODEV;
 735
 736	return ret;
 
 
 
 737}
 738
 739/* Force HC to halt state from unknown (EHCI spec section 2.3) */
 740static int ehci_halt(struct oxu_hcd *oxu)
 741{
 742	u32	temp = readl(&oxu->regs->status);
 743
 744	/* disable any irqs left enabled by previous code */
 745	writel(0, &oxu->regs->intr_enable);
 746
 747	if ((temp & STS_HALT) != 0)
 748		return 0;
 749
 750	temp = readl(&oxu->regs->command);
 751	temp &= ~CMD_RUN;
 752	writel(temp, &oxu->regs->command);
 753	return handshake(oxu, &oxu->regs->status,
 754			  STS_HALT, STS_HALT, 16 * 125);
 755}
 756
 757/* Put TDI/ARC silicon into EHCI mode */
 758static void tdi_reset(struct oxu_hcd *oxu)
 759{
 760	u32 __iomem *reg_ptr;
 761	u32 tmp;
 762
 763	reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68);
 764	tmp = readl(reg_ptr);
 765	tmp |= 0x3;
 766	writel(tmp, reg_ptr);
 767}
 768
 769/* Reset a non-running (STS_HALT == 1) controller */
 770static int ehci_reset(struct oxu_hcd *oxu)
 771{
 772	int	retval;
 773	u32	command = readl(&oxu->regs->command);
 774
 775	command |= CMD_RESET;
 776	dbg_cmd(oxu, "reset", command);
 777	writel(command, &oxu->regs->command);
 778	oxu_to_hcd(oxu)->state = HC_STATE_HALT;
 779	oxu->next_statechange = jiffies;
 780	retval = handshake(oxu, &oxu->regs->command,
 781			    CMD_RESET, 0, 250 * 1000);
 782
 783	if (retval)
 784		return retval;
 785
 786	tdi_reset(oxu);
 787
 788	return retval;
 789}
 790
 791/* Idle the controller (from running) */
 792static void ehci_quiesce(struct oxu_hcd *oxu)
 793{
 794	u32	temp;
 795
 796#ifdef DEBUG
 797	BUG_ON(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state));
 
 798#endif
 799
 800	/* wait for any schedule enables/disables to take effect */
 801	temp = readl(&oxu->regs->command) << 10;
 802	temp &= STS_ASS | STS_PSS;
 803	if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
 804				temp, 16 * 125) != 0) {
 805		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
 806		return;
 807	}
 808
 809	/* then disable anything that's still active */
 810	temp = readl(&oxu->regs->command);
 811	temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE);
 812	writel(temp, &oxu->regs->command);
 813
 814	/* hardware can take 16 microframes to turn off ... */
 815	if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
 816				0, 16 * 125) != 0) {
 817		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
 818		return;
 819	}
 820}
 821
 822static int check_reset_complete(struct oxu_hcd *oxu, int index,
 823				u32 __iomem *status_reg, int port_status)
 824{
 825	if (!(port_status & PORT_CONNECT)) {
 826		oxu->reset_done[index] = 0;
 827		return port_status;
 828	}
 829
 830	/* if reset finished and it's still not enabled -- handoff */
 831	if (!(port_status & PORT_PE)) {
 832		oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n",
 833				index+1);
 834		return port_status;
 835	} else
 836		oxu_dbg(oxu, "port %d high speed\n", index + 1);
 837
 838	return port_status;
 839}
 840
 841static void ehci_hub_descriptor(struct oxu_hcd *oxu,
 842				struct usb_hub_descriptor *desc)
 843{
 844	int ports = HCS_N_PORTS(oxu->hcs_params);
 845	u16 temp;
 846
 847	desc->bDescriptorType = USB_DT_HUB;
 848	desc->bPwrOn2PwrGood = 10;	/* oxu 1.0, 2.3.9 says 20ms max */
 849	desc->bHubContrCurrent = 0;
 850
 851	desc->bNbrPorts = ports;
 852	temp = 1 + (ports / 8);
 853	desc->bDescLength = 7 + 2 * temp;
 854
 855	/* ports removable, and usb 1.0 legacy PortPwrCtrlMask */
 856	memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
 857	memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
 858
 859	temp = HUB_CHAR_INDV_PORT_OCPM;	/* per-port overcurrent reporting */
 860	if (HCS_PPC(oxu->hcs_params))
 861		temp |= HUB_CHAR_INDV_PORT_LPSM; /* per-port power control */
 862	else
 863		temp |= HUB_CHAR_NO_LPSM; /* no power switching */
 864	desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp);
 865}
 866
 867
 868/* Allocate an OXU210HP on-chip memory data buffer
 869 *
 870 * An on-chip memory data buffer is required for each OXU210HP USB transfer.
 871 * Each transfer descriptor has one or more on-chip memory data buffers.
 872 *
 873 * Data buffers are allocated from a fix sized pool of data blocks.
 874 * To minimise fragmentation and give reasonable memory utlisation,
 875 * data buffers are allocated with sizes the power of 2 multiples of
 876 * the block size, starting on an address a multiple of the allocated size.
 877 *
 878 * FIXME: callers of this function require a buffer to be allocated for
 879 * len=0. This is a waste of on-chip memory and should be fix. Then this
 880 * function should be changed to not allocate a buffer for len=0.
 881 */
 882static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len)
 883{
 884	int n_blocks;	/* minium blocks needed to hold len */
 885	int a_blocks;	/* blocks allocated */
 886	int i, j;
 887
 888	/* Don't allocate bigger than supported */
 889	if (len > BUFFER_SIZE * BUFFER_NUM) {
 890		oxu_err(oxu, "buffer too big (%d)\n", len);
 891		return -ENOMEM;
 892	}
 893
 894	spin_lock(&oxu->mem_lock);
 895
 896	/* Number of blocks needed to hold len */
 897	n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE;
 898
 899	/* Round the number of blocks up to the power of 2 */
 900	for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1)
 901		;
 902
 903	/* Find a suitable available data buffer */
 904	for (i = 0; i < BUFFER_NUM;
 905			i += max_t(int, a_blocks, oxu->db_used[i])) {
 906
 907		/* Check all the required blocks are available */
 908		for (j = 0; j < a_blocks; j++)
 909			if (oxu->db_used[i + j])
 910				break;
 911
 912		if (j != a_blocks)
 913			continue;
 914
 915		/* Allocate blocks found! */
 916		qtd->buffer = (void *) &oxu->mem->db_pool[i];
 917		qtd->buffer_dma = virt_to_phys(qtd->buffer);
 918
 919		qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks;
 920		oxu->db_used[i] = a_blocks;
 921
 922		spin_unlock(&oxu->mem_lock);
 923
 924		return 0;
 925	}
 926
 927	/* Failed */
 928
 929	spin_unlock(&oxu->mem_lock);
 930
 931	return -ENOMEM;
 932}
 933
 934static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
 935{
 936	int index;
 937
 938	spin_lock(&oxu->mem_lock);
 939
 940	index = (qtd->buffer - (void *) &oxu->mem->db_pool[0])
 941							 / BUFFER_SIZE;
 942	oxu->db_used[index] = 0;
 943	qtd->qtd_buffer_len = 0;
 944	qtd->buffer_dma = 0;
 945	qtd->buffer = NULL;
 946
 947	spin_unlock(&oxu->mem_lock);
 948}
 949
 950static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma)
 951{
 952	memset(qtd, 0, sizeof *qtd);
 953	qtd->qtd_dma = dma;
 954	qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
 955	qtd->hw_next = EHCI_LIST_END;
 956	qtd->hw_alt_next = EHCI_LIST_END;
 957	INIT_LIST_HEAD(&qtd->qtd_list);
 958}
 959
 960static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
 961{
 962	int index;
 963
 964	if (qtd->buffer)
 965		oxu_buf_free(oxu, qtd);
 966
 967	spin_lock(&oxu->mem_lock);
 968
 969	index = qtd - &oxu->mem->qtd_pool[0];
 970	oxu->qtd_used[index] = 0;
 971
 972	spin_unlock(&oxu->mem_lock);
 973}
 974
 975static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu)
 976{
 977	int i;
 978	struct ehci_qtd *qtd = NULL;
 979
 980	spin_lock(&oxu->mem_lock);
 981
 982	for (i = 0; i < QTD_NUM; i++)
 983		if (!oxu->qtd_used[i])
 984			break;
 985
 986	if (i < QTD_NUM) {
 987		qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i];
 988		memset(qtd, 0, sizeof *qtd);
 989
 990		qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
 991		qtd->hw_next = EHCI_LIST_END;
 992		qtd->hw_alt_next = EHCI_LIST_END;
 993		INIT_LIST_HEAD(&qtd->qtd_list);
 994
 995		qtd->qtd_dma = virt_to_phys(qtd);
 996
 997		oxu->qtd_used[i] = 1;
 998	}
 999
1000	spin_unlock(&oxu->mem_lock);
1001
1002	return qtd;
1003}
1004
1005static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh)
1006{
1007	int index;
1008
1009	spin_lock(&oxu->mem_lock);
1010
1011	index = qh - &oxu->mem->qh_pool[0];
1012	oxu->qh_used[index] = 0;
1013
1014	spin_unlock(&oxu->mem_lock);
1015}
1016
1017static void qh_destroy(struct kref *kref)
1018{
1019	struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref);
1020	struct oxu_hcd *oxu = qh->oxu;
1021
1022	/* clean qtds first, and know this is not linked */
1023	if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1024		oxu_dbg(oxu, "unused qh not empty!\n");
1025		BUG();
1026	}
1027	if (qh->dummy)
1028		oxu_qtd_free(oxu, qh->dummy);
1029	oxu_qh_free(oxu, qh);
1030}
1031
1032static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu)
1033{
1034	int i;
1035	struct ehci_qh *qh = NULL;
1036
1037	spin_lock(&oxu->mem_lock);
1038
1039	for (i = 0; i < QHEAD_NUM; i++)
1040		if (!oxu->qh_used[i])
1041			break;
1042
1043	if (i < QHEAD_NUM) {
1044		qh = (struct ehci_qh *) &oxu->mem->qh_pool[i];
1045		memset(qh, 0, sizeof *qh);
1046
1047		kref_init(&qh->kref);
1048		qh->oxu = oxu;
1049		qh->qh_dma = virt_to_phys(qh);
1050		INIT_LIST_HEAD(&qh->qtd_list);
1051
1052		/* dummy td enables safe urb queuing */
1053		qh->dummy = ehci_qtd_alloc(oxu);
1054		if (qh->dummy == NULL) {
1055			oxu_dbg(oxu, "no dummy td\n");
1056			oxu->qh_used[i] = 0;
1057			qh = NULL;
1058			goto unlock;
1059		}
1060
1061		oxu->qh_used[i] = 1;
1062	}
1063unlock:
1064	spin_unlock(&oxu->mem_lock);
1065
1066	return qh;
1067}
1068
1069/* to share a qh (cpu threads, or hc) */
1070static inline struct ehci_qh *qh_get(struct ehci_qh *qh)
1071{
1072	kref_get(&qh->kref);
1073	return qh;
1074}
1075
1076static inline void qh_put(struct ehci_qh *qh)
1077{
1078	kref_put(&qh->kref, qh_destroy);
1079}
1080
1081static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb)
1082{
1083	int index;
1084
1085	spin_lock(&oxu->mem_lock);
1086
1087	index = murb - &oxu->murb_pool[0];
1088	oxu->murb_used[index] = 0;
1089
1090	spin_unlock(&oxu->mem_lock);
1091}
1092
1093static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu)
1094
1095{
1096	int i;
1097	struct oxu_murb *murb = NULL;
1098
1099	spin_lock(&oxu->mem_lock);
1100
1101	for (i = 0; i < MURB_NUM; i++)
1102		if (!oxu->murb_used[i])
1103			break;
1104
1105	if (i < MURB_NUM) {
1106		murb = &(oxu->murb_pool)[i];
1107
1108		oxu->murb_used[i] = 1;
1109	}
1110
1111	spin_unlock(&oxu->mem_lock);
1112
1113	return murb;
1114}
1115
1116/* The queue heads and transfer descriptors are managed from pools tied
1117 * to each of the "per device" structures.
1118 * This is the initialisation and cleanup code.
1119 */
1120static void ehci_mem_cleanup(struct oxu_hcd *oxu)
1121{
1122	kfree(oxu->murb_pool);
1123	oxu->murb_pool = NULL;
1124
1125	if (oxu->async)
1126		qh_put(oxu->async);
1127	oxu->async = NULL;
1128
1129	del_timer(&oxu->urb_timer);
1130
1131	oxu->periodic = NULL;
1132
1133	/* shadow periodic table */
1134	kfree(oxu->pshadow);
1135	oxu->pshadow = NULL;
1136}
1137
1138/* Remember to add cleanup code (above) if you add anything here.
1139 */
1140static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags)
1141{
1142	int i;
1143
1144	for (i = 0; i < oxu->periodic_size; i++)
1145		oxu->mem->frame_list[i] = EHCI_LIST_END;
1146	for (i = 0; i < QHEAD_NUM; i++)
1147		oxu->qh_used[i] = 0;
1148	for (i = 0; i < QTD_NUM; i++)
1149		oxu->qtd_used[i] = 0;
1150
1151	oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags);
1152	if (!oxu->murb_pool)
1153		goto fail;
1154
1155	for (i = 0; i < MURB_NUM; i++)
1156		oxu->murb_used[i] = 0;
1157
1158	oxu->async = oxu_qh_alloc(oxu);
1159	if (!oxu->async)
1160		goto fail;
1161
1162	oxu->periodic = (__le32 *) &oxu->mem->frame_list;
1163	oxu->periodic_dma = virt_to_phys(oxu->periodic);
1164
1165	for (i = 0; i < oxu->periodic_size; i++)
1166		oxu->periodic[i] = EHCI_LIST_END;
1167
1168	/* software shadow of hardware table */
1169	oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags);
1170	if (oxu->pshadow != NULL)
1171		return 0;
1172
1173fail:
1174	oxu_dbg(oxu, "couldn't init memory\n");
1175	ehci_mem_cleanup(oxu);
1176	return -ENOMEM;
1177}
1178
1179/* Fill a qtd, returning how much of the buffer we were able to queue up.
1180 */
1181static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
1182				int token, int maxpacket)
1183{
1184	int i, count;
1185	u64 addr = buf;
1186
1187	/* one buffer entry per 4K ... first might be short or unaligned */
1188	qtd->hw_buf[0] = cpu_to_le32((u32)addr);
1189	qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32));
1190	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
1191	if (likely(len < count))		/* ... iff needed */
1192		count = len;
1193	else {
1194		buf +=  0x1000;
1195		buf &= ~0x0fff;
1196
1197		/* per-qtd limit: from 16K to 20K (best alignment) */
1198		for (i = 1; count < len && i < 5; i++) {
1199			addr = buf;
1200			qtd->hw_buf[i] = cpu_to_le32((u32)addr);
1201			qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32));
1202			buf += 0x1000;
1203			if ((count + 0x1000) < len)
1204				count += 0x1000;
1205			else
1206				count = len;
1207		}
1208
1209		/* short packets may only terminate transfers */
1210		if (count != len)
1211			count -= (count % maxpacket);
1212	}
1213	qtd->hw_token = cpu_to_le32((count << 16) | token);
1214	qtd->length = count;
1215
1216	return count;
1217}
1218
1219static inline void qh_update(struct oxu_hcd *oxu,
1220				struct ehci_qh *qh, struct ehci_qtd *qtd)
1221{
1222	/* writes to an active overlay are unsafe */
1223	BUG_ON(qh->qh_state != QH_STATE_IDLE);
1224
1225	qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma);
1226	qh->hw_alt_next = EHCI_LIST_END;
1227
1228	/* Except for control endpoints, we make hardware maintain data
1229	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
1230	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
1231	 * ever clear it.
1232	 */
1233	if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
1234		unsigned	is_out, epnum;
1235
1236		is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
1237		epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
1238		if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
1239			qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE);
1240			usb_settoggle(qh->dev, epnum, is_out, 1);
1241		}
1242	}
1243
1244	/* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
1245	wmb();
1246	qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING);
1247}
1248
1249/* If it weren't for a common silicon quirk (writing the dummy into the qh
1250 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
1251 * recovery (including urb dequeue) would need software changes to a QH...
1252 */
1253static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh)
1254{
1255	struct ehci_qtd *qtd;
1256
1257	if (list_empty(&qh->qtd_list))
1258		qtd = qh->dummy;
1259	else {
1260		qtd = list_entry(qh->qtd_list.next,
1261				struct ehci_qtd, qtd_list);
1262		/* first qtd may already be partially processed */
1263		if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current)
1264			qtd = NULL;
1265	}
1266
1267	if (qtd)
1268		qh_update(oxu, qh, qtd);
1269}
1270
1271static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb,
1272				size_t length, u32 token)
1273{
1274	/* count IN/OUT bytes, not SETUP (even short packets) */
1275	if (likely(QTD_PID(token) != 2))
1276		urb->actual_length += length - QTD_LENGTH(token);
1277
1278	/* don't modify error codes */
1279	if (unlikely(urb->status != -EINPROGRESS))
1280		return;
1281
1282	/* force cleanup after short read; not always an error */
1283	if (unlikely(IS_SHORT_READ(token)))
1284		urb->status = -EREMOTEIO;
1285
1286	/* serious "can't proceed" faults reported by the hardware */
1287	if (token & QTD_STS_HALT) {
1288		if (token & QTD_STS_BABBLE) {
1289			/* FIXME "must" disable babbling device's port too */
1290			urb->status = -EOVERFLOW;
1291		} else if (token & QTD_STS_MMF) {
1292			/* fs/ls interrupt xfer missed the complete-split */
1293			urb->status = -EPROTO;
1294		} else if (token & QTD_STS_DBE) {
1295			urb->status = (QTD_PID(token) == 1) /* IN ? */
1296				? -ENOSR  /* hc couldn't read data */
1297				: -ECOMM; /* hc couldn't write data */
1298		} else if (token & QTD_STS_XACT) {
1299			/* timeout, bad crc, wrong PID, etc; retried */
1300			if (QTD_CERR(token))
1301				urb->status = -EPIPE;
1302			else {
1303				oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n",
1304					urb->dev->devpath,
1305					usb_pipeendpoint(urb->pipe),
1306					usb_pipein(urb->pipe) ? "in" : "out");
1307				urb->status = -EPROTO;
1308			}
1309		/* CERR nonzero + no errors + halt --> stall */
1310		} else if (QTD_CERR(token))
1311			urb->status = -EPIPE;
1312		else	/* unknown */
1313			urb->status = -EPROTO;
1314
1315		oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n",
1316			usb_pipedevice(urb->pipe),
1317			usb_pipeendpoint(urb->pipe),
1318			usb_pipein(urb->pipe) ? "in" : "out",
1319			token, urb->status);
1320	}
1321}
1322
1323static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb)
1324__releases(oxu->lock)
1325__acquires(oxu->lock)
1326{
1327	if (likely(urb->hcpriv != NULL)) {
1328		struct ehci_qh	*qh = (struct ehci_qh *) urb->hcpriv;
1329
1330		/* S-mask in a QH means it's an interrupt urb */
1331		if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) {
1332
1333			/* ... update hc-wide periodic stats (for usbfs) */
1334			oxu_to_hcd(oxu)->self.bandwidth_int_reqs--;
1335		}
1336		qh_put(qh);
1337	}
1338
1339	urb->hcpriv = NULL;
1340	switch (urb->status) {
1341	case -EINPROGRESS:		/* success */
1342		urb->status = 0;
1343		break;
1344	default:			/* fault */
1345		break;
1346	case -EREMOTEIO:		/* fault or normal */
1347		if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
1348			urb->status = 0;
1349		break;
1350	case -ECONNRESET:		/* canceled */
1351	case -ENOENT:
1352		break;
1353	}
1354
1355#ifdef OXU_URB_TRACE
1356	oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n",
1357		__func__, urb->dev->devpath, urb,
1358		usb_pipeendpoint(urb->pipe),
1359		usb_pipein(urb->pipe) ? "in" : "out",
1360		urb->status,
1361		urb->actual_length, urb->transfer_buffer_length);
1362#endif
1363
1364	/* complete() can reenter this HCD */
1365	spin_unlock(&oxu->lock);
1366	usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status);
1367	spin_lock(&oxu->lock);
1368}
1369
1370static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
1371static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
1372
1373static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
1374static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
1375
1376#define HALT_BIT cpu_to_le32(QTD_STS_HALT)
1377
1378/* Process and free completed qtds for a qh, returning URBs to drivers.
1379 * Chases up to qh->hw_current.  Returns number of completions called,
1380 * indicating how much "real" work we did.
1381 */
1382static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh)
1383{
1384	struct ehci_qtd *last = NULL, *end = qh->dummy;
1385	struct ehci_qtd	*qtd, *tmp;
1386	int stopped;
1387	unsigned count = 0;
1388	int do_status = 0;
1389	u8 state;
1390	struct oxu_murb *murb = NULL;
1391
1392	if (unlikely(list_empty(&qh->qtd_list)))
1393		return count;
1394
1395	/* completions (or tasks on other cpus) must never clobber HALT
1396	 * till we've gone through and cleaned everything up, even when
1397	 * they add urbs to this qh's queue or mark them for unlinking.
1398	 *
1399	 * NOTE:  unlinking expects to be done in queue order.
1400	 */
1401	state = qh->qh_state;
1402	qh->qh_state = QH_STATE_COMPLETING;
1403	stopped = (state == QH_STATE_IDLE);
1404
1405	/* remove de-activated QTDs from front of queue.
1406	 * after faults (including short reads), cleanup this urb
1407	 * then let the queue advance.
1408	 * if queue is stopped, handles unlinks.
1409	 */
1410	list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
 
1411		struct urb *urb;
1412		u32 token = 0;
1413
 
1414		urb = qtd->urb;
1415
1416		/* Clean up any state from previous QTD ...*/
1417		if (last) {
1418			if (likely(last->urb != urb)) {
1419				if (last->urb->complete == NULL) {
1420					murb = (struct oxu_murb *) last->urb;
1421					last->urb = murb->main;
1422					if (murb->last) {
1423						ehci_urb_done(oxu, last->urb);
1424						count++;
1425					}
1426					oxu_murb_free(oxu, murb);
1427				} else {
1428					ehci_urb_done(oxu, last->urb);
1429					count++;
1430				}
1431			}
1432			oxu_qtd_free(oxu, last);
1433			last = NULL;
1434		}
1435
1436		/* ignore urbs submitted during completions we reported */
1437		if (qtd == end)
1438			break;
1439
1440		/* hardware copies qtd out of qh overlay */
1441		rmb();
1442		token = le32_to_cpu(qtd->hw_token);
1443
1444		/* always clean up qtds the hc de-activated */
1445		if ((token & QTD_STS_ACTIVE) == 0) {
1446
1447			if ((token & QTD_STS_HALT) != 0) {
1448				stopped = 1;
1449
1450			/* magic dummy for some short reads; qh won't advance.
1451			 * that silicon quirk can kick in with this dummy too.
1452			 */
1453			} else if (IS_SHORT_READ(token) &&
1454					!(qtd->hw_alt_next & EHCI_LIST_END)) {
1455				stopped = 1;
1456				goto halt;
1457			}
1458
1459		/* stop scanning when we reach qtds the hc is using */
1460		} else if (likely(!stopped &&
1461				HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) {
1462			break;
1463
1464		} else {
1465			stopped = 1;
1466
1467			if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)))
1468				urb->status = -ESHUTDOWN;
1469
1470			/* ignore active urbs unless some previous qtd
1471			 * for the urb faulted (including short read) or
1472			 * its urb was canceled.  we may patch qh or qtds.
1473			 */
1474			if (likely(urb->status == -EINPROGRESS))
1475				continue;
1476
1477			/* issue status after short control reads */
1478			if (unlikely(do_status != 0)
1479					&& QTD_PID(token) == 0 /* OUT */) {
1480				do_status = 0;
1481				continue;
1482			}
1483
1484			/* token in overlay may be most current */
1485			if (state == QH_STATE_IDLE
1486					&& cpu_to_le32(qtd->qtd_dma)
1487						== qh->hw_current)
1488				token = le32_to_cpu(qh->hw_token);
1489
1490			/* force halt for unlinked or blocked qh, so we'll
1491			 * patch the qh later and so that completions can't
1492			 * activate it while we "know" it's stopped.
1493			 */
1494			if ((HALT_BIT & qh->hw_token) == 0) {
1495halt:
1496				qh->hw_token |= HALT_BIT;
1497				wmb();
1498			}
1499		}
1500
1501		/* Remove it from the queue */
1502		qtd_copy_status(oxu, urb->complete ?
1503					urb : ((struct oxu_murb *) urb)->main,
1504				qtd->length, token);
1505		if ((usb_pipein(qtd->urb->pipe)) &&
1506				(NULL != qtd->transfer_buffer))
1507			memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length);
1508		do_status = (urb->status == -EREMOTEIO)
1509				&& usb_pipecontrol(urb->pipe);
1510
1511		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
1512			last = list_entry(qtd->qtd_list.prev,
1513					struct ehci_qtd, qtd_list);
1514			last->hw_next = qtd->hw_next;
1515		}
1516		list_del(&qtd->qtd_list);
1517		last = qtd;
1518	}
1519
1520	/* last urb's completion might still need calling */
1521	if (likely(last != NULL)) {
1522		if (last->urb->complete == NULL) {
1523			murb = (struct oxu_murb *) last->urb;
1524			last->urb = murb->main;
1525			if (murb->last) {
1526				ehci_urb_done(oxu, last->urb);
1527				count++;
1528			}
1529			oxu_murb_free(oxu, murb);
1530		} else {
1531			ehci_urb_done(oxu, last->urb);
1532			count++;
1533		}
1534		oxu_qtd_free(oxu, last);
1535	}
1536
1537	/* restore original state; caller must unlink or relink */
1538	qh->qh_state = state;
1539
1540	/* be sure the hardware's done with the qh before refreshing
1541	 * it after fault cleanup, or recovering from silicon wrongly
1542	 * overlaying the dummy qtd (which reduces DMA chatter).
1543	 */
1544	if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
1545		switch (state) {
1546		case QH_STATE_IDLE:
1547			qh_refresh(oxu, qh);
1548			break;
1549		case QH_STATE_LINKED:
1550			/* should be rare for periodic transfers,
1551			 * except maybe high bandwidth ...
1552			 */
1553			if ((cpu_to_le32(QH_SMASK)
1554					& qh->hw_info2) != 0) {
1555				intr_deschedule(oxu, qh);
1556				(void) qh_schedule(oxu, qh);
1557			} else
1558				unlink_async(oxu, qh);
1559			break;
1560		/* otherwise, unlink already started */
1561		}
1562	}
1563
1564	return count;
1565}
1566
1567/* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1568#define hb_mult(wMaxPacketSize)		(1 + (((wMaxPacketSize) >> 11) & 0x03))
1569/* ... and packet size, for any kind of endpoint descriptor */
1570#define max_packet(wMaxPacketSize)	((wMaxPacketSize) & 0x07ff)
1571
1572/* Reverse of qh_urb_transaction: free a list of TDs.
1573 * used for cleanup after errors, before HC sees an URB's TDs.
1574 */
1575static void qtd_list_free(struct oxu_hcd *oxu,
1576				struct urb *urb, struct list_head *head)
1577{
1578	struct ehci_qtd	*qtd, *temp;
1579
1580	list_for_each_entry_safe(qtd, temp, head, qtd_list) {
 
 
 
1581		list_del(&qtd->qtd_list);
1582		oxu_qtd_free(oxu, qtd);
1583	}
1584}
1585
1586/* Create a list of filled qtds for this URB; won't link into qh.
1587 */
1588static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu,
1589						struct urb *urb,
1590						struct list_head *head,
1591						gfp_t flags)
1592{
1593	struct ehci_qtd	*qtd, *qtd_prev;
1594	dma_addr_t buf;
1595	int len, maxpacket;
1596	int is_input;
1597	u32 token;
1598	void *transfer_buf = NULL;
1599	int ret;
1600
1601	/*
1602	 * URBs map to sequences of QTDs: one logical transaction
1603	 */
1604	qtd = ehci_qtd_alloc(oxu);
1605	if (unlikely(!qtd))
1606		return NULL;
1607	list_add_tail(&qtd->qtd_list, head);
1608	qtd->urb = urb;
1609
1610	token = QTD_STS_ACTIVE;
1611	token |= (EHCI_TUNE_CERR << 10);
1612	/* for split transactions, SplitXState initialized to zero */
1613
1614	len = urb->transfer_buffer_length;
1615	is_input = usb_pipein(urb->pipe);
1616	if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input)
1617		urb->transfer_buffer = phys_to_virt(urb->transfer_dma);
1618
1619	if (usb_pipecontrol(urb->pipe)) {
1620		/* SETUP pid */
1621		ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest));
1622		if (ret)
1623			goto cleanup;
1624
1625		qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest),
1626				token | (2 /* "setup" */ << 8), 8);
1627		memcpy(qtd->buffer, qtd->urb->setup_packet,
1628				sizeof(struct usb_ctrlrequest));
1629
1630		/* ... and always at least one more pid */
1631		token ^= QTD_TOGGLE;
1632		qtd_prev = qtd;
1633		qtd = ehci_qtd_alloc(oxu);
1634		if (unlikely(!qtd))
1635			goto cleanup;
1636		qtd->urb = urb;
1637		qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1638		list_add_tail(&qtd->qtd_list, head);
1639
1640		/* for zero length DATA stages, STATUS is always IN */
1641		if (len == 0)
1642			token |= (1 /* "in" */ << 8);
1643	}
1644
1645	/*
1646	 * Data transfer stage: buffer setup
1647	 */
1648
1649	ret = oxu_buf_alloc(oxu, qtd, len);
1650	if (ret)
1651		goto cleanup;
1652
1653	buf = qtd->buffer_dma;
1654	transfer_buf = urb->transfer_buffer;
1655
1656	if (!is_input)
1657		memcpy(qtd->buffer, qtd->urb->transfer_buffer, len);
1658
1659	if (is_input)
1660		token |= (1 /* "in" */ << 8);
1661	/* else it's already initted to "out" pid (0 << 8) */
1662
1663	maxpacket = usb_maxpacket(urb->dev, urb->pipe);
1664
1665	/*
1666	 * buffer gets wrapped in one or more qtds;
1667	 * last one may be "short" (including zero len)
1668	 * and may serve as a control status ack
1669	 */
1670	for (;;) {
1671		int this_qtd_len;
1672
1673		this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket);
1674		qtd->transfer_buffer = transfer_buf;
1675		len -= this_qtd_len;
1676		buf += this_qtd_len;
1677		transfer_buf += this_qtd_len;
1678		if (is_input)
1679			qtd->hw_alt_next = oxu->async->hw_alt_next;
1680
1681		/* qh makes control packets use qtd toggle; maybe switch it */
1682		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
1683			token ^= QTD_TOGGLE;
1684
1685		if (likely(len <= 0))
1686			break;
1687
1688		qtd_prev = qtd;
1689		qtd = ehci_qtd_alloc(oxu);
1690		if (unlikely(!qtd))
1691			goto cleanup;
1692		if (likely(len > 0)) {
1693			ret = oxu_buf_alloc(oxu, qtd, len);
1694			if (ret)
1695				goto cleanup;
1696		}
1697		qtd->urb = urb;
1698		qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1699		list_add_tail(&qtd->qtd_list, head);
1700	}
1701
1702	/* unless the bulk/interrupt caller wants a chance to clean
1703	 * up after short reads, hc should advance qh past this urb
1704	 */
1705	if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
1706				|| usb_pipecontrol(urb->pipe)))
1707		qtd->hw_alt_next = EHCI_LIST_END;
1708
1709	/*
1710	 * control requests may need a terminating data "status" ack;
1711	 * bulk ones may need a terminating short packet (zero length).
1712	 */
1713	if (likely(urb->transfer_buffer_length != 0)) {
1714		int	one_more = 0;
1715
1716		if (usb_pipecontrol(urb->pipe)) {
1717			one_more = 1;
1718			token ^= 0x0100;	/* "in" <--> "out"  */
1719			token |= QTD_TOGGLE;	/* force DATA1 */
1720		} else if (usb_pipebulk(urb->pipe)
1721				&& (urb->transfer_flags & URB_ZERO_PACKET)
1722				&& !(urb->transfer_buffer_length % maxpacket)) {
1723			one_more = 1;
1724		}
1725		if (one_more) {
1726			qtd_prev = qtd;
1727			qtd = ehci_qtd_alloc(oxu);
1728			if (unlikely(!qtd))
1729				goto cleanup;
1730			qtd->urb = urb;
1731			qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1732			list_add_tail(&qtd->qtd_list, head);
1733
1734			/* never any data in such packets */
1735			qtd_fill(qtd, 0, 0, token, 0);
1736		}
1737	}
1738
1739	/* by default, enable interrupt on urb completion */
1740	qtd->hw_token |= cpu_to_le32(QTD_IOC);
1741	return head;
1742
1743cleanup:
1744	qtd_list_free(oxu, urb, head);
1745	return NULL;
1746}
1747
1748/* Each QH holds a qtd list; a QH is used for everything except iso.
1749 *
1750 * For interrupt urbs, the scheduler must set the microframe scheduling
1751 * mask(s) each time the QH gets scheduled.  For highspeed, that's
1752 * just one microframe in the s-mask.  For split interrupt transactions
1753 * there are additional complications: c-mask, maybe FSTNs.
1754 */
1755static struct ehci_qh *qh_make(struct oxu_hcd *oxu,
1756				struct urb *urb, gfp_t flags)
1757{
1758	struct ehci_qh *qh = oxu_qh_alloc(oxu);
1759	u32 info1 = 0, info2 = 0;
1760	int is_input, type;
1761	int maxp = 0;
1762
1763	if (!qh)
1764		return qh;
1765
1766	/*
1767	 * init endpoint/device data for this QH
1768	 */
1769	info1 |= usb_pipeendpoint(urb->pipe) << 8;
1770	info1 |= usb_pipedevice(urb->pipe) << 0;
1771
1772	is_input = usb_pipein(urb->pipe);
1773	type = usb_pipetype(urb->pipe);
1774	maxp = usb_maxpacket(urb->dev, urb->pipe);
1775
1776	/* Compute interrupt scheduling parameters just once, and save.
1777	 * - allowing for high bandwidth, how many nsec/uframe are used?
1778	 * - split transactions need a second CSPLIT uframe; same question
1779	 * - splits also need a schedule gap (for full/low speed I/O)
1780	 * - qh has a polling interval
1781	 *
1782	 * For control/bulk requests, the HC or TT handles these.
1783	 */
1784	if (type == PIPE_INTERRUPT) {
1785		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
1786								is_input, 0,
1787				hb_mult(maxp) * max_packet(maxp)));
1788		qh->start = NO_FRAME;
1789
1790		if (urb->dev->speed == USB_SPEED_HIGH) {
1791			qh->c_usecs = 0;
1792			qh->gap_uf = 0;
1793
1794			qh->period = urb->interval >> 3;
1795			if (qh->period == 0 && urb->interval != 1) {
1796				/* NOTE interval 2 or 4 uframes could work.
1797				 * But interval 1 scheduling is simpler, and
1798				 * includes high bandwidth.
1799				 */
1800				oxu_dbg(oxu, "intr period %d uframes, NYET!\n",
1801					urb->interval);
1802				goto done;
1803			}
1804		} else {
1805			struct usb_tt	*tt = urb->dev->tt;
1806			int		think_time;
1807
1808			/* gap is f(FS/LS transfer times) */
1809			qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
1810					is_input, 0, maxp) / (125 * 1000);
1811
1812			/* FIXME this just approximates SPLIT/CSPLIT times */
1813			if (is_input) {		/* SPLIT, gap, CSPLIT+DATA */
1814				qh->c_usecs = qh->usecs + HS_USECS(0);
1815				qh->usecs = HS_USECS(1);
1816			} else {		/* SPLIT+DATA, gap, CSPLIT */
1817				qh->usecs += HS_USECS(1);
1818				qh->c_usecs = HS_USECS(0);
1819			}
1820
1821			think_time = tt ? tt->think_time : 0;
1822			qh->tt_usecs = NS_TO_US(think_time +
1823					usb_calc_bus_time(urb->dev->speed,
1824					is_input, 0, max_packet(maxp)));
1825			qh->period = urb->interval;
1826		}
1827	}
1828
1829	/* support for tt scheduling, and access to toggles */
1830	qh->dev = urb->dev;
1831
1832	/* using TT? */
1833	switch (urb->dev->speed) {
1834	case USB_SPEED_LOW:
1835		info1 |= (1 << 12);	/* EPS "low" */
1836		fallthrough;
1837
1838	case USB_SPEED_FULL:
1839		/* EPS 0 means "full" */
1840		if (type != PIPE_INTERRUPT)
1841			info1 |= (EHCI_TUNE_RL_TT << 28);
1842		if (type == PIPE_CONTROL) {
1843			info1 |= (1 << 27);	/* for TT */
1844			info1 |= 1 << 14;	/* toggle from qtd */
1845		}
1846		info1 |= maxp << 16;
1847
1848		info2 |= (EHCI_TUNE_MULT_TT << 30);
1849		info2 |= urb->dev->ttport << 23;
1850
1851		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1852
1853		break;
1854
1855	case USB_SPEED_HIGH:		/* no TT involved */
1856		info1 |= (2 << 12);	/* EPS "high" */
1857		if (type == PIPE_CONTROL) {
1858			info1 |= (EHCI_TUNE_RL_HS << 28);
1859			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
1860			info1 |= 1 << 14;	/* toggle from qtd */
1861			info2 |= (EHCI_TUNE_MULT_HS << 30);
1862		} else if (type == PIPE_BULK) {
1863			info1 |= (EHCI_TUNE_RL_HS << 28);
1864			info1 |= 512 << 16;	/* usb2 fixed maxpacket */
1865			info2 |= (EHCI_TUNE_MULT_HS << 30);
1866		} else {		/* PIPE_INTERRUPT */
1867			info1 |= max_packet(maxp) << 16;
1868			info2 |= hb_mult(maxp) << 30;
1869		}
1870		break;
1871	default:
1872		oxu_dbg(oxu, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed);
1873done:
1874		qh_put(qh);
1875		return NULL;
1876	}
1877
1878	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1879
1880	/* init as live, toggle clear, advance to dummy */
1881	qh->qh_state = QH_STATE_IDLE;
1882	qh->hw_info1 = cpu_to_le32(info1);
1883	qh->hw_info2 = cpu_to_le32(info2);
1884	usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
1885	qh_refresh(oxu, qh);
1886	return qh;
1887}
1888
1889/* Move qh (and its qtds) onto async queue; maybe enable queue.
1890 */
1891static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1892{
1893	__le32 dma = QH_NEXT(qh->qh_dma);
1894	struct ehci_qh *head;
1895
1896	/* (re)start the async schedule? */
1897	head = oxu->async;
1898	timer_action_done(oxu, TIMER_ASYNC_OFF);
1899	if (!head->qh_next.qh) {
1900		u32	cmd = readl(&oxu->regs->command);
1901
1902		if (!(cmd & CMD_ASE)) {
1903			/* in case a clear of CMD_ASE didn't take yet */
1904			(void)handshake(oxu, &oxu->regs->status,
1905					STS_ASS, 0, 150);
1906			cmd |= CMD_ASE | CMD_RUN;
1907			writel(cmd, &oxu->regs->command);
1908			oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1909			/* posted write need not be known to HC yet ... */
1910		}
1911	}
1912
1913	/* clear halt and/or toggle; and maybe recover from silicon quirk */
1914	if (qh->qh_state == QH_STATE_IDLE)
1915		qh_refresh(oxu, qh);
1916
1917	/* splice right after start */
1918	qh->qh_next = head->qh_next;
1919	qh->hw_next = head->hw_next;
1920	wmb();
1921
1922	head->qh_next.qh = qh;
1923	head->hw_next = dma;
1924
1925	qh->qh_state = QH_STATE_LINKED;
1926	/* qtd completions reported later by interrupt */
1927}
1928
1929#define	QH_ADDR_MASK	cpu_to_le32(0x7f)
1930
1931/*
1932 * For control/bulk/interrupt, return QH with these TDs appended.
1933 * Allocates and initializes the QH if necessary.
1934 * Returns null if it can't allocate a QH it needs to.
1935 * If the QH has TDs (urbs) already, that's great.
1936 */
1937static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu,
1938				struct urb *urb, struct list_head *qtd_list,
1939				int epnum, void	**ptr)
1940{
1941	struct ehci_qh *qh = NULL;
1942
1943	qh = (struct ehci_qh *) *ptr;
1944	if (unlikely(qh == NULL)) {
1945		/* can't sleep here, we have oxu->lock... */
1946		qh = qh_make(oxu, urb, GFP_ATOMIC);
1947		*ptr = qh;
1948	}
1949	if (likely(qh != NULL)) {
1950		struct ehci_qtd	*qtd;
1951
1952		if (unlikely(list_empty(qtd_list)))
1953			qtd = NULL;
1954		else
1955			qtd = list_entry(qtd_list->next, struct ehci_qtd,
1956					qtd_list);
1957
1958		/* control qh may need patching ... */
1959		if (unlikely(epnum == 0)) {
1960
1961			/* usb_reset_device() briefly reverts to address 0 */
1962			if (usb_pipedevice(urb->pipe) == 0)
1963				qh->hw_info1 &= ~QH_ADDR_MASK;
1964		}
1965
1966		/* just one way to queue requests: swap with the dummy qtd.
1967		 * only hc or qh_refresh() ever modify the overlay.
1968		 */
1969		if (likely(qtd != NULL)) {
1970			struct ehci_qtd	*dummy;
1971			dma_addr_t dma;
1972			__le32 token;
1973
1974			/* to avoid racing the HC, use the dummy td instead of
1975			 * the first td of our list (becomes new dummy).  both
1976			 * tds stay deactivated until we're done, when the
1977			 * HC is allowed to fetch the old dummy (4.10.2).
1978			 */
1979			token = qtd->hw_token;
1980			qtd->hw_token = HALT_BIT;
1981			wmb();
1982			dummy = qh->dummy;
1983
1984			dma = dummy->qtd_dma;
1985			*dummy = *qtd;
1986			dummy->qtd_dma = dma;
1987
1988			list_del(&qtd->qtd_list);
1989			list_add(&dummy->qtd_list, qtd_list);
1990			list_splice(qtd_list, qh->qtd_list.prev);
1991
1992			ehci_qtd_init(qtd, qtd->qtd_dma);
1993			qh->dummy = qtd;
1994
1995			/* hc must see the new dummy at list end */
1996			dma = qtd->qtd_dma;
1997			qtd = list_entry(qh->qtd_list.prev,
1998					struct ehci_qtd, qtd_list);
1999			qtd->hw_next = QTD_NEXT(dma);
2000
2001			/* let the hc process these next qtds */
2002			dummy->hw_token = (token & ~(0x80));
2003			wmb();
2004			dummy->hw_token = token;
2005
2006			urb->hcpriv = qh_get(qh);
2007		}
2008	}
2009	return qh;
2010}
2011
2012static int submit_async(struct oxu_hcd	*oxu, struct urb *urb,
2013			struct list_head *qtd_list, gfp_t mem_flags)
2014{
2015	int epnum = urb->ep->desc.bEndpointAddress;
 
2016	unsigned long flags;
2017	struct ehci_qh *qh = NULL;
2018	int rc = 0;
2019#ifdef OXU_URB_TRACE
2020	struct ehci_qtd	*qtd;
2021
2022	qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
 
2023
 
2024	oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2025		__func__, urb->dev->devpath, urb,
2026		epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
2027		urb->transfer_buffer_length,
2028		qtd, urb->ep->hcpriv);
2029#endif
2030
2031	spin_lock_irqsave(&oxu->lock, flags);
2032	if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2033		rc = -ESHUTDOWN;
2034		goto done;
2035	}
2036
2037	qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2038	if (unlikely(qh == NULL)) {
2039		rc = -ENOMEM;
2040		goto done;
2041	}
2042
2043	/* Control/bulk operations through TTs don't need scheduling,
2044	 * the HC and TT handle it when the TT has a buffer ready.
2045	 */
2046	if (likely(qh->qh_state == QH_STATE_IDLE))
2047		qh_link_async(oxu, qh_get(qh));
2048done:
2049	spin_unlock_irqrestore(&oxu->lock, flags);
2050	if (unlikely(qh == NULL))
2051		qtd_list_free(oxu, urb, qtd_list);
2052	return rc;
2053}
2054
2055/* The async qh for the qtds being reclaimed are now unlinked from the HC */
2056
2057static void end_unlink_async(struct oxu_hcd *oxu)
2058{
2059	struct ehci_qh *qh = oxu->reclaim;
2060	struct ehci_qh *next;
2061
2062	timer_action_done(oxu, TIMER_IAA_WATCHDOG);
2063
2064	qh->qh_state = QH_STATE_IDLE;
2065	qh->qh_next.qh = NULL;
2066	qh_put(qh);			/* refcount from reclaim */
2067
2068	/* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
2069	next = qh->reclaim;
2070	oxu->reclaim = next;
2071	oxu->reclaim_ready = 0;
2072	qh->reclaim = NULL;
2073
2074	qh_completions(oxu, qh);
2075
2076	if (!list_empty(&qh->qtd_list)
2077			&& HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2078		qh_link_async(oxu, qh);
2079	else {
2080		qh_put(qh);		/* refcount from async list */
2081
2082		/* it's not free to turn the async schedule on/off; leave it
2083		 * active but idle for a while once it empties.
2084		 */
2085		if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)
2086				&& oxu->async->qh_next.qh == NULL)
2087			timer_action(oxu, TIMER_ASYNC_OFF);
2088	}
2089
2090	if (next) {
2091		oxu->reclaim = NULL;
2092		start_unlink_async(oxu, next);
2093	}
2094}
2095
2096/* makes sure the async qh will become idle */
2097/* caller must own oxu->lock */
2098
2099static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2100{
2101	int cmd = readl(&oxu->regs->command);
2102	struct ehci_qh *prev;
2103
2104#ifdef DEBUG
2105	assert_spin_locked(&oxu->lock);
2106	BUG_ON(oxu->reclaim || (qh->qh_state != QH_STATE_LINKED
2107				&& qh->qh_state != QH_STATE_UNLINK_WAIT));
 
2108#endif
2109
2110	/* stop async schedule right now? */
2111	if (unlikely(qh == oxu->async)) {
2112		/* can't get here without STS_ASS set */
2113		if (oxu_to_hcd(oxu)->state != HC_STATE_HALT
2114				&& !oxu->reclaim) {
2115			/* ... and CMD_IAAD clear */
2116			writel(cmd & ~CMD_ASE, &oxu->regs->command);
2117			wmb();
2118			/* handshake later, if we need to */
2119			timer_action_done(oxu, TIMER_ASYNC_OFF);
2120		}
2121		return;
2122	}
2123
2124	qh->qh_state = QH_STATE_UNLINK;
2125	oxu->reclaim = qh = qh_get(qh);
2126
2127	prev = oxu->async;
2128	while (prev->qh_next.qh != qh)
2129		prev = prev->qh_next.qh;
2130
2131	prev->hw_next = qh->hw_next;
2132	prev->qh_next = qh->qh_next;
2133	wmb();
2134
2135	if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) {
2136		/* if (unlikely(qh->reclaim != 0))
2137		 *	this will recurse, probably not much
2138		 */
2139		end_unlink_async(oxu);
2140		return;
2141	}
2142
2143	oxu->reclaim_ready = 0;
2144	cmd |= CMD_IAAD;
2145	writel(cmd, &oxu->regs->command);
2146	(void) readl(&oxu->regs->command);
2147	timer_action(oxu, TIMER_IAA_WATCHDOG);
2148}
2149
2150static void scan_async(struct oxu_hcd *oxu)
2151{
2152	struct ehci_qh *qh;
2153	enum ehci_timer_action action = TIMER_IO_WATCHDOG;
2154
2155	if (!++(oxu->stamp))
2156		oxu->stamp++;
2157	timer_action_done(oxu, TIMER_ASYNC_SHRINK);
2158rescan:
2159	qh = oxu->async->qh_next.qh;
2160	if (likely(qh != NULL)) {
2161		do {
2162			/* clean any finished work for this qh */
2163			if (!list_empty(&qh->qtd_list)
2164					&& qh->stamp != oxu->stamp) {
2165				int temp;
2166
2167				/* unlinks could happen here; completion
2168				 * reporting drops the lock.  rescan using
2169				 * the latest schedule, but don't rescan
2170				 * qhs we already finished (no looping).
2171				 */
2172				qh = qh_get(qh);
2173				qh->stamp = oxu->stamp;
2174				temp = qh_completions(oxu, qh);
2175				qh_put(qh);
2176				if (temp != 0)
2177					goto rescan;
2178			}
2179
2180			/* unlink idle entries, reducing HC PCI usage as well
2181			 * as HCD schedule-scanning costs.  delay for any qh
2182			 * we just scanned, there's a not-unusual case that it
2183			 * doesn't stay idle for long.
2184			 * (plus, avoids some kind of re-activation race.)
2185			 */
2186			if (list_empty(&qh->qtd_list)) {
2187				if (qh->stamp == oxu->stamp)
2188					action = TIMER_ASYNC_SHRINK;
2189				else if (!oxu->reclaim
2190					    && qh->qh_state == QH_STATE_LINKED)
2191					start_unlink_async(oxu, qh);
2192			}
2193
2194			qh = qh->qh_next.qh;
2195		} while (qh);
2196	}
2197	if (action == TIMER_ASYNC_SHRINK)
2198		timer_action(oxu, TIMER_ASYNC_SHRINK);
2199}
2200
2201/*
2202 * periodic_next_shadow - return "next" pointer on shadow list
2203 * @periodic: host pointer to qh/itd/sitd
2204 * @tag: hardware tag for type of this record
2205 */
2206static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic,
2207						__le32 tag)
2208{
2209	switch (tag) {
2210	default:
2211	case Q_TYPE_QH:
2212		return &periodic->qh->qh_next;
2213	}
2214}
2215
2216/* caller must hold oxu->lock */
2217static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr)
2218{
2219	union ehci_shadow *prev_p = &oxu->pshadow[frame];
2220	__le32 *hw_p = &oxu->periodic[frame];
2221	union ehci_shadow here = *prev_p;
2222
2223	/* find predecessor of "ptr"; hw and shadow lists are in sync */
2224	while (here.ptr && here.ptr != ptr) {
2225		prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p));
2226		hw_p = here.hw_next;
2227		here = *prev_p;
2228	}
2229	/* an interrupt entry (at list end) could have been shared */
2230	if (!here.ptr)
2231		return;
2232
2233	/* update shadow and hardware lists ... the old "next" pointers
2234	 * from ptr may still be in use, the caller updates them.
2235	 */
2236	*prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p));
2237	*hw_p = *here.hw_next;
2238}
2239
2240/* how many of the uframe's 125 usecs are allocated? */
2241static unsigned short periodic_usecs(struct oxu_hcd *oxu,
2242					unsigned frame, unsigned uframe)
2243{
2244	__le32 *hw_p = &oxu->periodic[frame];
2245	union ehci_shadow *q = &oxu->pshadow[frame];
2246	unsigned usecs = 0;
2247
2248	while (q->ptr) {
2249		switch (Q_NEXT_TYPE(*hw_p)) {
2250		case Q_TYPE_QH:
2251		default:
2252			/* is it in the S-mask? */
2253			if (q->qh->hw_info2 & cpu_to_le32(1 << uframe))
2254				usecs += q->qh->usecs;
2255			/* ... or C-mask? */
2256			if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe)))
2257				usecs += q->qh->c_usecs;
2258			hw_p = &q->qh->hw_next;
2259			q = &q->qh->qh_next;
2260			break;
2261		}
2262	}
2263#ifdef DEBUG
2264	if (usecs > 100)
2265		oxu_err(oxu, "uframe %d sched overrun: %d usecs\n",
2266						frame * 8 + uframe, usecs);
2267#endif
2268	return usecs;
2269}
2270
2271static int enable_periodic(struct oxu_hcd *oxu)
2272{
2273	u32 cmd;
2274	int status;
2275
2276	/* did clearing PSE did take effect yet?
2277	 * takes effect only at frame boundaries...
2278	 */
2279	status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125);
2280	if (status != 0) {
2281		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
2282		usb_hc_died(oxu_to_hcd(oxu));
2283		return status;
2284	}
2285
2286	cmd = readl(&oxu->regs->command) | CMD_PSE;
2287	writel(cmd, &oxu->regs->command);
2288	/* posted write ... PSS happens later */
2289	oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
2290
2291	/* make sure ehci_work scans these */
2292	oxu->next_uframe = readl(&oxu->regs->frame_index)
2293		% (oxu->periodic_size << 3);
2294	return 0;
2295}
2296
2297static int disable_periodic(struct oxu_hcd *oxu)
2298{
2299	u32 cmd;
2300	int status;
2301
2302	/* did setting PSE not take effect yet?
2303	 * takes effect only at frame boundaries...
2304	 */
2305	status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125);
2306	if (status != 0) {
2307		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
2308		usb_hc_died(oxu_to_hcd(oxu));
2309		return status;
2310	}
2311
2312	cmd = readl(&oxu->regs->command) & ~CMD_PSE;
2313	writel(cmd, &oxu->regs->command);
2314	/* posted write ... */
2315
2316	oxu->next_uframe = -1;
2317	return 0;
2318}
2319
2320/* periodic schedule slots have iso tds (normal or split) first, then a
2321 * sparse tree for active interrupt transfers.
2322 *
2323 * this just links in a qh; caller guarantees uframe masks are set right.
2324 * no FSTN support (yet; oxu 0.96+)
2325 */
2326static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2327{
2328	unsigned i;
2329	unsigned period = qh->period;
2330
2331	dev_dbg(&qh->dev->dev,
2332		"link qh%d-%04x/%p start %d [%d/%d us]\n",
2333		period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2334		qh, qh->start, qh->usecs, qh->c_usecs);
2335
2336	/* high bandwidth, or otherwise every microframe */
2337	if (period == 0)
2338		period = 1;
2339
2340	for (i = qh->start; i < oxu->periodic_size; i += period) {
2341		union ehci_shadow	*prev = &oxu->pshadow[i];
2342		__le32			*hw_p = &oxu->periodic[i];
2343		union ehci_shadow	here = *prev;
2344		__le32			type = 0;
2345
2346		/* skip the iso nodes at list head */
2347		while (here.ptr) {
2348			type = Q_NEXT_TYPE(*hw_p);
2349			if (type == Q_TYPE_QH)
2350				break;
2351			prev = periodic_next_shadow(prev, type);
2352			hw_p = &here.qh->hw_next;
2353			here = *prev;
2354		}
2355
2356		/* sorting each branch by period (slow-->fast)
2357		 * enables sharing interior tree nodes
2358		 */
2359		while (here.ptr && qh != here.qh) {
2360			if (qh->period > here.qh->period)
2361				break;
2362			prev = &here.qh->qh_next;
2363			hw_p = &here.qh->hw_next;
2364			here = *prev;
2365		}
2366		/* link in this qh, unless some earlier pass did that */
2367		if (qh != here.qh) {
2368			qh->qh_next = here;
2369			if (here.qh)
2370				qh->hw_next = *hw_p;
2371			wmb();
2372			prev->qh = qh;
2373			*hw_p = QH_NEXT(qh->qh_dma);
2374		}
2375	}
2376	qh->qh_state = QH_STATE_LINKED;
2377	qh_get(qh);
2378
2379	/* update per-qh bandwidth for usbfs */
2380	oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period
2381		? ((qh->usecs + qh->c_usecs) / qh->period)
2382		: (qh->usecs * 8);
2383
2384	/* maybe enable periodic schedule processing */
2385	if (!oxu->periodic_sched++)
2386		return enable_periodic(oxu);
2387
2388	return 0;
2389}
2390
2391static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2392{
2393	unsigned i;
2394	unsigned period;
2395
2396	/* FIXME:
2397	 *   IF this isn't high speed
2398	 *   and this qh is active in the current uframe
2399	 *   (and overlay token SplitXstate is false?)
2400	 * THEN
2401	 *   qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
2402	 */
2403
2404	/* high bandwidth, or otherwise part of every microframe */
2405	period = qh->period;
2406	if (period == 0)
2407		period = 1;
2408
2409	for (i = qh->start; i < oxu->periodic_size; i += period)
2410		periodic_unlink(oxu, i, qh);
2411
2412	/* update per-qh bandwidth for usbfs */
2413	oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period
2414		? ((qh->usecs + qh->c_usecs) / qh->period)
2415		: (qh->usecs * 8);
2416
2417	dev_dbg(&qh->dev->dev,
2418		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2419		qh->period,
2420		le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2421		qh, qh->start, qh->usecs, qh->c_usecs);
2422
2423	/* qh->qh_next still "live" to HC */
2424	qh->qh_state = QH_STATE_UNLINK;
2425	qh->qh_next.ptr = NULL;
2426	qh_put(qh);
2427
2428	/* maybe turn off periodic schedule */
2429	oxu->periodic_sched--;
2430	if (!oxu->periodic_sched)
2431		(void) disable_periodic(oxu);
2432}
2433
2434static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2435{
2436	unsigned wait;
2437
2438	qh_unlink_periodic(oxu, qh);
2439
2440	/* simple/paranoid:  always delay, expecting the HC needs to read
2441	 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2442	 * expect hub_wq to clean up after any CSPLITs we won't issue.
2443	 * active high speed queues may need bigger delays...
2444	 */
2445	if (list_empty(&qh->qtd_list)
2446		|| (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0)
2447		wait = 2;
2448	else
2449		wait = 55;	/* worst case: 3 * 1024 */
2450
2451	udelay(wait);
2452	qh->qh_state = QH_STATE_IDLE;
2453	qh->hw_next = EHCI_LIST_END;
2454	wmb();
2455}
2456
2457static int check_period(struct oxu_hcd *oxu,
2458			unsigned frame, unsigned uframe,
2459			unsigned period, unsigned usecs)
2460{
2461	int claimed;
2462
2463	/* complete split running into next frame?
2464	 * given FSTN support, we could sometimes check...
2465	 */
2466	if (uframe >= 8)
2467		return 0;
2468
2469	/*
2470	 * 80% periodic == 100 usec/uframe available
2471	 * convert "usecs we need" to "max already claimed"
2472	 */
2473	usecs = 100 - usecs;
2474
2475	/* we "know" 2 and 4 uframe intervals were rejected; so
2476	 * for period 0, check _every_ microframe in the schedule.
2477	 */
2478	if (unlikely(period == 0)) {
2479		do {
2480			for (uframe = 0; uframe < 7; uframe++) {
2481				claimed = periodic_usecs(oxu, frame, uframe);
2482				if (claimed > usecs)
2483					return 0;
2484			}
2485		} while ((frame += 1) < oxu->periodic_size);
2486
2487	/* just check the specified uframe, at that period */
2488	} else {
2489		do {
2490			claimed = periodic_usecs(oxu, frame, uframe);
2491			if (claimed > usecs)
2492				return 0;
2493		} while ((frame += period) < oxu->periodic_size);
2494	}
2495
2496	return 1;
2497}
2498
2499static int check_intr_schedule(struct oxu_hcd	*oxu,
2500				unsigned frame, unsigned uframe,
2501				const struct ehci_qh *qh, __le32 *c_maskp)
2502{
2503	int retval = -ENOSPC;
2504
2505	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
2506		goto done;
2507
2508	if (!check_period(oxu, frame, uframe, qh->period, qh->usecs))
2509		goto done;
2510	if (!qh->c_usecs) {
2511		retval = 0;
2512		*c_maskp = 0;
2513		goto done;
2514	}
2515
2516done:
2517	return retval;
2518}
2519
2520/* "first fit" scheduling policy used the first time through,
2521 * or when the previous schedule slot can't be re-used.
2522 */
2523static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2524{
2525	int		status;
2526	unsigned	uframe;
2527	__le32		c_mask;
2528	unsigned	frame;		/* 0..(qh->period - 1), or NO_FRAME */
2529
2530	qh_refresh(oxu, qh);
2531	qh->hw_next = EHCI_LIST_END;
2532	frame = qh->start;
2533
2534	/* reuse the previous schedule slots, if we can */
2535	if (frame < qh->period) {
2536		uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK);
2537		status = check_intr_schedule(oxu, frame, --uframe,
2538				qh, &c_mask);
2539	} else {
2540		uframe = 0;
2541		c_mask = 0;
2542		status = -ENOSPC;
2543	}
2544
2545	/* else scan the schedule to find a group of slots such that all
2546	 * uframes have enough periodic bandwidth available.
2547	 */
2548	if (status) {
2549		/* "normal" case, uframing flexible except with splits */
2550		if (qh->period) {
2551			frame = qh->period - 1;
2552			do {
2553				for (uframe = 0; uframe < 8; uframe++) {
2554					status = check_intr_schedule(oxu,
2555							frame, uframe, qh,
2556							&c_mask);
2557					if (status == 0)
2558						break;
2559				}
2560			} while (status && frame--);
2561
2562		/* qh->period == 0 means every uframe */
2563		} else {
2564			frame = 0;
2565			status = check_intr_schedule(oxu, 0, 0, qh, &c_mask);
2566		}
2567		if (status)
2568			goto done;
2569		qh->start = frame;
2570
2571		/* reset S-frame and (maybe) C-frame masks */
2572		qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK));
2573		qh->hw_info2 |= qh->period
2574			? cpu_to_le32(1 << uframe)
2575			: cpu_to_le32(QH_SMASK);
2576		qh->hw_info2 |= c_mask;
2577	} else
2578		oxu_dbg(oxu, "reused qh %p schedule\n", qh);
2579
2580	/* stuff into the periodic schedule */
2581	status = qh_link_periodic(oxu, qh);
2582done:
2583	return status;
2584}
2585
2586static int intr_submit(struct oxu_hcd *oxu, struct urb *urb,
2587			struct list_head *qtd_list, gfp_t mem_flags)
2588{
2589	unsigned epnum;
2590	unsigned long flags;
2591	struct ehci_qh *qh;
2592	int status = 0;
2593	struct list_head	empty;
2594
2595	/* get endpoint and transfer/schedule data */
2596	epnum = urb->ep->desc.bEndpointAddress;
2597
2598	spin_lock_irqsave(&oxu->lock, flags);
2599
2600	if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2601		status = -ESHUTDOWN;
2602		goto done;
2603	}
2604
2605	/* get qh and force any scheduling errors */
2606	INIT_LIST_HEAD(&empty);
2607	qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv);
2608	if (qh == NULL) {
2609		status = -ENOMEM;
2610		goto done;
2611	}
2612	if (qh->qh_state == QH_STATE_IDLE) {
2613		status = qh_schedule(oxu, qh);
2614		if (status != 0)
2615			goto done;
2616	}
2617
2618	/* then queue the urb's tds to the qh */
2619	qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2620	BUG_ON(qh == NULL);
2621
2622	/* ... update usbfs periodic stats */
2623	oxu_to_hcd(oxu)->self.bandwidth_int_reqs++;
2624
2625done:
2626	spin_unlock_irqrestore(&oxu->lock, flags);
2627	if (status)
2628		qtd_list_free(oxu, urb, qtd_list);
2629
2630	return status;
2631}
2632
2633static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb,
2634						gfp_t mem_flags)
2635{
2636	oxu_dbg(oxu, "iso support is missing!\n");
2637	return -ENOSYS;
2638}
2639
2640static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb,
2641						gfp_t mem_flags)
2642{
2643	oxu_dbg(oxu, "split iso support is missing!\n");
2644	return -ENOSYS;
2645}
2646
2647static void scan_periodic(struct oxu_hcd *oxu)
2648{
2649	unsigned frame, clock, now_uframe, mod;
2650	unsigned modified;
2651
2652	mod = oxu->periodic_size << 3;
2653
2654	/*
2655	 * When running, scan from last scan point up to "now"
2656	 * else clean up by scanning everything that's left.
2657	 * Touches as few pages as possible:  cache-friendly.
2658	 */
2659	now_uframe = oxu->next_uframe;
2660	if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2661		clock = readl(&oxu->regs->frame_index);
2662	else
2663		clock = now_uframe + mod - 1;
2664	clock %= mod;
2665
2666	for (;;) {
2667		union ehci_shadow	q, *q_p;
2668		__le32			type, *hw_p;
 
2669
2670		/* don't scan past the live uframe */
2671		frame = now_uframe >> 3;
2672		if (frame != (clock >> 3)) {
 
 
2673			/* safe to scan the whole frame at once */
2674			now_uframe |= 0x07;
 
2675		}
2676
2677restart:
2678		/* scan each element in frame's queue for completions */
2679		q_p = &oxu->pshadow[frame];
2680		hw_p = &oxu->periodic[frame];
2681		q.ptr = q_p->ptr;
2682		type = Q_NEXT_TYPE(*hw_p);
2683		modified = 0;
2684
2685		while (q.ptr != NULL) {
2686			union ehci_shadow temp;
 
2687
 
2688			switch (type) {
2689			case Q_TYPE_QH:
2690				/* handle any completions */
2691				temp.qh = qh_get(q.qh);
2692				type = Q_NEXT_TYPE(q.qh->hw_next);
2693				q = q.qh->qh_next;
2694				modified = qh_completions(oxu, temp.qh);
2695				if (unlikely(list_empty(&temp.qh->qtd_list)))
2696					intr_deschedule(oxu, temp.qh);
2697				qh_put(temp.qh);
2698				break;
2699			default:
2700				oxu_dbg(oxu, "corrupt type %d frame %d shadow %p\n",
2701					type, frame, q.ptr);
2702				q.ptr = NULL;
2703			}
2704
2705			/* assume completion callbacks modify the queue */
2706			if (unlikely(modified))
2707				goto restart;
2708		}
2709
2710		/* Stop when we catch up to the HC */
2711
2712		/* FIXME:  this assumes we won't get lapped when
2713		 * latencies climb; that should be rare, but...
2714		 * detect it, and just go all the way around.
2715		 * FLR might help detect this case, so long as latencies
2716		 * don't exceed periodic_size msec (default 1.024 sec).
2717		 */
2718
2719		/* FIXME: likewise assumes HC doesn't halt mid-scan */
2720
2721		if (now_uframe == clock) {
2722			unsigned	now;
2723
2724			if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2725				break;
2726			oxu->next_uframe = now_uframe;
2727			now = readl(&oxu->regs->frame_index) % mod;
2728			if (now_uframe == now)
2729				break;
2730
2731			/* rescan the rest of this frame, then ... */
2732			clock = now;
2733		} else {
2734			now_uframe++;
2735			now_uframe %= mod;
2736		}
2737	}
2738}
2739
2740/* On some systems, leaving remote wakeup enabled prevents system shutdown.
2741 * The firmware seems to think that powering off is a wakeup event!
2742 * This routine turns off remote wakeup and everything else, on all ports.
2743 */
2744static void ehci_turn_off_all_ports(struct oxu_hcd *oxu)
2745{
2746	int port = HCS_N_PORTS(oxu->hcs_params);
2747
2748	while (port--)
2749		writel(PORT_RWC_BITS, &oxu->regs->port_status[port]);
2750}
2751
2752static void ehci_port_power(struct oxu_hcd *oxu, int is_on)
2753{
2754	unsigned port;
2755
2756	if (!HCS_PPC(oxu->hcs_params))
2757		return;
2758
2759	oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down");
2760	for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; ) {
2761		if (is_on)
2762			oxu_hub_control(oxu_to_hcd(oxu), SetPortFeature,
2763				USB_PORT_FEAT_POWER, port--, NULL, 0);
2764		else
2765			oxu_hub_control(oxu_to_hcd(oxu), ClearPortFeature,
2766				USB_PORT_FEAT_POWER, port--, NULL, 0);
2767	}
2768
2769	msleep(20);
2770}
2771
2772/* Called from some interrupts, timers, and so on.
2773 * It calls driver completion functions, after dropping oxu->lock.
2774 */
2775static void ehci_work(struct oxu_hcd *oxu)
2776{
2777	timer_action_done(oxu, TIMER_IO_WATCHDOG);
2778	if (oxu->reclaim_ready)
2779		end_unlink_async(oxu);
2780
2781	/* another CPU may drop oxu->lock during a schedule scan while
2782	 * it reports urb completions.  this flag guards against bogus
2783	 * attempts at re-entrant schedule scanning.
2784	 */
2785	if (oxu->scanning)
2786		return;
2787	oxu->scanning = 1;
2788	scan_async(oxu);
2789	if (oxu->next_uframe != -1)
2790		scan_periodic(oxu);
2791	oxu->scanning = 0;
2792
2793	/* the IO watchdog guards against hardware or driver bugs that
2794	 * misplace IRQs, and should let us run completely without IRQs.
2795	 * such lossage has been observed on both VT6202 and VT8235.
2796	 */
2797	if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) &&
2798			(oxu->async->qh_next.ptr != NULL ||
2799			 oxu->periodic_sched != 0))
2800		timer_action(oxu, TIMER_IO_WATCHDOG);
2801}
2802
2803static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2804{
2805	/* if we need to use IAA and it's busy, defer */
2806	if (qh->qh_state == QH_STATE_LINKED
2807			&& oxu->reclaim
2808			&& HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) {
2809		struct ehci_qh		*last;
2810
2811		for (last = oxu->reclaim;
2812				last->reclaim;
2813				last = last->reclaim)
2814			continue;
2815		qh->qh_state = QH_STATE_UNLINK_WAIT;
2816		last->reclaim = qh;
2817
2818	/* bypass IAA if the hc can't care */
2819	} else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim)
2820		end_unlink_async(oxu);
2821
2822	/* something else might have unlinked the qh by now */
2823	if (qh->qh_state == QH_STATE_LINKED)
2824		start_unlink_async(oxu, qh);
2825}
2826
2827/*
2828 * USB host controller methods
2829 */
2830
2831static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd)
2832{
2833	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2834	u32 status, pcd_status = 0;
2835	int bh;
2836
2837	spin_lock(&oxu->lock);
2838
2839	status = readl(&oxu->regs->status);
2840
2841	/* e.g. cardbus physical eject */
2842	if (status == ~(u32) 0) {
2843		oxu_dbg(oxu, "device removed\n");
2844		goto dead;
2845	}
2846
2847	/* Shared IRQ? */
2848	status &= INTR_MASK;
2849	if (!status || unlikely(hcd->state == HC_STATE_HALT)) {
2850		spin_unlock(&oxu->lock);
2851		return IRQ_NONE;
2852	}
2853
2854	/* clear (just) interrupts */
2855	writel(status, &oxu->regs->status);
2856	readl(&oxu->regs->command);	/* unblock posted write */
2857	bh = 0;
2858
2859#ifdef OXU_VERBOSE_DEBUG
2860	/* unrequested/ignored: Frame List Rollover */
2861	dbg_status(oxu, "irq", status);
2862#endif
2863
2864	/* INT, ERR, and IAA interrupt rates can be throttled */
2865
2866	/* normal [4.15.1.2] or error [4.15.1.1] completion */
2867	if (likely((status & (STS_INT|STS_ERR)) != 0))
2868		bh = 1;
2869
2870	/* complete the unlinking of some qh [4.15.2.3] */
2871	if (status & STS_IAA) {
2872		oxu->reclaim_ready = 1;
2873		bh = 1;
2874	}
2875
2876	/* remote wakeup [4.3.1] */
2877	if (status & STS_PCD) {
2878		unsigned i = HCS_N_PORTS(oxu->hcs_params);
2879		pcd_status = status;
2880
2881		/* resume root hub? */
2882		if (!(readl(&oxu->regs->command) & CMD_RUN))
2883			usb_hcd_resume_root_hub(hcd);
2884
2885		while (i--) {
2886			int pstatus = readl(&oxu->regs->port_status[i]);
2887
2888			if (pstatus & PORT_OWNER)
2889				continue;
2890			if (!(pstatus & PORT_RESUME)
2891					|| oxu->reset_done[i] != 0)
2892				continue;
2893
2894			/* start USB_RESUME_TIMEOUT resume signaling from this
2895			 * port, and make hub_wq collect PORT_STAT_C_SUSPEND to
2896			 * stop that signaling.
2897			 */
2898			oxu->reset_done[i] = jiffies +
2899				msecs_to_jiffies(USB_RESUME_TIMEOUT);
2900			oxu_dbg(oxu, "port %d remote wakeup\n", i + 1);
2901			mod_timer(&hcd->rh_timer, oxu->reset_done[i]);
2902		}
2903	}
2904
2905	/* PCI errors [4.15.2.4] */
2906	if (unlikely((status & STS_FATAL) != 0)) {
2907		/* bogus "fatal" IRQs appear on some chips... why?  */
2908		status = readl(&oxu->regs->status);
2909		dbg_cmd(oxu, "fatal", readl(&oxu->regs->command));
2910		dbg_status(oxu, "fatal", status);
2911		if (status & STS_HALT) {
2912			oxu_err(oxu, "fatal error\n");
2913dead:
2914			ehci_reset(oxu);
2915			writel(0, &oxu->regs->configured_flag);
2916			usb_hc_died(hcd);
2917			/* generic layer kills/unlinks all urbs, then
2918			 * uses oxu_stop to clean up the rest
2919			 */
2920			bh = 1;
2921		}
2922	}
2923
2924	if (bh)
2925		ehci_work(oxu);
2926	spin_unlock(&oxu->lock);
2927	if (pcd_status & STS_PCD)
2928		usb_hcd_poll_rh_status(hcd);
2929	return IRQ_HANDLED;
2930}
2931
2932static irqreturn_t oxu_irq(struct usb_hcd *hcd)
2933{
2934	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2935	int ret = IRQ_HANDLED;
2936
2937	u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS);
2938	u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET);
2939
2940	/* Disable all interrupt */
2941	oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable);
2942
2943	if ((oxu->is_otg && (status & OXU_USBOTGI)) ||
2944		(!oxu->is_otg && (status & OXU_USBSPHI)))
2945		oxu210_hcd_irq(hcd);
2946	else
2947		ret = IRQ_NONE;
2948
2949	/* Enable all interrupt back */
2950	oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable);
2951
2952	return ret;
2953}
2954
2955static void oxu_watchdog(struct timer_list *t)
2956{
2957	struct oxu_hcd	*oxu = from_timer(oxu, t, watchdog);
2958	unsigned long flags;
2959
2960	spin_lock_irqsave(&oxu->lock, flags);
2961
2962	/* lost IAA irqs wedge things badly; seen with a vt8235 */
2963	if (oxu->reclaim) {
2964		u32 status = readl(&oxu->regs->status);
2965		if (status & STS_IAA) {
2966			oxu_vdbg(oxu, "lost IAA\n");
2967			writel(STS_IAA, &oxu->regs->status);
2968			oxu->reclaim_ready = 1;
2969		}
2970	}
2971
2972	/* stop async processing after it's idled a bit */
2973	if (test_bit(TIMER_ASYNC_OFF, &oxu->actions))
2974		start_unlink_async(oxu, oxu->async);
2975
2976	/* oxu could run by timer, without IRQs ... */
2977	ehci_work(oxu);
2978
2979	spin_unlock_irqrestore(&oxu->lock, flags);
2980}
2981
2982/* One-time init, only for memory state.
2983 */
2984static int oxu_hcd_init(struct usb_hcd *hcd)
2985{
2986	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2987	u32 temp;
2988	int retval;
2989	u32 hcc_params;
2990
2991	spin_lock_init(&oxu->lock);
2992
2993	timer_setup(&oxu->watchdog, oxu_watchdog, 0);
 
 
2994
2995	/*
2996	 * hw default: 1K periodic list heads, one per frame.
2997	 * periodic_size can shrink by USBCMD update if hcc_params allows.
2998	 */
2999	oxu->periodic_size = DEFAULT_I_TDPS;
3000	retval = ehci_mem_init(oxu, GFP_KERNEL);
3001	if (retval < 0)
3002		return retval;
3003
3004	/* controllers may cache some of the periodic schedule ... */
3005	hcc_params = readl(&oxu->caps->hcc_params);
3006	if (HCC_ISOC_CACHE(hcc_params))		/* full frame cache */
3007		oxu->i_thresh = 8;
3008	else					/* N microframes cached */
3009		oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params);
3010
3011	oxu->reclaim = NULL;
3012	oxu->reclaim_ready = 0;
3013	oxu->next_uframe = -1;
3014
3015	/*
3016	 * dedicate a qh for the async ring head, since we couldn't unlink
3017	 * a 'real' qh without stopping the async schedule [4.8].  use it
3018	 * as the 'reclamation list head' too.
3019	 * its dummy is used in hw_alt_next of many tds, to prevent the qh
3020	 * from automatically advancing to the next td after short reads.
3021	 */
3022	oxu->async->qh_next.qh = NULL;
3023	oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma);
3024	oxu->async->hw_info1 = cpu_to_le32(QH_HEAD);
3025	oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT);
3026	oxu->async->hw_qtd_next = EHCI_LIST_END;
3027	oxu->async->qh_state = QH_STATE_LINKED;
3028	oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma);
3029
3030	/* clear interrupt enables, set irq latency */
3031	if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
3032		log2_irq_thresh = 0;
3033	temp = 1 << (16 + log2_irq_thresh);
3034	if (HCC_CANPARK(hcc_params)) {
3035		/* HW default park == 3, on hardware that supports it (like
3036		 * NVidia and ALI silicon), maximizes throughput on the async
3037		 * schedule by avoiding QH fetches between transfers.
3038		 *
3039		 * With fast usb storage devices and NForce2, "park" seems to
3040		 * make problems:  throughput reduction (!), data errors...
3041		 */
3042		if (park) {
3043			park = min_t(unsigned int, park, 3);
3044			temp |= CMD_PARK;
3045			temp |= park << 8;
3046		}
3047		oxu_dbg(oxu, "park %d\n", park);
3048	}
3049	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
3050		/* periodic schedule size can be smaller than default */
3051		temp &= ~(3 << 2);
3052		temp |= (EHCI_TUNE_FLS << 2);
3053	}
3054	oxu->command = temp;
3055
3056	return 0;
3057}
3058
3059/* Called during probe() after chip reset completes.
3060 */
3061static int oxu_reset(struct usb_hcd *hcd)
3062{
3063	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
 
3064
3065	spin_lock_init(&oxu->mem_lock);
3066	INIT_LIST_HEAD(&oxu->urb_list);
3067	oxu->urb_len = 0;
3068
 
 
 
3069	if (oxu->is_otg) {
3070		oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET;
3071		oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \
3072			HC_LENGTH(readl(&oxu->caps->hc_capbase));
3073
3074		oxu->mem = hcd->regs + OXU_SPH_MEM;
3075	} else {
3076		oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET;
3077		oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \
3078			HC_LENGTH(readl(&oxu->caps->hc_capbase));
3079
3080		oxu->mem = hcd->regs + OXU_OTG_MEM;
3081	}
3082
3083	oxu->hcs_params = readl(&oxu->caps->hcs_params);
3084	oxu->sbrn = 0x20;
3085
3086	return oxu_hcd_init(hcd);
 
 
 
 
3087}
3088
3089static int oxu_run(struct usb_hcd *hcd)
3090{
3091	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3092	int retval;
3093	u32 temp, hcc_params;
3094
3095	hcd->uses_new_polling = 1;
3096
3097	/* EHCI spec section 4.1 */
3098	retval = ehci_reset(oxu);
3099	if (retval != 0) {
3100		ehci_mem_cleanup(oxu);
3101		return retval;
3102	}
3103	writel(oxu->periodic_dma, &oxu->regs->frame_list);
3104	writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3105
3106	/* hcc_params controls whether oxu->regs->segment must (!!!)
3107	 * be used; it constrains QH/ITD/SITD and QTD locations.
3108	 * dma_pool consistent memory always uses segment zero.
3109	 * streaming mappings for I/O buffers, like dma_map_single(),
3110	 * can return segments above 4GB, if the device allows.
3111	 *
3112	 * NOTE:  the dma mask is visible through dev->dma_mask, so
3113	 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
3114	 * Scsi_Host.highmem_io, and so forth.  It's readonly to all
3115	 * host side drivers though.
3116	 */
3117	hcc_params = readl(&oxu->caps->hcc_params);
3118	if (HCC_64BIT_ADDR(hcc_params))
3119		writel(0, &oxu->regs->segment);
3120
3121	oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE |
3122				CMD_ASE | CMD_RESET);
3123	oxu->command |= CMD_RUN;
3124	writel(oxu->command, &oxu->regs->command);
3125	dbg_cmd(oxu, "init", oxu->command);
3126
3127	/*
3128	 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
3129	 * are explicitly handed to companion controller(s), so no TT is
3130	 * involved with the root hub.  (Except where one is integrated,
3131	 * and there's no companion controller unless maybe for USB OTG.)
3132	 */
3133	hcd->state = HC_STATE_RUNNING;
3134	writel(FLAG_CF, &oxu->regs->configured_flag);
3135	readl(&oxu->regs->command);	/* unblock posted writes */
3136
3137	temp = HC_VERSION(readl(&oxu->caps->hc_capbase));
3138	oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
3139		((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f),
3140		temp >> 8, temp & 0xff, DRIVER_VERSION,
3141		ignore_oc ? ", overcurrent ignored" : "");
3142
3143	writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */
3144
3145	return 0;
3146}
3147
3148static void oxu_stop(struct usb_hcd *hcd)
3149{
3150	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3151
3152	/* Turn off port power on all root hub ports. */
3153	ehci_port_power(oxu, 0);
3154
3155	/* no more interrupts ... */
3156	del_timer_sync(&oxu->watchdog);
3157
3158	spin_lock_irq(&oxu->lock);
3159	if (HC_IS_RUNNING(hcd->state))
3160		ehci_quiesce(oxu);
3161
3162	ehci_reset(oxu);
3163	writel(0, &oxu->regs->intr_enable);
3164	spin_unlock_irq(&oxu->lock);
3165
3166	/* let companion controllers work when we aren't */
3167	writel(0, &oxu->regs->configured_flag);
3168
3169	/* root hub is shut down separately (first, when possible) */
3170	spin_lock_irq(&oxu->lock);
3171	if (oxu->async)
3172		ehci_work(oxu);
3173	spin_unlock_irq(&oxu->lock);
3174	ehci_mem_cleanup(oxu);
3175
3176	dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status));
3177}
3178
3179/* Kick in for silicon on any bus (not just pci, etc).
3180 * This forcibly disables dma and IRQs, helping kexec and other cases
3181 * where the next system software may expect clean state.
3182 */
3183static void oxu_shutdown(struct usb_hcd *hcd)
3184{
3185	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3186
3187	(void) ehci_halt(oxu);
3188	ehci_turn_off_all_ports(oxu);
3189
3190	/* make BIOS/etc use companion controller during reboot */
3191	writel(0, &oxu->regs->configured_flag);
3192
3193	/* unblock posted writes */
3194	readl(&oxu->regs->configured_flag);
3195}
3196
3197/* Non-error returns are a promise to giveback() the urb later
3198 * we drop ownership so next owner (or urb unlink) can get it
3199 *
3200 * urb + dev is in hcd.self.controller.urb_list
3201 * we're queueing TDs onto software and hardware lists
3202 *
3203 * hcd-specific init for hcpriv hasn't been done yet
3204 *
3205 * NOTE:  control, bulk, and interrupt share the same code to append TDs
3206 * to a (possibly active) QH, and the same QH scanning code.
3207 */
3208static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
3209				gfp_t mem_flags)
3210{
3211	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3212	struct list_head qtd_list;
3213
3214	INIT_LIST_HEAD(&qtd_list);
3215
3216	switch (usb_pipetype(urb->pipe)) {
3217	case PIPE_CONTROL:
3218	case PIPE_BULK:
3219	default:
3220		if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
3221			return -ENOMEM;
3222		return submit_async(oxu, urb, &qtd_list, mem_flags);
3223
3224	case PIPE_INTERRUPT:
3225		if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
3226			return -ENOMEM;
3227		return intr_submit(oxu, urb, &qtd_list, mem_flags);
3228
3229	case PIPE_ISOCHRONOUS:
3230		if (urb->dev->speed == USB_SPEED_HIGH)
3231			return itd_submit(oxu, urb, mem_flags);
3232		else
3233			return sitd_submit(oxu, urb, mem_flags);
3234	}
3235}
3236
3237/* This function is responsible for breaking URBs with big data size
3238 * into smaller size and processing small urbs in sequence.
3239 */
3240static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
3241				gfp_t mem_flags)
3242{
3243	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3244	int num, rem;
 
3245	void *transfer_buffer;
3246	struct urb *murb;
3247	int i, ret;
3248
3249	/* If not bulk pipe just enqueue the URB */
3250	if (!usb_pipebulk(urb->pipe))
3251		return __oxu_urb_enqueue(hcd, urb, mem_flags);
3252
3253	/* Otherwise we should verify the USB transfer buffer size! */
3254	transfer_buffer = urb->transfer_buffer;
 
3255
3256	num = urb->transfer_buffer_length / 4096;
3257	rem = urb->transfer_buffer_length % 4096;
3258	if (rem != 0)
3259		num++;
3260
3261	/* If URB is smaller than 4096 bytes just enqueue it! */
3262	if (num == 1)
3263		return __oxu_urb_enqueue(hcd, urb, mem_flags);
3264
3265	/* Ok, we have more job to do! :) */
3266
3267	for (i = 0; i < num - 1; i++) {
3268		/* Get free micro URB poll till a free urb is received */
3269
3270		do {
3271			murb = (struct urb *) oxu_murb_alloc(oxu);
3272			if (!murb)
3273				schedule();
3274		} while (!murb);
3275
3276		/* Coping the urb */
3277		memcpy(murb, urb, sizeof(struct urb));
3278
3279		murb->transfer_buffer_length = 4096;
3280		murb->transfer_buffer = transfer_buffer + i * 4096;
3281
3282		/* Null pointer for the encodes that this is a micro urb */
3283		murb->complete = NULL;
3284
3285		((struct oxu_murb *) murb)->main = urb;
3286		((struct oxu_murb *) murb)->last = 0;
3287
3288		/* This loop is to guarantee urb to be processed when there's
3289		 * not enough resources at a particular time by retrying.
3290		 */
3291		do {
3292			ret  = __oxu_urb_enqueue(hcd, murb, mem_flags);
3293			if (ret)
3294				schedule();
3295		} while (ret);
3296	}
3297
3298	/* Last urb requires special handling  */
3299
3300	/* Get free micro URB poll till a free urb is received */
3301	do {
3302		murb = (struct urb *) oxu_murb_alloc(oxu);
3303		if (!murb)
3304			schedule();
3305	} while (!murb);
3306
3307	/* Coping the urb */
3308	memcpy(murb, urb, sizeof(struct urb));
3309
3310	murb->transfer_buffer_length = rem > 0 ? rem : 4096;
3311	murb->transfer_buffer = transfer_buffer + (num - 1) * 4096;
3312
3313	/* Null pointer for the encodes that this is a micro urb */
3314	murb->complete = NULL;
3315
3316	((struct oxu_murb *) murb)->main = urb;
3317	((struct oxu_murb *) murb)->last = 1;
3318
3319	do {
3320		ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
3321		if (ret)
3322			schedule();
3323	} while (ret);
3324
3325	return ret;
3326}
3327
3328/* Remove from hardware lists.
3329 * Completions normally happen asynchronously
3330 */
3331static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
3332{
3333	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3334	struct ehci_qh *qh;
3335	unsigned long flags;
3336
3337	spin_lock_irqsave(&oxu->lock, flags);
3338	switch (usb_pipetype(urb->pipe)) {
3339	case PIPE_CONTROL:
3340	case PIPE_BULK:
3341	default:
3342		qh = (struct ehci_qh *) urb->hcpriv;
3343		if (!qh)
3344			break;
3345		unlink_async(oxu, qh);
3346		break;
3347
3348	case PIPE_INTERRUPT:
3349		qh = (struct ehci_qh *) urb->hcpriv;
3350		if (!qh)
3351			break;
3352		switch (qh->qh_state) {
3353		case QH_STATE_LINKED:
3354			intr_deschedule(oxu, qh);
3355			fallthrough;
3356		case QH_STATE_IDLE:
3357			qh_completions(oxu, qh);
3358			break;
3359		default:
3360			oxu_dbg(oxu, "bogus qh %p state %d\n",
3361					qh, qh->qh_state);
3362			goto done;
3363		}
3364
3365		/* reschedule QH iff another request is queued */
3366		if (!list_empty(&qh->qtd_list)
3367				&& HC_IS_RUNNING(hcd->state)) {
3368			int status;
3369
3370			status = qh_schedule(oxu, qh);
3371			spin_unlock_irqrestore(&oxu->lock, flags);
3372
3373			if (status != 0) {
3374				/* shouldn't happen often, but ...
3375				 * FIXME kill those tds' urbs
3376				 */
3377				dev_err(hcd->self.controller,
3378					"can't reschedule qh %p, err %d\n", qh,
3379					status);
3380			}
3381			return status;
3382		}
3383		break;
3384	}
3385done:
3386	spin_unlock_irqrestore(&oxu->lock, flags);
3387	return 0;
3388}
3389
3390/* Bulk qh holds the data toggle */
3391static void oxu_endpoint_disable(struct usb_hcd *hcd,
3392					struct usb_host_endpoint *ep)
3393{
3394	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3395	unsigned long		flags;
3396	struct ehci_qh		*qh, *tmp;
3397
3398	/* ASSERT:  any requests/urbs are being unlinked */
3399	/* ASSERT:  nobody can be submitting urbs for this any more */
3400
3401rescan:
3402	spin_lock_irqsave(&oxu->lock, flags);
3403	qh = ep->hcpriv;
3404	if (!qh)
3405		goto done;
3406
3407	/* endpoints can be iso streams.  for now, we don't
3408	 * accelerate iso completions ... so spin a while.
3409	 */
3410	if (qh->hw_info1 == 0) {
3411		oxu_vdbg(oxu, "iso delay\n");
3412		goto idle_timeout;
3413	}
3414
3415	if (!HC_IS_RUNNING(hcd->state))
3416		qh->qh_state = QH_STATE_IDLE;
3417	switch (qh->qh_state) {
3418	case QH_STATE_LINKED:
3419		for (tmp = oxu->async->qh_next.qh;
3420				tmp && tmp != qh;
3421				tmp = tmp->qh_next.qh)
3422			continue;
3423		/* periodic qh self-unlinks on empty */
3424		if (!tmp)
3425			goto nogood;
3426		unlink_async(oxu, qh);
3427		fallthrough;
3428	case QH_STATE_UNLINK:		/* wait for hw to finish? */
3429idle_timeout:
3430		spin_unlock_irqrestore(&oxu->lock, flags);
3431		schedule_timeout_uninterruptible(1);
3432		goto rescan;
3433	case QH_STATE_IDLE:		/* fully unlinked */
3434		if (list_empty(&qh->qtd_list)) {
3435			qh_put(qh);
3436			break;
3437		}
3438		fallthrough;
3439	default:
3440nogood:
3441		/* caller was supposed to have unlinked any requests;
3442		 * that's not our job.  just leak this memory.
3443		 */
3444		oxu_err(oxu, "qh %p (#%02x) state %d%s\n",
3445			qh, ep->desc.bEndpointAddress, qh->qh_state,
3446			list_empty(&qh->qtd_list) ? "" : "(has tds)");
3447		break;
3448	}
3449	ep->hcpriv = NULL;
3450done:
3451	spin_unlock_irqrestore(&oxu->lock, flags);
3452}
3453
3454static int oxu_get_frame(struct usb_hcd *hcd)
3455{
3456	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3457
3458	return (readl(&oxu->regs->frame_index) >> 3) %
3459		oxu->periodic_size;
3460}
3461
3462/* Build "status change" packet (one or two bytes) from HC registers */
3463static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf)
3464{
3465	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3466	u32 temp, mask, status = 0;
3467	int ports, i, retval = 1;
3468	unsigned long flags;
3469
3470	/* if !PM, root hub timers won't get shut down ... */
3471	if (!HC_IS_RUNNING(hcd->state))
3472		return 0;
3473
3474	/* init status to no-changes */
3475	buf[0] = 0;
3476	ports = HCS_N_PORTS(oxu->hcs_params);
3477	if (ports > 7) {
3478		buf[1] = 0;
3479		retval++;
3480	}
3481
3482	/* Some boards (mostly VIA?) report bogus overcurrent indications,
3483	 * causing massive log spam unless we completely ignore them.  It
3484	 * may be relevant that VIA VT8235 controllers, where PORT_POWER is
3485	 * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3486	 * PORT_POWER; that's surprising, but maybe within-spec.
3487	 */
3488	if (!ignore_oc)
3489		mask = PORT_CSC | PORT_PEC | PORT_OCC;
3490	else
3491		mask = PORT_CSC | PORT_PEC;
3492
3493	/* no hub change reports (bit 0) for now (power, ...) */
3494
3495	/* port N changes (bit N)? */
3496	spin_lock_irqsave(&oxu->lock, flags);
3497	for (i = 0; i < ports; i++) {
3498		temp = readl(&oxu->regs->port_status[i]);
3499
3500		/*
3501		 * Return status information even for ports with OWNER set.
3502		 * Otherwise hub_wq wouldn't see the disconnect event when a
3503		 * high-speed device is switched over to the companion
3504		 * controller by the user.
3505		 */
3506
3507		if (!(temp & PORT_CONNECT))
3508			oxu->reset_done[i] = 0;
3509		if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 &&
3510				time_after_eq(jiffies, oxu->reset_done[i]))) {
3511			if (i < 7)
3512				buf[0] |= 1 << (i + 1);
3513			else
3514				buf[1] |= 1 << (i - 7);
3515			status = STS_PCD;
3516		}
3517	}
3518	/* FIXME autosuspend idle root hubs */
3519	spin_unlock_irqrestore(&oxu->lock, flags);
3520	return status ? retval : 0;
3521}
3522
3523/* Returns the speed of a device attached to a port on the root hub. */
3524static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu,
3525						unsigned int portsc)
3526{
3527	switch ((portsc >> 26) & 3) {
3528	case 0:
3529		return 0;
3530	case 1:
3531		return USB_PORT_STAT_LOW_SPEED;
3532	case 2:
3533	default:
3534		return USB_PORT_STAT_HIGH_SPEED;
3535	}
3536}
3537
3538#define	PORT_WAKE_BITS	(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
3539static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq,
3540				u16 wValue, u16 wIndex, char *buf, u16 wLength)
3541{
3542	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3543	int ports = HCS_N_PORTS(oxu->hcs_params);
3544	u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1];
3545	u32 temp, status;
3546	unsigned long	flags;
3547	int retval = 0;
3548	unsigned selector;
3549
3550	/*
3551	 * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3552	 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3553	 * (track current state ourselves) ... blink for diagnostics,
3554	 * power, "this is the one", etc.  EHCI spec supports this.
3555	 */
3556
3557	spin_lock_irqsave(&oxu->lock, flags);
3558	switch (typeReq) {
3559	case ClearHubFeature:
3560		switch (wValue) {
3561		case C_HUB_LOCAL_POWER:
3562		case C_HUB_OVER_CURRENT:
3563			/* no hub-wide feature/status flags */
3564			break;
3565		default:
3566			goto error;
3567		}
3568		break;
3569	case ClearPortFeature:
3570		if (!wIndex || wIndex > ports)
3571			goto error;
3572		wIndex--;
3573		temp = readl(status_reg);
3574
3575		/*
3576		 * Even if OWNER is set, so the port is owned by the
3577		 * companion controller, hub_wq needs to be able to clear
3578		 * the port-change status bits (especially
3579		 * USB_PORT_STAT_C_CONNECTION).
3580		 */
3581
3582		switch (wValue) {
3583		case USB_PORT_FEAT_ENABLE:
3584			writel(temp & ~PORT_PE, status_reg);
3585			break;
3586		case USB_PORT_FEAT_C_ENABLE:
3587			writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg);
3588			break;
3589		case USB_PORT_FEAT_SUSPEND:
3590			if (temp & PORT_RESET)
3591				goto error;
3592			if (temp & PORT_SUSPEND) {
3593				if ((temp & PORT_PE) == 0)
3594					goto error;
3595				/* resume signaling for 20 msec */
3596				temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS);
3597				writel(temp | PORT_RESUME, status_reg);
3598				oxu->reset_done[wIndex] = jiffies
3599						+ msecs_to_jiffies(20);
3600			}
3601			break;
3602		case USB_PORT_FEAT_C_SUSPEND:
3603			/* we auto-clear this feature */
3604			break;
3605		case USB_PORT_FEAT_POWER:
3606			if (HCS_PPC(oxu->hcs_params))
3607				writel(temp & ~(PORT_RWC_BITS | PORT_POWER),
3608					  status_reg);
3609			break;
3610		case USB_PORT_FEAT_C_CONNECTION:
3611			writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg);
3612			break;
3613		case USB_PORT_FEAT_C_OVER_CURRENT:
3614			writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg);
3615			break;
3616		case USB_PORT_FEAT_C_RESET:
3617			/* GetPortStatus clears reset */
3618			break;
3619		default:
3620			goto error;
3621		}
3622		readl(&oxu->regs->command);	/* unblock posted write */
3623		break;
3624	case GetHubDescriptor:
3625		ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *)
3626			buf);
3627		break;
3628	case GetHubStatus:
3629		/* no hub-wide feature/status flags */
3630		memset(buf, 0, 4);
3631		break;
3632	case GetPortStatus:
3633		if (!wIndex || wIndex > ports)
3634			goto error;
3635		wIndex--;
3636		status = 0;
3637		temp = readl(status_reg);
3638
3639		/* wPortChange bits */
3640		if (temp & PORT_CSC)
3641			status |= USB_PORT_STAT_C_CONNECTION << 16;
3642		if (temp & PORT_PEC)
3643			status |= USB_PORT_STAT_C_ENABLE << 16;
3644		if ((temp & PORT_OCC) && !ignore_oc)
3645			status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3646
3647		/* whoever resumes must GetPortStatus to complete it!! */
3648		if (temp & PORT_RESUME) {
3649
3650			/* Remote Wakeup received? */
3651			if (!oxu->reset_done[wIndex]) {
3652				/* resume signaling for 20 msec */
3653				oxu->reset_done[wIndex] = jiffies
3654						+ msecs_to_jiffies(20);
3655				/* check the port again */
3656				mod_timer(&oxu_to_hcd(oxu)->rh_timer,
3657						oxu->reset_done[wIndex]);
3658			}
3659
3660			/* resume completed? */
3661			else if (time_after_eq(jiffies,
3662					oxu->reset_done[wIndex])) {
3663				status |= USB_PORT_STAT_C_SUSPEND << 16;
3664				oxu->reset_done[wIndex] = 0;
3665
3666				/* stop resume signaling */
3667				temp = readl(status_reg);
3668				writel(temp & ~(PORT_RWC_BITS | PORT_RESUME),
3669					status_reg);
3670				retval = handshake(oxu, status_reg,
3671					   PORT_RESUME, 0, 2000 /* 2msec */);
3672				if (retval != 0) {
3673					oxu_err(oxu,
3674						"port %d resume error %d\n",
3675						wIndex + 1, retval);
3676					goto error;
3677				}
3678				temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
3679			}
3680		}
3681
3682		/* whoever resets must GetPortStatus to complete it!! */
3683		if ((temp & PORT_RESET)
3684				&& time_after_eq(jiffies,
3685					oxu->reset_done[wIndex])) {
3686			status |= USB_PORT_STAT_C_RESET << 16;
3687			oxu->reset_done[wIndex] = 0;
3688
3689			/* force reset to complete */
3690			writel(temp & ~(PORT_RWC_BITS | PORT_RESET),
3691					status_reg);
3692			/* REVISIT:  some hardware needs 550+ usec to clear
3693			 * this bit; seems too long to spin routinely...
3694			 */
3695			retval = handshake(oxu, status_reg,
3696					PORT_RESET, 0, 750);
3697			if (retval != 0) {
3698				oxu_err(oxu, "port %d reset error %d\n",
3699					wIndex + 1, retval);
3700				goto error;
3701			}
3702
3703			/* see what we found out */
3704			temp = check_reset_complete(oxu, wIndex, status_reg,
3705					readl(status_reg));
3706		}
3707
3708		/* transfer dedicated ports to the companion hc */
3709		if ((temp & PORT_CONNECT) &&
3710				test_bit(wIndex, &oxu->companion_ports)) {
3711			temp &= ~PORT_RWC_BITS;
3712			temp |= PORT_OWNER;
3713			writel(temp, status_reg);
3714			oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1);
3715			temp = readl(status_reg);
3716		}
3717
3718		/*
3719		 * Even if OWNER is set, there's no harm letting hub_wq
3720		 * see the wPortStatus values (they should all be 0 except
3721		 * for PORT_POWER anyway).
3722		 */
3723
3724		if (temp & PORT_CONNECT) {
3725			status |= USB_PORT_STAT_CONNECTION;
3726			/* status may be from integrated TT */
3727			status |= oxu_port_speed(oxu, temp);
3728		}
3729		if (temp & PORT_PE)
3730			status |= USB_PORT_STAT_ENABLE;
3731		if (temp & (PORT_SUSPEND|PORT_RESUME))
3732			status |= USB_PORT_STAT_SUSPEND;
3733		if (temp & PORT_OC)
3734			status |= USB_PORT_STAT_OVERCURRENT;
3735		if (temp & PORT_RESET)
3736			status |= USB_PORT_STAT_RESET;
3737		if (temp & PORT_POWER)
3738			status |= USB_PORT_STAT_POWER;
3739
3740#ifndef	OXU_VERBOSE_DEBUG
3741	if (status & ~0xffff)	/* only if wPortChange is interesting */
3742#endif
3743		dbg_port(oxu, "GetStatus", wIndex + 1, temp);
3744		put_unaligned(cpu_to_le32(status), (__le32 *) buf);
3745		break;
3746	case SetHubFeature:
3747		switch (wValue) {
3748		case C_HUB_LOCAL_POWER:
3749		case C_HUB_OVER_CURRENT:
3750			/* no hub-wide feature/status flags */
3751			break;
3752		default:
3753			goto error;
3754		}
3755		break;
3756	case SetPortFeature:
3757		selector = wIndex >> 8;
3758		wIndex &= 0xff;
3759		if (!wIndex || wIndex > ports)
3760			goto error;
3761		wIndex--;
3762		temp = readl(status_reg);
3763		if (temp & PORT_OWNER)
3764			break;
3765
3766		temp &= ~PORT_RWC_BITS;
3767		switch (wValue) {
3768		case USB_PORT_FEAT_SUSPEND:
3769			if ((temp & PORT_PE) == 0
3770					|| (temp & PORT_RESET) != 0)
3771				goto error;
3772			if (device_may_wakeup(&hcd->self.root_hub->dev))
3773				temp |= PORT_WAKE_BITS;
3774			writel(temp | PORT_SUSPEND, status_reg);
3775			break;
3776		case USB_PORT_FEAT_POWER:
3777			if (HCS_PPC(oxu->hcs_params))
3778				writel(temp | PORT_POWER, status_reg);
3779			break;
3780		case USB_PORT_FEAT_RESET:
3781			if (temp & PORT_RESUME)
3782				goto error;
3783			/* line status bits may report this as low speed,
3784			 * which can be fine if this root hub has a
3785			 * transaction translator built in.
3786			 */
3787			oxu_vdbg(oxu, "port %d reset\n", wIndex + 1);
3788			temp |= PORT_RESET;
3789			temp &= ~PORT_PE;
3790
3791			/*
3792			 * caller must wait, then call GetPortStatus
3793			 * usb 2.0 spec says 50 ms resets on root
3794			 */
3795			oxu->reset_done[wIndex] = jiffies
3796					+ msecs_to_jiffies(50);
3797			writel(temp, status_reg);
3798			break;
3799
3800		/* For downstream facing ports (these):  one hub port is put
3801		 * into test mode according to USB2 11.24.2.13, then the hub
3802		 * must be reset (which for root hub now means rmmod+modprobe,
3803		 * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
3804		 * about the EHCI-specific stuff.
3805		 */
3806		case USB_PORT_FEAT_TEST:
3807			if (!selector || selector > 5)
3808				goto error;
3809			ehci_quiesce(oxu);
3810			ehci_halt(oxu);
3811			temp |= selector << 16;
3812			writel(temp, status_reg);
3813			break;
3814
3815		default:
3816			goto error;
3817		}
3818		readl(&oxu->regs->command);	/* unblock posted writes */
3819		break;
3820
3821	default:
3822error:
3823		/* "stall" on error */
3824		retval = -EPIPE;
3825	}
3826	spin_unlock_irqrestore(&oxu->lock, flags);
3827	return retval;
3828}
3829
3830#ifdef CONFIG_PM
3831
3832static int oxu_bus_suspend(struct usb_hcd *hcd)
3833{
3834	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3835	int port;
3836	int mask;
3837
3838	oxu_dbg(oxu, "suspend root hub\n");
3839
3840	if (time_before(jiffies, oxu->next_statechange))
3841		msleep(5);
3842
3843	port = HCS_N_PORTS(oxu->hcs_params);
3844	spin_lock_irq(&oxu->lock);
3845
3846	/* stop schedules, clean any completed work */
3847	if (HC_IS_RUNNING(hcd->state)) {
3848		ehci_quiesce(oxu);
3849		hcd->state = HC_STATE_QUIESCING;
3850	}
3851	oxu->command = readl(&oxu->regs->command);
3852	if (oxu->reclaim)
3853		oxu->reclaim_ready = 1;
3854	ehci_work(oxu);
3855
3856	/* Unlike other USB host controller types, EHCI doesn't have
3857	 * any notion of "global" or bus-wide suspend.  The driver has
3858	 * to manually suspend all the active unsuspended ports, and
3859	 * then manually resume them in the bus_resume() routine.
3860	 */
3861	oxu->bus_suspended = 0;
3862	while (port--) {
3863		u32 __iomem *reg = &oxu->regs->port_status[port];
3864		u32 t1 = readl(reg) & ~PORT_RWC_BITS;
3865		u32 t2 = t1;
3866
3867		/* keep track of which ports we suspend */
3868		if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) &&
3869				!(t1 & PORT_SUSPEND)) {
3870			t2 |= PORT_SUSPEND;
3871			set_bit(port, &oxu->bus_suspended);
3872		}
3873
3874		/* enable remote wakeup on all ports */
3875		if (device_may_wakeup(&hcd->self.root_hub->dev))
3876			t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E;
3877		else
3878			t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E);
3879
3880		if (t1 != t2) {
3881			oxu_vdbg(oxu, "port %d, %08x -> %08x\n",
3882				port + 1, t1, t2);
3883			writel(t2, reg);
3884		}
3885	}
3886
3887	spin_unlock_irq(&oxu->lock);
3888	/* turn off now-idle HC */
3889	del_timer_sync(&oxu->watchdog);
3890	spin_lock_irq(&oxu->lock);
3891	ehci_halt(oxu);
3892	hcd->state = HC_STATE_SUSPENDED;
3893
3894	/* allow remote wakeup */
3895	mask = INTR_MASK;
3896	if (!device_may_wakeup(&hcd->self.root_hub->dev))
3897		mask &= ~STS_PCD;
3898	writel(mask, &oxu->regs->intr_enable);
3899	readl(&oxu->regs->intr_enable);
3900
3901	oxu->next_statechange = jiffies + msecs_to_jiffies(10);
3902	spin_unlock_irq(&oxu->lock);
3903	return 0;
3904}
3905
3906/* Caller has locked the root hub, and should reset/reinit on error */
3907static int oxu_bus_resume(struct usb_hcd *hcd)
3908{
3909	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3910	u32 temp;
3911	int i;
3912
3913	if (time_before(jiffies, oxu->next_statechange))
3914		msleep(5);
3915	spin_lock_irq(&oxu->lock);
3916
3917	/* Ideally and we've got a real resume here, and no port's power
3918	 * was lost.  (For PCI, that means Vaux was maintained.)  But we
3919	 * could instead be restoring a swsusp snapshot -- so that BIOS was
3920	 * the last user of the controller, not reset/pm hardware keeping
3921	 * state we gave to it.
3922	 */
3923	temp = readl(&oxu->regs->intr_enable);
3924	oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss");
3925
3926	/* at least some APM implementations will try to deliver
3927	 * IRQs right away, so delay them until we're ready.
3928	 */
3929	writel(0, &oxu->regs->intr_enable);
3930
3931	/* re-init operational registers */
3932	writel(0, &oxu->regs->segment);
3933	writel(oxu->periodic_dma, &oxu->regs->frame_list);
3934	writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3935
3936	/* restore CMD_RUN, framelist size, and irq threshold */
3937	writel(oxu->command, &oxu->regs->command);
3938
3939	/* Some controller/firmware combinations need a delay during which
3940	 * they set up the port statuses.  See Bugzilla #8190. */
3941	mdelay(8);
3942
3943	/* manually resume the ports we suspended during bus_suspend() */
3944	i = HCS_N_PORTS(oxu->hcs_params);
3945	while (i--) {
3946		temp = readl(&oxu->regs->port_status[i]);
3947		temp &= ~(PORT_RWC_BITS
3948			| PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E);
3949		if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3950			oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
3951			temp |= PORT_RESUME;
3952		}
3953		writel(temp, &oxu->regs->port_status[i]);
3954	}
3955	i = HCS_N_PORTS(oxu->hcs_params);
3956	mdelay(20);
3957	while (i--) {
3958		temp = readl(&oxu->regs->port_status[i]);
3959		if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3960			temp &= ~(PORT_RWC_BITS | PORT_RESUME);
3961			writel(temp, &oxu->regs->port_status[i]);
3962			oxu_vdbg(oxu, "resumed port %d\n", i + 1);
3963		}
3964	}
3965	(void) readl(&oxu->regs->command);
3966
3967	/* maybe re-activate the schedule(s) */
3968	temp = 0;
3969	if (oxu->async->qh_next.qh)
3970		temp |= CMD_ASE;
3971	if (oxu->periodic_sched)
3972		temp |= CMD_PSE;
3973	if (temp) {
3974		oxu->command |= temp;
3975		writel(oxu->command, &oxu->regs->command);
3976	}
3977
3978	oxu->next_statechange = jiffies + msecs_to_jiffies(5);
3979	hcd->state = HC_STATE_RUNNING;
3980
3981	/* Now we can safely re-enable irqs */
3982	writel(INTR_MASK, &oxu->regs->intr_enable);
3983
3984	spin_unlock_irq(&oxu->lock);
3985	return 0;
3986}
3987
3988#else
3989
3990static int oxu_bus_suspend(struct usb_hcd *hcd)
3991{
3992	return 0;
3993}
3994
3995static int oxu_bus_resume(struct usb_hcd *hcd)
3996{
3997	return 0;
3998}
3999
4000#endif	/* CONFIG_PM */
4001
4002static const struct hc_driver oxu_hc_driver = {
4003	.description =		"oxu210hp_hcd",
4004	.product_desc =		"oxu210hp HCD",
4005	.hcd_priv_size =	sizeof(struct oxu_hcd),
4006
4007	/*
4008	 * Generic hardware linkage
4009	 */
4010	.irq =			oxu_irq,
4011	.flags =		HCD_MEMORY | HCD_USB2,
4012
4013	/*
4014	 * Basic lifecycle operations
4015	 */
4016	.reset =		oxu_reset,
4017	.start =		oxu_run,
4018	.stop =			oxu_stop,
4019	.shutdown =		oxu_shutdown,
4020
4021	/*
4022	 * Managing i/o requests and associated device resources
4023	 */
4024	.urb_enqueue =		oxu_urb_enqueue,
4025	.urb_dequeue =		oxu_urb_dequeue,
4026	.endpoint_disable =	oxu_endpoint_disable,
4027
4028	/*
4029	 * Scheduling support
4030	 */
4031	.get_frame_number =	oxu_get_frame,
4032
4033	/*
4034	 * Root hub support
4035	 */
4036	.hub_status_data =	oxu_hub_status_data,
4037	.hub_control =		oxu_hub_control,
4038	.bus_suspend =		oxu_bus_suspend,
4039	.bus_resume =		oxu_bus_resume,
4040};
4041
4042/*
4043 * Module stuff
4044 */
4045
4046static void oxu_configuration(struct platform_device *pdev, void __iomem *base)
4047{
4048	u32 tmp;
4049
4050	/* Initialize top level registers.
4051	 * First write ever
4052	 */
4053	oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
4054	oxu_writel(base, OXU_SOFTRESET, OXU_SRESET);
4055	oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
4056
4057	tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL);
4058	oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040);
4059
4060	oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN |
4061					OXU_COMPARATOR | OXU_ASO_OP);
4062
4063	tmp = oxu_readl(base, OXU_CLKCTRL_SET);
4064	oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN);
4065
4066	/* Clear all top interrupt enable */
4067	oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff);
4068
4069	/* Clear all top interrupt status */
4070	oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff);
4071
4072	/* Enable all needed top interrupt except OTG SPH core */
4073	oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI);
4074}
4075
4076static int oxu_verify_id(struct platform_device *pdev, void __iomem *base)
4077{
4078	u32 id;
4079	static const char * const bo[] = {
4080		"reserved",
4081		"128-pin LQFP",
4082		"84-pin TFBGA",
4083		"reserved",
4084	};
4085
4086	/* Read controller signature register to find a match */
4087	id = oxu_readl(base, OXU_DEVICEID);
4088	dev_info(&pdev->dev, "device ID %x\n", id);
4089	if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT))
4090		return -1;
4091
4092	dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n",
4093		id >> OXU_REV_SHIFT,
4094		bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT],
4095		(id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT,
4096		(id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT);
4097
4098	return 0;
4099}
4100
4101static const struct hc_driver oxu_hc_driver;
4102static struct usb_hcd *oxu_create(struct platform_device *pdev,
4103				unsigned long memstart, unsigned long memlen,
4104				void __iomem *base, int irq, int otg)
4105{
4106	struct device *dev = &pdev->dev;
4107
4108	struct usb_hcd *hcd;
4109	struct oxu_hcd *oxu;
4110	int ret;
4111
4112	/* Set endian mode and host mode */
4113	oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET),
4114				OXU_USBMODE,
4115				OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS);
4116
4117	hcd = usb_create_hcd(&oxu_hc_driver, dev,
4118				otg ? "oxu210hp_otg" : "oxu210hp_sph");
4119	if (!hcd)
4120		return ERR_PTR(-ENOMEM);
4121
4122	hcd->rsrc_start = memstart;
4123	hcd->rsrc_len = memlen;
4124	hcd->regs = base;
4125	hcd->irq = irq;
4126	hcd->state = HC_STATE_HALT;
4127
4128	oxu = hcd_to_oxu(hcd);
4129	oxu->is_otg = otg;
4130
4131	ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
4132	if (ret < 0) {
4133		usb_put_hcd(hcd);
4134		return ERR_PTR(ret);
4135	}
4136
4137	device_wakeup_enable(hcd->self.controller);
4138	return hcd;
4139}
4140
4141static int oxu_init(struct platform_device *pdev,
4142				unsigned long memstart, unsigned long memlen,
4143				void __iomem *base, int irq)
4144{
4145	struct oxu_info *info = platform_get_drvdata(pdev);
4146	struct usb_hcd *hcd;
4147	int ret;
4148
4149	/* First time configuration at start up */
4150	oxu_configuration(pdev, base);
4151
4152	ret = oxu_verify_id(pdev, base);
4153	if (ret) {
4154		dev_err(&pdev->dev, "no devices found!\n");
4155		return -ENODEV;
4156	}
4157
4158	/* Create the OTG controller */
4159	hcd = oxu_create(pdev, memstart, memlen, base, irq, 1);
4160	if (IS_ERR(hcd)) {
4161		dev_err(&pdev->dev, "cannot create OTG controller!\n");
4162		ret = PTR_ERR(hcd);
4163		goto error_create_otg;
4164	}
4165	info->hcd[0] = hcd;
4166
4167	/* Create the SPH host controller */
4168	hcd = oxu_create(pdev, memstart, memlen, base, irq, 0);
4169	if (IS_ERR(hcd)) {
4170		dev_err(&pdev->dev, "cannot create SPH controller!\n");
4171		ret = PTR_ERR(hcd);
4172		goto error_create_sph;
4173	}
4174	info->hcd[1] = hcd;
4175
4176	oxu_writel(base, OXU_CHIPIRQEN_SET,
4177		oxu_readl(base, OXU_CHIPIRQEN_SET) | 3);
4178
4179	return 0;
4180
4181error_create_sph:
4182	usb_remove_hcd(info->hcd[0]);
4183	usb_put_hcd(info->hcd[0]);
4184
4185error_create_otg:
4186	return ret;
4187}
4188
4189static int oxu_drv_probe(struct platform_device *pdev)
4190{
4191	struct resource *res;
4192	void __iomem *base;
4193	unsigned long memstart, memlen;
4194	int irq, ret;
4195	struct oxu_info *info;
4196
4197	if (usb_disabled())
4198		return -ENODEV;
4199
4200	/*
4201	 * Get the platform resources
4202	 */
4203	irq = platform_get_irq(pdev, 0);
4204	if (irq < 0)
4205		return irq;
 
 
 
 
4206	dev_dbg(&pdev->dev, "IRQ resource %d\n", irq);
4207
4208	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
4209	if (IS_ERR(base)) {
4210		ret = PTR_ERR(base);
4211		goto error;
 
4212	}
4213	memstart = res->start;
4214	memlen = resource_size(res);
 
 
 
 
 
 
4215
4216	ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING);
4217	if (ret) {
4218		dev_err(&pdev->dev, "error setting irq type\n");
4219		ret = -EFAULT;
4220		goto error;
 
 
 
 
 
 
 
4221	}
4222
4223	/* Allocate a driver data struct to hold useful info for both
4224	 * SPH & OTG devices
4225	 */
4226	info = devm_kzalloc(&pdev->dev, sizeof(struct oxu_info), GFP_KERNEL);
4227	if (!info) {
 
4228		ret = -EFAULT;
4229		goto error;
4230	}
4231	platform_set_drvdata(pdev, info);
4232
4233	ret = oxu_init(pdev, memstart, memlen, base, irq);
4234	if (ret < 0) {
4235		dev_dbg(&pdev->dev, "cannot init USB devices\n");
4236		goto error;
4237	}
4238
4239	dev_info(&pdev->dev, "devices enabled and running\n");
4240	platform_set_drvdata(pdev, info);
4241
4242	return 0;
4243
4244error:
 
 
 
 
 
 
 
 
 
 
4245	dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret);
4246	return ret;
4247}
4248
4249static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd)
4250{
4251	usb_remove_hcd(hcd);
4252	usb_put_hcd(hcd);
4253}
4254
4255static void oxu_drv_remove(struct platform_device *pdev)
4256{
4257	struct oxu_info *info = platform_get_drvdata(pdev);
 
 
 
4258
4259	oxu_remove(pdev, info->hcd[0]);
4260	oxu_remove(pdev, info->hcd[1]);
 
 
 
 
 
 
 
 
4261}
4262
4263static void oxu_drv_shutdown(struct platform_device *pdev)
4264{
4265	oxu_drv_remove(pdev);
4266}
4267
4268#if 0
4269/* FIXME: TODO */
4270static int oxu_drv_suspend(struct device *dev)
4271{
4272	struct platform_device *pdev = to_platform_device(dev);
4273	struct usb_hcd *hcd = dev_get_drvdata(dev);
4274
4275	return 0;
4276}
4277
4278static int oxu_drv_resume(struct device *dev)
4279{
4280	struct platform_device *pdev = to_platform_device(dev);
4281	struct usb_hcd *hcd = dev_get_drvdata(dev);
4282
4283	return 0;
4284}
4285#else
4286#define oxu_drv_suspend	NULL
4287#define oxu_drv_resume	NULL
4288#endif
4289
4290static struct platform_driver oxu_driver = {
4291	.probe		= oxu_drv_probe,
4292	.remove		= oxu_drv_remove,
4293	.shutdown	= oxu_drv_shutdown,
4294	.suspend	= oxu_drv_suspend,
4295	.resume		= oxu_drv_resume,
4296	.driver = {
4297		.name = "oxu210hp-hcd",
4298		.bus = &platform_bus_type
4299	}
4300};
4301
4302module_platform_driver(oxu_driver);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4303
4304MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION);
4305MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
4306MODULE_LICENSE("GPL");