Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2011,2016 Samsung Electronics Co., Ltd.
   4 *		http://www.samsung.com
   5 */
   6
   7#ifdef CONFIG_EXYNOS_IOMMU_DEBUG
   8#define DEBUG
   9#endif
  10
  11#include <linux/clk.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/err.h>
  14#include <linux/io.h>
  15#include <linux/iommu.h>
  16#include <linux/interrupt.h>
  17#include <linux/kmemleak.h>
  18#include <linux/list.h>
  19#include <linux/of.h>
  20#include <linux/of_platform.h>
  21#include <linux/platform_device.h>
  22#include <linux/pm_runtime.h>
  23#include <linux/slab.h>
  24
  25#include "iommu-pages.h"
  26
  27typedef u32 sysmmu_iova_t;
  28typedef u32 sysmmu_pte_t;
  29static struct iommu_domain exynos_identity_domain;
  30
  31/* We do not consider super section mapping (16MB) */
  32#define SECT_ORDER 20
  33#define LPAGE_ORDER 16
  34#define SPAGE_ORDER 12
  35
  36#define SECT_SIZE (1 << SECT_ORDER)
  37#define LPAGE_SIZE (1 << LPAGE_ORDER)
  38#define SPAGE_SIZE (1 << SPAGE_ORDER)
  39
  40#define SECT_MASK (~(SECT_SIZE - 1))
  41#define LPAGE_MASK (~(LPAGE_SIZE - 1))
  42#define SPAGE_MASK (~(SPAGE_SIZE - 1))
  43
  44#define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
  45			   ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
  46#define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
  47#define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
  48#define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
  49			  ((*(sent) & 3) == 1))
  50#define lv1ent_section(sent) ((*(sent) & 3) == 2)
  51
  52#define lv2ent_fault(pent) ((*(pent) & 3) == 0)
  53#define lv2ent_small(pent) ((*(pent) & 2) == 2)
  54#define lv2ent_large(pent) ((*(pent) & 3) == 1)
  55
  56/*
  57 * v1.x - v3.x SYSMMU supports 32bit physical and 32bit virtual address spaces
  58 * v5.0 introduced support for 36bit physical address space by shifting
  59 * all page entry values by 4 bits.
  60 * All SYSMMU controllers in the system support the address spaces of the same
  61 * size, so PG_ENT_SHIFT can be initialized on first SYSMMU probe to proper
  62 * value (0 or 4).
  63 */
  64static short PG_ENT_SHIFT = -1;
  65#define SYSMMU_PG_ENT_SHIFT 0
  66#define SYSMMU_V5_PG_ENT_SHIFT 4
  67
  68static const sysmmu_pte_t *LV1_PROT;
  69static const sysmmu_pte_t SYSMMU_LV1_PROT[] = {
  70	((0 << 15) | (0 << 10)), /* no access */
  71	((1 << 15) | (1 << 10)), /* IOMMU_READ only */
  72	((0 << 15) | (1 << 10)), /* IOMMU_WRITE not supported, use read/write */
  73	((0 << 15) | (1 << 10)), /* IOMMU_READ | IOMMU_WRITE */
  74};
  75static const sysmmu_pte_t SYSMMU_V5_LV1_PROT[] = {
  76	(0 << 4), /* no access */
  77	(1 << 4), /* IOMMU_READ only */
  78	(2 << 4), /* IOMMU_WRITE only */
  79	(3 << 4), /* IOMMU_READ | IOMMU_WRITE */
  80};
  81
  82static const sysmmu_pte_t *LV2_PROT;
  83static const sysmmu_pte_t SYSMMU_LV2_PROT[] = {
  84	((0 << 9) | (0 << 4)), /* no access */
  85	((1 << 9) | (1 << 4)), /* IOMMU_READ only */
  86	((0 << 9) | (1 << 4)), /* IOMMU_WRITE not supported, use read/write */
  87	((0 << 9) | (1 << 4)), /* IOMMU_READ | IOMMU_WRITE */
  88};
  89static const sysmmu_pte_t SYSMMU_V5_LV2_PROT[] = {
  90	(0 << 2), /* no access */
  91	(1 << 2), /* IOMMU_READ only */
  92	(2 << 2), /* IOMMU_WRITE only */
  93	(3 << 2), /* IOMMU_READ | IOMMU_WRITE */
  94};
  95
  96#define SYSMMU_SUPPORTED_PROT_BITS (IOMMU_READ | IOMMU_WRITE)
  97
  98#define sect_to_phys(ent) (((phys_addr_t) ent) << PG_ENT_SHIFT)
  99#define section_phys(sent) (sect_to_phys(*(sent)) & SECT_MASK)
 100#define section_offs(iova) (iova & (SECT_SIZE - 1))
 101#define lpage_phys(pent) (sect_to_phys(*(pent)) & LPAGE_MASK)
 102#define lpage_offs(iova) (iova & (LPAGE_SIZE - 1))
 103#define spage_phys(pent) (sect_to_phys(*(pent)) & SPAGE_MASK)
 104#define spage_offs(iova) (iova & (SPAGE_SIZE - 1))
 105
 106#define NUM_LV1ENTRIES 4096
 107#define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
 108
 109static u32 lv1ent_offset(sysmmu_iova_t iova)
 110{
 111	return iova >> SECT_ORDER;
 112}
 113
 114static u32 lv2ent_offset(sysmmu_iova_t iova)
 115{
 116	return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
 117}
 118
 119#define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t))
 120#define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
 121
 122#define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
 123#define lv2table_base(sent) (sect_to_phys(*(sent) & 0xFFFFFFC0))
 124
 125#define mk_lv1ent_sect(pa, prot) ((pa >> PG_ENT_SHIFT) | LV1_PROT[prot] | 2)
 126#define mk_lv1ent_page(pa) ((pa >> PG_ENT_SHIFT) | 1)
 127#define mk_lv2ent_lpage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 1)
 128#define mk_lv2ent_spage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 2)
 129
 130#define CTRL_ENABLE	0x5
 131#define CTRL_BLOCK	0x7
 132#define CTRL_DISABLE	0x0
 133
 134#define CFG_LRU		0x1
 135#define CFG_EAP		(1 << 2)
 136#define CFG_QOS(n)	((n & 0xF) << 7)
 137#define CFG_ACGEN	(1 << 24) /* System MMU 3.3 only */
 138#define CFG_SYSSEL	(1 << 22) /* System MMU 3.2 only */
 139#define CFG_FLPDCACHE	(1 << 20) /* System MMU 3.2+ only */
 140
 141#define CTRL_VM_ENABLE			BIT(0)
 142#define CTRL_VM_FAULT_MODE_STALL	BIT(3)
 143#define CAPA0_CAPA1_EXIST		BIT(11)
 144#define CAPA1_VCR_ENABLED		BIT(14)
 145
 146/* common registers */
 147#define REG_MMU_CTRL		0x000
 148#define REG_MMU_CFG		0x004
 149#define REG_MMU_STATUS		0x008
 150#define REG_MMU_VERSION		0x034
 151
 152#define MMU_MAJ_VER(val)	((val) >> 7)
 153#define MMU_MIN_VER(val)	((val) & 0x7F)
 154#define MMU_RAW_VER(reg)	(((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
 155
 156#define MAKE_MMU_VER(maj, min)	((((maj) & 0xF) << 7) | ((min) & 0x7F))
 157
 158/* v1.x - v3.x registers */
 159#define REG_PAGE_FAULT_ADDR	0x024
 160#define REG_AW_FAULT_ADDR	0x028
 161#define REG_AR_FAULT_ADDR	0x02C
 162#define REG_DEFAULT_SLAVE_ADDR	0x030
 163
 164/* v5.x registers */
 165#define REG_V5_FAULT_AR_VA	0x070
 166#define REG_V5_FAULT_AW_VA	0x080
 167
 168/* v7.x registers */
 169#define REG_V7_CAPA0		0x870
 170#define REG_V7_CAPA1		0x874
 171#define REG_V7_CTRL_VM		0x8000
 172
 173#define has_sysmmu(dev)		(dev_iommu_priv_get(dev) != NULL)
 174
 175static struct device *dma_dev;
 176static struct kmem_cache *lv2table_kmem_cache;
 177static sysmmu_pte_t *zero_lv2_table;
 178#define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
 179
 180static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
 181{
 182	return pgtable + lv1ent_offset(iova);
 183}
 184
 185static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
 186{
 187	return (sysmmu_pte_t *)phys_to_virt(
 188				lv2table_base(sent)) + lv2ent_offset(iova);
 189}
 190
 191struct sysmmu_fault {
 192	sysmmu_iova_t addr;	/* IOVA address that caused fault */
 193	const char *name;	/* human readable fault name */
 194	unsigned int type;	/* fault type for report_iommu_fault() */
 195};
 196
 197struct sysmmu_v1_fault_info {
 198	unsigned short addr_reg; /* register to read IOVA fault address */
 199	const char *name;	/* human readable fault name */
 200	unsigned int type;	/* fault type for report_iommu_fault */
 201};
 202
 203static const struct sysmmu_v1_fault_info sysmmu_v1_faults[] = {
 204	{ REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ },
 205	{ REG_AR_FAULT_ADDR, "MULTI-HIT", IOMMU_FAULT_READ },
 206	{ REG_AW_FAULT_ADDR, "MULTI-HIT", IOMMU_FAULT_WRITE },
 207	{ REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ },
 208	{ REG_AR_FAULT_ADDR, "SECURITY PROTECTION", IOMMU_FAULT_READ },
 209	{ REG_AR_FAULT_ADDR, "ACCESS PROTECTION", IOMMU_FAULT_READ },
 210	{ REG_AW_FAULT_ADDR, "SECURITY PROTECTION", IOMMU_FAULT_WRITE },
 211	{ REG_AW_FAULT_ADDR, "ACCESS PROTECTION", IOMMU_FAULT_WRITE },
 212};
 213
 214/* SysMMU v5 has the same faults for AR (0..4 bits) and AW (16..20 bits) */
 215static const char * const sysmmu_v5_fault_names[] = {
 216	"PTW",
 217	"PAGE",
 218	"MULTI-HIT",
 219	"ACCESS PROTECTION",
 220	"SECURITY PROTECTION"
 221};
 222
 223static const char * const sysmmu_v7_fault_names[] = {
 224	"PTW",
 225	"PAGE",
 226	"ACCESS PROTECTION",
 227	"RESERVED"
 228};
 229
 230/*
 231 * This structure is attached to dev->iommu->priv of the master device
 232 * on device add, contains a list of SYSMMU controllers defined by device tree,
 233 * which are bound to given master device. It is usually referenced by 'owner'
 234 * pointer.
 235*/
 236struct exynos_iommu_owner {
 237	struct list_head controllers;	/* list of sysmmu_drvdata.owner_node */
 238	struct iommu_domain *domain;	/* domain this device is attached */
 239	struct mutex rpm_lock;		/* for runtime pm of all sysmmus */
 240};
 241
 242/*
 243 * This structure exynos specific generalization of struct iommu_domain.
 244 * It contains list of SYSMMU controllers from all master devices, which has
 245 * been attached to this domain and page tables of IO address space defined by
 246 * it. It is usually referenced by 'domain' pointer.
 247 */
 248struct exynos_iommu_domain {
 249	struct list_head clients; /* list of sysmmu_drvdata.domain_node */
 250	sysmmu_pte_t *pgtable;	/* lv1 page table, 16KB */
 251	short *lv2entcnt;	/* free lv2 entry counter for each section */
 252	spinlock_t lock;	/* lock for modyfying list of clients */
 253	spinlock_t pgtablelock;	/* lock for modifying page table @ pgtable */
 254	struct iommu_domain domain; /* generic domain data structure */
 255};
 256
 257struct sysmmu_drvdata;
 258
 259/*
 260 * SysMMU version specific data. Contains offsets for the registers which can
 261 * be found in different SysMMU variants, but have different offset values.
 262 * Also contains version specific callbacks to abstract the hardware.
 263 */
 264struct sysmmu_variant {
 265	u32 pt_base;		/* page table base address (physical) */
 266	u32 flush_all;		/* invalidate all TLB entries */
 267	u32 flush_entry;	/* invalidate specific TLB entry */
 268	u32 flush_range;	/* invalidate TLB entries in specified range */
 269	u32 flush_start;	/* start address of range invalidation */
 270	u32 flush_end;		/* end address of range invalidation */
 271	u32 int_status;		/* interrupt status information */
 272	u32 int_clear;		/* clear the interrupt */
 273	u32 fault_va;		/* IOVA address that caused fault */
 274	u32 fault_info;		/* fault transaction info */
 275
 276	int (*get_fault_info)(struct sysmmu_drvdata *data, unsigned int itype,
 277			      struct sysmmu_fault *fault);
 278};
 279
 280/*
 281 * This structure hold all data of a single SYSMMU controller, this includes
 282 * hw resources like registers and clocks, pointers and list nodes to connect
 283 * it to all other structures, internal state and parameters read from device
 284 * tree. It is usually referenced by 'data' pointer.
 285 */
 286struct sysmmu_drvdata {
 287	struct device *sysmmu;		/* SYSMMU controller device */
 288	struct device *master;		/* master device (owner) */
 289	struct device_link *link;	/* runtime PM link to master */
 290	void __iomem *sfrbase;		/* our registers */
 291	struct clk *clk;		/* SYSMMU's clock */
 292	struct clk *aclk;		/* SYSMMU's aclk clock */
 293	struct clk *pclk;		/* SYSMMU's pclk clock */
 294	struct clk *clk_master;		/* master's device clock */
 295	spinlock_t lock;		/* lock for modyfying state */
 296	bool active;			/* current status */
 297	struct exynos_iommu_domain *domain; /* domain we belong to */
 298	struct list_head domain_node;	/* node for domain clients list */
 299	struct list_head owner_node;	/* node for owner controllers list */
 300	phys_addr_t pgtable;		/* assigned page table structure */
 301	unsigned int version;		/* our version */
 302
 303	struct iommu_device iommu;	/* IOMMU core handle */
 304	const struct sysmmu_variant *variant; /* version specific data */
 305
 306	/* v7 fields */
 307	bool has_vcr;			/* virtual machine control register */
 308};
 309
 310#define SYSMMU_REG(data, reg) ((data)->sfrbase + (data)->variant->reg)
 311
 312static int exynos_sysmmu_v1_get_fault_info(struct sysmmu_drvdata *data,
 313					   unsigned int itype,
 314					   struct sysmmu_fault *fault)
 315{
 316	const struct sysmmu_v1_fault_info *finfo;
 317
 318	if (itype >= ARRAY_SIZE(sysmmu_v1_faults))
 319		return -ENXIO;
 320
 321	finfo = &sysmmu_v1_faults[itype];
 322	fault->addr = readl(data->sfrbase + finfo->addr_reg);
 323	fault->name = finfo->name;
 324	fault->type = finfo->type;
 325
 326	return 0;
 327}
 328
 329static int exynos_sysmmu_v5_get_fault_info(struct sysmmu_drvdata *data,
 330					   unsigned int itype,
 331					   struct sysmmu_fault *fault)
 332{
 333	unsigned int addr_reg;
 334
 335	if (itype < ARRAY_SIZE(sysmmu_v5_fault_names)) {
 336		fault->type = IOMMU_FAULT_READ;
 337		addr_reg = REG_V5_FAULT_AR_VA;
 338	} else if (itype >= 16 && itype <= 20) {
 339		fault->type = IOMMU_FAULT_WRITE;
 340		addr_reg = REG_V5_FAULT_AW_VA;
 341		itype -= 16;
 342	} else {
 343		return -ENXIO;
 344	}
 345
 346	fault->name = sysmmu_v5_fault_names[itype];
 347	fault->addr = readl(data->sfrbase + addr_reg);
 348
 349	return 0;
 350}
 351
 352static int exynos_sysmmu_v7_get_fault_info(struct sysmmu_drvdata *data,
 353					   unsigned int itype,
 354					   struct sysmmu_fault *fault)
 355{
 356	u32 info = readl(SYSMMU_REG(data, fault_info));
 357
 358	fault->addr = readl(SYSMMU_REG(data, fault_va));
 359	fault->name = sysmmu_v7_fault_names[itype % 4];
 360	fault->type = (info & BIT(20)) ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
 361
 362	return 0;
 363}
 364
 365/* SysMMU v1..v3 */
 366static const struct sysmmu_variant sysmmu_v1_variant = {
 367	.flush_all	= 0x0c,
 368	.flush_entry	= 0x10,
 369	.pt_base	= 0x14,
 370	.int_status	= 0x18,
 371	.int_clear	= 0x1c,
 372
 373	.get_fault_info	= exynos_sysmmu_v1_get_fault_info,
 374};
 375
 376/* SysMMU v5 */
 377static const struct sysmmu_variant sysmmu_v5_variant = {
 378	.pt_base	= 0x0c,
 379	.flush_all	= 0x10,
 380	.flush_entry	= 0x14,
 381	.flush_range	= 0x18,
 382	.flush_start	= 0x20,
 383	.flush_end	= 0x24,
 384	.int_status	= 0x60,
 385	.int_clear	= 0x64,
 386
 387	.get_fault_info	= exynos_sysmmu_v5_get_fault_info,
 388};
 389
 390/* SysMMU v7: non-VM capable register layout */
 391static const struct sysmmu_variant sysmmu_v7_variant = {
 392	.pt_base	= 0x0c,
 393	.flush_all	= 0x10,
 394	.flush_entry	= 0x14,
 395	.flush_range	= 0x18,
 396	.flush_start	= 0x20,
 397	.flush_end	= 0x24,
 398	.int_status	= 0x60,
 399	.int_clear	= 0x64,
 400	.fault_va	= 0x70,
 401	.fault_info	= 0x78,
 402
 403	.get_fault_info	= exynos_sysmmu_v7_get_fault_info,
 404};
 405
 406/* SysMMU v7: VM capable register layout */
 407static const struct sysmmu_variant sysmmu_v7_vm_variant = {
 408	.pt_base	= 0x800c,
 409	.flush_all	= 0x8010,
 410	.flush_entry	= 0x8014,
 411	.flush_range	= 0x8018,
 412	.flush_start	= 0x8020,
 413	.flush_end	= 0x8024,
 414	.int_status	= 0x60,
 415	.int_clear	= 0x64,
 416	.fault_va	= 0x1000,
 417	.fault_info	= 0x1004,
 418
 419	.get_fault_info	= exynos_sysmmu_v7_get_fault_info,
 420};
 421
 422static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
 423{
 424	return container_of(dom, struct exynos_iommu_domain, domain);
 425}
 426
 427static void sysmmu_unblock(struct sysmmu_drvdata *data)
 428{
 429	writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
 430}
 431
 432static bool sysmmu_block(struct sysmmu_drvdata *data)
 433{
 434	int i = 120;
 435
 436	writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
 437	while ((i > 0) && !(readl(data->sfrbase + REG_MMU_STATUS) & 1))
 438		--i;
 439
 440	if (!(readl(data->sfrbase + REG_MMU_STATUS) & 1)) {
 441		sysmmu_unblock(data);
 442		return false;
 443	}
 444
 445	return true;
 446}
 447
 448static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data)
 449{
 450	writel(0x1, SYSMMU_REG(data, flush_all));
 451}
 452
 453static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
 454				sysmmu_iova_t iova, unsigned int num_inv)
 455{
 456	unsigned int i;
 457
 458	if (MMU_MAJ_VER(data->version) < 5 || num_inv == 1) {
 459		for (i = 0; i < num_inv; i++) {
 460			writel((iova & SPAGE_MASK) | 1,
 461			       SYSMMU_REG(data, flush_entry));
 462			iova += SPAGE_SIZE;
 463		}
 464	} else {
 465		writel(iova & SPAGE_MASK, SYSMMU_REG(data, flush_start));
 466		writel((iova & SPAGE_MASK) + (num_inv - 1) * SPAGE_SIZE,
 467		       SYSMMU_REG(data, flush_end));
 468		writel(0x1, SYSMMU_REG(data, flush_range));
 469	}
 470}
 471
 472static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd)
 473{
 474	u32 pt_base;
 475
 476	if (MMU_MAJ_VER(data->version) < 5)
 477		pt_base = pgd;
 478	else
 479		pt_base = pgd >> SPAGE_ORDER;
 480
 481	writel(pt_base, SYSMMU_REG(data, pt_base));
 482	__sysmmu_tlb_invalidate(data);
 483}
 484
 485static void __sysmmu_enable_clocks(struct sysmmu_drvdata *data)
 486{
 487	BUG_ON(clk_prepare_enable(data->clk_master));
 488	BUG_ON(clk_prepare_enable(data->clk));
 489	BUG_ON(clk_prepare_enable(data->pclk));
 490	BUG_ON(clk_prepare_enable(data->aclk));
 491}
 492
 493static void __sysmmu_disable_clocks(struct sysmmu_drvdata *data)
 494{
 495	clk_disable_unprepare(data->aclk);
 496	clk_disable_unprepare(data->pclk);
 497	clk_disable_unprepare(data->clk);
 498	clk_disable_unprepare(data->clk_master);
 499}
 500
 501static bool __sysmmu_has_capa1(struct sysmmu_drvdata *data)
 502{
 503	u32 capa0 = readl(data->sfrbase + REG_V7_CAPA0);
 504
 505	return capa0 & CAPA0_CAPA1_EXIST;
 506}
 507
 508static void __sysmmu_get_vcr(struct sysmmu_drvdata *data)
 509{
 510	u32 capa1 = readl(data->sfrbase + REG_V7_CAPA1);
 511
 512	data->has_vcr = capa1 & CAPA1_VCR_ENABLED;
 513}
 514
 515static void __sysmmu_get_version(struct sysmmu_drvdata *data)
 516{
 517	u32 ver;
 518
 519	__sysmmu_enable_clocks(data);
 520
 521	ver = readl(data->sfrbase + REG_MMU_VERSION);
 522
 523	/* controllers on some SoCs don't report proper version */
 524	if (ver == 0x80000001u)
 525		data->version = MAKE_MMU_VER(1, 0);
 526	else
 527		data->version = MMU_RAW_VER(ver);
 528
 529	dev_dbg(data->sysmmu, "hardware version: %d.%d\n",
 530		MMU_MAJ_VER(data->version), MMU_MIN_VER(data->version));
 531
 532	if (MMU_MAJ_VER(data->version) < 5) {
 533		data->variant = &sysmmu_v1_variant;
 534	} else if (MMU_MAJ_VER(data->version) < 7) {
 535		data->variant = &sysmmu_v5_variant;
 536	} else {
 537		if (__sysmmu_has_capa1(data))
 538			__sysmmu_get_vcr(data);
 539		if (data->has_vcr)
 540			data->variant = &sysmmu_v7_vm_variant;
 541		else
 542			data->variant = &sysmmu_v7_variant;
 543	}
 544
 545	__sysmmu_disable_clocks(data);
 546}
 547
 548static void show_fault_information(struct sysmmu_drvdata *data,
 549				   const struct sysmmu_fault *fault)
 550{
 551	sysmmu_pte_t *ent;
 552
 553	dev_err(data->sysmmu, "%s: [%s] %s FAULT occurred at %#x\n",
 554		dev_name(data->master),
 555		fault->type == IOMMU_FAULT_READ ? "READ" : "WRITE",
 556		fault->name, fault->addr);
 557	dev_dbg(data->sysmmu, "Page table base: %pa\n", &data->pgtable);
 558	ent = section_entry(phys_to_virt(data->pgtable), fault->addr);
 559	dev_dbg(data->sysmmu, "\tLv1 entry: %#x\n", *ent);
 560	if (lv1ent_page(ent)) {
 561		ent = page_entry(ent, fault->addr);
 562		dev_dbg(data->sysmmu, "\t Lv2 entry: %#x\n", *ent);
 563	}
 564}
 565
 566static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
 567{
 568	struct sysmmu_drvdata *data = dev_id;
 569	unsigned int itype;
 570	struct sysmmu_fault fault;
 571	int ret = -ENOSYS;
 572
 573	WARN_ON(!data->active);
 574
 575	spin_lock(&data->lock);
 576	clk_enable(data->clk_master);
 577
 578	itype = __ffs(readl(SYSMMU_REG(data, int_status)));
 579	ret = data->variant->get_fault_info(data, itype, &fault);
 580	if (ret) {
 581		dev_err(data->sysmmu, "Unhandled interrupt bit %u\n", itype);
 582		goto out;
 583	}
 584	show_fault_information(data, &fault);
 585
 586	if (data->domain) {
 587		ret = report_iommu_fault(&data->domain->domain, data->master,
 588					 fault.addr, fault.type);
 589	}
 590	if (ret)
 591		panic("Unrecoverable System MMU Fault!");
 592
 593out:
 594	writel(1 << itype, SYSMMU_REG(data, int_clear));
 595
 596	/* SysMMU is in blocked state when interrupt occurred */
 597	sysmmu_unblock(data);
 598	clk_disable(data->clk_master);
 599	spin_unlock(&data->lock);
 600
 601	return IRQ_HANDLED;
 602}
 603
 604static void __sysmmu_disable(struct sysmmu_drvdata *data)
 605{
 606	unsigned long flags;
 607
 608	clk_enable(data->clk_master);
 609
 610	spin_lock_irqsave(&data->lock, flags);
 611	writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
 612	writel(0, data->sfrbase + REG_MMU_CFG);
 613	data->active = false;
 614	spin_unlock_irqrestore(&data->lock, flags);
 615
 616	__sysmmu_disable_clocks(data);
 617}
 618
 619static void __sysmmu_init_config(struct sysmmu_drvdata *data)
 620{
 621	unsigned int cfg;
 622
 623	if (data->version <= MAKE_MMU_VER(3, 1))
 624		cfg = CFG_LRU | CFG_QOS(15);
 625	else if (data->version <= MAKE_MMU_VER(3, 2))
 626		cfg = CFG_LRU | CFG_QOS(15) | CFG_FLPDCACHE | CFG_SYSSEL;
 627	else
 628		cfg = CFG_QOS(15) | CFG_FLPDCACHE | CFG_ACGEN;
 629
 630	cfg |= CFG_EAP; /* enable access protection bits check */
 631
 632	writel(cfg, data->sfrbase + REG_MMU_CFG);
 633}
 634
 635static void __sysmmu_enable_vid(struct sysmmu_drvdata *data)
 636{
 637	u32 ctrl;
 638
 639	if (MMU_MAJ_VER(data->version) < 7 || !data->has_vcr)
 640		return;
 641
 642	ctrl = readl(data->sfrbase + REG_V7_CTRL_VM);
 643	ctrl |= CTRL_VM_ENABLE | CTRL_VM_FAULT_MODE_STALL;
 644	writel(ctrl, data->sfrbase + REG_V7_CTRL_VM);
 645}
 646
 647static void __sysmmu_enable(struct sysmmu_drvdata *data)
 648{
 649	unsigned long flags;
 650
 651	__sysmmu_enable_clocks(data);
 652
 653	spin_lock_irqsave(&data->lock, flags);
 654	writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
 655	__sysmmu_init_config(data);
 656	__sysmmu_set_ptbase(data, data->pgtable);
 657	__sysmmu_enable_vid(data);
 658	writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
 659	data->active = true;
 660	spin_unlock_irqrestore(&data->lock, flags);
 661
 662	/*
 663	 * SYSMMU driver keeps master's clock enabled only for the short
 664	 * time, while accessing the registers. For performing address
 665	 * translation during DMA transaction it relies on the client
 666	 * driver to enable it.
 667	 */
 668	clk_disable(data->clk_master);
 669}
 670
 671static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
 672					    sysmmu_iova_t iova)
 673{
 674	unsigned long flags;
 675
 676	spin_lock_irqsave(&data->lock, flags);
 677	if (data->active && data->version >= MAKE_MMU_VER(3, 3)) {
 678		clk_enable(data->clk_master);
 679		if (sysmmu_block(data)) {
 680			if (data->version >= MAKE_MMU_VER(5, 0))
 681				__sysmmu_tlb_invalidate(data);
 682			else
 683				__sysmmu_tlb_invalidate_entry(data, iova, 1);
 684			sysmmu_unblock(data);
 685		}
 686		clk_disable(data->clk_master);
 687	}
 688	spin_unlock_irqrestore(&data->lock, flags);
 689}
 690
 691static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
 692					sysmmu_iova_t iova, size_t size)
 693{
 694	unsigned long flags;
 695
 696	spin_lock_irqsave(&data->lock, flags);
 697	if (data->active) {
 698		unsigned int num_inv = 1;
 699
 700		clk_enable(data->clk_master);
 701
 702		/*
 703		 * L2TLB invalidation required
 704		 * 4KB page: 1 invalidation
 705		 * 64KB page: 16 invalidations
 706		 * 1MB page: 64 invalidations
 707		 * because it is set-associative TLB
 708		 * with 8-way and 64 sets.
 709		 * 1MB page can be cached in one of all sets.
 710		 * 64KB page can be one of 16 consecutive sets.
 711		 */
 712		if (MMU_MAJ_VER(data->version) == 2)
 713			num_inv = min_t(unsigned int, size / SPAGE_SIZE, 64);
 714
 715		if (sysmmu_block(data)) {
 716			__sysmmu_tlb_invalidate_entry(data, iova, num_inv);
 717			sysmmu_unblock(data);
 718		}
 719		clk_disable(data->clk_master);
 720	}
 721	spin_unlock_irqrestore(&data->lock, flags);
 722}
 723
 724static const struct iommu_ops exynos_iommu_ops;
 725
 726static int exynos_sysmmu_probe(struct platform_device *pdev)
 727{
 728	int irq, ret;
 729	struct device *dev = &pdev->dev;
 730	struct sysmmu_drvdata *data;
 731	struct resource *res;
 732
 733	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
 734	if (!data)
 735		return -ENOMEM;
 736
 737	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 738	data->sfrbase = devm_ioremap_resource(dev, res);
 739	if (IS_ERR(data->sfrbase))
 740		return PTR_ERR(data->sfrbase);
 741
 742	irq = platform_get_irq(pdev, 0);
 743	if (irq <= 0)
 744		return irq;
 745
 746	ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
 747				dev_name(dev), data);
 748	if (ret) {
 749		dev_err(dev, "Unabled to register handler of irq %d\n", irq);
 750		return ret;
 751	}
 752
 753	data->clk = devm_clk_get_optional(dev, "sysmmu");
 754	if (IS_ERR(data->clk))
 755		return PTR_ERR(data->clk);
 756
 757	data->aclk = devm_clk_get_optional(dev, "aclk");
 758	if (IS_ERR(data->aclk))
 759		return PTR_ERR(data->aclk);
 760
 761	data->pclk = devm_clk_get_optional(dev, "pclk");
 762	if (IS_ERR(data->pclk))
 763		return PTR_ERR(data->pclk);
 764
 765	if (!data->clk && (!data->aclk || !data->pclk)) {
 766		dev_err(dev, "Failed to get device clock(s)!\n");
 767		return -ENOSYS;
 768	}
 769
 770	data->clk_master = devm_clk_get_optional(dev, "master");
 771	if (IS_ERR(data->clk_master))
 772		return PTR_ERR(data->clk_master);
 773
 774	data->sysmmu = dev;
 775	spin_lock_init(&data->lock);
 776
 777	__sysmmu_get_version(data);
 778
 779	ret = iommu_device_sysfs_add(&data->iommu, &pdev->dev, NULL,
 780				     dev_name(data->sysmmu));
 781	if (ret)
 782		return ret;
 783
 784	platform_set_drvdata(pdev, data);
 785
 786	if (PG_ENT_SHIFT < 0) {
 787		if (MMU_MAJ_VER(data->version) < 5) {
 788			PG_ENT_SHIFT = SYSMMU_PG_ENT_SHIFT;
 789			LV1_PROT = SYSMMU_LV1_PROT;
 790			LV2_PROT = SYSMMU_LV2_PROT;
 791		} else {
 792			PG_ENT_SHIFT = SYSMMU_V5_PG_ENT_SHIFT;
 793			LV1_PROT = SYSMMU_V5_LV1_PROT;
 794			LV2_PROT = SYSMMU_V5_LV2_PROT;
 795		}
 796	}
 797
 798	if (MMU_MAJ_VER(data->version) >= 5) {
 799		ret = dma_set_mask(dev, DMA_BIT_MASK(36));
 800		if (ret) {
 801			dev_err(dev, "Unable to set DMA mask: %d\n", ret);
 802			goto err_dma_set_mask;
 803		}
 804	}
 805
 806	/*
 807	 * use the first registered sysmmu device for performing
 808	 * dma mapping operations on iommu page tables (cpu cache flush)
 809	 */
 810	if (!dma_dev)
 811		dma_dev = &pdev->dev;
 812
 813	pm_runtime_enable(dev);
 814
 815	ret = iommu_device_register(&data->iommu, &exynos_iommu_ops, dev);
 816	if (ret)
 817		goto err_dma_set_mask;
 818
 819	return 0;
 820
 821err_dma_set_mask:
 822	iommu_device_sysfs_remove(&data->iommu);
 823	return ret;
 824}
 825
 826static int __maybe_unused exynos_sysmmu_suspend(struct device *dev)
 827{
 828	struct sysmmu_drvdata *data = dev_get_drvdata(dev);
 829	struct device *master = data->master;
 830
 831	if (master) {
 832		struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
 833
 834		mutex_lock(&owner->rpm_lock);
 835		if (&data->domain->domain != &exynos_identity_domain) {
 836			dev_dbg(data->sysmmu, "saving state\n");
 837			__sysmmu_disable(data);
 838		}
 839		mutex_unlock(&owner->rpm_lock);
 840	}
 841	return 0;
 842}
 843
 844static int __maybe_unused exynos_sysmmu_resume(struct device *dev)
 845{
 846	struct sysmmu_drvdata *data = dev_get_drvdata(dev);
 847	struct device *master = data->master;
 848
 849	if (master) {
 850		struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
 851
 852		mutex_lock(&owner->rpm_lock);
 853		if (&data->domain->domain != &exynos_identity_domain) {
 854			dev_dbg(data->sysmmu, "restoring state\n");
 855			__sysmmu_enable(data);
 856		}
 857		mutex_unlock(&owner->rpm_lock);
 858	}
 859	return 0;
 860}
 861
 862static const struct dev_pm_ops sysmmu_pm_ops = {
 863	SET_RUNTIME_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume, NULL)
 864	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
 865				pm_runtime_force_resume)
 866};
 867
 868static const struct of_device_id sysmmu_of_match[] = {
 869	{ .compatible	= "samsung,exynos-sysmmu", },
 870	{ },
 871};
 872
 873static struct platform_driver exynos_sysmmu_driver __refdata = {
 874	.probe	= exynos_sysmmu_probe,
 875	.driver	= {
 876		.name		= "exynos-sysmmu",
 877		.of_match_table	= sysmmu_of_match,
 878		.pm		= &sysmmu_pm_ops,
 879		.suppress_bind_attrs = true,
 880	}
 881};
 882
 883static inline void exynos_iommu_set_pte(sysmmu_pte_t *ent, sysmmu_pte_t val)
 884{
 885	dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent),
 886				DMA_TO_DEVICE);
 887	*ent = cpu_to_le32(val);
 888	dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent),
 889				   DMA_TO_DEVICE);
 890}
 891
 892static struct iommu_domain *exynos_iommu_domain_alloc_paging(struct device *dev)
 893{
 894	struct exynos_iommu_domain *domain;
 895	dma_addr_t handle;
 896	int i;
 897
 898	/* Check if correct PTE offsets are initialized */
 899	BUG_ON(PG_ENT_SHIFT < 0 || !dma_dev);
 900
 901	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
 902	if (!domain)
 903		return NULL;
 904
 905	domain->pgtable = iommu_alloc_pages(GFP_KERNEL, 2);
 906	if (!domain->pgtable)
 907		goto err_pgtable;
 908
 909	domain->lv2entcnt = iommu_alloc_pages(GFP_KERNEL, 1);
 910	if (!domain->lv2entcnt)
 911		goto err_counter;
 912
 913	/* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
 914	for (i = 0; i < NUM_LV1ENTRIES; i++)
 915		domain->pgtable[i] = ZERO_LV2LINK;
 916
 917	handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE,
 918				DMA_TO_DEVICE);
 919	/* For mapping page table entries we rely on dma == phys */
 920	BUG_ON(handle != virt_to_phys(domain->pgtable));
 921	if (dma_mapping_error(dma_dev, handle))
 922		goto err_lv2ent;
 923
 924	spin_lock_init(&domain->lock);
 925	spin_lock_init(&domain->pgtablelock);
 926	INIT_LIST_HEAD(&domain->clients);
 927
 928	domain->domain.geometry.aperture_start = 0;
 929	domain->domain.geometry.aperture_end   = ~0UL;
 930	domain->domain.geometry.force_aperture = true;
 931
 932	return &domain->domain;
 933
 934err_lv2ent:
 935	iommu_free_pages(domain->lv2entcnt, 1);
 936err_counter:
 937	iommu_free_pages(domain->pgtable, 2);
 938err_pgtable:
 939	kfree(domain);
 940	return NULL;
 941}
 942
 943static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
 944{
 945	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
 946	struct sysmmu_drvdata *data, *next;
 947	unsigned long flags;
 948	int i;
 949
 950	WARN_ON(!list_empty(&domain->clients));
 951
 952	spin_lock_irqsave(&domain->lock, flags);
 953
 954	list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
 955		spin_lock(&data->lock);
 956		__sysmmu_disable(data);
 957		data->pgtable = 0;
 958		data->domain = NULL;
 959		list_del_init(&data->domain_node);
 960		spin_unlock(&data->lock);
 961	}
 962
 963	spin_unlock_irqrestore(&domain->lock, flags);
 964
 965	dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE,
 966			 DMA_TO_DEVICE);
 967
 968	for (i = 0; i < NUM_LV1ENTRIES; i++)
 969		if (lv1ent_page(domain->pgtable + i)) {
 970			phys_addr_t base = lv2table_base(domain->pgtable + i);
 971
 972			dma_unmap_single(dma_dev, base, LV2TABLE_SIZE,
 973					 DMA_TO_DEVICE);
 974			kmem_cache_free(lv2table_kmem_cache,
 975					phys_to_virt(base));
 976		}
 977
 978	iommu_free_pages(domain->pgtable, 2);
 979	iommu_free_pages(domain->lv2entcnt, 1);
 980	kfree(domain);
 981}
 982
 983static int exynos_iommu_identity_attach(struct iommu_domain *identity_domain,
 984					struct device *dev)
 985{
 986	struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
 987	struct exynos_iommu_domain *domain;
 988	phys_addr_t pagetable;
 989	struct sysmmu_drvdata *data, *next;
 990	unsigned long flags;
 991
 992	if (owner->domain == identity_domain)
 993		return 0;
 994
 995	domain = to_exynos_domain(owner->domain);
 996	pagetable = virt_to_phys(domain->pgtable);
 997
 998	mutex_lock(&owner->rpm_lock);
 999
1000	list_for_each_entry(data, &owner->controllers, owner_node) {
1001		pm_runtime_get_noresume(data->sysmmu);
1002		if (pm_runtime_active(data->sysmmu))
1003			__sysmmu_disable(data);
1004		pm_runtime_put(data->sysmmu);
1005	}
1006
1007	spin_lock_irqsave(&domain->lock, flags);
1008	list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
1009		spin_lock(&data->lock);
1010		data->pgtable = 0;
1011		data->domain = NULL;
1012		list_del_init(&data->domain_node);
1013		spin_unlock(&data->lock);
1014	}
1015	owner->domain = identity_domain;
1016	spin_unlock_irqrestore(&domain->lock, flags);
1017
1018	mutex_unlock(&owner->rpm_lock);
1019
1020	dev_dbg(dev, "%s: Restored IOMMU to IDENTITY from pgtable %pa\n",
1021		__func__, &pagetable);
1022	return 0;
1023}
1024
1025static struct iommu_domain_ops exynos_identity_ops = {
1026	.attach_dev = exynos_iommu_identity_attach,
1027};
1028
1029static struct iommu_domain exynos_identity_domain = {
1030	.type = IOMMU_DOMAIN_IDENTITY,
1031	.ops = &exynos_identity_ops,
1032};
1033
1034static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
1035				   struct device *dev)
1036{
1037	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1038	struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1039	struct sysmmu_drvdata *data;
1040	phys_addr_t pagetable = virt_to_phys(domain->pgtable);
1041	unsigned long flags;
1042	int err;
1043
1044	err = exynos_iommu_identity_attach(&exynos_identity_domain, dev);
1045	if (err)
1046		return err;
1047
1048	mutex_lock(&owner->rpm_lock);
1049
1050	spin_lock_irqsave(&domain->lock, flags);
1051	list_for_each_entry(data, &owner->controllers, owner_node) {
1052		spin_lock(&data->lock);
1053		data->pgtable = pagetable;
1054		data->domain = domain;
1055		list_add_tail(&data->domain_node, &domain->clients);
1056		spin_unlock(&data->lock);
1057	}
1058	owner->domain = iommu_domain;
1059	spin_unlock_irqrestore(&domain->lock, flags);
1060
1061	list_for_each_entry(data, &owner->controllers, owner_node) {
1062		pm_runtime_get_noresume(data->sysmmu);
1063		if (pm_runtime_active(data->sysmmu))
1064			__sysmmu_enable(data);
1065		pm_runtime_put(data->sysmmu);
1066	}
1067
1068	mutex_unlock(&owner->rpm_lock);
1069
1070	dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa\n", __func__,
1071		&pagetable);
1072
1073	return 0;
1074}
1075
1076static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
1077		sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
1078{
1079	if (lv1ent_section(sent)) {
1080		WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
1081		return ERR_PTR(-EADDRINUSE);
1082	}
1083
1084	if (lv1ent_fault(sent)) {
1085		dma_addr_t handle;
1086		sysmmu_pte_t *pent;
1087		bool need_flush_flpd_cache = lv1ent_zero(sent);
1088
1089		pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
1090		BUG_ON((uintptr_t)pent & (LV2TABLE_SIZE - 1));
1091		if (!pent)
1092			return ERR_PTR(-ENOMEM);
1093
1094		exynos_iommu_set_pte(sent, mk_lv1ent_page(virt_to_phys(pent)));
1095		kmemleak_ignore(pent);
1096		*pgcounter = NUM_LV2ENTRIES;
1097		handle = dma_map_single(dma_dev, pent, LV2TABLE_SIZE,
1098					DMA_TO_DEVICE);
1099		if (dma_mapping_error(dma_dev, handle)) {
1100			kmem_cache_free(lv2table_kmem_cache, pent);
1101			return ERR_PTR(-EADDRINUSE);
1102		}
1103
1104		/*
1105		 * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
1106		 * FLPD cache may cache the address of zero_l2_table. This
1107		 * function replaces the zero_l2_table with new L2 page table
1108		 * to write valid mappings.
1109		 * Accessing the valid area may cause page fault since FLPD
1110		 * cache may still cache zero_l2_table for the valid area
1111		 * instead of new L2 page table that has the mapping
1112		 * information of the valid area.
1113		 * Thus any replacement of zero_l2_table with other valid L2
1114		 * page table must involve FLPD cache invalidation for System
1115		 * MMU v3.3.
1116		 * FLPD cache invalidation is performed with TLB invalidation
1117		 * by VPN without blocking. It is safe to invalidate TLB without
1118		 * blocking because the target address of TLB invalidation is
1119		 * not currently mapped.
1120		 */
1121		if (need_flush_flpd_cache) {
1122			struct sysmmu_drvdata *data;
1123
1124			spin_lock(&domain->lock);
1125			list_for_each_entry(data, &domain->clients, domain_node)
1126				sysmmu_tlb_invalidate_flpdcache(data, iova);
1127			spin_unlock(&domain->lock);
1128		}
1129	}
1130
1131	return page_entry(sent, iova);
1132}
1133
1134static int lv1set_section(struct exynos_iommu_domain *domain,
1135			  sysmmu_pte_t *sent, sysmmu_iova_t iova,
1136			  phys_addr_t paddr, int prot, short *pgcnt)
1137{
1138	if (lv1ent_section(sent)) {
1139		WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
1140			iova);
1141		return -EADDRINUSE;
1142	}
1143
1144	if (lv1ent_page(sent)) {
1145		if (*pgcnt != NUM_LV2ENTRIES) {
1146			WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
1147				iova);
1148			return -EADDRINUSE;
1149		}
1150
1151		kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
1152		*pgcnt = 0;
1153	}
1154
1155	exynos_iommu_set_pte(sent, mk_lv1ent_sect(paddr, prot));
1156
1157	spin_lock(&domain->lock);
1158	if (lv1ent_page_zero(sent)) {
1159		struct sysmmu_drvdata *data;
1160		/*
1161		 * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
1162		 * entry by speculative prefetch of SLPD which has no mapping.
1163		 */
1164		list_for_each_entry(data, &domain->clients, domain_node)
1165			sysmmu_tlb_invalidate_flpdcache(data, iova);
1166	}
1167	spin_unlock(&domain->lock);
1168
1169	return 0;
1170}
1171
1172static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
1173		       int prot, short *pgcnt)
1174{
1175	if (size == SPAGE_SIZE) {
1176		if (WARN_ON(!lv2ent_fault(pent)))
1177			return -EADDRINUSE;
1178
1179		exynos_iommu_set_pte(pent, mk_lv2ent_spage(paddr, prot));
1180		*pgcnt -= 1;
1181	} else { /* size == LPAGE_SIZE */
1182		int i;
1183		dma_addr_t pent_base = virt_to_phys(pent);
1184
1185		dma_sync_single_for_cpu(dma_dev, pent_base,
1186					sizeof(*pent) * SPAGES_PER_LPAGE,
1187					DMA_TO_DEVICE);
1188		for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
1189			if (WARN_ON(!lv2ent_fault(pent))) {
1190				if (i > 0)
1191					memset(pent - i, 0, sizeof(*pent) * i);
1192				return -EADDRINUSE;
1193			}
1194
1195			*pent = mk_lv2ent_lpage(paddr, prot);
1196		}
1197		dma_sync_single_for_device(dma_dev, pent_base,
1198					   sizeof(*pent) * SPAGES_PER_LPAGE,
1199					   DMA_TO_DEVICE);
1200		*pgcnt -= SPAGES_PER_LPAGE;
1201	}
1202
1203	return 0;
1204}
1205
1206/*
1207 * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
1208 *
1209 * System MMU v3.x has advanced logic to improve address translation
1210 * performance with caching more page table entries by a page table walk.
1211 * However, the logic has a bug that while caching faulty page table entries,
1212 * System MMU reports page fault if the cached fault entry is hit even though
1213 * the fault entry is updated to a valid entry after the entry is cached.
1214 * To prevent caching faulty page table entries which may be updated to valid
1215 * entries later, the virtual memory manager should care about the workaround
1216 * for the problem. The following describes the workaround.
1217 *
1218 * Any two consecutive I/O virtual address regions must have a hole of 128KiB
1219 * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
1220 *
1221 * Precisely, any start address of I/O virtual region must be aligned with
1222 * the following sizes for System MMU v3.1 and v3.2.
1223 * System MMU v3.1: 128KiB
1224 * System MMU v3.2: 256KiB
1225 *
1226 * Because System MMU v3.3 caches page table entries more aggressively, it needs
1227 * more workarounds.
1228 * - Any two consecutive I/O virtual regions must have a hole of size larger
1229 *   than or equal to 128KiB.
1230 * - Start address of an I/O virtual region must be aligned by 128KiB.
1231 */
1232static int exynos_iommu_map(struct iommu_domain *iommu_domain,
1233			    unsigned long l_iova, phys_addr_t paddr, size_t size,
1234			    size_t count, int prot, gfp_t gfp, size_t *mapped)
1235{
1236	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1237	sysmmu_pte_t *entry;
1238	sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1239	unsigned long flags;
1240	int ret = -ENOMEM;
1241
1242	BUG_ON(domain->pgtable == NULL);
1243	prot &= SYSMMU_SUPPORTED_PROT_BITS;
1244
1245	spin_lock_irqsave(&domain->pgtablelock, flags);
1246
1247	entry = section_entry(domain->pgtable, iova);
1248
1249	if (size == SECT_SIZE) {
1250		ret = lv1set_section(domain, entry, iova, paddr, prot,
1251				     &domain->lv2entcnt[lv1ent_offset(iova)]);
1252	} else {
1253		sysmmu_pte_t *pent;
1254
1255		pent = alloc_lv2entry(domain, entry, iova,
1256				      &domain->lv2entcnt[lv1ent_offset(iova)]);
1257
1258		if (IS_ERR(pent))
1259			ret = PTR_ERR(pent);
1260		else
1261			ret = lv2set_page(pent, paddr, size, prot,
1262				       &domain->lv2entcnt[lv1ent_offset(iova)]);
1263	}
1264
1265	if (ret)
1266		pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
1267			__func__, ret, size, iova);
1268	else
1269		*mapped = size;
1270
1271	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1272
1273	return ret;
1274}
1275
1276static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
1277					      sysmmu_iova_t iova, size_t size)
1278{
1279	struct sysmmu_drvdata *data;
1280	unsigned long flags;
1281
1282	spin_lock_irqsave(&domain->lock, flags);
1283
1284	list_for_each_entry(data, &domain->clients, domain_node)
1285		sysmmu_tlb_invalidate_entry(data, iova, size);
1286
1287	spin_unlock_irqrestore(&domain->lock, flags);
1288}
1289
1290static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
1291				 unsigned long l_iova, size_t size, size_t count,
1292				 struct iommu_iotlb_gather *gather)
1293{
1294	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1295	sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1296	sysmmu_pte_t *ent;
1297	size_t err_pgsize;
1298	unsigned long flags;
1299
1300	BUG_ON(domain->pgtable == NULL);
1301
1302	spin_lock_irqsave(&domain->pgtablelock, flags);
1303
1304	ent = section_entry(domain->pgtable, iova);
1305
1306	if (lv1ent_section(ent)) {
1307		if (WARN_ON(size < SECT_SIZE)) {
1308			err_pgsize = SECT_SIZE;
1309			goto err;
1310		}
1311
1312		/* workaround for h/w bug in System MMU v3.3 */
1313		exynos_iommu_set_pte(ent, ZERO_LV2LINK);
1314		size = SECT_SIZE;
1315		goto done;
1316	}
1317
1318	if (unlikely(lv1ent_fault(ent))) {
1319		if (size > SECT_SIZE)
1320			size = SECT_SIZE;
1321		goto done;
1322	}
1323
1324	/* lv1ent_page(sent) == true here */
1325
1326	ent = page_entry(ent, iova);
1327
1328	if (unlikely(lv2ent_fault(ent))) {
1329		size = SPAGE_SIZE;
1330		goto done;
1331	}
1332
1333	if (lv2ent_small(ent)) {
1334		exynos_iommu_set_pte(ent, 0);
1335		size = SPAGE_SIZE;
1336		domain->lv2entcnt[lv1ent_offset(iova)] += 1;
1337		goto done;
1338	}
1339
1340	/* lv1ent_large(ent) == true here */
1341	if (WARN_ON(size < LPAGE_SIZE)) {
1342		err_pgsize = LPAGE_SIZE;
1343		goto err;
1344	}
1345
1346	dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent),
1347				sizeof(*ent) * SPAGES_PER_LPAGE,
1348				DMA_TO_DEVICE);
1349	memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
1350	dma_sync_single_for_device(dma_dev, virt_to_phys(ent),
1351				   sizeof(*ent) * SPAGES_PER_LPAGE,
1352				   DMA_TO_DEVICE);
1353	size = LPAGE_SIZE;
1354	domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
1355done:
1356	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1357
1358	exynos_iommu_tlb_invalidate_entry(domain, iova, size);
1359
1360	return size;
1361err:
1362	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1363
1364	pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
1365		__func__, size, iova, err_pgsize);
1366
1367	return 0;
1368}
1369
1370static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
1371					  dma_addr_t iova)
1372{
1373	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1374	sysmmu_pte_t *entry;
1375	unsigned long flags;
1376	phys_addr_t phys = 0;
1377
1378	spin_lock_irqsave(&domain->pgtablelock, flags);
1379
1380	entry = section_entry(domain->pgtable, iova);
1381
1382	if (lv1ent_section(entry)) {
1383		phys = section_phys(entry) + section_offs(iova);
1384	} else if (lv1ent_page(entry)) {
1385		entry = page_entry(entry, iova);
1386
1387		if (lv2ent_large(entry))
1388			phys = lpage_phys(entry) + lpage_offs(iova);
1389		else if (lv2ent_small(entry))
1390			phys = spage_phys(entry) + spage_offs(iova);
1391	}
1392
1393	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1394
1395	return phys;
1396}
1397
1398static struct iommu_device *exynos_iommu_probe_device(struct device *dev)
1399{
1400	struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1401	struct sysmmu_drvdata *data;
1402
1403	if (!has_sysmmu(dev))
1404		return ERR_PTR(-ENODEV);
1405
1406	list_for_each_entry(data, &owner->controllers, owner_node) {
1407		/*
1408		 * SYSMMU will be runtime activated via device link
1409		 * (dependency) to its master device, so there are no
1410		 * direct calls to pm_runtime_get/put in this driver.
1411		 */
1412		data->link = device_link_add(dev, data->sysmmu,
1413					     DL_FLAG_STATELESS |
1414					     DL_FLAG_PM_RUNTIME);
1415	}
1416
1417	/* There is always at least one entry, see exynos_iommu_of_xlate() */
1418	data = list_first_entry(&owner->controllers,
1419				struct sysmmu_drvdata, owner_node);
1420
1421	return &data->iommu;
1422}
1423
1424static void exynos_iommu_release_device(struct device *dev)
1425{
1426	struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1427	struct sysmmu_drvdata *data;
1428
1429	WARN_ON(exynos_iommu_identity_attach(&exynos_identity_domain, dev));
1430
1431	list_for_each_entry(data, &owner->controllers, owner_node)
1432		device_link_del(data->link);
1433}
1434
1435static int exynos_iommu_of_xlate(struct device *dev,
1436				 const struct of_phandle_args *spec)
1437{
1438	struct platform_device *sysmmu = of_find_device_by_node(spec->np);
1439	struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1440	struct sysmmu_drvdata *data, *entry;
1441
1442	if (!sysmmu)
1443		return -ENODEV;
1444
1445	data = platform_get_drvdata(sysmmu);
1446	if (!data) {
1447		put_device(&sysmmu->dev);
1448		return -ENODEV;
1449	}
1450
1451	if (!owner) {
1452		owner = kzalloc(sizeof(*owner), GFP_KERNEL);
1453		if (!owner) {
1454			put_device(&sysmmu->dev);
1455			return -ENOMEM;
1456		}
1457
1458		INIT_LIST_HEAD(&owner->controllers);
1459		mutex_init(&owner->rpm_lock);
1460		owner->domain = &exynos_identity_domain;
1461		dev_iommu_priv_set(dev, owner);
1462	}
1463
1464	list_for_each_entry(entry, &owner->controllers, owner_node)
1465		if (entry == data)
1466			return 0;
1467
1468	list_add_tail(&data->owner_node, &owner->controllers);
1469	data->master = dev;
1470
1471	return 0;
1472}
1473
1474static const struct iommu_ops exynos_iommu_ops = {
1475	.identity_domain = &exynos_identity_domain,
1476	.domain_alloc_paging = exynos_iommu_domain_alloc_paging,
1477	.device_group = generic_device_group,
1478	.probe_device = exynos_iommu_probe_device,
1479	.release_device = exynos_iommu_release_device,
1480	.pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
1481	.of_xlate = exynos_iommu_of_xlate,
1482	.default_domain_ops = &(const struct iommu_domain_ops) {
1483		.attach_dev	= exynos_iommu_attach_device,
1484		.map_pages	= exynos_iommu_map,
1485		.unmap_pages	= exynos_iommu_unmap,
1486		.iova_to_phys	= exynos_iommu_iova_to_phys,
1487		.free		= exynos_iommu_domain_free,
1488	}
1489};
1490
1491static int __init exynos_iommu_init(void)
1492{
1493	struct device_node *np;
1494	int ret;
1495
1496	np = of_find_matching_node(NULL, sysmmu_of_match);
1497	if (!np)
1498		return 0;
1499
1500	of_node_put(np);
1501
1502	lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
1503				LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
1504	if (!lv2table_kmem_cache) {
1505		pr_err("%s: Failed to create kmem cache\n", __func__);
1506		return -ENOMEM;
1507	}
1508
1509	zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
1510	if (zero_lv2_table == NULL) {
1511		pr_err("%s: Failed to allocate zero level2 page table\n",
1512			__func__);
1513		ret = -ENOMEM;
1514		goto err_zero_lv2;
1515	}
1516
1517	ret = platform_driver_register(&exynos_sysmmu_driver);
1518	if (ret) {
1519		pr_err("%s: Failed to register driver\n", __func__);
1520		goto err_reg_driver;
1521	}
1522
1523	return 0;
1524err_reg_driver:
1525	kmem_cache_free(lv2table_kmem_cache, zero_lv2_table);
1526err_zero_lv2:
1527	kmem_cache_destroy(lv2table_kmem_cache);
1528	return ret;
1529}
1530core_initcall(exynos_iommu_init);