Loading...
1/*
2 * mmc_spi.c - Access SD/MMC cards through SPI master controllers
3 *
4 * (C) Copyright 2005, Intec Automation,
5 * Mike Lavender (mike@steroidmicros)
6 * (C) Copyright 2006-2007, David Brownell
7 * (C) Copyright 2007, Axis Communications,
8 * Hans-Peter Nilsson (hp@axis.com)
9 * (C) Copyright 2007, ATRON electronic GmbH,
10 * Jan Nikitenko <jan.nikitenko@gmail.com>
11 *
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 */
27#include <linux/sched.h>
28#include <linux/delay.h>
29#include <linux/slab.h>
30#include <linux/bio.h>
31#include <linux/dma-mapping.h>
32#include <linux/crc7.h>
33#include <linux/crc-itu-t.h>
34#include <linux/scatterlist.h>
35
36#include <linux/mmc/host.h>
37#include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
38
39#include <linux/spi/spi.h>
40#include <linux/spi/mmc_spi.h>
41
42#include <asm/unaligned.h>
43
44
45/* NOTES:
46 *
47 * - For now, we won't try to interoperate with a real mmc/sd/sdio
48 * controller, although some of them do have hardware support for
49 * SPI protocol. The main reason for such configs would be mmc-ish
50 * cards like DataFlash, which don't support that "native" protocol.
51 *
52 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
53 * switch between driver stacks, and in any case if "native" mode
54 * is available, it will be faster and hence preferable.
55 *
56 * - MMC depends on a different chipselect management policy than the
57 * SPI interface currently supports for shared bus segments: it needs
58 * to issue multiple spi_message requests with the chipselect active,
59 * using the results of one message to decide the next one to issue.
60 *
61 * Pending updates to the programming interface, this driver expects
62 * that it not share the bus with other drivers (precluding conflicts).
63 *
64 * - We tell the controller to keep the chipselect active from the
65 * beginning of an mmc_host_ops.request until the end. So beware
66 * of SPI controller drivers that mis-handle the cs_change flag!
67 *
68 * However, many cards seem OK with chipselect flapping up/down
69 * during that time ... at least on unshared bus segments.
70 */
71
72
73/*
74 * Local protocol constants, internal to data block protocols.
75 */
76
77/* Response tokens used to ack each block written: */
78#define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
79#define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
80#define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
81#define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
82
83/* Read and write blocks start with these tokens and end with crc;
84 * on error, read tokens act like a subset of R2_SPI_* values.
85 */
86#define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
87#define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
88#define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
89
90#define MMC_SPI_BLOCKSIZE 512
91
92
93/* These fixed timeouts come from the latest SD specs, which say to ignore
94 * the CSD values. The R1B value is for card erase (e.g. the "I forgot the
95 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
96 * reads which takes nowhere near that long. Older cards may be able to use
97 * shorter timeouts ... but why bother?
98 */
99#define r1b_timeout (HZ * 3)
100
101/* One of the critical speed parameters is the amount of data which may
102 * be transferred in one command. If this value is too low, the SD card
103 * controller has to do multiple partial block writes (argggh!). With
104 * today (2008) SD cards there is little speed gain if we transfer more
105 * than 64 KBytes at a time. So use this value until there is any indication
106 * that we should do more here.
107 */
108#define MMC_SPI_BLOCKSATONCE 128
109
110/****************************************************************************/
111
112/*
113 * Local Data Structures
114 */
115
116/* "scratch" is per-{command,block} data exchanged with the card */
117struct scratch {
118 u8 status[29];
119 u8 data_token;
120 __be16 crc_val;
121};
122
123struct mmc_spi_host {
124 struct mmc_host *mmc;
125 struct spi_device *spi;
126
127 unsigned char power_mode;
128 u16 powerup_msecs;
129
130 struct mmc_spi_platform_data *pdata;
131
132 /* for bulk data transfers */
133 struct spi_transfer token, t, crc, early_status;
134 struct spi_message m;
135
136 /* for status readback */
137 struct spi_transfer status;
138 struct spi_message readback;
139
140 /* underlying DMA-aware controller, or null */
141 struct device *dma_dev;
142
143 /* buffer used for commands and for message "overhead" */
144 struct scratch *data;
145 dma_addr_t data_dma;
146
147 /* Specs say to write ones most of the time, even when the card
148 * has no need to read its input data; and many cards won't care.
149 * This is our source of those ones.
150 */
151 void *ones;
152 dma_addr_t ones_dma;
153};
154
155
156/****************************************************************************/
157
158/*
159 * MMC-over-SPI protocol glue, used by the MMC stack interface
160 */
161
162static inline int mmc_cs_off(struct mmc_spi_host *host)
163{
164 /* chipselect will always be inactive after setup() */
165 return spi_setup(host->spi);
166}
167
168static int
169mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
170{
171 int status;
172
173 if (len > sizeof(*host->data)) {
174 WARN_ON(1);
175 return -EIO;
176 }
177
178 host->status.len = len;
179
180 if (host->dma_dev)
181 dma_sync_single_for_device(host->dma_dev,
182 host->data_dma, sizeof(*host->data),
183 DMA_FROM_DEVICE);
184
185 status = spi_sync_locked(host->spi, &host->readback);
186
187 if (host->dma_dev)
188 dma_sync_single_for_cpu(host->dma_dev,
189 host->data_dma, sizeof(*host->data),
190 DMA_FROM_DEVICE);
191
192 return status;
193}
194
195static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
196 unsigned n, u8 byte)
197{
198 u8 *cp = host->data->status;
199 unsigned long start = jiffies;
200
201 while (1) {
202 int status;
203 unsigned i;
204
205 status = mmc_spi_readbytes(host, n);
206 if (status < 0)
207 return status;
208
209 for (i = 0; i < n; i++) {
210 if (cp[i] != byte)
211 return cp[i];
212 }
213
214 if (time_is_before_jiffies(start + timeout))
215 break;
216
217 /* If we need long timeouts, we may release the CPU.
218 * We use jiffies here because we want to have a relation
219 * between elapsed time and the blocking of the scheduler.
220 */
221 if (time_is_before_jiffies(start+1))
222 schedule();
223 }
224 return -ETIMEDOUT;
225}
226
227static inline int
228mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
229{
230 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
231}
232
233static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
234{
235 return mmc_spi_skip(host, timeout, 1, 0xff);
236}
237
238
239/*
240 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
241 * hosts return! The low byte holds R1_SPI bits. The next byte may hold
242 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
243 *
244 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
245 * newer cards R7 (IF_COND).
246 */
247
248static char *maptype(struct mmc_command *cmd)
249{
250 switch (mmc_spi_resp_type(cmd)) {
251 case MMC_RSP_SPI_R1: return "R1";
252 case MMC_RSP_SPI_R1B: return "R1B";
253 case MMC_RSP_SPI_R2: return "R2/R5";
254 case MMC_RSP_SPI_R3: return "R3/R4/R7";
255 default: return "?";
256 }
257}
258
259/* return zero, else negative errno after setting cmd->error */
260static int mmc_spi_response_get(struct mmc_spi_host *host,
261 struct mmc_command *cmd, int cs_on)
262{
263 u8 *cp = host->data->status;
264 u8 *end = cp + host->t.len;
265 int value = 0;
266 int bitshift;
267 u8 leftover = 0;
268 unsigned short rotator;
269 int i;
270 char tag[32];
271
272 snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s",
273 cmd->opcode, maptype(cmd));
274
275 /* Except for data block reads, the whole response will already
276 * be stored in the scratch buffer. It's somewhere after the
277 * command and the first byte we read after it. We ignore that
278 * first byte. After STOP_TRANSMISSION command it may include
279 * two data bits, but otherwise it's all ones.
280 */
281 cp += 8;
282 while (cp < end && *cp == 0xff)
283 cp++;
284
285 /* Data block reads (R1 response types) may need more data... */
286 if (cp == end) {
287 cp = host->data->status;
288 end = cp+1;
289
290 /* Card sends N(CR) (== 1..8) bytes of all-ones then one
291 * status byte ... and we already scanned 2 bytes.
292 *
293 * REVISIT block read paths use nasty byte-at-a-time I/O
294 * so it can always DMA directly into the target buffer.
295 * It'd probably be better to memcpy() the first chunk and
296 * avoid extra i/o calls...
297 *
298 * Note we check for more than 8 bytes, because in practice,
299 * some SD cards are slow...
300 */
301 for (i = 2; i < 16; i++) {
302 value = mmc_spi_readbytes(host, 1);
303 if (value < 0)
304 goto done;
305 if (*cp != 0xff)
306 goto checkstatus;
307 }
308 value = -ETIMEDOUT;
309 goto done;
310 }
311
312checkstatus:
313 bitshift = 0;
314 if (*cp & 0x80) {
315 /* Houston, we have an ugly card with a bit-shifted response */
316 rotator = *cp++ << 8;
317 /* read the next byte */
318 if (cp == end) {
319 value = mmc_spi_readbytes(host, 1);
320 if (value < 0)
321 goto done;
322 cp = host->data->status;
323 end = cp+1;
324 }
325 rotator |= *cp++;
326 while (rotator & 0x8000) {
327 bitshift++;
328 rotator <<= 1;
329 }
330 cmd->resp[0] = rotator >> 8;
331 leftover = rotator;
332 } else {
333 cmd->resp[0] = *cp++;
334 }
335 cmd->error = 0;
336
337 /* Status byte: the entire seven-bit R1 response. */
338 if (cmd->resp[0] != 0) {
339 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
340 & cmd->resp[0])
341 value = -EFAULT; /* Bad address */
342 else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
343 value = -ENOSYS; /* Function not implemented */
344 else if (R1_SPI_COM_CRC & cmd->resp[0])
345 value = -EILSEQ; /* Illegal byte sequence */
346 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
347 & cmd->resp[0])
348 value = -EIO; /* I/O error */
349 /* else R1_SPI_IDLE, "it's resetting" */
350 }
351
352 switch (mmc_spi_resp_type(cmd)) {
353
354 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
355 * and less-common stuff like various erase operations.
356 */
357 case MMC_RSP_SPI_R1B:
358 /* maybe we read all the busy tokens already */
359 while (cp < end && *cp == 0)
360 cp++;
361 if (cp == end)
362 mmc_spi_wait_unbusy(host, r1b_timeout);
363 break;
364
365 /* SPI R2 == R1 + second status byte; SEND_STATUS
366 * SPI R5 == R1 + data byte; IO_RW_DIRECT
367 */
368 case MMC_RSP_SPI_R2:
369 /* read the next byte */
370 if (cp == end) {
371 value = mmc_spi_readbytes(host, 1);
372 if (value < 0)
373 goto done;
374 cp = host->data->status;
375 end = cp+1;
376 }
377 if (bitshift) {
378 rotator = leftover << 8;
379 rotator |= *cp << bitshift;
380 cmd->resp[0] |= (rotator & 0xFF00);
381 } else {
382 cmd->resp[0] |= *cp << 8;
383 }
384 break;
385
386 /* SPI R3, R4, or R7 == R1 + 4 bytes */
387 case MMC_RSP_SPI_R3:
388 rotator = leftover << 8;
389 cmd->resp[1] = 0;
390 for (i = 0; i < 4; i++) {
391 cmd->resp[1] <<= 8;
392 /* read the next byte */
393 if (cp == end) {
394 value = mmc_spi_readbytes(host, 1);
395 if (value < 0)
396 goto done;
397 cp = host->data->status;
398 end = cp+1;
399 }
400 if (bitshift) {
401 rotator |= *cp++ << bitshift;
402 cmd->resp[1] |= (rotator >> 8);
403 rotator <<= 8;
404 } else {
405 cmd->resp[1] |= *cp++;
406 }
407 }
408 break;
409
410 /* SPI R1 == just one status byte */
411 case MMC_RSP_SPI_R1:
412 break;
413
414 default:
415 dev_dbg(&host->spi->dev, "bad response type %04x\n",
416 mmc_spi_resp_type(cmd));
417 if (value >= 0)
418 value = -EINVAL;
419 goto done;
420 }
421
422 if (value < 0)
423 dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
424 tag, cmd->resp[0], cmd->resp[1]);
425
426 /* disable chipselect on errors and some success cases */
427 if (value >= 0 && cs_on)
428 return value;
429done:
430 if (value < 0)
431 cmd->error = value;
432 mmc_cs_off(host);
433 return value;
434}
435
436/* Issue command and read its response.
437 * Returns zero on success, negative for error.
438 *
439 * On error, caller must cope with mmc core retry mechanism. That
440 * means immediate low-level resubmit, which affects the bus lock...
441 */
442static int
443mmc_spi_command_send(struct mmc_spi_host *host,
444 struct mmc_request *mrq,
445 struct mmc_command *cmd, int cs_on)
446{
447 struct scratch *data = host->data;
448 u8 *cp = data->status;
449 u32 arg = cmd->arg;
450 int status;
451 struct spi_transfer *t;
452
453 /* We can handle most commands (except block reads) in one full
454 * duplex I/O operation before either starting the next transfer
455 * (data block or command) or else deselecting the card.
456 *
457 * First, write 7 bytes:
458 * - an all-ones byte to ensure the card is ready
459 * - opcode byte (plus start and transmission bits)
460 * - four bytes of big-endian argument
461 * - crc7 (plus end bit) ... always computed, it's cheap
462 *
463 * We init the whole buffer to all-ones, which is what we need
464 * to write while we're reading (later) response data.
465 */
466 memset(cp++, 0xff, sizeof(data->status));
467
468 *cp++ = 0x40 | cmd->opcode;
469 *cp++ = (u8)(arg >> 24);
470 *cp++ = (u8)(arg >> 16);
471 *cp++ = (u8)(arg >> 8);
472 *cp++ = (u8)arg;
473 *cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01;
474
475 /* Then, read up to 13 bytes (while writing all-ones):
476 * - N(CR) (== 1..8) bytes of all-ones
477 * - status byte (for all response types)
478 * - the rest of the response, either:
479 * + nothing, for R1 or R1B responses
480 * + second status byte, for R2 responses
481 * + four data bytes, for R3 and R7 responses
482 *
483 * Finally, read some more bytes ... in the nice cases we know in
484 * advance how many, and reading 1 more is always OK:
485 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
486 * - N(RC) (== 1..N) bytes of all-ones, before next command
487 * - N(WR) (== 1..N) bytes of all-ones, before data write
488 *
489 * So in those cases one full duplex I/O of at most 21 bytes will
490 * handle the whole command, leaving the card ready to receive a
491 * data block or new command. We do that whenever we can, shaving
492 * CPU and IRQ costs (especially when using DMA or FIFOs).
493 *
494 * There are two other cases, where it's not generally practical
495 * to rely on a single I/O:
496 *
497 * - R1B responses need at least N(EC) bytes of all-zeroes.
498 *
499 * In this case we can *try* to fit it into one I/O, then
500 * maybe read more data later.
501 *
502 * - Data block reads are more troublesome, since a variable
503 * number of padding bytes precede the token and data.
504 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
505 * + N(AC) (== 1..many) bytes of all-ones
506 *
507 * In this case we currently only have minimal speedups here:
508 * when N(CR) == 1 we can avoid I/O in response_get().
509 */
510 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
511 cp += 2; /* min(N(CR)) + status */
512 /* R1 */
513 } else {
514 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
515 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */
516 cp++;
517 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */
518 cp += 4;
519 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */
520 cp = data->status + sizeof(data->status);
521 /* else: R1 (most commands) */
522 }
523
524 dev_dbg(&host->spi->dev, " mmc_spi: CMD%d, resp %s\n",
525 cmd->opcode, maptype(cmd));
526
527 /* send command, leaving chipselect active */
528 spi_message_init(&host->m);
529
530 t = &host->t;
531 memset(t, 0, sizeof(*t));
532 t->tx_buf = t->rx_buf = data->status;
533 t->tx_dma = t->rx_dma = host->data_dma;
534 t->len = cp - data->status;
535 t->cs_change = 1;
536 spi_message_add_tail(t, &host->m);
537
538 if (host->dma_dev) {
539 host->m.is_dma_mapped = 1;
540 dma_sync_single_for_device(host->dma_dev,
541 host->data_dma, sizeof(*host->data),
542 DMA_BIDIRECTIONAL);
543 }
544 status = spi_sync_locked(host->spi, &host->m);
545
546 if (host->dma_dev)
547 dma_sync_single_for_cpu(host->dma_dev,
548 host->data_dma, sizeof(*host->data),
549 DMA_BIDIRECTIONAL);
550 if (status < 0) {
551 dev_dbg(&host->spi->dev, " ... write returned %d\n", status);
552 cmd->error = status;
553 return status;
554 }
555
556 /* after no-data commands and STOP_TRANSMISSION, chipselect off */
557 return mmc_spi_response_get(host, cmd, cs_on);
558}
559
560/* Build data message with up to four separate transfers. For TX, we
561 * start by writing the data token. And in most cases, we finish with
562 * a status transfer.
563 *
564 * We always provide TX data for data and CRC. The MMC/SD protocol
565 * requires us to write ones; but Linux defaults to writing zeroes;
566 * so we explicitly initialize it to all ones on RX paths.
567 *
568 * We also handle DMA mapping, so the underlying SPI controller does
569 * not need to (re)do it for each message.
570 */
571static void
572mmc_spi_setup_data_message(
573 struct mmc_spi_host *host,
574 int multiple,
575 enum dma_data_direction direction)
576{
577 struct spi_transfer *t;
578 struct scratch *scratch = host->data;
579 dma_addr_t dma = host->data_dma;
580
581 spi_message_init(&host->m);
582 if (dma)
583 host->m.is_dma_mapped = 1;
584
585 /* for reads, readblock() skips 0xff bytes before finding
586 * the token; for writes, this transfer issues that token.
587 */
588 if (direction == DMA_TO_DEVICE) {
589 t = &host->token;
590 memset(t, 0, sizeof(*t));
591 t->len = 1;
592 if (multiple)
593 scratch->data_token = SPI_TOKEN_MULTI_WRITE;
594 else
595 scratch->data_token = SPI_TOKEN_SINGLE;
596 t->tx_buf = &scratch->data_token;
597 if (dma)
598 t->tx_dma = dma + offsetof(struct scratch, data_token);
599 spi_message_add_tail(t, &host->m);
600 }
601
602 /* Body of transfer is buffer, then CRC ...
603 * either TX-only, or RX with TX-ones.
604 */
605 t = &host->t;
606 memset(t, 0, sizeof(*t));
607 t->tx_buf = host->ones;
608 t->tx_dma = host->ones_dma;
609 /* length and actual buffer info are written later */
610 spi_message_add_tail(t, &host->m);
611
612 t = &host->crc;
613 memset(t, 0, sizeof(*t));
614 t->len = 2;
615 if (direction == DMA_TO_DEVICE) {
616 /* the actual CRC may get written later */
617 t->tx_buf = &scratch->crc_val;
618 if (dma)
619 t->tx_dma = dma + offsetof(struct scratch, crc_val);
620 } else {
621 t->tx_buf = host->ones;
622 t->tx_dma = host->ones_dma;
623 t->rx_buf = &scratch->crc_val;
624 if (dma)
625 t->rx_dma = dma + offsetof(struct scratch, crc_val);
626 }
627 spi_message_add_tail(t, &host->m);
628
629 /*
630 * A single block read is followed by N(EC) [0+] all-ones bytes
631 * before deselect ... don't bother.
632 *
633 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
634 * the next block is read, or a STOP_TRANSMISSION is issued. We'll
635 * collect that single byte, so readblock() doesn't need to.
636 *
637 * For a write, the one-byte data response follows immediately, then
638 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
639 * Then single block reads may deselect, and multiblock ones issue
640 * the next token (next data block, or STOP_TRAN). We can try to
641 * minimize I/O ops by using a single read to collect end-of-busy.
642 */
643 if (multiple || direction == DMA_TO_DEVICE) {
644 t = &host->early_status;
645 memset(t, 0, sizeof(*t));
646 t->len = (direction == DMA_TO_DEVICE)
647 ? sizeof(scratch->status)
648 : 1;
649 t->tx_buf = host->ones;
650 t->tx_dma = host->ones_dma;
651 t->rx_buf = scratch->status;
652 if (dma)
653 t->rx_dma = dma + offsetof(struct scratch, status);
654 t->cs_change = 1;
655 spi_message_add_tail(t, &host->m);
656 }
657}
658
659/*
660 * Write one block:
661 * - caller handled preceding N(WR) [1+] all-ones bytes
662 * - data block
663 * + token
664 * + data bytes
665 * + crc16
666 * - an all-ones byte ... card writes a data-response byte
667 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
668 *
669 * Return negative errno, else success.
670 */
671static int
672mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
673 unsigned long timeout)
674{
675 struct spi_device *spi = host->spi;
676 int status, i;
677 struct scratch *scratch = host->data;
678 u32 pattern;
679
680 if (host->mmc->use_spi_crc)
681 scratch->crc_val = cpu_to_be16(
682 crc_itu_t(0, t->tx_buf, t->len));
683 if (host->dma_dev)
684 dma_sync_single_for_device(host->dma_dev,
685 host->data_dma, sizeof(*scratch),
686 DMA_BIDIRECTIONAL);
687
688 status = spi_sync_locked(spi, &host->m);
689
690 if (status != 0) {
691 dev_dbg(&spi->dev, "write error (%d)\n", status);
692 return status;
693 }
694
695 if (host->dma_dev)
696 dma_sync_single_for_cpu(host->dma_dev,
697 host->data_dma, sizeof(*scratch),
698 DMA_BIDIRECTIONAL);
699
700 /*
701 * Get the transmission data-response reply. It must follow
702 * immediately after the data block we transferred. This reply
703 * doesn't necessarily tell whether the write operation succeeded;
704 * it just says if the transmission was ok and whether *earlier*
705 * writes succeeded; see the standard.
706 *
707 * In practice, there are (even modern SDHC-)cards which are late
708 * in sending the response, and miss the time frame by a few bits,
709 * so we have to cope with this situation and check the response
710 * bit-by-bit. Arggh!!!
711 */
712 pattern = scratch->status[0] << 24;
713 pattern |= scratch->status[1] << 16;
714 pattern |= scratch->status[2] << 8;
715 pattern |= scratch->status[3];
716
717 /* First 3 bit of pattern are undefined */
718 pattern |= 0xE0000000;
719
720 /* left-adjust to leading 0 bit */
721 while (pattern & 0x80000000)
722 pattern <<= 1;
723 /* right-adjust for pattern matching. Code is in bit 4..0 now. */
724 pattern >>= 27;
725
726 switch (pattern) {
727 case SPI_RESPONSE_ACCEPTED:
728 status = 0;
729 break;
730 case SPI_RESPONSE_CRC_ERR:
731 /* host shall then issue MMC_STOP_TRANSMISSION */
732 status = -EILSEQ;
733 break;
734 case SPI_RESPONSE_WRITE_ERR:
735 /* host shall then issue MMC_STOP_TRANSMISSION,
736 * and should MMC_SEND_STATUS to sort it out
737 */
738 status = -EIO;
739 break;
740 default:
741 status = -EPROTO;
742 break;
743 }
744 if (status != 0) {
745 dev_dbg(&spi->dev, "write error %02x (%d)\n",
746 scratch->status[0], status);
747 return status;
748 }
749
750 t->tx_buf += t->len;
751 if (host->dma_dev)
752 t->tx_dma += t->len;
753
754 /* Return when not busy. If we didn't collect that status yet,
755 * we'll need some more I/O.
756 */
757 for (i = 4; i < sizeof(scratch->status); i++) {
758 /* card is non-busy if the most recent bit is 1 */
759 if (scratch->status[i] & 0x01)
760 return 0;
761 }
762 return mmc_spi_wait_unbusy(host, timeout);
763}
764
765/*
766 * Read one block:
767 * - skip leading all-ones bytes ... either
768 * + N(AC) [1..f(clock,CSD)] usually, else
769 * + N(CX) [0..8] when reading CSD or CID
770 * - data block
771 * + token ... if error token, no data or crc
772 * + data bytes
773 * + crc16
774 *
775 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
776 * before dropping chipselect.
777 *
778 * For multiblock reads, caller either reads the next block or issues a
779 * STOP_TRANSMISSION command.
780 */
781static int
782mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
783 unsigned long timeout)
784{
785 struct spi_device *spi = host->spi;
786 int status;
787 struct scratch *scratch = host->data;
788 unsigned int bitshift;
789 u8 leftover;
790
791 /* At least one SD card sends an all-zeroes byte when N(CX)
792 * applies, before the all-ones bytes ... just cope with that.
793 */
794 status = mmc_spi_readbytes(host, 1);
795 if (status < 0)
796 return status;
797 status = scratch->status[0];
798 if (status == 0xff || status == 0)
799 status = mmc_spi_readtoken(host, timeout);
800
801 if (status < 0) {
802 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
803 return status;
804 }
805
806 /* The token may be bit-shifted...
807 * the first 0-bit precedes the data stream.
808 */
809 bitshift = 7;
810 while (status & 0x80) {
811 status <<= 1;
812 bitshift--;
813 }
814 leftover = status << 1;
815
816 if (host->dma_dev) {
817 dma_sync_single_for_device(host->dma_dev,
818 host->data_dma, sizeof(*scratch),
819 DMA_BIDIRECTIONAL);
820 dma_sync_single_for_device(host->dma_dev,
821 t->rx_dma, t->len,
822 DMA_FROM_DEVICE);
823 }
824
825 status = spi_sync_locked(spi, &host->m);
826
827 if (host->dma_dev) {
828 dma_sync_single_for_cpu(host->dma_dev,
829 host->data_dma, sizeof(*scratch),
830 DMA_BIDIRECTIONAL);
831 dma_sync_single_for_cpu(host->dma_dev,
832 t->rx_dma, t->len,
833 DMA_FROM_DEVICE);
834 }
835
836 if (bitshift) {
837 /* Walk through the data and the crc and do
838 * all the magic to get byte-aligned data.
839 */
840 u8 *cp = t->rx_buf;
841 unsigned int len;
842 unsigned int bitright = 8 - bitshift;
843 u8 temp;
844 for (len = t->len; len; len--) {
845 temp = *cp;
846 *cp++ = leftover | (temp >> bitshift);
847 leftover = temp << bitright;
848 }
849 cp = (u8 *) &scratch->crc_val;
850 temp = *cp;
851 *cp++ = leftover | (temp >> bitshift);
852 leftover = temp << bitright;
853 temp = *cp;
854 *cp = leftover | (temp >> bitshift);
855 }
856
857 if (host->mmc->use_spi_crc) {
858 u16 crc = crc_itu_t(0, t->rx_buf, t->len);
859
860 be16_to_cpus(&scratch->crc_val);
861 if (scratch->crc_val != crc) {
862 dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
863 "computed=0x%04x len=%d\n",
864 scratch->crc_val, crc, t->len);
865 return -EILSEQ;
866 }
867 }
868
869 t->rx_buf += t->len;
870 if (host->dma_dev)
871 t->rx_dma += t->len;
872
873 return 0;
874}
875
876/*
877 * An MMC/SD data stage includes one or more blocks, optional CRCs,
878 * and inline handshaking. That handhaking makes it unlike most
879 * other SPI protocol stacks.
880 */
881static void
882mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
883 struct mmc_data *data, u32 blk_size)
884{
885 struct spi_device *spi = host->spi;
886 struct device *dma_dev = host->dma_dev;
887 struct spi_transfer *t;
888 enum dma_data_direction direction;
889 struct scatterlist *sg;
890 unsigned n_sg;
891 int multiple = (data->blocks > 1);
892 u32 clock_rate;
893 unsigned long timeout;
894
895 if (data->flags & MMC_DATA_READ)
896 direction = DMA_FROM_DEVICE;
897 else
898 direction = DMA_TO_DEVICE;
899 mmc_spi_setup_data_message(host, multiple, direction);
900 t = &host->t;
901
902 if (t->speed_hz)
903 clock_rate = t->speed_hz;
904 else
905 clock_rate = spi->max_speed_hz;
906
907 timeout = data->timeout_ns +
908 data->timeout_clks * 1000000 / clock_rate;
909 timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
910
911 /* Handle scatterlist segments one at a time, with synch for
912 * each 512-byte block
913 */
914 for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
915 int status = 0;
916 dma_addr_t dma_addr = 0;
917 void *kmap_addr;
918 unsigned length = sg->length;
919 enum dma_data_direction dir = direction;
920
921 /* set up dma mapping for controller drivers that might
922 * use DMA ... though they may fall back to PIO
923 */
924 if (dma_dev) {
925 /* never invalidate whole *shared* pages ... */
926 if ((sg->offset != 0 || length != PAGE_SIZE)
927 && dir == DMA_FROM_DEVICE)
928 dir = DMA_BIDIRECTIONAL;
929
930 dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
931 PAGE_SIZE, dir);
932 if (direction == DMA_TO_DEVICE)
933 t->tx_dma = dma_addr + sg->offset;
934 else
935 t->rx_dma = dma_addr + sg->offset;
936 }
937
938 /* allow pio too; we don't allow highmem */
939 kmap_addr = kmap(sg_page(sg));
940 if (direction == DMA_TO_DEVICE)
941 t->tx_buf = kmap_addr + sg->offset;
942 else
943 t->rx_buf = kmap_addr + sg->offset;
944
945 /* transfer each block, and update request status */
946 while (length) {
947 t->len = min(length, blk_size);
948
949 dev_dbg(&host->spi->dev,
950 " mmc_spi: %s block, %d bytes\n",
951 (direction == DMA_TO_DEVICE)
952 ? "write"
953 : "read",
954 t->len);
955
956 if (direction == DMA_TO_DEVICE)
957 status = mmc_spi_writeblock(host, t, timeout);
958 else
959 status = mmc_spi_readblock(host, t, timeout);
960 if (status < 0)
961 break;
962
963 data->bytes_xfered += t->len;
964 length -= t->len;
965
966 if (!multiple)
967 break;
968 }
969
970 /* discard mappings */
971 if (direction == DMA_FROM_DEVICE)
972 flush_kernel_dcache_page(sg_page(sg));
973 kunmap(sg_page(sg));
974 if (dma_dev)
975 dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
976
977 if (status < 0) {
978 data->error = status;
979 dev_dbg(&spi->dev, "%s status %d\n",
980 (direction == DMA_TO_DEVICE)
981 ? "write" : "read",
982 status);
983 break;
984 }
985 }
986
987 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
988 * can be issued before multiblock writes. Unlike its more widely
989 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
990 * that can affect the STOP_TRAN logic. Complete (and current)
991 * MMC specs should sort that out before Linux starts using CMD23.
992 */
993 if (direction == DMA_TO_DEVICE && multiple) {
994 struct scratch *scratch = host->data;
995 int tmp;
996 const unsigned statlen = sizeof(scratch->status);
997
998 dev_dbg(&spi->dev, " mmc_spi: STOP_TRAN\n");
999
1000 /* Tweak the per-block message we set up earlier by morphing
1001 * it to hold single buffer with the token followed by some
1002 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
1003 * "not busy any longer" status, and leave chip selected.
1004 */
1005 INIT_LIST_HEAD(&host->m.transfers);
1006 list_add(&host->early_status.transfer_list,
1007 &host->m.transfers);
1008
1009 memset(scratch->status, 0xff, statlen);
1010 scratch->status[0] = SPI_TOKEN_STOP_TRAN;
1011
1012 host->early_status.tx_buf = host->early_status.rx_buf;
1013 host->early_status.tx_dma = host->early_status.rx_dma;
1014 host->early_status.len = statlen;
1015
1016 if (host->dma_dev)
1017 dma_sync_single_for_device(host->dma_dev,
1018 host->data_dma, sizeof(*scratch),
1019 DMA_BIDIRECTIONAL);
1020
1021 tmp = spi_sync_locked(spi, &host->m);
1022
1023 if (host->dma_dev)
1024 dma_sync_single_for_cpu(host->dma_dev,
1025 host->data_dma, sizeof(*scratch),
1026 DMA_BIDIRECTIONAL);
1027
1028 if (tmp < 0) {
1029 if (!data->error)
1030 data->error = tmp;
1031 return;
1032 }
1033
1034 /* Ideally we collected "not busy" status with one I/O,
1035 * avoiding wasteful byte-at-a-time scanning... but more
1036 * I/O is often needed.
1037 */
1038 for (tmp = 2; tmp < statlen; tmp++) {
1039 if (scratch->status[tmp] != 0)
1040 return;
1041 }
1042 tmp = mmc_spi_wait_unbusy(host, timeout);
1043 if (tmp < 0 && !data->error)
1044 data->error = tmp;
1045 }
1046}
1047
1048/****************************************************************************/
1049
1050/*
1051 * MMC driver implementation -- the interface to the MMC stack
1052 */
1053
1054static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1055{
1056 struct mmc_spi_host *host = mmc_priv(mmc);
1057 int status = -EINVAL;
1058 int crc_retry = 5;
1059 struct mmc_command stop;
1060
1061#ifdef DEBUG
1062 /* MMC core and layered drivers *MUST* issue SPI-aware commands */
1063 {
1064 struct mmc_command *cmd;
1065 int invalid = 0;
1066
1067 cmd = mrq->cmd;
1068 if (!mmc_spi_resp_type(cmd)) {
1069 dev_dbg(&host->spi->dev, "bogus command\n");
1070 cmd->error = -EINVAL;
1071 invalid = 1;
1072 }
1073
1074 cmd = mrq->stop;
1075 if (cmd && !mmc_spi_resp_type(cmd)) {
1076 dev_dbg(&host->spi->dev, "bogus STOP command\n");
1077 cmd->error = -EINVAL;
1078 invalid = 1;
1079 }
1080
1081 if (invalid) {
1082 dump_stack();
1083 mmc_request_done(host->mmc, mrq);
1084 return;
1085 }
1086 }
1087#endif
1088
1089 /* request exclusive bus access */
1090 spi_bus_lock(host->spi->master);
1091
1092crc_recover:
1093 /* issue command; then optionally data and stop */
1094 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1095 if (status == 0 && mrq->data) {
1096 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1097
1098 /*
1099 * The SPI bus is not always reliable for large data transfers.
1100 * If an occasional crc error is reported by the SD device with
1101 * data read/write over SPI, it may be recovered by repeating
1102 * the last SD command again. The retry count is set to 5 to
1103 * ensure the driver passes stress tests.
1104 */
1105 if (mrq->data->error == -EILSEQ && crc_retry) {
1106 stop.opcode = MMC_STOP_TRANSMISSION;
1107 stop.arg = 0;
1108 stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1109 status = mmc_spi_command_send(host, mrq, &stop, 0);
1110 crc_retry--;
1111 mrq->data->error = 0;
1112 goto crc_recover;
1113 }
1114
1115 if (mrq->stop)
1116 status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1117 else
1118 mmc_cs_off(host);
1119 }
1120
1121 /* release the bus */
1122 spi_bus_unlock(host->spi->master);
1123
1124 mmc_request_done(host->mmc, mrq);
1125}
1126
1127/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1128 *
1129 * NOTE that here we can't know that the card has just been powered up;
1130 * not all MMC/SD sockets support power switching.
1131 *
1132 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1133 * this doesn't seem to do the right thing at all...
1134 */
1135static void mmc_spi_initsequence(struct mmc_spi_host *host)
1136{
1137 /* Try to be very sure any previous command has completed;
1138 * wait till not-busy, skip debris from any old commands.
1139 */
1140 mmc_spi_wait_unbusy(host, r1b_timeout);
1141 mmc_spi_readbytes(host, 10);
1142
1143 /*
1144 * Do a burst with chipselect active-high. We need to do this to
1145 * meet the requirement of 74 clock cycles with both chipselect
1146 * and CMD (MOSI) high before CMD0 ... after the card has been
1147 * powered up to Vdd(min), and so is ready to take commands.
1148 *
1149 * Some cards are particularly needy of this (e.g. Viking "SD256")
1150 * while most others don't seem to care.
1151 *
1152 * Note that this is one of the places MMC/SD plays games with the
1153 * SPI protocol. Another is that when chipselect is released while
1154 * the card returns BUSY status, the clock must issue several cycles
1155 * with chipselect high before the card will stop driving its output.
1156 */
1157 host->spi->mode |= SPI_CS_HIGH;
1158 if (spi_setup(host->spi) != 0) {
1159 /* Just warn; most cards work without it. */
1160 dev_warn(&host->spi->dev,
1161 "can't change chip-select polarity\n");
1162 host->spi->mode &= ~SPI_CS_HIGH;
1163 } else {
1164 mmc_spi_readbytes(host, 18);
1165
1166 host->spi->mode &= ~SPI_CS_HIGH;
1167 if (spi_setup(host->spi) != 0) {
1168 /* Wot, we can't get the same setup we had before? */
1169 dev_err(&host->spi->dev,
1170 "can't restore chip-select polarity\n");
1171 }
1172 }
1173}
1174
1175static char *mmc_powerstring(u8 power_mode)
1176{
1177 switch (power_mode) {
1178 case MMC_POWER_OFF: return "off";
1179 case MMC_POWER_UP: return "up";
1180 case MMC_POWER_ON: return "on";
1181 }
1182 return "?";
1183}
1184
1185static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1186{
1187 struct mmc_spi_host *host = mmc_priv(mmc);
1188
1189 if (host->power_mode != ios->power_mode) {
1190 int canpower;
1191
1192 canpower = host->pdata && host->pdata->setpower;
1193
1194 dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1195 mmc_powerstring(ios->power_mode),
1196 ios->vdd,
1197 canpower ? ", can switch" : "");
1198
1199 /* switch power on/off if possible, accounting for
1200 * max 250msec powerup time if needed.
1201 */
1202 if (canpower) {
1203 switch (ios->power_mode) {
1204 case MMC_POWER_OFF:
1205 case MMC_POWER_UP:
1206 host->pdata->setpower(&host->spi->dev,
1207 ios->vdd);
1208 if (ios->power_mode == MMC_POWER_UP)
1209 msleep(host->powerup_msecs);
1210 }
1211 }
1212
1213 /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1214 if (ios->power_mode == MMC_POWER_ON)
1215 mmc_spi_initsequence(host);
1216
1217 /* If powering down, ground all card inputs to avoid power
1218 * delivery from data lines! On a shared SPI bus, this
1219 * will probably be temporary; 6.4.2 of the simplified SD
1220 * spec says this must last at least 1msec.
1221 *
1222 * - Clock low means CPOL 0, e.g. mode 0
1223 * - MOSI low comes from writing zero
1224 * - Chipselect is usually active low...
1225 */
1226 if (canpower && ios->power_mode == MMC_POWER_OFF) {
1227 int mres;
1228 u8 nullbyte = 0;
1229
1230 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1231 mres = spi_setup(host->spi);
1232 if (mres < 0)
1233 dev_dbg(&host->spi->dev,
1234 "switch to SPI mode 0 failed\n");
1235
1236 if (spi_write(host->spi, &nullbyte, 1) < 0)
1237 dev_dbg(&host->spi->dev,
1238 "put spi signals to low failed\n");
1239
1240 /*
1241 * Now clock should be low due to spi mode 0;
1242 * MOSI should be low because of written 0x00;
1243 * chipselect should be low (it is active low)
1244 * power supply is off, so now MMC is off too!
1245 *
1246 * FIXME no, chipselect can be high since the
1247 * device is inactive and SPI_CS_HIGH is clear...
1248 */
1249 msleep(10);
1250 if (mres == 0) {
1251 host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1252 mres = spi_setup(host->spi);
1253 if (mres < 0)
1254 dev_dbg(&host->spi->dev,
1255 "switch back to SPI mode 3"
1256 " failed\n");
1257 }
1258 }
1259
1260 host->power_mode = ios->power_mode;
1261 }
1262
1263 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1264 int status;
1265
1266 host->spi->max_speed_hz = ios->clock;
1267 status = spi_setup(host->spi);
1268 dev_dbg(&host->spi->dev,
1269 "mmc_spi: clock to %d Hz, %d\n",
1270 host->spi->max_speed_hz, status);
1271 }
1272}
1273
1274static int mmc_spi_get_ro(struct mmc_host *mmc)
1275{
1276 struct mmc_spi_host *host = mmc_priv(mmc);
1277
1278 if (host->pdata && host->pdata->get_ro)
1279 return !!host->pdata->get_ro(mmc->parent);
1280 /*
1281 * Board doesn't support read only detection; let the mmc core
1282 * decide what to do.
1283 */
1284 return -ENOSYS;
1285}
1286
1287static int mmc_spi_get_cd(struct mmc_host *mmc)
1288{
1289 struct mmc_spi_host *host = mmc_priv(mmc);
1290
1291 if (host->pdata && host->pdata->get_cd)
1292 return !!host->pdata->get_cd(mmc->parent);
1293 return -ENOSYS;
1294}
1295
1296static const struct mmc_host_ops mmc_spi_ops = {
1297 .request = mmc_spi_request,
1298 .set_ios = mmc_spi_set_ios,
1299 .get_ro = mmc_spi_get_ro,
1300 .get_cd = mmc_spi_get_cd,
1301};
1302
1303
1304/****************************************************************************/
1305
1306/*
1307 * SPI driver implementation
1308 */
1309
1310static irqreturn_t
1311mmc_spi_detect_irq(int irq, void *mmc)
1312{
1313 struct mmc_spi_host *host = mmc_priv(mmc);
1314 u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1315
1316 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1317 return IRQ_HANDLED;
1318}
1319
1320static int mmc_spi_probe(struct spi_device *spi)
1321{
1322 void *ones;
1323 struct mmc_host *mmc;
1324 struct mmc_spi_host *host;
1325 int status;
1326
1327 /* We rely on full duplex transfers, mostly to reduce
1328 * per-transfer overheads (by making fewer transfers).
1329 */
1330 if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1331 return -EINVAL;
1332
1333 /* MMC and SD specs only seem to care that sampling is on the
1334 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode
1335 * should be legit. We'll use mode 0 since the steady state is 0,
1336 * which is appropriate for hotplugging, unless the platform data
1337 * specify mode 3 (if hardware is not compatible to mode 0).
1338 */
1339 if (spi->mode != SPI_MODE_3)
1340 spi->mode = SPI_MODE_0;
1341 spi->bits_per_word = 8;
1342
1343 status = spi_setup(spi);
1344 if (status < 0) {
1345 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1346 spi->mode, spi->max_speed_hz / 1000,
1347 status);
1348 return status;
1349 }
1350
1351 /* We need a supply of ones to transmit. This is the only time
1352 * the CPU touches these, so cache coherency isn't a concern.
1353 *
1354 * NOTE if many systems use more than one MMC-over-SPI connector
1355 * it'd save some memory to share this. That's evidently rare.
1356 */
1357 status = -ENOMEM;
1358 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1359 if (!ones)
1360 goto nomem;
1361 memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1362
1363 mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1364 if (!mmc)
1365 goto nomem;
1366
1367 mmc->ops = &mmc_spi_ops;
1368 mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1369 mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1370 mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1371 mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1372
1373 mmc->caps = MMC_CAP_SPI;
1374
1375 /* SPI doesn't need the lowspeed device identification thing for
1376 * MMC or SD cards, since it never comes up in open drain mode.
1377 * That's good; some SPI masters can't handle very low speeds!
1378 *
1379 * However, low speed SDIO cards need not handle over 400 KHz;
1380 * that's the only reason not to use a few MHz for f_min (until
1381 * the upper layer reads the target frequency from the CSD).
1382 */
1383 mmc->f_min = 400000;
1384 mmc->f_max = spi->max_speed_hz;
1385
1386 host = mmc_priv(mmc);
1387 host->mmc = mmc;
1388 host->spi = spi;
1389
1390 host->ones = ones;
1391
1392 /* Platform data is used to hook up things like card sensing
1393 * and power switching gpios.
1394 */
1395 host->pdata = mmc_spi_get_pdata(spi);
1396 if (host->pdata)
1397 mmc->ocr_avail = host->pdata->ocr_mask;
1398 if (!mmc->ocr_avail) {
1399 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1400 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1401 }
1402 if (host->pdata && host->pdata->setpower) {
1403 host->powerup_msecs = host->pdata->powerup_msecs;
1404 if (!host->powerup_msecs || host->powerup_msecs > 250)
1405 host->powerup_msecs = 250;
1406 }
1407
1408 dev_set_drvdata(&spi->dev, mmc);
1409
1410 /* preallocate dma buffers */
1411 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1412 if (!host->data)
1413 goto fail_nobuf1;
1414
1415 if (spi->master->dev.parent->dma_mask) {
1416 struct device *dev = spi->master->dev.parent;
1417
1418 host->dma_dev = dev;
1419 host->ones_dma = dma_map_single(dev, ones,
1420 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1421 host->data_dma = dma_map_single(dev, host->data,
1422 sizeof(*host->data), DMA_BIDIRECTIONAL);
1423
1424 /* REVISIT in theory those map operations can fail... */
1425
1426 dma_sync_single_for_cpu(host->dma_dev,
1427 host->data_dma, sizeof(*host->data),
1428 DMA_BIDIRECTIONAL);
1429 }
1430
1431 /* setup message for status/busy readback */
1432 spi_message_init(&host->readback);
1433 host->readback.is_dma_mapped = (host->dma_dev != NULL);
1434
1435 spi_message_add_tail(&host->status, &host->readback);
1436 host->status.tx_buf = host->ones;
1437 host->status.tx_dma = host->ones_dma;
1438 host->status.rx_buf = &host->data->status;
1439 host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1440 host->status.cs_change = 1;
1441
1442 /* register card detect irq */
1443 if (host->pdata && host->pdata->init) {
1444 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1445 if (status != 0)
1446 goto fail_glue_init;
1447 }
1448
1449 /* pass platform capabilities, if any */
1450 if (host->pdata)
1451 mmc->caps |= host->pdata->caps;
1452
1453 status = mmc_add_host(mmc);
1454 if (status != 0)
1455 goto fail_add_host;
1456
1457 dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1458 dev_name(&mmc->class_dev),
1459 host->dma_dev ? "" : ", no DMA",
1460 (host->pdata && host->pdata->get_ro)
1461 ? "" : ", no WP",
1462 (host->pdata && host->pdata->setpower)
1463 ? "" : ", no poweroff",
1464 (mmc->caps & MMC_CAP_NEEDS_POLL)
1465 ? ", cd polling" : "");
1466 return 0;
1467
1468fail_add_host:
1469 mmc_remove_host (mmc);
1470fail_glue_init:
1471 if (host->dma_dev)
1472 dma_unmap_single(host->dma_dev, host->data_dma,
1473 sizeof(*host->data), DMA_BIDIRECTIONAL);
1474 kfree(host->data);
1475
1476fail_nobuf1:
1477 mmc_free_host(mmc);
1478 mmc_spi_put_pdata(spi);
1479 dev_set_drvdata(&spi->dev, NULL);
1480
1481nomem:
1482 kfree(ones);
1483 return status;
1484}
1485
1486
1487static int __devexit mmc_spi_remove(struct spi_device *spi)
1488{
1489 struct mmc_host *mmc = dev_get_drvdata(&spi->dev);
1490 struct mmc_spi_host *host;
1491
1492 if (mmc) {
1493 host = mmc_priv(mmc);
1494
1495 /* prevent new mmc_detect_change() calls */
1496 if (host->pdata && host->pdata->exit)
1497 host->pdata->exit(&spi->dev, mmc);
1498
1499 mmc_remove_host(mmc);
1500
1501 if (host->dma_dev) {
1502 dma_unmap_single(host->dma_dev, host->ones_dma,
1503 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1504 dma_unmap_single(host->dma_dev, host->data_dma,
1505 sizeof(*host->data), DMA_BIDIRECTIONAL);
1506 }
1507
1508 kfree(host->data);
1509 kfree(host->ones);
1510
1511 spi->max_speed_hz = mmc->f_max;
1512 mmc_free_host(mmc);
1513 mmc_spi_put_pdata(spi);
1514 dev_set_drvdata(&spi->dev, NULL);
1515 }
1516 return 0;
1517}
1518
1519static struct of_device_id mmc_spi_of_match_table[] __devinitdata = {
1520 { .compatible = "mmc-spi-slot", },
1521 {},
1522};
1523
1524static struct spi_driver mmc_spi_driver = {
1525 .driver = {
1526 .name = "mmc_spi",
1527 .bus = &spi_bus_type,
1528 .owner = THIS_MODULE,
1529 .of_match_table = mmc_spi_of_match_table,
1530 },
1531 .probe = mmc_spi_probe,
1532 .remove = __devexit_p(mmc_spi_remove),
1533};
1534
1535
1536static int __init mmc_spi_init(void)
1537{
1538 return spi_register_driver(&mmc_spi_driver);
1539}
1540module_init(mmc_spi_init);
1541
1542
1543static void __exit mmc_spi_exit(void)
1544{
1545 spi_unregister_driver(&mmc_spi_driver);
1546}
1547module_exit(mmc_spi_exit);
1548
1549
1550MODULE_AUTHOR("Mike Lavender, David Brownell, "
1551 "Hans-Peter Nilsson, Jan Nikitenko");
1552MODULE_DESCRIPTION("SPI SD/MMC host driver");
1553MODULE_LICENSE("GPL");
1554MODULE_ALIAS("spi:mmc_spi");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Access SD/MMC cards through SPI master controllers
4 *
5 * (C) Copyright 2005, Intec Automation,
6 * Mike Lavender (mike@steroidmicros)
7 * (C) Copyright 2006-2007, David Brownell
8 * (C) Copyright 2007, Axis Communications,
9 * Hans-Peter Nilsson (hp@axis.com)
10 * (C) Copyright 2007, ATRON electronic GmbH,
11 * Jan Nikitenko <jan.nikitenko@gmail.com>
12 */
13#include <linux/sched.h>
14#include <linux/delay.h>
15#include <linux/slab.h>
16#include <linux/module.h>
17#include <linux/bio.h>
18#include <linux/crc7.h>
19#include <linux/crc-itu-t.h>
20#include <linux/scatterlist.h>
21
22#include <linux/mmc/host.h>
23#include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
24#include <linux/mmc/slot-gpio.h>
25
26#include <linux/spi/spi.h>
27#include <linux/spi/mmc_spi.h>
28
29#include <linux/unaligned.h>
30
31
32/* NOTES:
33 *
34 * - For now, we won't try to interoperate with a real mmc/sd/sdio
35 * controller, although some of them do have hardware support for
36 * SPI protocol. The main reason for such configs would be mmc-ish
37 * cards like DataFlash, which don't support that "native" protocol.
38 *
39 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
40 * switch between driver stacks, and in any case if "native" mode
41 * is available, it will be faster and hence preferable.
42 *
43 * - MMC depends on a different chipselect management policy than the
44 * SPI interface currently supports for shared bus segments: it needs
45 * to issue multiple spi_message requests with the chipselect active,
46 * using the results of one message to decide the next one to issue.
47 *
48 * Pending updates to the programming interface, this driver expects
49 * that it not share the bus with other drivers (precluding conflicts).
50 *
51 * - We tell the controller to keep the chipselect active from the
52 * beginning of an mmc_host_ops.request until the end. So beware
53 * of SPI controller drivers that mis-handle the cs_change flag!
54 *
55 * However, many cards seem OK with chipselect flapping up/down
56 * during that time ... at least on unshared bus segments.
57 */
58
59
60/*
61 * Local protocol constants, internal to data block protocols.
62 */
63
64/* Response tokens used to ack each block written: */
65#define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
66#define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
67#define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
68#define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
69
70/* Read and write blocks start with these tokens and end with crc;
71 * on error, read tokens act like a subset of R2_SPI_* values.
72 */
73#define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
74#define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
75#define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
76
77#define MMC_SPI_BLOCKSIZE 512
78
79#define MMC_SPI_R1B_TIMEOUT_MS 3000
80#define MMC_SPI_INIT_TIMEOUT_MS 3000
81
82/* One of the critical speed parameters is the amount of data which may
83 * be transferred in one command. If this value is too low, the SD card
84 * controller has to do multiple partial block writes (argggh!). With
85 * today (2008) SD cards there is little speed gain if we transfer more
86 * than 64 KBytes at a time. So use this value until there is any indication
87 * that we should do more here.
88 */
89#define MMC_SPI_BLOCKSATONCE 128
90
91/****************************************************************************/
92
93/*
94 * Local Data Structures
95 */
96
97/* "scratch" is per-{command,block} data exchanged with the card */
98struct scratch {
99 u8 status[29];
100 u8 data_token;
101 __be16 crc_val;
102};
103
104struct mmc_spi_host {
105 struct mmc_host *mmc;
106 struct spi_device *spi;
107
108 unsigned char power_mode;
109 u16 powerup_msecs;
110
111 struct mmc_spi_platform_data *pdata;
112
113 /* for bulk data transfers */
114 struct spi_transfer token, t, crc, early_status;
115 struct spi_message m;
116
117 /* for status readback */
118 struct spi_transfer status;
119 struct spi_message readback;
120
121 /* buffer used for commands and for message "overhead" */
122 struct scratch *data;
123
124 /* Specs say to write ones most of the time, even when the card
125 * has no need to read its input data; and many cards won't care.
126 * This is our source of those ones.
127 */
128 void *ones;
129};
130
131
132/****************************************************************************/
133
134/*
135 * MMC-over-SPI protocol glue, used by the MMC stack interface
136 */
137
138static inline int mmc_cs_off(struct mmc_spi_host *host)
139{
140 /* chipselect will always be inactive after setup() */
141 return spi_setup(host->spi);
142}
143
144static int mmc_spi_readbytes(struct mmc_spi_host *host, unsigned int len)
145{
146 if (len > sizeof(*host->data)) {
147 WARN_ON(1);
148 return -EIO;
149 }
150
151 host->status.len = len;
152
153 return spi_sync_locked(host->spi, &host->readback);
154}
155
156static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
157 unsigned n, u8 byte)
158{
159 u8 *cp = host->data->status;
160 unsigned long start = jiffies;
161
162 do {
163 int status;
164 unsigned i;
165
166 status = mmc_spi_readbytes(host, n);
167 if (status < 0)
168 return status;
169
170 for (i = 0; i < n; i++) {
171 if (cp[i] != byte)
172 return cp[i];
173 }
174
175 /* If we need long timeouts, we may release the CPU */
176 cond_resched();
177 } while (time_is_after_jiffies(start + timeout));
178 return -ETIMEDOUT;
179}
180
181static inline int
182mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
183{
184 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
185}
186
187static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
188{
189 return mmc_spi_skip(host, timeout, 1, 0xff);
190}
191
192
193/*
194 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
195 * hosts return! The low byte holds R1_SPI bits. The next byte may hold
196 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
197 *
198 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
199 * newer cards R7 (IF_COND).
200 */
201
202static char *maptype(struct mmc_command *cmd)
203{
204 switch (mmc_spi_resp_type(cmd)) {
205 case MMC_RSP_SPI_R1: return "R1";
206 case MMC_RSP_SPI_R1B: return "R1B";
207 case MMC_RSP_SPI_R2: return "R2/R5";
208 case MMC_RSP_SPI_R3: return "R3/R4/R7";
209 default: return "?";
210 }
211}
212
213/* return zero, else negative errno after setting cmd->error */
214static int mmc_spi_response_get(struct mmc_spi_host *host,
215 struct mmc_command *cmd, int cs_on)
216{
217 unsigned long timeout_ms;
218 u8 *cp = host->data->status;
219 u8 *end = cp + host->t.len;
220 int value = 0;
221 int bitshift;
222 u8 leftover = 0;
223 unsigned short rotator;
224 int i;
225
226 /* Except for data block reads, the whole response will already
227 * be stored in the scratch buffer. It's somewhere after the
228 * command and the first byte we read after it. We ignore that
229 * first byte. After STOP_TRANSMISSION command it may include
230 * two data bits, but otherwise it's all ones.
231 */
232 cp += 8;
233 while (cp < end && *cp == 0xff)
234 cp++;
235
236 /* Data block reads (R1 response types) may need more data... */
237 if (cp == end) {
238 cp = host->data->status;
239 end = cp+1;
240
241 /* Card sends N(CR) (== 1..8) bytes of all-ones then one
242 * status byte ... and we already scanned 2 bytes.
243 *
244 * REVISIT block read paths use nasty byte-at-a-time I/O
245 * so it can always DMA directly into the target buffer.
246 * It'd probably be better to memcpy() the first chunk and
247 * avoid extra i/o calls...
248 *
249 * Note we check for more than 8 bytes, because in practice,
250 * some SD cards are slow...
251 */
252 for (i = 2; i < 16; i++) {
253 value = mmc_spi_readbytes(host, 1);
254 if (value < 0)
255 goto done;
256 if (*cp != 0xff)
257 goto checkstatus;
258 }
259 value = -ETIMEDOUT;
260 goto done;
261 }
262
263checkstatus:
264 bitshift = 0;
265 if (*cp & 0x80) {
266 /* Houston, we have an ugly card with a bit-shifted response */
267 rotator = *cp++ << 8;
268 /* read the next byte */
269 if (cp == end) {
270 value = mmc_spi_readbytes(host, 1);
271 if (value < 0)
272 goto done;
273 cp = host->data->status;
274 end = cp+1;
275 }
276 rotator |= *cp++;
277 while (rotator & 0x8000) {
278 bitshift++;
279 rotator <<= 1;
280 }
281 cmd->resp[0] = rotator >> 8;
282 leftover = rotator;
283 } else {
284 cmd->resp[0] = *cp++;
285 }
286 cmd->error = 0;
287
288 /* Status byte: the entire seven-bit R1 response. */
289 if (cmd->resp[0] != 0) {
290 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
291 & cmd->resp[0])
292 value = -EFAULT; /* Bad address */
293 else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
294 value = -ENOSYS; /* Function not implemented */
295 else if (R1_SPI_COM_CRC & cmd->resp[0])
296 value = -EILSEQ; /* Illegal byte sequence */
297 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
298 & cmd->resp[0])
299 value = -EIO; /* I/O error */
300 /* else R1_SPI_IDLE, "it's resetting" */
301 }
302
303 switch (mmc_spi_resp_type(cmd)) {
304
305 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
306 * and less-common stuff like various erase operations.
307 */
308 case MMC_RSP_SPI_R1B:
309 /* maybe we read all the busy tokens already */
310 while (cp < end && *cp == 0)
311 cp++;
312 if (cp == end) {
313 timeout_ms = cmd->busy_timeout ? cmd->busy_timeout :
314 MMC_SPI_R1B_TIMEOUT_MS;
315 mmc_spi_wait_unbusy(host, msecs_to_jiffies(timeout_ms));
316 }
317 break;
318
319 /* SPI R2 == R1 + second status byte; SEND_STATUS
320 * SPI R5 == R1 + data byte; IO_RW_DIRECT
321 */
322 case MMC_RSP_SPI_R2:
323 /* read the next byte */
324 if (cp == end) {
325 value = mmc_spi_readbytes(host, 1);
326 if (value < 0)
327 goto done;
328 cp = host->data->status;
329 end = cp+1;
330 }
331 if (bitshift) {
332 rotator = leftover << 8;
333 rotator |= *cp << bitshift;
334 cmd->resp[0] |= (rotator & 0xFF00);
335 } else {
336 cmd->resp[0] |= *cp << 8;
337 }
338 break;
339
340 /* SPI R3, R4, or R7 == R1 + 4 bytes */
341 case MMC_RSP_SPI_R3:
342 rotator = leftover << 8;
343 cmd->resp[1] = 0;
344 for (i = 0; i < 4; i++) {
345 cmd->resp[1] <<= 8;
346 /* read the next byte */
347 if (cp == end) {
348 value = mmc_spi_readbytes(host, 1);
349 if (value < 0)
350 goto done;
351 cp = host->data->status;
352 end = cp+1;
353 }
354 if (bitshift) {
355 rotator |= *cp++ << bitshift;
356 cmd->resp[1] |= (rotator >> 8);
357 rotator <<= 8;
358 } else {
359 cmd->resp[1] |= *cp++;
360 }
361 }
362 break;
363
364 /* SPI R1 == just one status byte */
365 case MMC_RSP_SPI_R1:
366 break;
367
368 default:
369 dev_dbg(&host->spi->dev, "bad response type %04x\n",
370 mmc_spi_resp_type(cmd));
371 if (value >= 0)
372 value = -EINVAL;
373 goto done;
374 }
375
376 if (value < 0)
377 dev_dbg(&host->spi->dev,
378 " ... CMD%d response SPI_%s: resp %04x %08x\n",
379 cmd->opcode, maptype(cmd), cmd->resp[0], cmd->resp[1]);
380
381 /* disable chipselect on errors and some success cases */
382 if (value >= 0 && cs_on)
383 return value;
384done:
385 if (value < 0)
386 cmd->error = value;
387 mmc_cs_off(host);
388 return value;
389}
390
391/* Issue command and read its response.
392 * Returns zero on success, negative for error.
393 *
394 * On error, caller must cope with mmc core retry mechanism. That
395 * means immediate low-level resubmit, which affects the bus lock...
396 */
397static int
398mmc_spi_command_send(struct mmc_spi_host *host,
399 struct mmc_request *mrq,
400 struct mmc_command *cmd, int cs_on)
401{
402 struct scratch *data = host->data;
403 u8 *cp = data->status;
404 int status;
405 struct spi_transfer *t;
406
407 /* We can handle most commands (except block reads) in one full
408 * duplex I/O operation before either starting the next transfer
409 * (data block or command) or else deselecting the card.
410 *
411 * First, write 7 bytes:
412 * - an all-ones byte to ensure the card is ready
413 * - opcode byte (plus start and transmission bits)
414 * - four bytes of big-endian argument
415 * - crc7 (plus end bit) ... always computed, it's cheap
416 *
417 * We init the whole buffer to all-ones, which is what we need
418 * to write while we're reading (later) response data.
419 */
420 memset(cp, 0xff, sizeof(data->status));
421
422 cp[1] = 0x40 | cmd->opcode;
423 put_unaligned_be32(cmd->arg, cp + 2);
424 cp[6] = crc7_be(0, cp + 1, 5) | 0x01;
425 cp += 7;
426
427 /* Then, read up to 13 bytes (while writing all-ones):
428 * - N(CR) (== 1..8) bytes of all-ones
429 * - status byte (for all response types)
430 * - the rest of the response, either:
431 * + nothing, for R1 or R1B responses
432 * + second status byte, for R2 responses
433 * + four data bytes, for R3 and R7 responses
434 *
435 * Finally, read some more bytes ... in the nice cases we know in
436 * advance how many, and reading 1 more is always OK:
437 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
438 * - N(RC) (== 1..N) bytes of all-ones, before next command
439 * - N(WR) (== 1..N) bytes of all-ones, before data write
440 *
441 * So in those cases one full duplex I/O of at most 21 bytes will
442 * handle the whole command, leaving the card ready to receive a
443 * data block or new command. We do that whenever we can, shaving
444 * CPU and IRQ costs (especially when using DMA or FIFOs).
445 *
446 * There are two other cases, where it's not generally practical
447 * to rely on a single I/O:
448 *
449 * - R1B responses need at least N(EC) bytes of all-zeroes.
450 *
451 * In this case we can *try* to fit it into one I/O, then
452 * maybe read more data later.
453 *
454 * - Data block reads are more troublesome, since a variable
455 * number of padding bytes precede the token and data.
456 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
457 * + N(AC) (== 1..many) bytes of all-ones
458 *
459 * In this case we currently only have minimal speedups here:
460 * when N(CR) == 1 we can avoid I/O in response_get().
461 */
462 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
463 cp += 2; /* min(N(CR)) + status */
464 /* R1 */
465 } else {
466 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
467 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */
468 cp++;
469 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */
470 cp += 4;
471 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */
472 cp = data->status + sizeof(data->status);
473 /* else: R1 (most commands) */
474 }
475
476 dev_dbg(&host->spi->dev, " CMD%d, resp %s\n",
477 cmd->opcode, maptype(cmd));
478
479 /* send command, leaving chipselect active */
480 spi_message_init(&host->m);
481
482 t = &host->t;
483 memset(t, 0, sizeof(*t));
484 t->tx_buf = t->rx_buf = data->status;
485 t->len = cp - data->status;
486 t->cs_change = 1;
487 spi_message_add_tail(t, &host->m);
488
489 status = spi_sync_locked(host->spi, &host->m);
490 if (status < 0) {
491 dev_dbg(&host->spi->dev, " ... write returned %d\n", status);
492 cmd->error = status;
493 return status;
494 }
495
496 /* after no-data commands and STOP_TRANSMISSION, chipselect off */
497 return mmc_spi_response_get(host, cmd, cs_on);
498}
499
500/* Build data message with up to four separate transfers. For TX, we
501 * start by writing the data token. And in most cases, we finish with
502 * a status transfer.
503 *
504 * We always provide TX data for data and CRC. The MMC/SD protocol
505 * requires us to write ones; but Linux defaults to writing zeroes;
506 * so we explicitly initialize it to all ones on RX paths.
507 */
508static void
509mmc_spi_setup_data_message(struct mmc_spi_host *host, bool multiple, bool write)
510{
511 struct spi_transfer *t;
512 struct scratch *scratch = host->data;
513
514 spi_message_init(&host->m);
515
516 /* for reads, readblock() skips 0xff bytes before finding
517 * the token; for writes, this transfer issues that token.
518 */
519 if (write) {
520 t = &host->token;
521 memset(t, 0, sizeof(*t));
522 t->len = 1;
523 if (multiple)
524 scratch->data_token = SPI_TOKEN_MULTI_WRITE;
525 else
526 scratch->data_token = SPI_TOKEN_SINGLE;
527 t->tx_buf = &scratch->data_token;
528 spi_message_add_tail(t, &host->m);
529 }
530
531 /* Body of transfer is buffer, then CRC ...
532 * either TX-only, or RX with TX-ones.
533 */
534 t = &host->t;
535 memset(t, 0, sizeof(*t));
536 t->tx_buf = host->ones;
537 /* length and actual buffer info are written later */
538 spi_message_add_tail(t, &host->m);
539
540 t = &host->crc;
541 memset(t, 0, sizeof(*t));
542 t->len = 2;
543 if (write) {
544 /* the actual CRC may get written later */
545 t->tx_buf = &scratch->crc_val;
546 } else {
547 t->tx_buf = host->ones;
548 t->rx_buf = &scratch->crc_val;
549 }
550 spi_message_add_tail(t, &host->m);
551
552 /*
553 * A single block read is followed by N(EC) [0+] all-ones bytes
554 * before deselect ... don't bother.
555 *
556 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
557 * the next block is read, or a STOP_TRANSMISSION is issued. We'll
558 * collect that single byte, so readblock() doesn't need to.
559 *
560 * For a write, the one-byte data response follows immediately, then
561 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
562 * Then single block reads may deselect, and multiblock ones issue
563 * the next token (next data block, or STOP_TRAN). We can try to
564 * minimize I/O ops by using a single read to collect end-of-busy.
565 */
566 if (multiple || write) {
567 t = &host->early_status;
568 memset(t, 0, sizeof(*t));
569 t->len = write ? sizeof(scratch->status) : 1;
570 t->tx_buf = host->ones;
571 t->rx_buf = scratch->status;
572 t->cs_change = 1;
573 spi_message_add_tail(t, &host->m);
574 }
575}
576
577/*
578 * Write one block:
579 * - caller handled preceding N(WR) [1+] all-ones bytes
580 * - data block
581 * + token
582 * + data bytes
583 * + crc16
584 * - an all-ones byte ... card writes a data-response byte
585 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
586 *
587 * Return negative errno, else success.
588 */
589static int
590mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
591 unsigned long timeout)
592{
593 struct spi_device *spi = host->spi;
594 int status, i;
595 struct scratch *scratch = host->data;
596 u32 pattern;
597
598 if (host->mmc->use_spi_crc)
599 scratch->crc_val = cpu_to_be16(crc_itu_t(0, t->tx_buf, t->len));
600
601 status = spi_sync_locked(spi, &host->m);
602 if (status != 0) {
603 dev_dbg(&spi->dev, "write error (%d)\n", status);
604 return status;
605 }
606
607 /*
608 * Get the transmission data-response reply. It must follow
609 * immediately after the data block we transferred. This reply
610 * doesn't necessarily tell whether the write operation succeeded;
611 * it just says if the transmission was ok and whether *earlier*
612 * writes succeeded; see the standard.
613 *
614 * In practice, there are (even modern SDHC-)cards which are late
615 * in sending the response, and miss the time frame by a few bits,
616 * so we have to cope with this situation and check the response
617 * bit-by-bit. Arggh!!!
618 */
619 pattern = get_unaligned_be32(scratch->status);
620
621 /* First 3 bit of pattern are undefined */
622 pattern |= 0xE0000000;
623
624 /* left-adjust to leading 0 bit */
625 while (pattern & 0x80000000)
626 pattern <<= 1;
627 /* right-adjust for pattern matching. Code is in bit 4..0 now. */
628 pattern >>= 27;
629
630 switch (pattern) {
631 case SPI_RESPONSE_ACCEPTED:
632 status = 0;
633 break;
634 case SPI_RESPONSE_CRC_ERR:
635 /* host shall then issue MMC_STOP_TRANSMISSION */
636 status = -EILSEQ;
637 break;
638 case SPI_RESPONSE_WRITE_ERR:
639 /* host shall then issue MMC_STOP_TRANSMISSION,
640 * and should MMC_SEND_STATUS to sort it out
641 */
642 status = -EIO;
643 break;
644 default:
645 status = -EPROTO;
646 break;
647 }
648 if (status != 0) {
649 dev_dbg(&spi->dev, "write error %02x (%d)\n",
650 scratch->status[0], status);
651 return status;
652 }
653
654 t->tx_buf += t->len;
655
656 /* Return when not busy. If we didn't collect that status yet,
657 * we'll need some more I/O.
658 */
659 for (i = 4; i < sizeof(scratch->status); i++) {
660 /* card is non-busy if the most recent bit is 1 */
661 if (scratch->status[i] & 0x01)
662 return 0;
663 }
664 return mmc_spi_wait_unbusy(host, timeout);
665}
666
667/*
668 * Read one block:
669 * - skip leading all-ones bytes ... either
670 * + N(AC) [1..f(clock,CSD)] usually, else
671 * + N(CX) [0..8] when reading CSD or CID
672 * - data block
673 * + token ... if error token, no data or crc
674 * + data bytes
675 * + crc16
676 *
677 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
678 * before dropping chipselect.
679 *
680 * For multiblock reads, caller either reads the next block or issues a
681 * STOP_TRANSMISSION command.
682 */
683static int
684mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
685 unsigned long timeout)
686{
687 struct spi_device *spi = host->spi;
688 int status;
689 struct scratch *scratch = host->data;
690 unsigned int bitshift;
691 u8 leftover;
692
693 /* At least one SD card sends an all-zeroes byte when N(CX)
694 * applies, before the all-ones bytes ... just cope with that.
695 */
696 status = mmc_spi_readbytes(host, 1);
697 if (status < 0)
698 return status;
699 status = scratch->status[0];
700 if (status == 0xff || status == 0)
701 status = mmc_spi_readtoken(host, timeout);
702
703 if (status < 0) {
704 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
705 return status;
706 }
707
708 /* The token may be bit-shifted...
709 * the first 0-bit precedes the data stream.
710 */
711 bitshift = 7;
712 while (status & 0x80) {
713 status <<= 1;
714 bitshift--;
715 }
716 leftover = status << 1;
717
718 status = spi_sync_locked(spi, &host->m);
719 if (status < 0) {
720 dev_dbg(&spi->dev, "read error %d\n", status);
721 return status;
722 }
723
724 if (bitshift) {
725 /* Walk through the data and the crc and do
726 * all the magic to get byte-aligned data.
727 */
728 u8 *cp = t->rx_buf;
729 unsigned int len;
730 unsigned int bitright = 8 - bitshift;
731 u8 temp;
732 for (len = t->len; len; len--) {
733 temp = *cp;
734 *cp++ = leftover | (temp >> bitshift);
735 leftover = temp << bitright;
736 }
737 cp = (u8 *) &scratch->crc_val;
738 temp = *cp;
739 *cp++ = leftover | (temp >> bitshift);
740 leftover = temp << bitright;
741 temp = *cp;
742 *cp = leftover | (temp >> bitshift);
743 }
744
745 if (host->mmc->use_spi_crc) {
746 u16 crc = crc_itu_t(0, t->rx_buf, t->len);
747
748 be16_to_cpus(&scratch->crc_val);
749 if (scratch->crc_val != crc) {
750 dev_dbg(&spi->dev,
751 "read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n",
752 scratch->crc_val, crc, t->len);
753 return -EILSEQ;
754 }
755 }
756
757 t->rx_buf += t->len;
758
759 return 0;
760}
761
762/*
763 * An MMC/SD data stage includes one or more blocks, optional CRCs,
764 * and inline handshaking. That handhaking makes it unlike most
765 * other SPI protocol stacks.
766 */
767static void
768mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
769 struct mmc_data *data, u32 blk_size)
770{
771 struct spi_device *spi = host->spi;
772 struct spi_transfer *t;
773 struct scatterlist *sg;
774 unsigned n_sg;
775 bool multiple = (data->blocks > 1);
776 bool write = (data->flags & MMC_DATA_WRITE);
777 const char *write_or_read = write ? "write" : "read";
778 u32 clock_rate;
779 unsigned long timeout;
780
781 mmc_spi_setup_data_message(host, multiple, write);
782 t = &host->t;
783
784 if (t->speed_hz)
785 clock_rate = t->speed_hz;
786 else
787 clock_rate = spi->max_speed_hz;
788
789 timeout = data->timeout_ns / 1000 +
790 data->timeout_clks * 1000000 / clock_rate;
791 timeout = usecs_to_jiffies((unsigned int)timeout) + 1;
792
793 /* Handle scatterlist segments one at a time, with synch for
794 * each 512-byte block
795 */
796 for_each_sg(data->sg, sg, data->sg_len, n_sg) {
797 int status = 0;
798 void *kmap_addr;
799 unsigned length = sg->length;
800
801 /* allow pio too; we don't allow highmem */
802 kmap_addr = kmap(sg_page(sg));
803 if (write)
804 t->tx_buf = kmap_addr + sg->offset;
805 else
806 t->rx_buf = kmap_addr + sg->offset;
807
808 /* transfer each block, and update request status */
809 while (length) {
810 t->len = min(length, blk_size);
811
812 dev_dbg(&spi->dev, " %s block, %d bytes\n", write_or_read, t->len);
813
814 if (write)
815 status = mmc_spi_writeblock(host, t, timeout);
816 else
817 status = mmc_spi_readblock(host, t, timeout);
818 if (status < 0)
819 break;
820
821 data->bytes_xfered += t->len;
822 length -= t->len;
823
824 if (!multiple)
825 break;
826 }
827
828 /* discard mappings */
829 if (write)
830 /* nothing to do */;
831 else
832 flush_dcache_page(sg_page(sg));
833 kunmap(sg_page(sg));
834
835 if (status < 0) {
836 data->error = status;
837 dev_dbg(&spi->dev, "%s status %d\n", write_or_read, status);
838 break;
839 }
840 }
841
842 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
843 * can be issued before multiblock writes. Unlike its more widely
844 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
845 * that can affect the STOP_TRAN logic. Complete (and current)
846 * MMC specs should sort that out before Linux starts using CMD23.
847 */
848 if (write && multiple) {
849 struct scratch *scratch = host->data;
850 int tmp;
851 const unsigned statlen = sizeof(scratch->status);
852
853 dev_dbg(&spi->dev, " STOP_TRAN\n");
854
855 /* Tweak the per-block message we set up earlier by morphing
856 * it to hold single buffer with the token followed by some
857 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
858 * "not busy any longer" status, and leave chip selected.
859 */
860 INIT_LIST_HEAD(&host->m.transfers);
861 list_add(&host->early_status.transfer_list,
862 &host->m.transfers);
863
864 memset(scratch->status, 0xff, statlen);
865 scratch->status[0] = SPI_TOKEN_STOP_TRAN;
866
867 host->early_status.tx_buf = host->early_status.rx_buf;
868 host->early_status.len = statlen;
869
870 tmp = spi_sync_locked(spi, &host->m);
871 if (tmp < 0) {
872 if (!data->error)
873 data->error = tmp;
874 return;
875 }
876
877 /* Ideally we collected "not busy" status with one I/O,
878 * avoiding wasteful byte-at-a-time scanning... but more
879 * I/O is often needed.
880 */
881 for (tmp = 2; tmp < statlen; tmp++) {
882 if (scratch->status[tmp] != 0)
883 return;
884 }
885 tmp = mmc_spi_wait_unbusy(host, timeout);
886 if (tmp < 0 && !data->error)
887 data->error = tmp;
888 }
889}
890
891/****************************************************************************/
892
893/*
894 * MMC driver implementation -- the interface to the MMC stack
895 */
896
897static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
898{
899 struct mmc_spi_host *host = mmc_priv(mmc);
900 int status = -EINVAL;
901 int crc_retry = 5;
902 struct mmc_command stop;
903
904#ifdef DEBUG
905 /* MMC core and layered drivers *MUST* issue SPI-aware commands */
906 {
907 struct mmc_command *cmd;
908 int invalid = 0;
909
910 cmd = mrq->cmd;
911 if (!mmc_spi_resp_type(cmd)) {
912 dev_dbg(&host->spi->dev, "bogus command\n");
913 cmd->error = -EINVAL;
914 invalid = 1;
915 }
916
917 cmd = mrq->stop;
918 if (cmd && !mmc_spi_resp_type(cmd)) {
919 dev_dbg(&host->spi->dev, "bogus STOP command\n");
920 cmd->error = -EINVAL;
921 invalid = 1;
922 }
923
924 if (invalid) {
925 dump_stack();
926 mmc_request_done(host->mmc, mrq);
927 return;
928 }
929 }
930#endif
931
932 /* request exclusive bus access */
933 spi_bus_lock(host->spi->controller);
934
935crc_recover:
936 /* issue command; then optionally data and stop */
937 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
938 if (status == 0 && mrq->data) {
939 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
940
941 /*
942 * The SPI bus is not always reliable for large data transfers.
943 * If an occasional crc error is reported by the SD device with
944 * data read/write over SPI, it may be recovered by repeating
945 * the last SD command again. The retry count is set to 5 to
946 * ensure the driver passes stress tests.
947 */
948 if (mrq->data->error == -EILSEQ && crc_retry) {
949 stop.opcode = MMC_STOP_TRANSMISSION;
950 stop.arg = 0;
951 stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
952 status = mmc_spi_command_send(host, mrq, &stop, 0);
953 crc_retry--;
954 mrq->data->error = 0;
955 goto crc_recover;
956 }
957
958 if (mrq->stop)
959 status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
960 else
961 mmc_cs_off(host);
962 }
963
964 /* release the bus */
965 spi_bus_unlock(host->spi->controller);
966
967 mmc_request_done(host->mmc, mrq);
968}
969
970/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
971 *
972 * NOTE that here we can't know that the card has just been powered up;
973 * not all MMC/SD sockets support power switching.
974 *
975 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
976 * this doesn't seem to do the right thing at all...
977 */
978static void mmc_spi_initsequence(struct mmc_spi_host *host)
979{
980 /* Try to be very sure any previous command has completed;
981 * wait till not-busy, skip debris from any old commands.
982 */
983 mmc_spi_wait_unbusy(host, msecs_to_jiffies(MMC_SPI_INIT_TIMEOUT_MS));
984 mmc_spi_readbytes(host, 10);
985
986 /*
987 * Do a burst with chipselect active-high. We need to do this to
988 * meet the requirement of 74 clock cycles with both chipselect
989 * and CMD (MOSI) high before CMD0 ... after the card has been
990 * powered up to Vdd(min), and so is ready to take commands.
991 *
992 * Some cards are particularly needy of this (e.g. Viking "SD256")
993 * while most others don't seem to care.
994 *
995 * Note that this is one of the places MMC/SD plays games with the
996 * SPI protocol. Another is that when chipselect is released while
997 * the card returns BUSY status, the clock must issue several cycles
998 * with chipselect high before the card will stop driving its output.
999 *
1000 * SPI_CS_HIGH means "asserted" here. In some cases like when using
1001 * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically
1002 * inverted by gpiolib, so if we want to ascertain to drive it high
1003 * we should toggle the default with an XOR as we do here.
1004 */
1005 host->spi->mode ^= SPI_CS_HIGH;
1006 if (spi_setup(host->spi) != 0) {
1007 /* Just warn; most cards work without it. */
1008 dev_warn(&host->spi->dev,
1009 "can't change chip-select polarity\n");
1010 host->spi->mode ^= SPI_CS_HIGH;
1011 } else {
1012 mmc_spi_readbytes(host, 18);
1013
1014 host->spi->mode ^= SPI_CS_HIGH;
1015 if (spi_setup(host->spi) != 0) {
1016 /* Wot, we can't get the same setup we had before? */
1017 dev_err(&host->spi->dev,
1018 "can't restore chip-select polarity\n");
1019 }
1020 }
1021}
1022
1023static char *mmc_powerstring(u8 power_mode)
1024{
1025 switch (power_mode) {
1026 case MMC_POWER_OFF: return "off";
1027 case MMC_POWER_UP: return "up";
1028 case MMC_POWER_ON: return "on";
1029 }
1030 return "?";
1031}
1032
1033static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1034{
1035 struct mmc_spi_host *host = mmc_priv(mmc);
1036
1037 if (host->power_mode != ios->power_mode) {
1038 int canpower;
1039
1040 canpower = host->pdata && host->pdata->setpower;
1041
1042 dev_dbg(&host->spi->dev, "power %s (%d)%s\n",
1043 mmc_powerstring(ios->power_mode),
1044 ios->vdd,
1045 canpower ? ", can switch" : "");
1046
1047 /* switch power on/off if possible, accounting for
1048 * max 250msec powerup time if needed.
1049 */
1050 if (canpower) {
1051 switch (ios->power_mode) {
1052 case MMC_POWER_OFF:
1053 case MMC_POWER_UP:
1054 host->pdata->setpower(&host->spi->dev,
1055 ios->vdd);
1056 if (ios->power_mode == MMC_POWER_UP)
1057 msleep(host->powerup_msecs);
1058 }
1059 }
1060
1061 /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1062 if (ios->power_mode == MMC_POWER_ON)
1063 mmc_spi_initsequence(host);
1064
1065 /* If powering down, ground all card inputs to avoid power
1066 * delivery from data lines! On a shared SPI bus, this
1067 * will probably be temporary; 6.4.2 of the simplified SD
1068 * spec says this must last at least 1msec.
1069 *
1070 * - Clock low means CPOL 0, e.g. mode 0
1071 * - MOSI low comes from writing zero
1072 * - Chipselect is usually active low...
1073 */
1074 if (canpower && ios->power_mode == MMC_POWER_OFF) {
1075 int mres;
1076 u8 nullbyte = 0;
1077
1078 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1079 mres = spi_setup(host->spi);
1080 if (mres < 0)
1081 dev_dbg(&host->spi->dev,
1082 "switch to SPI mode 0 failed\n");
1083
1084 if (spi_write(host->spi, &nullbyte, 1) < 0)
1085 dev_dbg(&host->spi->dev,
1086 "put spi signals to low failed\n");
1087
1088 /*
1089 * Now clock should be low due to spi mode 0;
1090 * MOSI should be low because of written 0x00;
1091 * chipselect should be low (it is active low)
1092 * power supply is off, so now MMC is off too!
1093 *
1094 * FIXME no, chipselect can be high since the
1095 * device is inactive and SPI_CS_HIGH is clear...
1096 */
1097 msleep(10);
1098 if (mres == 0) {
1099 host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1100 mres = spi_setup(host->spi);
1101 if (mres < 0)
1102 dev_dbg(&host->spi->dev,
1103 "switch back to SPI mode 3 failed\n");
1104 }
1105 }
1106
1107 host->power_mode = ios->power_mode;
1108 }
1109
1110 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1111 int status;
1112
1113 host->spi->max_speed_hz = ios->clock;
1114 status = spi_setup(host->spi);
1115 dev_dbg(&host->spi->dev, " clock to %d Hz, %d\n",
1116 host->spi->max_speed_hz, status);
1117 }
1118}
1119
1120static const struct mmc_host_ops mmc_spi_ops = {
1121 .request = mmc_spi_request,
1122 .set_ios = mmc_spi_set_ios,
1123 .get_ro = mmc_gpio_get_ro,
1124 .get_cd = mmc_gpio_get_cd,
1125};
1126
1127
1128/****************************************************************************/
1129
1130/*
1131 * SPI driver implementation
1132 */
1133
1134static irqreturn_t
1135mmc_spi_detect_irq(int irq, void *mmc)
1136{
1137 struct mmc_spi_host *host = mmc_priv(mmc);
1138 u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1139
1140 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1141 return IRQ_HANDLED;
1142}
1143
1144static int mmc_spi_probe(struct spi_device *spi)
1145{
1146 void *ones;
1147 struct mmc_host *mmc;
1148 struct mmc_spi_host *host;
1149 int status;
1150 bool has_ro = false;
1151
1152 /* We rely on full duplex transfers, mostly to reduce
1153 * per-transfer overheads (by making fewer transfers).
1154 */
1155 if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX)
1156 return -EINVAL;
1157
1158 /* MMC and SD specs only seem to care that sampling is on the
1159 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode
1160 * should be legit. We'll use mode 0 since the steady state is 0,
1161 * which is appropriate for hotplugging, unless the platform data
1162 * specify mode 3 (if hardware is not compatible to mode 0).
1163 */
1164 if (spi->mode != SPI_MODE_3)
1165 spi->mode = SPI_MODE_0;
1166 spi->bits_per_word = 8;
1167
1168 status = spi_setup(spi);
1169 if (status < 0) {
1170 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1171 spi->mode, spi->max_speed_hz / 1000,
1172 status);
1173 return status;
1174 }
1175
1176 /* We need a supply of ones to transmit. This is the only time
1177 * the CPU touches these, so cache coherency isn't a concern.
1178 *
1179 * NOTE if many systems use more than one MMC-over-SPI connector
1180 * it'd save some memory to share this. That's evidently rare.
1181 */
1182 status = -ENOMEM;
1183 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1184 if (!ones)
1185 goto nomem;
1186 memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1187
1188 mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1189 if (!mmc)
1190 goto nomem;
1191
1192 mmc->ops = &mmc_spi_ops;
1193 mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1194 mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1195 mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1196 mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1197
1198 mmc->caps = MMC_CAP_SPI;
1199
1200 /* SPI doesn't need the lowspeed device identification thing for
1201 * MMC or SD cards, since it never comes up in open drain mode.
1202 * That's good; some SPI masters can't handle very low speeds!
1203 *
1204 * However, low speed SDIO cards need not handle over 400 KHz;
1205 * that's the only reason not to use a few MHz for f_min (until
1206 * the upper layer reads the target frequency from the CSD).
1207 */
1208 if (spi->controller->min_speed_hz > 400000)
1209 dev_warn(&spi->dev,"Controller unable to reduce bus clock to 400 KHz\n");
1210
1211 mmc->f_min = max(spi->controller->min_speed_hz, 400000);
1212 mmc->f_max = spi->max_speed_hz;
1213
1214 host = mmc_priv(mmc);
1215 host->mmc = mmc;
1216 host->spi = spi;
1217
1218 host->ones = ones;
1219
1220 dev_set_drvdata(&spi->dev, mmc);
1221
1222 /* Platform data is used to hook up things like card sensing
1223 * and power switching gpios.
1224 */
1225 host->pdata = mmc_spi_get_pdata(spi);
1226 if (host->pdata)
1227 mmc->ocr_avail = host->pdata->ocr_mask;
1228 if (!mmc->ocr_avail) {
1229 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1230 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1231 }
1232 if (host->pdata && host->pdata->setpower) {
1233 host->powerup_msecs = host->pdata->powerup_msecs;
1234 if (!host->powerup_msecs || host->powerup_msecs > 250)
1235 host->powerup_msecs = 250;
1236 }
1237
1238 /* Preallocate buffers */
1239 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1240 if (!host->data)
1241 goto fail_nobuf1;
1242
1243 /* setup message for status/busy readback */
1244 spi_message_init(&host->readback);
1245
1246 spi_message_add_tail(&host->status, &host->readback);
1247 host->status.tx_buf = host->ones;
1248 host->status.rx_buf = &host->data->status;
1249 host->status.cs_change = 1;
1250
1251 /* register card detect irq */
1252 if (host->pdata && host->pdata->init) {
1253 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1254 if (status != 0)
1255 goto fail_glue_init;
1256 }
1257
1258 /* pass platform capabilities, if any */
1259 if (host->pdata) {
1260 mmc->caps |= host->pdata->caps;
1261 mmc->caps2 |= host->pdata->caps2;
1262 }
1263
1264 status = mmc_add_host(mmc);
1265 if (status != 0)
1266 goto fail_glue_init;
1267
1268 /*
1269 * Index 0 is card detect
1270 * Old boardfiles were specifying 1 ms as debounce
1271 */
1272 status = mmc_gpiod_request_cd(mmc, NULL, 0, false, 1000);
1273 if (status == -EPROBE_DEFER)
1274 goto fail_gpiod_request;
1275 if (!status) {
1276 /*
1277 * The platform has a CD GPIO signal that may support
1278 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1279 * if polling is needed or not.
1280 */
1281 mmc->caps &= ~MMC_CAP_NEEDS_POLL;
1282 mmc_gpiod_request_cd_irq(mmc);
1283 }
1284 mmc_detect_change(mmc, 0);
1285
1286 /* Index 1 is write protect/read only */
1287 status = mmc_gpiod_request_ro(mmc, NULL, 1, 0);
1288 if (status == -EPROBE_DEFER)
1289 goto fail_gpiod_request;
1290 if (!status)
1291 has_ro = true;
1292
1293 dev_info(&spi->dev, "SD/MMC host %s%s%s%s\n",
1294 dev_name(&mmc->class_dev),
1295 has_ro ? "" : ", no WP",
1296 (host->pdata && host->pdata->setpower)
1297 ? "" : ", no poweroff",
1298 (mmc->caps & MMC_CAP_NEEDS_POLL)
1299 ? ", cd polling" : "");
1300 return 0;
1301
1302fail_gpiod_request:
1303 mmc_remove_host(mmc);
1304fail_glue_init:
1305 kfree(host->data);
1306fail_nobuf1:
1307 mmc_spi_put_pdata(spi);
1308 mmc_free_host(mmc);
1309nomem:
1310 kfree(ones);
1311 return status;
1312}
1313
1314
1315static void mmc_spi_remove(struct spi_device *spi)
1316{
1317 struct mmc_host *mmc = dev_get_drvdata(&spi->dev);
1318 struct mmc_spi_host *host = mmc_priv(mmc);
1319
1320 /* prevent new mmc_detect_change() calls */
1321 if (host->pdata && host->pdata->exit)
1322 host->pdata->exit(&spi->dev, mmc);
1323
1324 mmc_remove_host(mmc);
1325
1326 kfree(host->data);
1327 kfree(host->ones);
1328
1329 spi->max_speed_hz = mmc->f_max;
1330 mmc_spi_put_pdata(spi);
1331 mmc_free_host(mmc);
1332}
1333
1334static const struct spi_device_id mmc_spi_dev_ids[] = {
1335 { "mmc-spi-slot"},
1336 { },
1337};
1338MODULE_DEVICE_TABLE(spi, mmc_spi_dev_ids);
1339
1340static const struct of_device_id mmc_spi_of_match_table[] = {
1341 { .compatible = "mmc-spi-slot", },
1342 {},
1343};
1344MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
1345
1346static struct spi_driver mmc_spi_driver = {
1347 .driver = {
1348 .name = "mmc_spi",
1349 .of_match_table = mmc_spi_of_match_table,
1350 },
1351 .id_table = mmc_spi_dev_ids,
1352 .probe = mmc_spi_probe,
1353 .remove = mmc_spi_remove,
1354};
1355
1356module_spi_driver(mmc_spi_driver);
1357
1358MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko");
1359MODULE_DESCRIPTION("SPI SD/MMC host driver");
1360MODULE_LICENSE("GPL");
1361MODULE_ALIAS("spi:mmc_spi");