Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2// Copyright (C) 2020 Spreadtrum Communications Inc.
  3
  4#include <linux/clk.h>
  5#include <linux/io.h>
  6#include <linux/iopoll.h>
  7#include <linux/module.h>
  8#include <linux/nvmem-consumer.h>
  9#include <linux/of.h>
 10#include <linux/platform_device.h>
 11#include <linux/slab.h>
 12#include <linux/thermal.h>
 13
 14#define SPRD_THM_CTL			0x0
 15#define SPRD_THM_INT_EN			0x4
 16#define SPRD_THM_INT_STS		0x8
 17#define SPRD_THM_INT_RAW_STS		0xc
 18#define SPRD_THM_DET_PERIOD		0x10
 19#define SPRD_THM_INT_CLR		0x14
 20#define SPRD_THM_INT_CLR_ST		0x18
 21#define SPRD_THM_MON_PERIOD		0x4c
 22#define SPRD_THM_MON_CTL		0x50
 23#define SPRD_THM_INTERNAL_STS1		0x54
 24#define SPRD_THM_RAW_READ_MSK		0x3ff
 25
 26#define SPRD_THM_OFFSET(id)		((id) * 0x4)
 27#define SPRD_THM_TEMP(id)		(SPRD_THM_OFFSET(id) + 0x5c)
 28#define SPRD_THM_THRES(id)		(SPRD_THM_OFFSET(id) + 0x2c)
 29
 30#define SPRD_THM_SEN(id)		BIT((id) + 2)
 31#define SPRD_THM_SEN_OVERHEAT_EN(id)	BIT((id) + 8)
 32#define SPRD_THM_SEN_OVERHEAT_ALARM_EN(id)	BIT((id) + 0)
 33
 34/* bits definitions for register THM_CTL */
 35#define SPRD_THM_SET_RDY_ST		BIT(13)
 36#define SPRD_THM_SET_RDY		BIT(12)
 37#define SPRD_THM_MON_EN			BIT(1)
 38#define SPRD_THM_EN			BIT(0)
 39
 40/* bits definitions for register THM_INT_CTL */
 41#define SPRD_THM_BIT_INT_EN		BIT(26)
 42#define SPRD_THM_OVERHEAT_EN		BIT(25)
 43#define SPRD_THM_OTP_TRIP_SHIFT		10
 44
 45/* bits definitions for register SPRD_THM_INTERNAL_STS1 */
 46#define SPRD_THM_TEMPER_RDY		BIT(0)
 47
 48#define SPRD_THM_DET_PERIOD_DATA	0x800
 49#define SPRD_THM_DET_PERIOD_MASK	GENMASK(19, 0)
 50#define SPRD_THM_MON_MODE		0x7
 51#define SPRD_THM_MON_MODE_MASK		GENMASK(3, 0)
 52#define SPRD_THM_MON_PERIOD_DATA	0x10
 53#define SPRD_THM_MON_PERIOD_MASK	GENMASK(15, 0)
 54#define SPRD_THM_THRES_MASK		GENMASK(19, 0)
 55#define SPRD_THM_INT_CLR_MASK		GENMASK(24, 0)
 56
 57/* thermal sensor calibration parameters */
 58#define SPRD_THM_TEMP_LOW		-40000
 59#define SPRD_THM_TEMP_HIGH		120000
 60#define SPRD_THM_OTP_TEMP		120000
 61#define SPRD_THM_HOT_TEMP		75000
 62#define SPRD_THM_RAW_DATA_LOW		0
 63#define SPRD_THM_RAW_DATA_HIGH		1000
 64#define SPRD_THM_SEN_NUM		8
 65#define SPRD_THM_DT_OFFSET		24
 66#define SPRD_THM_RATION_OFFSET		17
 67#define SPRD_THM_RATION_SIGN		16
 68
 69#define SPRD_THM_RDYST_POLLING_TIME	10
 70#define SPRD_THM_RDYST_TIMEOUT		700
 71#define SPRD_THM_TEMP_READY_POLL_TIME	10000
 72#define SPRD_THM_TEMP_READY_TIMEOUT	600000
 73#define SPRD_THM_MAX_SENSOR		8
 74
 75struct sprd_thermal_sensor {
 76	struct thermal_zone_device *tzd;
 77	struct sprd_thermal_data *data;
 78	struct device *dev;
 79	int cal_slope;
 80	int cal_offset;
 81	int id;
 82};
 83
 84struct sprd_thermal_data {
 85	const struct sprd_thm_variant_data *var_data;
 86	struct sprd_thermal_sensor *sensor[SPRD_THM_MAX_SENSOR];
 87	struct clk *clk;
 88	void __iomem *base;
 89	u32 ratio_off;
 90	int ratio_sign;
 91	int nr_sensors;
 92};
 93
 94/*
 95 * The conversion between ADC and temperature is based on linear relationship,
 96 * and use idea_k to specify the slope and ideal_b to specify the offset.
 97 *
 98 * Since different Spreadtrum SoCs have different ideal_k and ideal_b,
 99 * we should save ideal_k and ideal_b in the device data structure.
100 */
101struct sprd_thm_variant_data {
102	u32 ideal_k;
103	u32 ideal_b;
104};
105
106static const struct sprd_thm_variant_data ums512_data = {
107	.ideal_k = 262,
108	.ideal_b = 66400,
109};
110
111static inline void sprd_thm_update_bits(void __iomem *reg, u32 mask, u32 val)
112{
113	u32 tmp, orig;
114
115	orig = readl(reg);
116	tmp = orig & ~mask;
117	tmp |= val & mask;
118	writel(tmp, reg);
119}
120
121static int sprd_thm_cal_read(struct device_node *np, const char *cell_id,
122			     u32 *val)
123{
124	struct nvmem_cell *cell;
125	void *buf;
126	size_t len;
127
128	cell = of_nvmem_cell_get(np, cell_id);
129	if (IS_ERR(cell))
130		return PTR_ERR(cell);
131
132	buf = nvmem_cell_read(cell, &len);
133	nvmem_cell_put(cell);
134	if (IS_ERR(buf))
135		return PTR_ERR(buf);
136
137	if (len > sizeof(u32)) {
138		kfree(buf);
139		return -EINVAL;
140	}
141
142	memcpy(val, buf, len);
143
144	kfree(buf);
145	return 0;
146}
147
148static int sprd_thm_sensor_calibration(struct device_node *np,
149				       struct sprd_thermal_data *thm,
150				       struct sprd_thermal_sensor *sen)
151{
152	int ret;
153	/*
154	 * According to thermal datasheet, the default calibration offset is 64,
155	 * and the default ratio is 1000.
156	 */
157	int dt_offset = 64, ratio = 1000;
158
159	ret = sprd_thm_cal_read(np, "sen_delta_cal", &dt_offset);
160	if (ret)
161		return ret;
162
163	ratio += thm->ratio_sign * thm->ratio_off;
164
165	/*
166	 * According to the ideal slope K and ideal offset B, combined with
167	 * calibration value of thermal from efuse, then calibrate the real
168	 * slope k and offset b:
169	 * k_cal = (k * ratio) / 1000.
170	 * b_cal = b + (dt_offset - 64) * 500.
171	 */
172	sen->cal_slope = (thm->var_data->ideal_k * ratio) / 1000;
173	sen->cal_offset = thm->var_data->ideal_b + (dt_offset - 128) * 250;
174
175	return 0;
176}
177
178static int sprd_thm_rawdata_to_temp(struct sprd_thermal_sensor *sen,
179				    u32 rawdata)
180{
181	clamp(rawdata, (u32)SPRD_THM_RAW_DATA_LOW, (u32)SPRD_THM_RAW_DATA_HIGH);
182
183	/*
184	 * According to the thermal datasheet, the formula of converting
185	 * adc value to the temperature value should be:
186	 * T_final = k_cal * x - b_cal.
187	 */
188	return sen->cal_slope * rawdata - sen->cal_offset;
189}
190
191static int sprd_thm_temp_to_rawdata(int temp, struct sprd_thermal_sensor *sen)
192{
193	u32 val;
194
195	clamp(temp, (int)SPRD_THM_TEMP_LOW, (int)SPRD_THM_TEMP_HIGH);
196
197	/*
198	 * According to the thermal datasheet, the formula of converting
199	 * adc value to the temperature value should be:
200	 * T_final = k_cal * x - b_cal.
201	 */
202	val = (temp + sen->cal_offset) / sen->cal_slope;
203
204	return clamp(val, val, (u32)(SPRD_THM_RAW_DATA_HIGH - 1));
205}
206
207static int sprd_thm_read_temp(struct thermal_zone_device *tz, int *temp)
208{
209	struct sprd_thermal_sensor *sen = thermal_zone_device_priv(tz);
210	u32 data;
211
212	data = readl(sen->data->base + SPRD_THM_TEMP(sen->id)) &
213		SPRD_THM_RAW_READ_MSK;
214
215	*temp = sprd_thm_rawdata_to_temp(sen, data);
216
217	return 0;
218}
219
220static const struct thermal_zone_device_ops sprd_thm_ops = {
221	.get_temp = sprd_thm_read_temp,
222};
223
224static int sprd_thm_poll_ready_status(struct sprd_thermal_data *thm)
225{
226	u32 val;
227	int ret;
228
229	/*
230	 * Wait for thermal ready status before configuring thermal parameters.
231	 */
232	ret = readl_poll_timeout(thm->base + SPRD_THM_CTL, val,
233				 !(val & SPRD_THM_SET_RDY_ST),
234				 SPRD_THM_RDYST_POLLING_TIME,
235				 SPRD_THM_RDYST_TIMEOUT);
236	if (ret)
237		return ret;
238
239	sprd_thm_update_bits(thm->base + SPRD_THM_CTL, SPRD_THM_MON_EN,
240			     SPRD_THM_MON_EN);
241	sprd_thm_update_bits(thm->base + SPRD_THM_CTL, SPRD_THM_SET_RDY,
242			     SPRD_THM_SET_RDY);
243	return 0;
244}
245
246static int sprd_thm_wait_temp_ready(struct sprd_thermal_data *thm)
247{
248	u32 val;
249
250	/* Wait for first temperature data ready before reading temperature */
251	return readl_poll_timeout(thm->base + SPRD_THM_INTERNAL_STS1, val,
252				  !(val & SPRD_THM_TEMPER_RDY),
253				  SPRD_THM_TEMP_READY_POLL_TIME,
254				  SPRD_THM_TEMP_READY_TIMEOUT);
255}
256
257static int sprd_thm_set_ready(struct sprd_thermal_data *thm)
258{
259	int ret;
260
261	ret = sprd_thm_poll_ready_status(thm);
262	if (ret)
263		return ret;
264
265	/*
266	 * Clear interrupt status, enable thermal interrupt and enable thermal.
267	 *
268	 * The SPRD thermal controller integrates a hardware interrupt signal,
269	 * which means if the temperature is overheat, it will generate an
270	 * interrupt and notify the event to PMIC automatically to shutdown the
271	 * system. So here we should enable the interrupt bits, though we have
272	 * not registered an irq handler.
273	 */
274	writel(SPRD_THM_INT_CLR_MASK, thm->base + SPRD_THM_INT_CLR);
275	sprd_thm_update_bits(thm->base + SPRD_THM_INT_EN,
276			     SPRD_THM_BIT_INT_EN, SPRD_THM_BIT_INT_EN);
277	sprd_thm_update_bits(thm->base + SPRD_THM_CTL,
278			     SPRD_THM_EN, SPRD_THM_EN);
279	return 0;
280}
281
282static void sprd_thm_sensor_init(struct sprd_thermal_data *thm,
283				 struct sprd_thermal_sensor *sen)
284{
285	u32 otp_rawdata, hot_rawdata;
286
287	otp_rawdata = sprd_thm_temp_to_rawdata(SPRD_THM_OTP_TEMP, sen);
288	hot_rawdata = sprd_thm_temp_to_rawdata(SPRD_THM_HOT_TEMP, sen);
289
290	/* Enable the sensor' overheat temperature protection interrupt */
291	sprd_thm_update_bits(thm->base + SPRD_THM_INT_EN,
292			     SPRD_THM_SEN_OVERHEAT_ALARM_EN(sen->id),
293			     SPRD_THM_SEN_OVERHEAT_ALARM_EN(sen->id));
294
295	/* Set the sensor' overheat and hot threshold temperature */
296	sprd_thm_update_bits(thm->base + SPRD_THM_THRES(sen->id),
297			     SPRD_THM_THRES_MASK,
298			     (otp_rawdata << SPRD_THM_OTP_TRIP_SHIFT) |
299			     hot_rawdata);
300
301	/* Enable the corresponding sensor */
302	sprd_thm_update_bits(thm->base + SPRD_THM_CTL, SPRD_THM_SEN(sen->id),
303			     SPRD_THM_SEN(sen->id));
304}
305
306static void sprd_thm_para_config(struct sprd_thermal_data *thm)
307{
308	/* Set the period of two valid temperature detection action */
309	sprd_thm_update_bits(thm->base + SPRD_THM_DET_PERIOD,
310			     SPRD_THM_DET_PERIOD_MASK, SPRD_THM_DET_PERIOD);
311
312	/* Set the sensors' monitor mode */
313	sprd_thm_update_bits(thm->base + SPRD_THM_MON_CTL,
314			     SPRD_THM_MON_MODE_MASK, SPRD_THM_MON_MODE);
315
316	/* Set the sensors' monitor period */
317	sprd_thm_update_bits(thm->base + SPRD_THM_MON_PERIOD,
318			     SPRD_THM_MON_PERIOD_MASK, SPRD_THM_MON_PERIOD);
319}
320
321static void sprd_thm_toggle_sensor(struct sprd_thermal_sensor *sen, bool on)
322{
323	struct thermal_zone_device *tzd = sen->tzd;
324
325	if (on)
326		thermal_zone_device_enable(tzd);
327	else
328		thermal_zone_device_disable(tzd);
329}
330
331static int sprd_thm_probe(struct platform_device *pdev)
332{
333	struct device_node *np = pdev->dev.of_node;
334	struct device_node *sen_child;
335	struct sprd_thermal_data *thm;
336	struct sprd_thermal_sensor *sen;
337	const struct sprd_thm_variant_data *pdata;
338	int ret, i;
339	u32 val;
340
341	pdata = of_device_get_match_data(&pdev->dev);
342	if (!pdata) {
343		dev_err(&pdev->dev, "No matching driver data found\n");
344		return -EINVAL;
345	}
346
347	thm = devm_kzalloc(&pdev->dev, sizeof(*thm), GFP_KERNEL);
348	if (!thm)
349		return -ENOMEM;
350
351	thm->var_data = pdata;
352	thm->base = devm_platform_ioremap_resource(pdev, 0);
353	if (IS_ERR(thm->base))
354		return PTR_ERR(thm->base);
355
356	thm->nr_sensors = of_get_child_count(np);
357	if (thm->nr_sensors == 0 || thm->nr_sensors > SPRD_THM_MAX_SENSOR) {
358		dev_err(&pdev->dev, "incorrect sensor count\n");
359		return -EINVAL;
360	}
361
362	thm->clk = devm_clk_get_enabled(&pdev->dev, "enable");
363	if (IS_ERR(thm->clk)) {
364		dev_err(&pdev->dev, "failed to get enable clock\n");
365		return PTR_ERR(thm->clk);
366	}
367
368	sprd_thm_para_config(thm);
369
370	ret = sprd_thm_cal_read(np, "thm_sign_cal", &val);
371	if (ret)
372		return ret;
373
374	if (val > 0)
375		thm->ratio_sign = -1;
376	else
377		thm->ratio_sign = 1;
378
379	ret = sprd_thm_cal_read(np, "thm_ratio_cal", &thm->ratio_off);
380	if (ret)
381		return ret;
382
383	for_each_child_of_node(np, sen_child) {
384		sen = devm_kzalloc(&pdev->dev, sizeof(*sen), GFP_KERNEL);
385		if (!sen) {
386			ret = -ENOMEM;
387			goto of_put;
388		}
389
390		sen->data = thm;
391		sen->dev = &pdev->dev;
392
393		ret = of_property_read_u32(sen_child, "reg", &sen->id);
394		if (ret) {
395			dev_err(&pdev->dev, "get sensor reg failed");
396			goto of_put;
397		}
398
399		ret = sprd_thm_sensor_calibration(sen_child, thm, sen);
400		if (ret) {
401			dev_err(&pdev->dev, "efuse cal analysis failed");
402			goto of_put;
403		}
404
405		sprd_thm_sensor_init(thm, sen);
406
407		sen->tzd = devm_thermal_of_zone_register(sen->dev,
408							 sen->id,
409							 sen,
410							 &sprd_thm_ops);
411		if (IS_ERR(sen->tzd)) {
412			dev_err(&pdev->dev, "register thermal zone failed %d\n",
413				sen->id);
414			ret = PTR_ERR(sen->tzd);
415			goto of_put;
416		}
417
418		thm->sensor[sen->id] = sen;
419	}
420	/* sen_child set to NULL at this point */
421
422	ret = sprd_thm_set_ready(thm);
423	if (ret)
424		goto of_put;
425
426	ret = sprd_thm_wait_temp_ready(thm);
427	if (ret)
428		goto of_put;
429
430	for (i = 0; i < thm->nr_sensors; i++)
431		sprd_thm_toggle_sensor(thm->sensor[i], true);
432
433	platform_set_drvdata(pdev, thm);
434	return 0;
435
436of_put:
437	of_node_put(sen_child);
438	return ret;
439}
440
441#ifdef CONFIG_PM_SLEEP
442static void sprd_thm_hw_suspend(struct sprd_thermal_data *thm)
443{
444	int i;
445
446	for (i = 0; i < thm->nr_sensors; i++) {
447		sprd_thm_update_bits(thm->base + SPRD_THM_CTL,
448				     SPRD_THM_SEN(thm->sensor[i]->id), 0);
449	}
450
451	sprd_thm_update_bits(thm->base + SPRD_THM_CTL,
452			     SPRD_THM_EN, 0x0);
453}
454
455static int sprd_thm_suspend(struct device *dev)
456{
457	struct sprd_thermal_data *thm = dev_get_drvdata(dev);
458	int i;
459
460	for (i = 0; i < thm->nr_sensors; i++)
461		sprd_thm_toggle_sensor(thm->sensor[i], false);
462
463	sprd_thm_hw_suspend(thm);
464	clk_disable_unprepare(thm->clk);
465
466	return 0;
467}
468
469static int sprd_thm_hw_resume(struct sprd_thermal_data *thm)
470{
471	int ret, i;
472
473	for (i = 0; i < thm->nr_sensors; i++) {
474		sprd_thm_update_bits(thm->base + SPRD_THM_CTL,
475				     SPRD_THM_SEN(thm->sensor[i]->id),
476				     SPRD_THM_SEN(thm->sensor[i]->id));
477	}
478
479	ret = sprd_thm_poll_ready_status(thm);
480	if (ret)
481		return ret;
482
483	writel(SPRD_THM_INT_CLR_MASK, thm->base + SPRD_THM_INT_CLR);
484	sprd_thm_update_bits(thm->base + SPRD_THM_CTL,
485			     SPRD_THM_EN, SPRD_THM_EN);
486	return sprd_thm_wait_temp_ready(thm);
487}
488
489static int sprd_thm_resume(struct device *dev)
490{
491	struct sprd_thermal_data *thm = dev_get_drvdata(dev);
492	int ret, i;
493
494	ret = clk_prepare_enable(thm->clk);
495	if (ret)
496		return ret;
497
498	ret = sprd_thm_hw_resume(thm);
499	if (ret)
500		goto disable_clk;
501
502	for (i = 0; i < thm->nr_sensors; i++)
503		sprd_thm_toggle_sensor(thm->sensor[i], true);
504
505	return 0;
506
507disable_clk:
508	clk_disable_unprepare(thm->clk);
509	return ret;
510}
511#endif
512
513static void sprd_thm_remove(struct platform_device *pdev)
514{
515	struct sprd_thermal_data *thm = platform_get_drvdata(pdev);
516	int i;
517
518	for (i = 0; i < thm->nr_sensors; i++) {
519		sprd_thm_toggle_sensor(thm->sensor[i], false);
520		devm_thermal_of_zone_unregister(&pdev->dev,
521						thm->sensor[i]->tzd);
522	}
523}
524
525static const struct of_device_id sprd_thermal_of_match[] = {
526	{ .compatible = "sprd,ums512-thermal", .data = &ums512_data },
527	{ },
528};
529MODULE_DEVICE_TABLE(of, sprd_thermal_of_match);
530
531static const struct dev_pm_ops sprd_thermal_pm_ops = {
532	SET_SYSTEM_SLEEP_PM_OPS(sprd_thm_suspend, sprd_thm_resume)
533};
534
535static struct platform_driver sprd_thermal_driver = {
536	.probe = sprd_thm_probe,
537	.remove = sprd_thm_remove,
538	.driver = {
539		.name = "sprd-thermal",
540		.pm = &sprd_thermal_pm_ops,
541		.of_match_table = sprd_thermal_of_match,
542	},
543};
544
545module_platform_driver(sprd_thermal_driver);
546
547MODULE_AUTHOR("Freeman Liu <freeman.liu@unisoc.com>");
548MODULE_DESCRIPTION("Spreadtrum thermal driver");
549MODULE_LICENSE("GPL v2");