Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Bosch BMC150 three-axis magnetic field sensor driver
   4 *
   5 * Copyright (c) 2015, Intel Corporation.
   6 *
   7 * This code is based on bmm050_api.c authored by contact@bosch.sensortec.com:
   8 *
   9 * (C) Copyright 2011~2014 Bosch Sensortec GmbH All Rights Reserved
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/i2c.h>
  14#include <linux/interrupt.h>
  15#include <linux/delay.h>
  16#include <linux/slab.h>
  17#include <linux/pm.h>
  18#include <linux/pm_runtime.h>
  19#include <linux/iio/iio.h>
  20#include <linux/iio/sysfs.h>
  21#include <linux/iio/buffer.h>
  22#include <linux/iio/events.h>
  23#include <linux/iio/trigger.h>
  24#include <linux/iio/trigger_consumer.h>
  25#include <linux/iio/triggered_buffer.h>
  26#include <linux/regmap.h>
  27#include <linux/regulator/consumer.h>
  28
  29#include "bmc150_magn.h"
  30
  31#define BMC150_MAGN_DRV_NAME			"bmc150_magn"
  32#define BMC150_MAGN_IRQ_NAME			"bmc150_magn_event"
  33
  34#define BMC150_MAGN_REG_CHIP_ID			0x40
  35#define BMC150_MAGN_CHIP_ID_VAL			0x32
  36
  37#define BMC150_MAGN_REG_X_L			0x42
  38#define BMC150_MAGN_REG_X_M			0x43
  39#define BMC150_MAGN_REG_Y_L			0x44
  40#define BMC150_MAGN_REG_Y_M			0x45
  41#define BMC150_MAGN_SHIFT_XY_L			3
  42#define BMC150_MAGN_REG_Z_L			0x46
  43#define BMC150_MAGN_REG_Z_M			0x47
  44#define BMC150_MAGN_SHIFT_Z_L			1
  45#define BMC150_MAGN_REG_RHALL_L			0x48
  46#define BMC150_MAGN_REG_RHALL_M			0x49
  47#define BMC150_MAGN_SHIFT_RHALL_L		2
  48
  49#define BMC150_MAGN_REG_INT_STATUS		0x4A
  50
  51#define BMC150_MAGN_REG_POWER			0x4B
  52#define BMC150_MAGN_MASK_POWER_CTL		BIT(0)
  53
  54#define BMC150_MAGN_REG_OPMODE_ODR		0x4C
  55#define BMC150_MAGN_MASK_OPMODE			GENMASK(2, 1)
  56#define BMC150_MAGN_SHIFT_OPMODE		1
  57#define BMC150_MAGN_MODE_NORMAL			0x00
  58#define BMC150_MAGN_MODE_FORCED			0x01
  59#define BMC150_MAGN_MODE_SLEEP			0x03
  60#define BMC150_MAGN_MASK_ODR			GENMASK(5, 3)
  61#define BMC150_MAGN_SHIFT_ODR			3
  62
  63#define BMC150_MAGN_REG_INT			0x4D
  64
  65#define BMC150_MAGN_REG_INT_DRDY		0x4E
  66#define BMC150_MAGN_MASK_DRDY_EN		BIT(7)
  67#define BMC150_MAGN_SHIFT_DRDY_EN		7
  68#define BMC150_MAGN_MASK_DRDY_INT3		BIT(6)
  69#define BMC150_MAGN_MASK_DRDY_Z_EN		BIT(5)
  70#define BMC150_MAGN_MASK_DRDY_Y_EN		BIT(4)
  71#define BMC150_MAGN_MASK_DRDY_X_EN		BIT(3)
  72#define BMC150_MAGN_MASK_DRDY_DR_POLARITY	BIT(2)
  73#define BMC150_MAGN_MASK_DRDY_LATCHING		BIT(1)
  74#define BMC150_MAGN_MASK_DRDY_INT3_POLARITY	BIT(0)
  75
  76#define BMC150_MAGN_REG_LOW_THRESH		0x4F
  77#define BMC150_MAGN_REG_HIGH_THRESH		0x50
  78#define BMC150_MAGN_REG_REP_XY			0x51
  79#define BMC150_MAGN_REG_REP_Z			0x52
  80#define BMC150_MAGN_REG_REP_DATAMASK		GENMASK(7, 0)
  81
  82#define BMC150_MAGN_REG_TRIM_START		0x5D
  83#define BMC150_MAGN_REG_TRIM_END		0x71
  84
  85#define BMC150_MAGN_XY_OVERFLOW_VAL		-4096
  86#define BMC150_MAGN_Z_OVERFLOW_VAL		-16384
  87
  88/* Time from SUSPEND to SLEEP */
  89#define BMC150_MAGN_START_UP_TIME_MS		3
  90
  91#define BMC150_MAGN_AUTO_SUSPEND_DELAY_MS	2000
  92
  93#define BMC150_MAGN_REGVAL_TO_REPXY(regval) (((regval) * 2) + 1)
  94#define BMC150_MAGN_REGVAL_TO_REPZ(regval) ((regval) + 1)
  95#define BMC150_MAGN_REPXY_TO_REGVAL(rep) (((rep) - 1) / 2)
  96#define BMC150_MAGN_REPZ_TO_REGVAL(rep) ((rep) - 1)
  97
  98enum bmc150_magn_axis {
  99	AXIS_X,
 100	AXIS_Y,
 101	AXIS_Z,
 102	RHALL,
 103	AXIS_XYZ_MAX = RHALL,
 104	AXIS_XYZR_MAX,
 105};
 106
 107enum bmc150_magn_power_modes {
 108	BMC150_MAGN_POWER_MODE_SUSPEND,
 109	BMC150_MAGN_POWER_MODE_SLEEP,
 110	BMC150_MAGN_POWER_MODE_NORMAL,
 111};
 112
 113struct bmc150_magn_trim_regs {
 114	s8 x1;
 115	s8 y1;
 116	__le16 reserved1;
 117	u8 reserved2;
 118	__le16 z4;
 119	s8 x2;
 120	s8 y2;
 121	__le16 reserved3;
 122	__le16 z2;
 123	__le16 z1;
 124	__le16 xyz1;
 125	__le16 z3;
 126	s8 xy2;
 127	u8 xy1;
 128} __packed;
 129
 130struct bmc150_magn_data {
 131	struct device *dev;
 132	/*
 133	 * 1. Protect this structure.
 134	 * 2. Serialize sequences that power on/off the device and access HW.
 135	 */
 136	struct mutex mutex;
 137	struct regmap *regmap;
 138	struct regulator_bulk_data regulators[2];
 139	struct iio_mount_matrix orientation;
 140	/* Ensure timestamp is naturally aligned */
 141	struct {
 142		s32 chans[3];
 143		s64 timestamp __aligned(8);
 144	} scan;
 145	struct iio_trigger *dready_trig;
 146	bool dready_trigger_on;
 147	int max_odr;
 148	int irq;
 149};
 150
 151static const struct {
 152	int freq;
 153	u8 reg_val;
 154} bmc150_magn_samp_freq_table[] = { {2, 0x01},
 155				    {6, 0x02},
 156				    {8, 0x03},
 157				    {10, 0x00},
 158				    {15, 0x04},
 159				    {20, 0x05},
 160				    {25, 0x06},
 161				    {30, 0x07} };
 162
 163enum bmc150_magn_presets {
 164	LOW_POWER_PRESET,
 165	REGULAR_PRESET,
 166	ENHANCED_REGULAR_PRESET,
 167	HIGH_ACCURACY_PRESET
 168};
 169
 170static const struct bmc150_magn_preset {
 171	u8 rep_xy;
 172	u8 rep_z;
 173	u8 odr;
 174} bmc150_magn_presets_table[] = {
 175	[LOW_POWER_PRESET] = {3, 3, 10},
 176	[REGULAR_PRESET] =  {9, 15, 10},
 177	[ENHANCED_REGULAR_PRESET] =  {15, 27, 10},
 178	[HIGH_ACCURACY_PRESET] =  {47, 83, 20},
 179};
 180
 181#define BMC150_MAGN_DEFAULT_PRESET REGULAR_PRESET
 182
 183static bool bmc150_magn_is_writeable_reg(struct device *dev, unsigned int reg)
 184{
 185	switch (reg) {
 186	case BMC150_MAGN_REG_POWER:
 187	case BMC150_MAGN_REG_OPMODE_ODR:
 188	case BMC150_MAGN_REG_INT:
 189	case BMC150_MAGN_REG_INT_DRDY:
 190	case BMC150_MAGN_REG_LOW_THRESH:
 191	case BMC150_MAGN_REG_HIGH_THRESH:
 192	case BMC150_MAGN_REG_REP_XY:
 193	case BMC150_MAGN_REG_REP_Z:
 194		return true;
 195	default:
 196		return false;
 197	}
 198}
 199
 200static bool bmc150_magn_is_volatile_reg(struct device *dev, unsigned int reg)
 201{
 202	switch (reg) {
 203	case BMC150_MAGN_REG_X_L:
 204	case BMC150_MAGN_REG_X_M:
 205	case BMC150_MAGN_REG_Y_L:
 206	case BMC150_MAGN_REG_Y_M:
 207	case BMC150_MAGN_REG_Z_L:
 208	case BMC150_MAGN_REG_Z_M:
 209	case BMC150_MAGN_REG_RHALL_L:
 210	case BMC150_MAGN_REG_RHALL_M:
 211	case BMC150_MAGN_REG_INT_STATUS:
 212		return true;
 213	default:
 214		return false;
 215	}
 216}
 217
 218const struct regmap_config bmc150_magn_regmap_config = {
 219	.reg_bits = 8,
 220	.val_bits = 8,
 221
 222	.max_register = BMC150_MAGN_REG_TRIM_END,
 223	.cache_type = REGCACHE_RBTREE,
 224
 225	.writeable_reg = bmc150_magn_is_writeable_reg,
 226	.volatile_reg = bmc150_magn_is_volatile_reg,
 227};
 228EXPORT_SYMBOL_NS(bmc150_magn_regmap_config, "IIO_BMC150_MAGN");
 229
 230static int bmc150_magn_set_power_mode(struct bmc150_magn_data *data,
 231				      enum bmc150_magn_power_modes mode,
 232				      bool state)
 233{
 234	int ret;
 235
 236	switch (mode) {
 237	case BMC150_MAGN_POWER_MODE_SUSPEND:
 238		ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_POWER,
 239					 BMC150_MAGN_MASK_POWER_CTL, !state);
 240		if (ret < 0)
 241			return ret;
 242		usleep_range(BMC150_MAGN_START_UP_TIME_MS * 1000, 20000);
 243		return 0;
 244	case BMC150_MAGN_POWER_MODE_SLEEP:
 245		return regmap_update_bits(data->regmap,
 246					  BMC150_MAGN_REG_OPMODE_ODR,
 247					  BMC150_MAGN_MASK_OPMODE,
 248					  BMC150_MAGN_MODE_SLEEP <<
 249					  BMC150_MAGN_SHIFT_OPMODE);
 250	case BMC150_MAGN_POWER_MODE_NORMAL:
 251		return regmap_update_bits(data->regmap,
 252					  BMC150_MAGN_REG_OPMODE_ODR,
 253					  BMC150_MAGN_MASK_OPMODE,
 254					  BMC150_MAGN_MODE_NORMAL <<
 255					  BMC150_MAGN_SHIFT_OPMODE);
 256	}
 257
 258	return -EINVAL;
 259}
 260
 261static int bmc150_magn_set_power_state(struct bmc150_magn_data *data, bool on)
 262{
 263#ifdef CONFIG_PM
 264	int ret;
 265
 266	if (on) {
 267		ret = pm_runtime_resume_and_get(data->dev);
 268	} else {
 269		pm_runtime_mark_last_busy(data->dev);
 270		ret = pm_runtime_put_autosuspend(data->dev);
 271	}
 272
 273	if (ret < 0) {
 274		dev_err(data->dev,
 275			"failed to change power state to %d\n", on);
 276		return ret;
 277	}
 278#endif
 279
 280	return 0;
 281}
 282
 283static int bmc150_magn_get_odr(struct bmc150_magn_data *data, int *val)
 284{
 285	int ret, reg_val;
 286	u8 i, odr_val;
 287
 288	ret = regmap_read(data->regmap, BMC150_MAGN_REG_OPMODE_ODR, &reg_val);
 289	if (ret < 0)
 290		return ret;
 291	odr_val = (reg_val & BMC150_MAGN_MASK_ODR) >> BMC150_MAGN_SHIFT_ODR;
 292
 293	for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++)
 294		if (bmc150_magn_samp_freq_table[i].reg_val == odr_val) {
 295			*val = bmc150_magn_samp_freq_table[i].freq;
 296			return 0;
 297		}
 298
 299	return -EINVAL;
 300}
 301
 302static int bmc150_magn_set_odr(struct bmc150_magn_data *data, int val)
 303{
 304	int ret;
 305	u8 i;
 306
 307	for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
 308		if (bmc150_magn_samp_freq_table[i].freq == val) {
 309			ret = regmap_update_bits(data->regmap,
 310						 BMC150_MAGN_REG_OPMODE_ODR,
 311						 BMC150_MAGN_MASK_ODR,
 312						 bmc150_magn_samp_freq_table[i].
 313						 reg_val <<
 314						 BMC150_MAGN_SHIFT_ODR);
 315			if (ret < 0)
 316				return ret;
 317			return 0;
 318		}
 319	}
 320
 321	return -EINVAL;
 322}
 323
 324static int bmc150_magn_set_max_odr(struct bmc150_magn_data *data, int rep_xy,
 325				   int rep_z, int odr)
 326{
 327	int ret, reg_val, max_odr;
 328
 329	if (rep_xy <= 0) {
 330		ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
 331				  &reg_val);
 332		if (ret < 0)
 333			return ret;
 334		rep_xy = BMC150_MAGN_REGVAL_TO_REPXY(reg_val);
 335	}
 336	if (rep_z <= 0) {
 337		ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
 338				  &reg_val);
 339		if (ret < 0)
 340			return ret;
 341		rep_z = BMC150_MAGN_REGVAL_TO_REPZ(reg_val);
 342	}
 343	if (odr <= 0) {
 344		ret = bmc150_magn_get_odr(data, &odr);
 345		if (ret < 0)
 346			return ret;
 347	}
 348	/* the maximum selectable read-out frequency from datasheet */
 349	max_odr = 1000000 / (145 * rep_xy + 500 * rep_z + 980);
 350	if (odr > max_odr) {
 351		dev_err(data->dev,
 352			"Can't set oversampling with sampling freq %d\n",
 353			odr);
 354		return -EINVAL;
 355	}
 356	data->max_odr = max_odr;
 357
 358	return 0;
 359}
 360
 361static s32 bmc150_magn_compensate_x(struct bmc150_magn_trim_regs *tregs, s16 x,
 362				    u16 rhall)
 363{
 364	s16 val;
 365	u16 xyz1 = le16_to_cpu(tregs->xyz1);
 366
 367	if (x == BMC150_MAGN_XY_OVERFLOW_VAL)
 368		return S32_MIN;
 369
 370	if (!rhall)
 371		rhall = xyz1;
 372
 373	val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
 374	val = ((s16)((((s32)x) * ((((((((s32)tregs->xy2) * ((((s32)val) *
 375	      ((s32)val)) >> 7)) + (((s32)val) *
 376	      ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
 377	      ((s32)(((s16)tregs->x2) + ((s16)0xA0)))) >> 12)) >> 13)) +
 378	      (((s16)tregs->x1) << 3);
 379
 380	return (s32)val;
 381}
 382
 383static s32 bmc150_magn_compensate_y(struct bmc150_magn_trim_regs *tregs, s16 y,
 384				    u16 rhall)
 385{
 386	s16 val;
 387	u16 xyz1 = le16_to_cpu(tregs->xyz1);
 388
 389	if (y == BMC150_MAGN_XY_OVERFLOW_VAL)
 390		return S32_MIN;
 391
 392	if (!rhall)
 393		rhall = xyz1;
 394
 395	val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
 396	val = ((s16)((((s32)y) * ((((((((s32)tregs->xy2) * ((((s32)val) *
 397	      ((s32)val)) >> 7)) + (((s32)val) *
 398	      ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
 399	      ((s32)(((s16)tregs->y2) + ((s16)0xA0)))) >> 12)) >> 13)) +
 400	      (((s16)tregs->y1) << 3);
 401
 402	return (s32)val;
 403}
 404
 405static s32 bmc150_magn_compensate_z(struct bmc150_magn_trim_regs *tregs, s16 z,
 406				    u16 rhall)
 407{
 408	s32 val;
 409	u16 xyz1 = le16_to_cpu(tregs->xyz1);
 410	u16 z1 = le16_to_cpu(tregs->z1);
 411	s16 z2 = le16_to_cpu(tregs->z2);
 412	s16 z3 = le16_to_cpu(tregs->z3);
 413	s16 z4 = le16_to_cpu(tregs->z4);
 414
 415	if (z == BMC150_MAGN_Z_OVERFLOW_VAL)
 416		return S32_MIN;
 417
 418	val = (((((s32)(z - z4)) << 15) - ((((s32)z3) * ((s32)(((s16)rhall) -
 419	      ((s16)xyz1)))) >> 2)) / (z2 + ((s16)(((((s32)z1) *
 420	      ((((s16)rhall) << 1))) + (1 << 15)) >> 16))));
 421
 422	return val;
 423}
 424
 425static int bmc150_magn_read_xyz(struct bmc150_magn_data *data, s32 *buffer)
 426{
 427	int ret;
 428	__le16 values[AXIS_XYZR_MAX];
 429	s16 raw_x, raw_y, raw_z;
 430	u16 rhall;
 431	struct bmc150_magn_trim_regs tregs;
 432
 433	ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_X_L,
 434			       values, sizeof(values));
 435	if (ret < 0)
 436		return ret;
 437
 438	raw_x = (s16)le16_to_cpu(values[AXIS_X]) >> BMC150_MAGN_SHIFT_XY_L;
 439	raw_y = (s16)le16_to_cpu(values[AXIS_Y]) >> BMC150_MAGN_SHIFT_XY_L;
 440	raw_z = (s16)le16_to_cpu(values[AXIS_Z]) >> BMC150_MAGN_SHIFT_Z_L;
 441	rhall = le16_to_cpu(values[RHALL]) >> BMC150_MAGN_SHIFT_RHALL_L;
 442
 443	ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_TRIM_START,
 444			       &tregs, sizeof(tregs));
 445	if (ret < 0)
 446		return ret;
 447
 448	buffer[AXIS_X] = bmc150_magn_compensate_x(&tregs, raw_x, rhall);
 449	buffer[AXIS_Y] = bmc150_magn_compensate_y(&tregs, raw_y, rhall);
 450	buffer[AXIS_Z] = bmc150_magn_compensate_z(&tregs, raw_z, rhall);
 451
 452	return 0;
 453}
 454
 455static int bmc150_magn_read_raw(struct iio_dev *indio_dev,
 456				struct iio_chan_spec const *chan,
 457				int *val, int *val2, long mask)
 458{
 459	struct bmc150_magn_data *data = iio_priv(indio_dev);
 460	int ret, tmp;
 461	s32 values[AXIS_XYZ_MAX];
 462
 463	switch (mask) {
 464	case IIO_CHAN_INFO_RAW:
 465		if (iio_buffer_enabled(indio_dev))
 466			return -EBUSY;
 467		mutex_lock(&data->mutex);
 468
 469		ret = bmc150_magn_set_power_state(data, true);
 470		if (ret < 0) {
 471			mutex_unlock(&data->mutex);
 472			return ret;
 473		}
 474
 475		ret = bmc150_magn_read_xyz(data, values);
 476		if (ret < 0) {
 477			bmc150_magn_set_power_state(data, false);
 478			mutex_unlock(&data->mutex);
 479			return ret;
 480		}
 481		*val = values[chan->scan_index];
 482
 483		ret = bmc150_magn_set_power_state(data, false);
 484		if (ret < 0) {
 485			mutex_unlock(&data->mutex);
 486			return ret;
 487		}
 488
 489		mutex_unlock(&data->mutex);
 490		return IIO_VAL_INT;
 491	case IIO_CHAN_INFO_SCALE:
 492		/*
 493		 * The API/driver performs an off-chip temperature
 494		 * compensation and outputs x/y/z magnetic field data in
 495		 * 16 LSB/uT to the upper application layer.
 496		 */
 497		*val = 0;
 498		*val2 = 625;
 499		return IIO_VAL_INT_PLUS_MICRO;
 500	case IIO_CHAN_INFO_SAMP_FREQ:
 501		ret = bmc150_magn_get_odr(data, val);
 502		if (ret < 0)
 503			return ret;
 504		return IIO_VAL_INT;
 505	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
 506		switch (chan->channel2) {
 507		case IIO_MOD_X:
 508		case IIO_MOD_Y:
 509			ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
 510					  &tmp);
 511			if (ret < 0)
 512				return ret;
 513			*val = BMC150_MAGN_REGVAL_TO_REPXY(tmp);
 514			return IIO_VAL_INT;
 515		case IIO_MOD_Z:
 516			ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
 517					  &tmp);
 518			if (ret < 0)
 519				return ret;
 520			*val = BMC150_MAGN_REGVAL_TO_REPZ(tmp);
 521			return IIO_VAL_INT;
 522		default:
 523			return -EINVAL;
 524		}
 525	default:
 526		return -EINVAL;
 527	}
 528}
 529
 530static int bmc150_magn_write_raw(struct iio_dev *indio_dev,
 531				 struct iio_chan_spec const *chan,
 532				 int val, int val2, long mask)
 533{
 534	struct bmc150_magn_data *data = iio_priv(indio_dev);
 535	int ret;
 536
 537	switch (mask) {
 538	case IIO_CHAN_INFO_SAMP_FREQ:
 539		if (val > data->max_odr)
 540			return -EINVAL;
 541		mutex_lock(&data->mutex);
 542		ret = bmc150_magn_set_odr(data, val);
 543		mutex_unlock(&data->mutex);
 544		return ret;
 545	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
 546		switch (chan->channel2) {
 547		case IIO_MOD_X:
 548		case IIO_MOD_Y:
 549			if (val < 1 || val > 511)
 550				return -EINVAL;
 551			mutex_lock(&data->mutex);
 552			ret = bmc150_magn_set_max_odr(data, val, 0, 0);
 553			if (ret < 0) {
 554				mutex_unlock(&data->mutex);
 555				return ret;
 556			}
 557			ret = regmap_update_bits(data->regmap,
 558						 BMC150_MAGN_REG_REP_XY,
 559						 BMC150_MAGN_REG_REP_DATAMASK,
 560						 BMC150_MAGN_REPXY_TO_REGVAL
 561						 (val));
 562			mutex_unlock(&data->mutex);
 563			return ret;
 564		case IIO_MOD_Z:
 565			if (val < 1 || val > 256)
 566				return -EINVAL;
 567			mutex_lock(&data->mutex);
 568			ret = bmc150_magn_set_max_odr(data, 0, val, 0);
 569			if (ret < 0) {
 570				mutex_unlock(&data->mutex);
 571				return ret;
 572			}
 573			ret = regmap_update_bits(data->regmap,
 574						 BMC150_MAGN_REG_REP_Z,
 575						 BMC150_MAGN_REG_REP_DATAMASK,
 576						 BMC150_MAGN_REPZ_TO_REGVAL
 577						 (val));
 578			mutex_unlock(&data->mutex);
 579			return ret;
 580		default:
 581			return -EINVAL;
 582		}
 583	default:
 584		return -EINVAL;
 585	}
 586}
 587
 588static ssize_t bmc150_magn_show_samp_freq_avail(struct device *dev,
 589						struct device_attribute *attr,
 590						char *buf)
 591{
 592	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
 593	struct bmc150_magn_data *data = iio_priv(indio_dev);
 594	size_t len = 0;
 595	u8 i;
 596
 597	for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
 598		if (bmc150_magn_samp_freq_table[i].freq > data->max_odr)
 599			break;
 600		len += scnprintf(buf + len, PAGE_SIZE - len, "%d ",
 601				 bmc150_magn_samp_freq_table[i].freq);
 602	}
 603	/* replace last space with a newline */
 604	buf[len - 1] = '\n';
 605
 606	return len;
 607}
 608
 609static const struct iio_mount_matrix *
 610bmc150_magn_get_mount_matrix(const struct iio_dev *indio_dev,
 611			      const struct iio_chan_spec *chan)
 612{
 613	struct bmc150_magn_data *data = iio_priv(indio_dev);
 614
 615	return &data->orientation;
 616}
 617
 618static const struct iio_chan_spec_ext_info bmc150_magn_ext_info[] = {
 619	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_magn_get_mount_matrix),
 620	{ }
 621};
 622
 623static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(bmc150_magn_show_samp_freq_avail);
 624
 625static struct attribute *bmc150_magn_attributes[] = {
 626	&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
 627	NULL,
 628};
 629
 630static const struct attribute_group bmc150_magn_attrs_group = {
 631	.attrs = bmc150_magn_attributes,
 632};
 633
 634#define BMC150_MAGN_CHANNEL(_axis) {					\
 635	.type = IIO_MAGN,						\
 636	.modified = 1,							\
 637	.channel2 = IIO_MOD_##_axis,					\
 638	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
 639			      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),	\
 640	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) |	\
 641				    BIT(IIO_CHAN_INFO_SCALE),		\
 642	.scan_index = AXIS_##_axis,					\
 643	.scan_type = {							\
 644		.sign = 's',						\
 645		.realbits = 32,						\
 646		.storagebits = 32,					\
 647		.endianness = IIO_LE					\
 648	},								\
 649	.ext_info = bmc150_magn_ext_info,				\
 650}
 651
 652static const struct iio_chan_spec bmc150_magn_channels[] = {
 653	BMC150_MAGN_CHANNEL(X),
 654	BMC150_MAGN_CHANNEL(Y),
 655	BMC150_MAGN_CHANNEL(Z),
 656	IIO_CHAN_SOFT_TIMESTAMP(3),
 657};
 658
 659static const struct iio_info bmc150_magn_info = {
 660	.attrs = &bmc150_magn_attrs_group,
 661	.read_raw = bmc150_magn_read_raw,
 662	.write_raw = bmc150_magn_write_raw,
 663};
 664
 665static const unsigned long bmc150_magn_scan_masks[] = {
 666					BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
 667					0};
 668
 669static irqreturn_t bmc150_magn_trigger_handler(int irq, void *p)
 670{
 671	struct iio_poll_func *pf = p;
 672	struct iio_dev *indio_dev = pf->indio_dev;
 673	struct bmc150_magn_data *data = iio_priv(indio_dev);
 674	int ret;
 675
 676	mutex_lock(&data->mutex);
 677	ret = bmc150_magn_read_xyz(data, data->scan.chans);
 678	if (ret < 0)
 679		goto err;
 680
 681	iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
 682					   pf->timestamp);
 683
 684err:
 685	mutex_unlock(&data->mutex);
 686	iio_trigger_notify_done(indio_dev->trig);
 687
 688	return IRQ_HANDLED;
 689}
 690
 691static int bmc150_magn_init(struct bmc150_magn_data *data)
 692{
 693	int ret, chip_id;
 694	struct bmc150_magn_preset preset;
 695
 696	ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators),
 697				    data->regulators);
 698	if (ret < 0) {
 699		dev_err(data->dev, "Failed to enable regulators: %d\n", ret);
 700		return ret;
 701	}
 702	/*
 703	 * 3ms power-on time according to datasheet, let's better
 704	 * be safe than sorry and set this delay to 5ms.
 705	 */
 706	msleep(5);
 707
 708	ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND,
 709					 false);
 710	if (ret < 0) {
 711		dev_err(data->dev,
 712			"Failed to bring up device from suspend mode\n");
 713		goto err_regulator_disable;
 714	}
 715
 716	ret = regmap_read(data->regmap, BMC150_MAGN_REG_CHIP_ID, &chip_id);
 717	if (ret < 0) {
 718		dev_err(data->dev, "Failed reading chip id\n");
 719		goto err_poweroff;
 720	}
 721	if (chip_id != BMC150_MAGN_CHIP_ID_VAL) {
 722		dev_err(data->dev, "Invalid chip id 0x%x\n", chip_id);
 723		ret = -ENODEV;
 724		goto err_poweroff;
 725	}
 726	dev_dbg(data->dev, "Chip id %x\n", chip_id);
 727
 728	preset = bmc150_magn_presets_table[BMC150_MAGN_DEFAULT_PRESET];
 729	ret = bmc150_magn_set_odr(data, preset.odr);
 730	if (ret < 0) {
 731		dev_err(data->dev, "Failed to set ODR to %d\n",
 732			preset.odr);
 733		goto err_poweroff;
 734	}
 735
 736	ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_XY,
 737			   BMC150_MAGN_REPXY_TO_REGVAL(preset.rep_xy));
 738	if (ret < 0) {
 739		dev_err(data->dev, "Failed to set REP XY to %d\n",
 740			preset.rep_xy);
 741		goto err_poweroff;
 742	}
 743
 744	ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_Z,
 745			   BMC150_MAGN_REPZ_TO_REGVAL(preset.rep_z));
 746	if (ret < 0) {
 747		dev_err(data->dev, "Failed to set REP Z to %d\n",
 748			preset.rep_z);
 749		goto err_poweroff;
 750	}
 751
 752	ret = bmc150_magn_set_max_odr(data, preset.rep_xy, preset.rep_z,
 753				      preset.odr);
 754	if (ret < 0)
 755		goto err_poweroff;
 756
 757	ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
 758					 true);
 759	if (ret < 0) {
 760		dev_err(data->dev, "Failed to power on device\n");
 761		goto err_poweroff;
 762	}
 763
 764	return 0;
 765
 766err_poweroff:
 767	bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
 768err_regulator_disable:
 769	regulator_bulk_disable(ARRAY_SIZE(data->regulators), data->regulators);
 770	return ret;
 771}
 772
 773static int bmc150_magn_reset_intr(struct bmc150_magn_data *data)
 774{
 775	int tmp;
 776
 777	/*
 778	 * Data Ready (DRDY) is always cleared after
 779	 * readout of data registers ends.
 780	 */
 781	return regmap_read(data->regmap, BMC150_MAGN_REG_X_L, &tmp);
 782}
 783
 784static void bmc150_magn_trig_reen(struct iio_trigger *trig)
 785{
 786	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
 787	struct bmc150_magn_data *data = iio_priv(indio_dev);
 788	int ret;
 789
 790	if (!data->dready_trigger_on)
 791		return;
 792
 793	mutex_lock(&data->mutex);
 794	ret = bmc150_magn_reset_intr(data);
 795	mutex_unlock(&data->mutex);
 796	if (ret)
 797		dev_err(data->dev, "Failed to reset interrupt\n");
 798}
 799
 800static int bmc150_magn_data_rdy_trigger_set_state(struct iio_trigger *trig,
 801						  bool state)
 802{
 803	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
 804	struct bmc150_magn_data *data = iio_priv(indio_dev);
 805	int ret = 0;
 806
 807	mutex_lock(&data->mutex);
 808	if (state == data->dready_trigger_on)
 809		goto err_unlock;
 810
 811	ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_INT_DRDY,
 812				 BMC150_MAGN_MASK_DRDY_EN,
 813				 state << BMC150_MAGN_SHIFT_DRDY_EN);
 814	if (ret < 0)
 815		goto err_unlock;
 816
 817	data->dready_trigger_on = state;
 818
 819	if (state) {
 820		ret = bmc150_magn_reset_intr(data);
 821		if (ret < 0)
 822			goto err_unlock;
 823	}
 824	mutex_unlock(&data->mutex);
 825
 826	return 0;
 827
 828err_unlock:
 829	mutex_unlock(&data->mutex);
 830	return ret;
 831}
 832
 833static const struct iio_trigger_ops bmc150_magn_trigger_ops = {
 834	.set_trigger_state = bmc150_magn_data_rdy_trigger_set_state,
 835	.reenable = bmc150_magn_trig_reen,
 836};
 837
 838static int bmc150_magn_buffer_preenable(struct iio_dev *indio_dev)
 839{
 840	struct bmc150_magn_data *data = iio_priv(indio_dev);
 841
 842	return bmc150_magn_set_power_state(data, true);
 843}
 844
 845static int bmc150_magn_buffer_postdisable(struct iio_dev *indio_dev)
 846{
 847	struct bmc150_magn_data *data = iio_priv(indio_dev);
 848
 849	return bmc150_magn_set_power_state(data, false);
 850}
 851
 852static const struct iio_buffer_setup_ops bmc150_magn_buffer_setup_ops = {
 853	.preenable = bmc150_magn_buffer_preenable,
 854	.postdisable = bmc150_magn_buffer_postdisable,
 855};
 856
 857int bmc150_magn_probe(struct device *dev, struct regmap *regmap,
 858		      int irq, const char *name)
 859{
 860	struct bmc150_magn_data *data;
 861	struct iio_dev *indio_dev;
 862	int ret;
 863
 864	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
 865	if (!indio_dev)
 866		return -ENOMEM;
 867
 868	data = iio_priv(indio_dev);
 869	dev_set_drvdata(dev, indio_dev);
 870	data->regmap = regmap;
 871	data->irq = irq;
 872	data->dev = dev;
 873
 874	data->regulators[0].supply = "vdd";
 875	data->regulators[1].supply = "vddio";
 876	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(data->regulators),
 877				      data->regulators);
 878	if (ret)
 879		return dev_err_probe(dev, ret, "failed to get regulators\n");
 880
 881	ret = iio_read_mount_matrix(dev, &data->orientation);
 882	if (ret)
 883		return ret;
 884
 885	mutex_init(&data->mutex);
 886
 887	ret = bmc150_magn_init(data);
 888	if (ret < 0)
 889		return ret;
 890
 891	indio_dev->channels = bmc150_magn_channels;
 892	indio_dev->num_channels = ARRAY_SIZE(bmc150_magn_channels);
 893	indio_dev->available_scan_masks = bmc150_magn_scan_masks;
 894	indio_dev->name = name;
 895	indio_dev->modes = INDIO_DIRECT_MODE;
 896	indio_dev->info = &bmc150_magn_info;
 897
 898	if (irq > 0) {
 899		data->dready_trig = devm_iio_trigger_alloc(dev,
 900							   "%s-dev%d",
 901							   indio_dev->name,
 902							   iio_device_id(indio_dev));
 903		if (!data->dready_trig) {
 904			ret = -ENOMEM;
 905			dev_err(dev, "iio trigger alloc failed\n");
 906			goto err_poweroff;
 907		}
 908
 909		data->dready_trig->ops = &bmc150_magn_trigger_ops;
 910		iio_trigger_set_drvdata(data->dready_trig, indio_dev);
 911		ret = iio_trigger_register(data->dready_trig);
 912		if (ret) {
 913			dev_err(dev, "iio trigger register failed\n");
 914			goto err_poweroff;
 915		}
 916
 917		ret = request_threaded_irq(irq,
 918					   iio_trigger_generic_data_rdy_poll,
 919					   NULL,
 920					   IRQF_TRIGGER_RISING | IRQF_ONESHOT,
 921					   BMC150_MAGN_IRQ_NAME,
 922					   data->dready_trig);
 923		if (ret < 0) {
 924			dev_err(dev, "request irq %d failed\n", irq);
 925			goto err_trigger_unregister;
 926		}
 927	}
 928
 929	ret = iio_triggered_buffer_setup(indio_dev,
 930					 iio_pollfunc_store_time,
 931					 bmc150_magn_trigger_handler,
 932					 &bmc150_magn_buffer_setup_ops);
 933	if (ret < 0) {
 934		dev_err(dev, "iio triggered buffer setup failed\n");
 935		goto err_free_irq;
 936	}
 937
 938	ret = pm_runtime_set_active(dev);
 939	if (ret)
 940		goto err_buffer_cleanup;
 941
 942	pm_runtime_enable(dev);
 943	pm_runtime_set_autosuspend_delay(dev,
 944					 BMC150_MAGN_AUTO_SUSPEND_DELAY_MS);
 945	pm_runtime_use_autosuspend(dev);
 946
 947	ret = iio_device_register(indio_dev);
 948	if (ret < 0) {
 949		dev_err(dev, "unable to register iio device\n");
 950		goto err_pm_cleanup;
 951	}
 952
 953	dev_dbg(dev, "Registered device %s\n", name);
 954	return 0;
 955
 956err_pm_cleanup:
 957	pm_runtime_dont_use_autosuspend(dev);
 958	pm_runtime_disable(dev);
 959err_buffer_cleanup:
 960	iio_triggered_buffer_cleanup(indio_dev);
 961err_free_irq:
 962	if (irq > 0)
 963		free_irq(irq, data->dready_trig);
 964err_trigger_unregister:
 965	if (data->dready_trig)
 966		iio_trigger_unregister(data->dready_trig);
 967err_poweroff:
 968	bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
 969	return ret;
 970}
 971EXPORT_SYMBOL_NS(bmc150_magn_probe, "IIO_BMC150_MAGN");
 972
 973void bmc150_magn_remove(struct device *dev)
 974{
 975	struct iio_dev *indio_dev = dev_get_drvdata(dev);
 976	struct bmc150_magn_data *data = iio_priv(indio_dev);
 977
 978	iio_device_unregister(indio_dev);
 979
 980	pm_runtime_disable(dev);
 981	pm_runtime_set_suspended(dev);
 982
 983	iio_triggered_buffer_cleanup(indio_dev);
 984
 985	if (data->irq > 0)
 986		free_irq(data->irq, data->dready_trig);
 987
 988	if (data->dready_trig)
 989		iio_trigger_unregister(data->dready_trig);
 990
 991	mutex_lock(&data->mutex);
 992	bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
 993	mutex_unlock(&data->mutex);
 994
 995	regulator_bulk_disable(ARRAY_SIZE(data->regulators), data->regulators);
 996}
 997EXPORT_SYMBOL_NS(bmc150_magn_remove, "IIO_BMC150_MAGN");
 998
 999#ifdef CONFIG_PM
1000static int bmc150_magn_runtime_suspend(struct device *dev)
1001{
1002	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1003	struct bmc150_magn_data *data = iio_priv(indio_dev);
1004	int ret;
1005
1006	mutex_lock(&data->mutex);
1007	ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
1008					 true);
1009	mutex_unlock(&data->mutex);
1010	if (ret < 0) {
1011		dev_err(dev, "powering off device failed\n");
1012		return ret;
1013	}
1014	return 0;
1015}
1016
1017/*
1018 * Should be called with data->mutex held.
1019 */
1020static int bmc150_magn_runtime_resume(struct device *dev)
1021{
1022	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1023	struct bmc150_magn_data *data = iio_priv(indio_dev);
1024
1025	return bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
1026					  true);
1027}
1028#endif
1029
1030#ifdef CONFIG_PM_SLEEP
1031static int bmc150_magn_suspend(struct device *dev)
1032{
1033	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1034	struct bmc150_magn_data *data = iio_priv(indio_dev);
1035	int ret;
1036
1037	mutex_lock(&data->mutex);
1038	ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
1039					 true);
1040	mutex_unlock(&data->mutex);
1041
1042	return ret;
1043}
1044
1045static int bmc150_magn_resume(struct device *dev)
1046{
1047	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1048	struct bmc150_magn_data *data = iio_priv(indio_dev);
1049	int ret;
1050
1051	mutex_lock(&data->mutex);
1052	ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
1053					 true);
1054	mutex_unlock(&data->mutex);
1055
1056	return ret;
1057}
1058#endif
1059
1060const struct dev_pm_ops bmc150_magn_pm_ops = {
1061	SET_SYSTEM_SLEEP_PM_OPS(bmc150_magn_suspend, bmc150_magn_resume)
1062	SET_RUNTIME_PM_OPS(bmc150_magn_runtime_suspend,
1063			   bmc150_magn_runtime_resume, NULL)
1064};
1065EXPORT_SYMBOL_NS(bmc150_magn_pm_ops, "IIO_BMC150_MAGN");
1066
1067MODULE_AUTHOR("Irina Tirdea <irina.tirdea@intel.com>");
1068MODULE_LICENSE("GPL v2");
1069MODULE_DESCRIPTION("BMC150 magnetometer core driver");