Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family 
  3 * of PCI-SCSI IO processors.
  4 *
  5 * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
  6 *
  7 * This driver is derived from the Linux sym53c8xx driver.
  8 * Copyright (C) 1998-2000  Gerard Roudier
  9 *
 10 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 
 11 * a port of the FreeBSD ncr driver to Linux-1.2.13.
 12 *
 13 * The original ncr driver has been written for 386bsd and FreeBSD by
 14 *         Wolfgang Stanglmeier        <wolf@cologne.de>
 15 *         Stefan Esser                <se@mi.Uni-Koeln.de>
 16 * Copyright (C) 1994  Wolfgang Stanglmeier
 17 *
 18 * Other major contributions:
 19 *
 20 * NVRAM detection and reading.
 21 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
 22 *
 23 *-----------------------------------------------------------------------------
 24 *
 25 * This program is free software; you can redistribute it and/or modify
 26 * it under the terms of the GNU General Public License as published by
 27 * the Free Software Foundation; either version 2 of the License, or
 28 * (at your option) any later version.
 29 *
 30 * This program is distributed in the hope that it will be useful,
 31 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 32 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 33 * GNU General Public License for more details.
 34 *
 35 * You should have received a copy of the GNU General Public License
 36 * along with this program; if not, write to the Free Software
 37 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 38 */
 39
 40#include "sym_glue.h"
 41
 42/*
 43 *  Simple power of two buddy-like generic allocator.
 44 *  Provides naturally aligned memory chunks.
 45 *
 46 *  This simple code is not intended to be fast, but to 
 47 *  provide power of 2 aligned memory allocations.
 48 *  Since the SCRIPTS processor only supplies 8 bit arithmetic, 
 49 *  this allocator allows simple and fast address calculations  
 50 *  from the SCRIPTS code. In addition, cache line alignment 
 51 *  is guaranteed for power of 2 cache line size.
 52 *
 53 *  This allocator has been developed for the Linux sym53c8xx  
 54 *  driver, since this O/S does not provide naturally aligned 
 55 *  allocations.
 56 *  It has the advantage of allowing the driver to use private 
 57 *  pages of memory that will be useful if we ever need to deal 
 58 *  with IO MMUs for PCI.
 59 */
 60static void *___sym_malloc(m_pool_p mp, int size)
 61{
 62	int i = 0;
 63	int s = (1 << SYM_MEM_SHIFT);
 64	int j;
 65	void *a;
 66	m_link_p h = mp->h;
 67
 68	if (size > SYM_MEM_CLUSTER_SIZE)
 69		return NULL;
 70
 71	while (size > s) {
 72		s <<= 1;
 73		++i;
 74	}
 75
 76	j = i;
 77	while (!h[j].next) {
 78		if (s == SYM_MEM_CLUSTER_SIZE) {
 79			h[j].next = (m_link_p) M_GET_MEM_CLUSTER();
 80			if (h[j].next)
 81				h[j].next->next = NULL;
 82			break;
 83		}
 84		++j;
 85		s <<= 1;
 86	}
 87	a = h[j].next;
 88	if (a) {
 89		h[j].next = h[j].next->next;
 90		while (j > i) {
 91			j -= 1;
 92			s >>= 1;
 93			h[j].next = (m_link_p) (a+s);
 94			h[j].next->next = NULL;
 95		}
 96	}
 97#ifdef DEBUG
 98	printf("___sym_malloc(%d) = %p\n", size, (void *) a);
 99#endif
100	return a;
101}
102
103/*
104 *  Counter-part of the generic allocator.
105 */
106static void ___sym_mfree(m_pool_p mp, void *ptr, int size)
107{
108	int i = 0;
109	int s = (1 << SYM_MEM_SHIFT);
110	m_link_p q;
111	unsigned long a, b;
112	m_link_p h = mp->h;
113
114#ifdef DEBUG
115	printf("___sym_mfree(%p, %d)\n", ptr, size);
116#endif
117
118	if (size > SYM_MEM_CLUSTER_SIZE)
119		return;
120
121	while (size > s) {
122		s <<= 1;
123		++i;
124	}
125
126	a = (unsigned long)ptr;
127
128	while (1) {
129		if (s == SYM_MEM_CLUSTER_SIZE) {
130#ifdef SYM_MEM_FREE_UNUSED
131			M_FREE_MEM_CLUSTER((void *)a);
132#else
133			((m_link_p) a)->next = h[i].next;
134			h[i].next = (m_link_p) a;
135#endif
136			break;
137		}
138		b = a ^ s;
139		q = &h[i];
140		while (q->next && q->next != (m_link_p) b) {
141			q = q->next;
142		}
143		if (!q->next) {
144			((m_link_p) a)->next = h[i].next;
145			h[i].next = (m_link_p) a;
146			break;
147		}
148		q->next = q->next->next;
149		a = a & b;
150		s <<= 1;
151		++i;
152	}
153}
154
155/*
156 *  Verbose and zeroing allocator that wrapps to the generic allocator.
157 */
158static void *__sym_calloc2(m_pool_p mp, int size, char *name, int uflags)
159{
160	void *p;
161
162	p = ___sym_malloc(mp, size);
163
164	if (DEBUG_FLAGS & DEBUG_ALLOC) {
165		printf ("new %-10s[%4d] @%p.\n", name, size, p);
166	}
167
168	if (p)
169		memset(p, 0, size);
170	else if (uflags & SYM_MEM_WARN)
171		printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
172	return p;
173}
174#define __sym_calloc(mp, s, n)	__sym_calloc2(mp, s, n, SYM_MEM_WARN)
175
176/*
177 *  Its counter-part.
178 */
179static void __sym_mfree(m_pool_p mp, void *ptr, int size, char *name)
180{
181	if (DEBUG_FLAGS & DEBUG_ALLOC)
182		printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
183
184	___sym_mfree(mp, ptr, size);
185}
186
187/*
188 *  Default memory pool we donnot need to involve in DMA.
189 *
190 *  With DMA abstraction, we use functions (methods), to 
191 *  distinguish between non DMAable memory and DMAable memory.
192 */
193static void *___mp0_get_mem_cluster(m_pool_p mp)
194{
195	void *m = sym_get_mem_cluster();
196	if (m)
197		++mp->nump;
198	return m;
199}
200
201#ifdef	SYM_MEM_FREE_UNUSED
202static void ___mp0_free_mem_cluster(m_pool_p mp, void *m)
203{
204	sym_free_mem_cluster(m);
205	--mp->nump;
206}
207#else
208#define ___mp0_free_mem_cluster NULL
209#endif
210
211static struct sym_m_pool mp0 = {
212	NULL,
213	___mp0_get_mem_cluster,
214	___mp0_free_mem_cluster
215};
216
217/*
218 *  Methods that maintains DMAable pools according to user allocations.
219 *  New pools are created on the fly when a new pool id is provided.
220 *  They are deleted on the fly when they get emptied.
221 */
222/* Get a memory cluster that matches the DMA constraints of a given pool */
223static void * ___get_dma_mem_cluster(m_pool_p mp)
224{
225	m_vtob_p vbp;
226	void *vaddr;
227
228	vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
229	if (!vbp)
230		goto out_err;
231
232	vaddr = sym_m_get_dma_mem_cluster(mp, vbp);
233	if (vaddr) {
234		int hc = VTOB_HASH_CODE(vaddr);
235		vbp->next = mp->vtob[hc];
236		mp->vtob[hc] = vbp;
237		++mp->nump;
238	}
239	return vaddr;
240out_err:
241	return NULL;
242}
243
244#ifdef	SYM_MEM_FREE_UNUSED
245/* Free a memory cluster and associated resources for DMA */
246static void ___free_dma_mem_cluster(m_pool_p mp, void *m)
247{
248	m_vtob_p *vbpp, vbp;
249	int hc = VTOB_HASH_CODE(m);
250
251	vbpp = &mp->vtob[hc];
252	while (*vbpp && (*vbpp)->vaddr != m)
253		vbpp = &(*vbpp)->next;
254	if (*vbpp) {
255		vbp = *vbpp;
256		*vbpp = (*vbpp)->next;
257		sym_m_free_dma_mem_cluster(mp, vbp);
258		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
259		--mp->nump;
260	}
261}
262#endif
263
264/* Fetch the memory pool for a given pool id (i.e. DMA constraints) */
265static inline m_pool_p ___get_dma_pool(m_pool_ident_t dev_dmat)
266{
267	m_pool_p mp;
268	for (mp = mp0.next;
269		mp && !sym_m_pool_match(mp->dev_dmat, dev_dmat);
270			mp = mp->next);
271	return mp;
272}
273
274/* Create a new memory DMAable pool (when fetch failed) */
275static m_pool_p ___cre_dma_pool(m_pool_ident_t dev_dmat)
276{
277	m_pool_p mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
278	if (mp) {
279		mp->dev_dmat = dev_dmat;
280		mp->get_mem_cluster = ___get_dma_mem_cluster;
281#ifdef	SYM_MEM_FREE_UNUSED
282		mp->free_mem_cluster = ___free_dma_mem_cluster;
283#endif
284		mp->next = mp0.next;
285		mp0.next = mp;
286		return mp;
287	}
288	return NULL;
289}
290
291#ifdef	SYM_MEM_FREE_UNUSED
292/* Destroy a DMAable memory pool (when got emptied) */
293static void ___del_dma_pool(m_pool_p p)
294{
295	m_pool_p *pp = &mp0.next;
296
297	while (*pp && *pp != p)
298		pp = &(*pp)->next;
299	if (*pp) {
300		*pp = (*pp)->next;
301		__sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
302	}
303}
304#endif
305
306/* This lock protects only the memory allocation/free.  */
307static DEFINE_SPINLOCK(sym53c8xx_lock);
308
309/*
310 *  Actual allocator for DMAable memory.
311 */
312void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name)
313{
314	unsigned long flags;
315	m_pool_p mp;
316	void *m = NULL;
317
318	spin_lock_irqsave(&sym53c8xx_lock, flags);
319	mp = ___get_dma_pool(dev_dmat);
320	if (!mp)
321		mp = ___cre_dma_pool(dev_dmat);
322	if (!mp)
323		goto out;
324	m = __sym_calloc(mp, size, name);
325#ifdef	SYM_MEM_FREE_UNUSED
326	if (!mp->nump)
327		___del_dma_pool(mp);
328#endif
329
330 out:
331	spin_unlock_irqrestore(&sym53c8xx_lock, flags);
332	return m;
333}
334
335void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name)
336{
337	unsigned long flags;
338	m_pool_p mp;
339
340	spin_lock_irqsave(&sym53c8xx_lock, flags);
341	mp = ___get_dma_pool(dev_dmat);
342	if (!mp)
343		goto out;
344	__sym_mfree(mp, m, size, name);
345#ifdef	SYM_MEM_FREE_UNUSED
346	if (!mp->nump)
347		___del_dma_pool(mp);
348#endif
349 out:
350	spin_unlock_irqrestore(&sym53c8xx_lock, flags);
351}
352
353/*
354 *  Actual virtual to bus physical address translator 
355 *  for 32 bit addressable DMAable memory.
356 */
357dma_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m)
358{
359	unsigned long flags;
360	m_pool_p mp;
361	int hc = VTOB_HASH_CODE(m);
362	m_vtob_p vp = NULL;
363	void *a = (void *)((unsigned long)m & ~SYM_MEM_CLUSTER_MASK);
364	dma_addr_t b;
365
366	spin_lock_irqsave(&sym53c8xx_lock, flags);
367	mp = ___get_dma_pool(dev_dmat);
368	if (mp) {
369		vp = mp->vtob[hc];
370		while (vp && vp->vaddr != a)
371			vp = vp->next;
372	}
373	if (!vp)
374		panic("sym: VTOBUS FAILED!\n");
375	b = vp->baddr + (m - a);
376	spin_unlock_irqrestore(&sym53c8xx_lock, flags);
377	return b;
378}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family 
  4 * of PCI-SCSI IO processors.
  5 *
  6 * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
  7 *
  8 * This driver is derived from the Linux sym53c8xx driver.
  9 * Copyright (C) 1998-2000  Gerard Roudier
 10 *
 11 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 
 12 * a port of the FreeBSD ncr driver to Linux-1.2.13.
 13 *
 14 * The original ncr driver has been written for 386bsd and FreeBSD by
 15 *         Wolfgang Stanglmeier        <wolf@cologne.de>
 16 *         Stefan Esser                <se@mi.Uni-Koeln.de>
 17 * Copyright (C) 1994  Wolfgang Stanglmeier
 18 *
 19 * Other major contributions:
 20 *
 21 * NVRAM detection and reading.
 22 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
 23 *
 24 *-----------------------------------------------------------------------------
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 25 */
 26
 27#include "sym_glue.h"
 28
 29/*
 30 *  Simple power of two buddy-like generic allocator.
 31 *  Provides naturally aligned memory chunks.
 32 *
 33 *  This simple code is not intended to be fast, but to 
 34 *  provide power of 2 aligned memory allocations.
 35 *  Since the SCRIPTS processor only supplies 8 bit arithmetic, 
 36 *  this allocator allows simple and fast address calculations  
 37 *  from the SCRIPTS code. In addition, cache line alignment 
 38 *  is guaranteed for power of 2 cache line size.
 39 *
 40 *  This allocator has been developed for the Linux sym53c8xx  
 41 *  driver, since this O/S does not provide naturally aligned 
 42 *  allocations.
 43 *  It has the advantage of allowing the driver to use private 
 44 *  pages of memory that will be useful if we ever need to deal 
 45 *  with IO MMUs for PCI.
 46 */
 47static void *___sym_malloc(m_pool_p mp, int size)
 48{
 49	int i = 0;
 50	int s = (1 << SYM_MEM_SHIFT);
 51	int j;
 52	void *a;
 53	m_link_p h = mp->h;
 54
 55	if (size > SYM_MEM_CLUSTER_SIZE)
 56		return NULL;
 57
 58	while (size > s) {
 59		s <<= 1;
 60		++i;
 61	}
 62
 63	j = i;
 64	while (!h[j].next) {
 65		if (s == SYM_MEM_CLUSTER_SIZE) {
 66			h[j].next = (m_link_p) M_GET_MEM_CLUSTER();
 67			if (h[j].next)
 68				h[j].next->next = NULL;
 69			break;
 70		}
 71		++j;
 72		s <<= 1;
 73	}
 74	a = h[j].next;
 75	if (a) {
 76		h[j].next = h[j].next->next;
 77		while (j > i) {
 78			j -= 1;
 79			s >>= 1;
 80			h[j].next = (m_link_p) (a+s);
 81			h[j].next->next = NULL;
 82		}
 83	}
 84#ifdef DEBUG
 85	printf("___sym_malloc(%d) = %p\n", size, (void *) a);
 86#endif
 87	return a;
 88}
 89
 90/*
 91 *  Counter-part of the generic allocator.
 92 */
 93static void ___sym_mfree(m_pool_p mp, void *ptr, int size)
 94{
 95	int i = 0;
 96	int s = (1 << SYM_MEM_SHIFT);
 97	m_link_p q;
 98	unsigned long a, b;
 99	m_link_p h = mp->h;
100
101#ifdef DEBUG
102	printf("___sym_mfree(%p, %d)\n", ptr, size);
103#endif
104
105	if (size > SYM_MEM_CLUSTER_SIZE)
106		return;
107
108	while (size > s) {
109		s <<= 1;
110		++i;
111	}
112
113	a = (unsigned long)ptr;
114
115	while (1) {
116		if (s == SYM_MEM_CLUSTER_SIZE) {
117#ifdef SYM_MEM_FREE_UNUSED
118			M_FREE_MEM_CLUSTER((void *)a);
119#else
120			((m_link_p) a)->next = h[i].next;
121			h[i].next = (m_link_p) a;
122#endif
123			break;
124		}
125		b = a ^ s;
126		q = &h[i];
127		while (q->next && q->next != (m_link_p) b) {
128			q = q->next;
129		}
130		if (!q->next) {
131			((m_link_p) a)->next = h[i].next;
132			h[i].next = (m_link_p) a;
133			break;
134		}
135		q->next = q->next->next;
136		a = a & b;
137		s <<= 1;
138		++i;
139	}
140}
141
142/*
143 *  Verbose and zeroing allocator that wrapps to the generic allocator.
144 */
145static void *__sym_calloc2(m_pool_p mp, int size, char *name, int uflags)
146{
147	void *p;
148
149	p = ___sym_malloc(mp, size);
150
151	if (DEBUG_FLAGS & DEBUG_ALLOC) {
152		printf ("new %-10s[%4d] @%p.\n", name, size, p);
153	}
154
155	if (p)
156		memset(p, 0, size);
157	else if (uflags & SYM_MEM_WARN)
158		printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
159	return p;
160}
161#define __sym_calloc(mp, s, n)	__sym_calloc2(mp, s, n, SYM_MEM_WARN)
162
163/*
164 *  Its counter-part.
165 */
166static void __sym_mfree(m_pool_p mp, void *ptr, int size, char *name)
167{
168	if (DEBUG_FLAGS & DEBUG_ALLOC)
169		printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
170
171	___sym_mfree(mp, ptr, size);
172}
173
174/*
175 *  Default memory pool we donnot need to involve in DMA.
176 *
177 *  With DMA abstraction, we use functions (methods), to 
178 *  distinguish between non DMAable memory and DMAable memory.
179 */
180static void *___mp0_get_mem_cluster(m_pool_p mp)
181{
182	void *m = sym_get_mem_cluster();
183	if (m)
184		++mp->nump;
185	return m;
186}
187
188#ifdef	SYM_MEM_FREE_UNUSED
189static void ___mp0_free_mem_cluster(m_pool_p mp, void *m)
190{
191	sym_free_mem_cluster(m);
192	--mp->nump;
193}
194#else
195#define ___mp0_free_mem_cluster NULL
196#endif
197
198static struct sym_m_pool mp0 = {
199	NULL,
200	___mp0_get_mem_cluster,
201	___mp0_free_mem_cluster
202};
203
204/*
205 *  Methods that maintains DMAable pools according to user allocations.
206 *  New pools are created on the fly when a new pool id is provided.
207 *  They are deleted on the fly when they get emptied.
208 */
209/* Get a memory cluster that matches the DMA constraints of a given pool */
210static void * ___get_dma_mem_cluster(m_pool_p mp)
211{
212	m_vtob_p vbp;
213	void *vaddr;
214
215	vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
216	if (!vbp)
217		goto out_err;
218
219	vaddr = sym_m_get_dma_mem_cluster(mp, vbp);
220	if (vaddr) {
221		int hc = VTOB_HASH_CODE(vaddr);
222		vbp->next = mp->vtob[hc];
223		mp->vtob[hc] = vbp;
224		++mp->nump;
225	}
226	return vaddr;
227out_err:
228	return NULL;
229}
230
231#ifdef	SYM_MEM_FREE_UNUSED
232/* Free a memory cluster and associated resources for DMA */
233static void ___free_dma_mem_cluster(m_pool_p mp, void *m)
234{
235	m_vtob_p *vbpp, vbp;
236	int hc = VTOB_HASH_CODE(m);
237
238	vbpp = &mp->vtob[hc];
239	while (*vbpp && (*vbpp)->vaddr != m)
240		vbpp = &(*vbpp)->next;
241	if (*vbpp) {
242		vbp = *vbpp;
243		*vbpp = (*vbpp)->next;
244		sym_m_free_dma_mem_cluster(mp, vbp);
245		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
246		--mp->nump;
247	}
248}
249#endif
250
251/* Fetch the memory pool for a given pool id (i.e. DMA constraints) */
252static inline m_pool_p ___get_dma_pool(m_pool_ident_t dev_dmat)
253{
254	m_pool_p mp;
255	for (mp = mp0.next;
256		mp && !sym_m_pool_match(mp->dev_dmat, dev_dmat);
257			mp = mp->next);
258	return mp;
259}
260
261/* Create a new memory DMAable pool (when fetch failed) */
262static m_pool_p ___cre_dma_pool(m_pool_ident_t dev_dmat)
263{
264	m_pool_p mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
265	if (mp) {
266		mp->dev_dmat = dev_dmat;
267		mp->get_mem_cluster = ___get_dma_mem_cluster;
268#ifdef	SYM_MEM_FREE_UNUSED
269		mp->free_mem_cluster = ___free_dma_mem_cluster;
270#endif
271		mp->next = mp0.next;
272		mp0.next = mp;
273		return mp;
274	}
275	return NULL;
276}
277
278#ifdef	SYM_MEM_FREE_UNUSED
279/* Destroy a DMAable memory pool (when got emptied) */
280static void ___del_dma_pool(m_pool_p p)
281{
282	m_pool_p *pp = &mp0.next;
283
284	while (*pp && *pp != p)
285		pp = &(*pp)->next;
286	if (*pp) {
287		*pp = (*pp)->next;
288		__sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
289	}
290}
291#endif
292
293/* This lock protects only the memory allocation/free.  */
294static DEFINE_SPINLOCK(sym53c8xx_lock);
295
296/*
297 *  Actual allocator for DMAable memory.
298 */
299void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name)
300{
301	unsigned long flags;
302	m_pool_p mp;
303	void *m = NULL;
304
305	spin_lock_irqsave(&sym53c8xx_lock, flags);
306	mp = ___get_dma_pool(dev_dmat);
307	if (!mp)
308		mp = ___cre_dma_pool(dev_dmat);
309	if (!mp)
310		goto out;
311	m = __sym_calloc(mp, size, name);
312#ifdef	SYM_MEM_FREE_UNUSED
313	if (!mp->nump)
314		___del_dma_pool(mp);
315#endif
316
317 out:
318	spin_unlock_irqrestore(&sym53c8xx_lock, flags);
319	return m;
320}
321
322void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name)
323{
324	unsigned long flags;
325	m_pool_p mp;
326
327	spin_lock_irqsave(&sym53c8xx_lock, flags);
328	mp = ___get_dma_pool(dev_dmat);
329	if (!mp)
330		goto out;
331	__sym_mfree(mp, m, size, name);
332#ifdef	SYM_MEM_FREE_UNUSED
333	if (!mp->nump)
334		___del_dma_pool(mp);
335#endif
336 out:
337	spin_unlock_irqrestore(&sym53c8xx_lock, flags);
338}
339
340/*
341 *  Actual virtual to bus physical address translator 
342 *  for 32 bit addressable DMAable memory.
343 */
344dma_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m)
345{
346	unsigned long flags;
347	m_pool_p mp;
348	int hc = VTOB_HASH_CODE(m);
349	m_vtob_p vp = NULL;
350	void *a = (void *)((unsigned long)m & ~SYM_MEM_CLUSTER_MASK);
351	dma_addr_t b;
352
353	spin_lock_irqsave(&sym53c8xx_lock, flags);
354	mp = ___get_dma_pool(dev_dmat);
355	if (mp) {
356		vp = mp->vtob[hc];
357		while (vp && vp->vaddr != a)
358			vp = vp->next;
359	}
360	if (!vp)
361		panic("sym: VTOBUS FAILED!\n");
362	b = vp->baddr + (m - a);
363	spin_unlock_irqrestore(&sym53c8xx_lock, flags);
364	return b;
365}