Loading...
Note: File does not exist in v3.1.
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * The industrial I/O core
4 *
5 * Copyright (c) 2008 Jonathan Cameron
6 *
7 * Based on elements of hwmon and input subsystems.
8 */
9
10#define pr_fmt(fmt) "iio-core: " fmt
11
12#include <linux/anon_inodes.h>
13#include <linux/cdev.h>
14#include <linux/cleanup.h>
15#include <linux/debugfs.h>
16#include <linux/device.h>
17#include <linux/err.h>
18#include <linux/fs.h>
19#include <linux/idr.h>
20#include <linux/kdev_t.h>
21#include <linux/kernel.h>
22#include <linux/module.h>
23#include <linux/mutex.h>
24#include <linux/poll.h>
25#include <linux/property.h>
26#include <linux/sched.h>
27#include <linux/slab.h>
28#include <linux/wait.h>
29
30#include <linux/iio/buffer.h>
31#include <linux/iio/buffer_impl.h>
32#include <linux/iio/events.h>
33#include <linux/iio/iio-opaque.h>
34#include <linux/iio/iio.h>
35#include <linux/iio/sysfs.h>
36
37#include "iio_core.h"
38#include "iio_core_trigger.h"
39
40/* IDA to assign each registered device a unique id */
41static DEFINE_IDA(iio_ida);
42
43static dev_t iio_devt;
44
45#define IIO_DEV_MAX 256
46const struct bus_type iio_bus_type = {
47 .name = "iio",
48};
49EXPORT_SYMBOL(iio_bus_type);
50
51static struct dentry *iio_debugfs_dentry;
52
53static const char * const iio_direction[] = {
54 [0] = "in",
55 [1] = "out",
56};
57
58static const char * const iio_chan_type_name_spec[] = {
59 [IIO_VOLTAGE] = "voltage",
60 [IIO_CURRENT] = "current",
61 [IIO_POWER] = "power",
62 [IIO_ACCEL] = "accel",
63 [IIO_ANGL_VEL] = "anglvel",
64 [IIO_MAGN] = "magn",
65 [IIO_LIGHT] = "illuminance",
66 [IIO_INTENSITY] = "intensity",
67 [IIO_PROXIMITY] = "proximity",
68 [IIO_TEMP] = "temp",
69 [IIO_INCLI] = "incli",
70 [IIO_ROT] = "rot",
71 [IIO_ANGL] = "angl",
72 [IIO_TIMESTAMP] = "timestamp",
73 [IIO_CAPACITANCE] = "capacitance",
74 [IIO_ALTVOLTAGE] = "altvoltage",
75 [IIO_CCT] = "cct",
76 [IIO_PRESSURE] = "pressure",
77 [IIO_HUMIDITYRELATIVE] = "humidityrelative",
78 [IIO_ACTIVITY] = "activity",
79 [IIO_STEPS] = "steps",
80 [IIO_ENERGY] = "energy",
81 [IIO_DISTANCE] = "distance",
82 [IIO_VELOCITY] = "velocity",
83 [IIO_CONCENTRATION] = "concentration",
84 [IIO_RESISTANCE] = "resistance",
85 [IIO_PH] = "ph",
86 [IIO_UVINDEX] = "uvindex",
87 [IIO_ELECTRICALCONDUCTIVITY] = "electricalconductivity",
88 [IIO_COUNT] = "count",
89 [IIO_INDEX] = "index",
90 [IIO_GRAVITY] = "gravity",
91 [IIO_POSITIONRELATIVE] = "positionrelative",
92 [IIO_PHASE] = "phase",
93 [IIO_MASSCONCENTRATION] = "massconcentration",
94 [IIO_DELTA_ANGL] = "deltaangl",
95 [IIO_DELTA_VELOCITY] = "deltavelocity",
96 [IIO_COLORTEMP] = "colortemp",
97 [IIO_CHROMATICITY] = "chromaticity",
98 [IIO_ATTENTION] = "attention",
99};
100
101static const char * const iio_modifier_names[] = {
102 [IIO_MOD_X] = "x",
103 [IIO_MOD_Y] = "y",
104 [IIO_MOD_Z] = "z",
105 [IIO_MOD_X_AND_Y] = "x&y",
106 [IIO_MOD_X_AND_Z] = "x&z",
107 [IIO_MOD_Y_AND_Z] = "y&z",
108 [IIO_MOD_X_AND_Y_AND_Z] = "x&y&z",
109 [IIO_MOD_X_OR_Y] = "x|y",
110 [IIO_MOD_X_OR_Z] = "x|z",
111 [IIO_MOD_Y_OR_Z] = "y|z",
112 [IIO_MOD_X_OR_Y_OR_Z] = "x|y|z",
113 [IIO_MOD_ROOT_SUM_SQUARED_X_Y] = "sqrt(x^2+y^2)",
114 [IIO_MOD_SUM_SQUARED_X_Y_Z] = "x^2+y^2+z^2",
115 [IIO_MOD_LIGHT_BOTH] = "both",
116 [IIO_MOD_LIGHT_IR] = "ir",
117 [IIO_MOD_LIGHT_CLEAR] = "clear",
118 [IIO_MOD_LIGHT_RED] = "red",
119 [IIO_MOD_LIGHT_GREEN] = "green",
120 [IIO_MOD_LIGHT_BLUE] = "blue",
121 [IIO_MOD_LIGHT_UV] = "uv",
122 [IIO_MOD_LIGHT_UVA] = "uva",
123 [IIO_MOD_LIGHT_UVB] = "uvb",
124 [IIO_MOD_LIGHT_DUV] = "duv",
125 [IIO_MOD_QUATERNION] = "quaternion",
126 [IIO_MOD_TEMP_AMBIENT] = "ambient",
127 [IIO_MOD_TEMP_OBJECT] = "object",
128 [IIO_MOD_NORTH_MAGN] = "from_north_magnetic",
129 [IIO_MOD_NORTH_TRUE] = "from_north_true",
130 [IIO_MOD_NORTH_MAGN_TILT_COMP] = "from_north_magnetic_tilt_comp",
131 [IIO_MOD_NORTH_TRUE_TILT_COMP] = "from_north_true_tilt_comp",
132 [IIO_MOD_RUNNING] = "running",
133 [IIO_MOD_JOGGING] = "jogging",
134 [IIO_MOD_WALKING] = "walking",
135 [IIO_MOD_STILL] = "still",
136 [IIO_MOD_ROOT_SUM_SQUARED_X_Y_Z] = "sqrt(x^2+y^2+z^2)",
137 [IIO_MOD_I] = "i",
138 [IIO_MOD_Q] = "q",
139 [IIO_MOD_CO2] = "co2",
140 [IIO_MOD_VOC] = "voc",
141 [IIO_MOD_PM1] = "pm1",
142 [IIO_MOD_PM2P5] = "pm2p5",
143 [IIO_MOD_PM4] = "pm4",
144 [IIO_MOD_PM10] = "pm10",
145 [IIO_MOD_ETHANOL] = "ethanol",
146 [IIO_MOD_H2] = "h2",
147 [IIO_MOD_O2] = "o2",
148 [IIO_MOD_LINEAR_X] = "linear_x",
149 [IIO_MOD_LINEAR_Y] = "linear_y",
150 [IIO_MOD_LINEAR_Z] = "linear_z",
151 [IIO_MOD_PITCH] = "pitch",
152 [IIO_MOD_YAW] = "yaw",
153 [IIO_MOD_ROLL] = "roll",
154};
155
156/* relies on pairs of these shared then separate */
157static const char * const iio_chan_info_postfix[] = {
158 [IIO_CHAN_INFO_RAW] = "raw",
159 [IIO_CHAN_INFO_PROCESSED] = "input",
160 [IIO_CHAN_INFO_SCALE] = "scale",
161 [IIO_CHAN_INFO_OFFSET] = "offset",
162 [IIO_CHAN_INFO_CALIBSCALE] = "calibscale",
163 [IIO_CHAN_INFO_CALIBBIAS] = "calibbias",
164 [IIO_CHAN_INFO_PEAK] = "peak_raw",
165 [IIO_CHAN_INFO_PEAK_SCALE] = "peak_scale",
166 [IIO_CHAN_INFO_QUADRATURE_CORRECTION_RAW] = "quadrature_correction_raw",
167 [IIO_CHAN_INFO_AVERAGE_RAW] = "mean_raw",
168 [IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY]
169 = "filter_low_pass_3db_frequency",
170 [IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY]
171 = "filter_high_pass_3db_frequency",
172 [IIO_CHAN_INFO_SAMP_FREQ] = "sampling_frequency",
173 [IIO_CHAN_INFO_FREQUENCY] = "frequency",
174 [IIO_CHAN_INFO_PHASE] = "phase",
175 [IIO_CHAN_INFO_HARDWAREGAIN] = "hardwaregain",
176 [IIO_CHAN_INFO_HYSTERESIS] = "hysteresis",
177 [IIO_CHAN_INFO_HYSTERESIS_RELATIVE] = "hysteresis_relative",
178 [IIO_CHAN_INFO_INT_TIME] = "integration_time",
179 [IIO_CHAN_INFO_ENABLE] = "en",
180 [IIO_CHAN_INFO_CALIBHEIGHT] = "calibheight",
181 [IIO_CHAN_INFO_CALIBWEIGHT] = "calibweight",
182 [IIO_CHAN_INFO_DEBOUNCE_COUNT] = "debounce_count",
183 [IIO_CHAN_INFO_DEBOUNCE_TIME] = "debounce_time",
184 [IIO_CHAN_INFO_CALIBEMISSIVITY] = "calibemissivity",
185 [IIO_CHAN_INFO_OVERSAMPLING_RATIO] = "oversampling_ratio",
186 [IIO_CHAN_INFO_THERMOCOUPLE_TYPE] = "thermocouple_type",
187 [IIO_CHAN_INFO_CALIBAMBIENT] = "calibambient",
188 [IIO_CHAN_INFO_ZEROPOINT] = "zeropoint",
189 [IIO_CHAN_INFO_TROUGH] = "trough_raw",
190};
191/**
192 * iio_device_id() - query the unique ID for the device
193 * @indio_dev: Device structure whose ID is being queried
194 *
195 * The IIO device ID is a unique index used for example for the naming
196 * of the character device /dev/iio\:device[ID].
197 *
198 * Returns: Unique ID for the device.
199 */
200int iio_device_id(struct iio_dev *indio_dev)
201{
202 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
203
204 return iio_dev_opaque->id;
205}
206EXPORT_SYMBOL_GPL(iio_device_id);
207
208/**
209 * iio_buffer_enabled() - helper function to test if the buffer is enabled
210 * @indio_dev: IIO device structure for device
211 *
212 * Returns: True, if the buffer is enabled.
213 */
214bool iio_buffer_enabled(struct iio_dev *indio_dev)
215{
216 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
217
218 return iio_dev_opaque->currentmode & INDIO_ALL_BUFFER_MODES;
219}
220EXPORT_SYMBOL_GPL(iio_buffer_enabled);
221
222#if defined(CONFIG_DEBUG_FS)
223/*
224 * There's also a CONFIG_DEBUG_FS guard in include/linux/iio/iio.h for
225 * iio_get_debugfs_dentry() to make it inline if CONFIG_DEBUG_FS is undefined
226 */
227struct dentry *iio_get_debugfs_dentry(struct iio_dev *indio_dev)
228{
229 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
230
231 return iio_dev_opaque->debugfs_dentry;
232}
233EXPORT_SYMBOL_GPL(iio_get_debugfs_dentry);
234#endif
235
236/**
237 * iio_find_channel_from_si() - get channel from its scan index
238 * @indio_dev: device
239 * @si: scan index to match
240 *
241 * Returns:
242 * Constant pointer to iio_chan_spec, if scan index matches, NULL on failure.
243 */
244const struct iio_chan_spec
245*iio_find_channel_from_si(struct iio_dev *indio_dev, int si)
246{
247 int i;
248
249 for (i = 0; i < indio_dev->num_channels; i++)
250 if (indio_dev->channels[i].scan_index == si)
251 return &indio_dev->channels[i];
252 return NULL;
253}
254
255/* This turns up an awful lot */
256ssize_t iio_read_const_attr(struct device *dev,
257 struct device_attribute *attr,
258 char *buf)
259{
260 return sysfs_emit(buf, "%s\n", to_iio_const_attr(attr)->string);
261}
262EXPORT_SYMBOL(iio_read_const_attr);
263
264/**
265 * iio_device_set_clock() - Set current timestamping clock for the device
266 * @indio_dev: IIO device structure containing the device
267 * @clock_id: timestamping clock POSIX identifier to set.
268 *
269 * Returns: 0 on success, or a negative error code.
270 */
271int iio_device_set_clock(struct iio_dev *indio_dev, clockid_t clock_id)
272{
273 int ret;
274 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
275 const struct iio_event_interface *ev_int = iio_dev_opaque->event_interface;
276
277 ret = mutex_lock_interruptible(&iio_dev_opaque->mlock);
278 if (ret)
279 return ret;
280 if ((ev_int && iio_event_enabled(ev_int)) ||
281 iio_buffer_enabled(indio_dev)) {
282 mutex_unlock(&iio_dev_opaque->mlock);
283 return -EBUSY;
284 }
285 iio_dev_opaque->clock_id = clock_id;
286 mutex_unlock(&iio_dev_opaque->mlock);
287
288 return 0;
289}
290EXPORT_SYMBOL(iio_device_set_clock);
291
292/**
293 * iio_device_get_clock() - Retrieve current timestamping clock for the device
294 * @indio_dev: IIO device structure containing the device
295 *
296 * Returns: Clock ID of the current timestamping clock for the device.
297 */
298clockid_t iio_device_get_clock(const struct iio_dev *indio_dev)
299{
300 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
301
302 return iio_dev_opaque->clock_id;
303}
304EXPORT_SYMBOL(iio_device_get_clock);
305
306/**
307 * iio_get_time_ns() - utility function to get a time stamp for events etc
308 * @indio_dev: device
309 *
310 * Returns: Timestamp of the event in nanoseconds.
311 */
312s64 iio_get_time_ns(const struct iio_dev *indio_dev)
313{
314 struct timespec64 tp;
315
316 switch (iio_device_get_clock(indio_dev)) {
317 case CLOCK_REALTIME:
318 return ktime_get_real_ns();
319 case CLOCK_MONOTONIC:
320 return ktime_get_ns();
321 case CLOCK_MONOTONIC_RAW:
322 return ktime_get_raw_ns();
323 case CLOCK_REALTIME_COARSE:
324 return ktime_to_ns(ktime_get_coarse_real());
325 case CLOCK_MONOTONIC_COARSE:
326 ktime_get_coarse_ts64(&tp);
327 return timespec64_to_ns(&tp);
328 case CLOCK_BOOTTIME:
329 return ktime_get_boottime_ns();
330 case CLOCK_TAI:
331 return ktime_get_clocktai_ns();
332 default:
333 BUG();
334 }
335}
336EXPORT_SYMBOL(iio_get_time_ns);
337
338static int __init iio_init(void)
339{
340 int ret;
341
342 /* Register sysfs bus */
343 ret = bus_register(&iio_bus_type);
344 if (ret < 0) {
345 pr_err("could not register bus type\n");
346 goto error_nothing;
347 }
348
349 ret = alloc_chrdev_region(&iio_devt, 0, IIO_DEV_MAX, "iio");
350 if (ret < 0) {
351 pr_err("failed to allocate char dev region\n");
352 goto error_unregister_bus_type;
353 }
354
355 iio_debugfs_dentry = debugfs_create_dir("iio", NULL);
356
357 return 0;
358
359error_unregister_bus_type:
360 bus_unregister(&iio_bus_type);
361error_nothing:
362 return ret;
363}
364
365static void __exit iio_exit(void)
366{
367 if (iio_devt)
368 unregister_chrdev_region(iio_devt, IIO_DEV_MAX);
369 bus_unregister(&iio_bus_type);
370 debugfs_remove(iio_debugfs_dentry);
371}
372
373#if defined(CONFIG_DEBUG_FS)
374static ssize_t iio_debugfs_read_reg(struct file *file, char __user *userbuf,
375 size_t count, loff_t *ppos)
376{
377 struct iio_dev *indio_dev = file->private_data;
378 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
379 unsigned int val = 0;
380 int ret;
381
382 if (*ppos > 0)
383 return simple_read_from_buffer(userbuf, count, ppos,
384 iio_dev_opaque->read_buf,
385 iio_dev_opaque->read_buf_len);
386
387 ret = indio_dev->info->debugfs_reg_access(indio_dev,
388 iio_dev_opaque->cached_reg_addr,
389 0, &val);
390 if (ret) {
391 dev_err(indio_dev->dev.parent, "%s: read failed\n", __func__);
392 return ret;
393 }
394
395 iio_dev_opaque->read_buf_len = snprintf(iio_dev_opaque->read_buf,
396 sizeof(iio_dev_opaque->read_buf),
397 "0x%X\n", val);
398
399 return simple_read_from_buffer(userbuf, count, ppos,
400 iio_dev_opaque->read_buf,
401 iio_dev_opaque->read_buf_len);
402}
403
404static ssize_t iio_debugfs_write_reg(struct file *file,
405 const char __user *userbuf, size_t count, loff_t *ppos)
406{
407 struct iio_dev *indio_dev = file->private_data;
408 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
409 unsigned int reg, val;
410 char buf[80];
411 int ret;
412
413 count = min(count, sizeof(buf) - 1);
414 if (copy_from_user(buf, userbuf, count))
415 return -EFAULT;
416
417 buf[count] = 0;
418
419 ret = sscanf(buf, "%i %i", ®, &val);
420
421 switch (ret) {
422 case 1:
423 iio_dev_opaque->cached_reg_addr = reg;
424 break;
425 case 2:
426 iio_dev_opaque->cached_reg_addr = reg;
427 ret = indio_dev->info->debugfs_reg_access(indio_dev, reg,
428 val, NULL);
429 if (ret) {
430 dev_err(indio_dev->dev.parent, "%s: write failed\n",
431 __func__);
432 return ret;
433 }
434 break;
435 default:
436 return -EINVAL;
437 }
438
439 return count;
440}
441
442static const struct file_operations iio_debugfs_reg_fops = {
443 .open = simple_open,
444 .read = iio_debugfs_read_reg,
445 .write = iio_debugfs_write_reg,
446};
447
448static void iio_device_unregister_debugfs(struct iio_dev *indio_dev)
449{
450 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
451
452 debugfs_remove_recursive(iio_dev_opaque->debugfs_dentry);
453}
454
455static void iio_device_register_debugfs(struct iio_dev *indio_dev)
456{
457 struct iio_dev_opaque *iio_dev_opaque;
458
459 if (indio_dev->info->debugfs_reg_access == NULL)
460 return;
461
462 if (!iio_debugfs_dentry)
463 return;
464
465 iio_dev_opaque = to_iio_dev_opaque(indio_dev);
466
467 iio_dev_opaque->debugfs_dentry =
468 debugfs_create_dir(dev_name(&indio_dev->dev),
469 iio_debugfs_dentry);
470
471 debugfs_create_file("direct_reg_access", 0644,
472 iio_dev_opaque->debugfs_dentry, indio_dev,
473 &iio_debugfs_reg_fops);
474}
475#else
476static void iio_device_register_debugfs(struct iio_dev *indio_dev)
477{
478}
479
480static void iio_device_unregister_debugfs(struct iio_dev *indio_dev)
481{
482}
483#endif /* CONFIG_DEBUG_FS */
484
485static ssize_t iio_read_channel_ext_info(struct device *dev,
486 struct device_attribute *attr,
487 char *buf)
488{
489 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
490 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
491 const struct iio_chan_spec_ext_info *ext_info;
492
493 ext_info = &this_attr->c->ext_info[this_attr->address];
494
495 return ext_info->read(indio_dev, ext_info->private, this_attr->c, buf);
496}
497
498static ssize_t iio_write_channel_ext_info(struct device *dev,
499 struct device_attribute *attr,
500 const char *buf, size_t len)
501{
502 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
503 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
504 const struct iio_chan_spec_ext_info *ext_info;
505
506 ext_info = &this_attr->c->ext_info[this_attr->address];
507
508 return ext_info->write(indio_dev, ext_info->private,
509 this_attr->c, buf, len);
510}
511
512ssize_t iio_enum_available_read(struct iio_dev *indio_dev,
513 uintptr_t priv, const struct iio_chan_spec *chan, char *buf)
514{
515 const struct iio_enum *e = (const struct iio_enum *)priv;
516 unsigned int i;
517 size_t len = 0;
518
519 if (!e->num_items)
520 return 0;
521
522 for (i = 0; i < e->num_items; ++i) {
523 if (!e->items[i])
524 continue;
525 len += sysfs_emit_at(buf, len, "%s ", e->items[i]);
526 }
527
528 /* replace last space with a newline */
529 buf[len - 1] = '\n';
530
531 return len;
532}
533EXPORT_SYMBOL_GPL(iio_enum_available_read);
534
535ssize_t iio_enum_read(struct iio_dev *indio_dev,
536 uintptr_t priv, const struct iio_chan_spec *chan, char *buf)
537{
538 const struct iio_enum *e = (const struct iio_enum *)priv;
539 int i;
540
541 if (!e->get)
542 return -EINVAL;
543
544 i = e->get(indio_dev, chan);
545 if (i < 0)
546 return i;
547 if (i >= e->num_items || !e->items[i])
548 return -EINVAL;
549
550 return sysfs_emit(buf, "%s\n", e->items[i]);
551}
552EXPORT_SYMBOL_GPL(iio_enum_read);
553
554ssize_t iio_enum_write(struct iio_dev *indio_dev,
555 uintptr_t priv, const struct iio_chan_spec *chan, const char *buf,
556 size_t len)
557{
558 const struct iio_enum *e = (const struct iio_enum *)priv;
559 int ret;
560
561 if (!e->set)
562 return -EINVAL;
563
564 ret = __sysfs_match_string(e->items, e->num_items, buf);
565 if (ret < 0)
566 return ret;
567
568 ret = e->set(indio_dev, chan, ret);
569 return ret ? ret : len;
570}
571EXPORT_SYMBOL_GPL(iio_enum_write);
572
573static const struct iio_mount_matrix iio_mount_idmatrix = {
574 .rotation = {
575 "1", "0", "0",
576 "0", "1", "0",
577 "0", "0", "1"
578 }
579};
580
581static int iio_setup_mount_idmatrix(const struct device *dev,
582 struct iio_mount_matrix *matrix)
583{
584 *matrix = iio_mount_idmatrix;
585 dev_info(dev, "mounting matrix not found: using identity...\n");
586 return 0;
587}
588
589ssize_t iio_show_mount_matrix(struct iio_dev *indio_dev, uintptr_t priv,
590 const struct iio_chan_spec *chan, char *buf)
591{
592 const struct iio_mount_matrix *mtx;
593
594 mtx = ((iio_get_mount_matrix_t *)priv)(indio_dev, chan);
595 if (IS_ERR(mtx))
596 return PTR_ERR(mtx);
597
598 if (!mtx)
599 mtx = &iio_mount_idmatrix;
600
601 return sysfs_emit(buf, "%s, %s, %s; %s, %s, %s; %s, %s, %s\n",
602 mtx->rotation[0], mtx->rotation[1], mtx->rotation[2],
603 mtx->rotation[3], mtx->rotation[4], mtx->rotation[5],
604 mtx->rotation[6], mtx->rotation[7], mtx->rotation[8]);
605}
606EXPORT_SYMBOL_GPL(iio_show_mount_matrix);
607
608/**
609 * iio_read_mount_matrix() - retrieve iio device mounting matrix from
610 * device "mount-matrix" property
611 * @dev: device the mounting matrix property is assigned to
612 * @matrix: where to store retrieved matrix
613 *
614 * If device is assigned no mounting matrix property, a default 3x3 identity
615 * matrix will be filled in.
616 *
617 * Returns: 0 if success, or a negative error code on failure.
618 */
619int iio_read_mount_matrix(struct device *dev, struct iio_mount_matrix *matrix)
620{
621 size_t len = ARRAY_SIZE(iio_mount_idmatrix.rotation);
622 int err;
623
624 err = device_property_read_string_array(dev, "mount-matrix", matrix->rotation, len);
625 if (err == len)
626 return 0;
627
628 if (err >= 0)
629 /* Invalid number of matrix entries. */
630 return -EINVAL;
631
632 if (err != -EINVAL)
633 /* Invalid matrix declaration format. */
634 return err;
635
636 /* Matrix was not declared at all: fallback to identity. */
637 return iio_setup_mount_idmatrix(dev, matrix);
638}
639EXPORT_SYMBOL(iio_read_mount_matrix);
640
641static ssize_t __iio_format_value(char *buf, size_t offset, unsigned int type,
642 int size, const int *vals)
643{
644 int tmp0, tmp1;
645 s64 tmp2;
646 bool scale_db = false;
647
648 switch (type) {
649 case IIO_VAL_INT:
650 return sysfs_emit_at(buf, offset, "%d", vals[0]);
651 case IIO_VAL_INT_PLUS_MICRO_DB:
652 scale_db = true;
653 fallthrough;
654 case IIO_VAL_INT_PLUS_MICRO:
655 if (vals[1] < 0)
656 return sysfs_emit_at(buf, offset, "-%d.%06u%s",
657 abs(vals[0]), -vals[1],
658 scale_db ? " dB" : "");
659 else
660 return sysfs_emit_at(buf, offset, "%d.%06u%s", vals[0],
661 vals[1], scale_db ? " dB" : "");
662 case IIO_VAL_INT_PLUS_NANO:
663 if (vals[1] < 0)
664 return sysfs_emit_at(buf, offset, "-%d.%09u",
665 abs(vals[0]), -vals[1]);
666 else
667 return sysfs_emit_at(buf, offset, "%d.%09u", vals[0],
668 vals[1]);
669 case IIO_VAL_FRACTIONAL:
670 tmp2 = div_s64((s64)vals[0] * 1000000000LL, vals[1]);
671 tmp0 = (int)div_s64_rem(tmp2, 1000000000, &tmp1);
672 if ((tmp2 < 0) && (tmp0 == 0))
673 return sysfs_emit_at(buf, offset, "-0.%09u", abs(tmp1));
674 else
675 return sysfs_emit_at(buf, offset, "%d.%09u", tmp0,
676 abs(tmp1));
677 case IIO_VAL_FRACTIONAL_LOG2:
678 tmp2 = shift_right((s64)vals[0] * 1000000000LL, vals[1]);
679 tmp0 = (int)div_s64_rem(tmp2, 1000000000LL, &tmp1);
680 if (tmp0 == 0 && tmp2 < 0)
681 return sysfs_emit_at(buf, offset, "-0.%09u", abs(tmp1));
682 else
683 return sysfs_emit_at(buf, offset, "%d.%09u", tmp0,
684 abs(tmp1));
685 case IIO_VAL_INT_MULTIPLE:
686 {
687 int i;
688 int l = 0;
689
690 for (i = 0; i < size; ++i)
691 l += sysfs_emit_at(buf, offset + l, "%d ", vals[i]);
692 return l;
693 }
694 case IIO_VAL_CHAR:
695 return sysfs_emit_at(buf, offset, "%c", (char)vals[0]);
696 case IIO_VAL_INT_64:
697 tmp2 = (s64)((((u64)vals[1]) << 32) | (u32)vals[0]);
698 return sysfs_emit_at(buf, offset, "%lld", tmp2);
699 default:
700 return 0;
701 }
702}
703
704/**
705 * iio_format_value() - Formats a IIO value into its string representation
706 * @buf: The buffer to which the formatted value gets written
707 * which is assumed to be big enough (i.e. PAGE_SIZE).
708 * @type: One of the IIO_VAL_* constants. This decides how the val
709 * and val2 parameters are formatted.
710 * @size: Number of IIO value entries contained in vals
711 * @vals: Pointer to the values, exact meaning depends on the
712 * type parameter.
713 *
714 * Returns:
715 * 0 by default, a negative number on failure or the total number of characters
716 * written for a type that belongs to the IIO_VAL_* constant.
717 */
718ssize_t iio_format_value(char *buf, unsigned int type, int size, int *vals)
719{
720 ssize_t len;
721
722 len = __iio_format_value(buf, 0, type, size, vals);
723 if (len >= PAGE_SIZE - 1)
724 return -EFBIG;
725
726 return len + sysfs_emit_at(buf, len, "\n");
727}
728EXPORT_SYMBOL_GPL(iio_format_value);
729
730ssize_t do_iio_read_channel_label(struct iio_dev *indio_dev,
731 const struct iio_chan_spec *c,
732 char *buf)
733{
734 if (indio_dev->info->read_label)
735 return indio_dev->info->read_label(indio_dev, c, buf);
736
737 if (c->extend_name)
738 return sysfs_emit(buf, "%s\n", c->extend_name);
739
740 return -EINVAL;
741}
742
743static ssize_t iio_read_channel_label(struct device *dev,
744 struct device_attribute *attr,
745 char *buf)
746{
747 return do_iio_read_channel_label(dev_to_iio_dev(dev),
748 to_iio_dev_attr(attr)->c, buf);
749}
750
751static ssize_t iio_read_channel_info(struct device *dev,
752 struct device_attribute *attr,
753 char *buf)
754{
755 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
756 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
757 int vals[INDIO_MAX_RAW_ELEMENTS];
758 int ret;
759 int val_len = 2;
760
761 if (indio_dev->info->read_raw_multi)
762 ret = indio_dev->info->read_raw_multi(indio_dev, this_attr->c,
763 INDIO_MAX_RAW_ELEMENTS,
764 vals, &val_len,
765 this_attr->address);
766 else if (indio_dev->info->read_raw)
767 ret = indio_dev->info->read_raw(indio_dev, this_attr->c,
768 &vals[0], &vals[1], this_attr->address);
769 else
770 return -EINVAL;
771
772 if (ret < 0)
773 return ret;
774
775 return iio_format_value(buf, ret, val_len, vals);
776}
777
778static ssize_t iio_format_list(char *buf, const int *vals, int type, int length,
779 const char *prefix, const char *suffix)
780{
781 ssize_t len;
782 int stride;
783 int i;
784
785 switch (type) {
786 case IIO_VAL_INT:
787 stride = 1;
788 break;
789 default:
790 stride = 2;
791 break;
792 }
793
794 len = sysfs_emit(buf, prefix);
795
796 for (i = 0; i <= length - stride; i += stride) {
797 if (i != 0) {
798 len += sysfs_emit_at(buf, len, " ");
799 if (len >= PAGE_SIZE)
800 return -EFBIG;
801 }
802
803 len += __iio_format_value(buf, len, type, stride, &vals[i]);
804 if (len >= PAGE_SIZE)
805 return -EFBIG;
806 }
807
808 len += sysfs_emit_at(buf, len, "%s\n", suffix);
809
810 return len;
811}
812
813static ssize_t iio_format_avail_list(char *buf, const int *vals,
814 int type, int length)
815{
816
817 return iio_format_list(buf, vals, type, length, "", "");
818}
819
820static ssize_t iio_format_avail_range(char *buf, const int *vals, int type)
821{
822 int length;
823
824 /*
825 * length refers to the array size , not the number of elements.
826 * The purpose is to print the range [min , step ,max] so length should
827 * be 3 in case of int, and 6 for other types.
828 */
829 switch (type) {
830 case IIO_VAL_INT:
831 length = 3;
832 break;
833 default:
834 length = 6;
835 break;
836 }
837
838 return iio_format_list(buf, vals, type, length, "[", "]");
839}
840
841static ssize_t iio_read_channel_info_avail(struct device *dev,
842 struct device_attribute *attr,
843 char *buf)
844{
845 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
846 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
847 const int *vals;
848 int ret;
849 int length;
850 int type;
851
852 if (!indio_dev->info->read_avail)
853 return -EINVAL;
854
855 ret = indio_dev->info->read_avail(indio_dev, this_attr->c,
856 &vals, &type, &length,
857 this_attr->address);
858
859 if (ret < 0)
860 return ret;
861 switch (ret) {
862 case IIO_AVAIL_LIST:
863 return iio_format_avail_list(buf, vals, type, length);
864 case IIO_AVAIL_RANGE:
865 return iio_format_avail_range(buf, vals, type);
866 default:
867 return -EINVAL;
868 }
869}
870
871/**
872 * __iio_str_to_fixpoint() - Parse a fixed-point number from a string
873 * @str: The string to parse
874 * @fract_mult: Multiplier for the first decimal place, should be a power of 10
875 * @integer: The integer part of the number
876 * @fract: The fractional part of the number
877 * @scale_db: True if this should parse as dB
878 *
879 * Returns:
880 * 0 on success, or a negative error code if the string could not be parsed.
881 */
882static int __iio_str_to_fixpoint(const char *str, int fract_mult,
883 int *integer, int *fract, bool scale_db)
884{
885 int i = 0, f = 0;
886 bool integer_part = true, negative = false;
887
888 if (fract_mult == 0) {
889 *fract = 0;
890
891 return kstrtoint(str, 0, integer);
892 }
893
894 if (str[0] == '-') {
895 negative = true;
896 str++;
897 } else if (str[0] == '+') {
898 str++;
899 }
900
901 while (*str) {
902 if ('0' <= *str && *str <= '9') {
903 if (integer_part) {
904 i = i * 10 + *str - '0';
905 } else {
906 f += fract_mult * (*str - '0');
907 fract_mult /= 10;
908 }
909 } else if (*str == '\n') {
910 if (*(str + 1) == '\0')
911 break;
912 return -EINVAL;
913 } else if (!strncmp(str, " dB", sizeof(" dB") - 1) && scale_db) {
914 /* Ignore the dB suffix */
915 str += sizeof(" dB") - 1;
916 continue;
917 } else if (!strncmp(str, "dB", sizeof("dB") - 1) && scale_db) {
918 /* Ignore the dB suffix */
919 str += sizeof("dB") - 1;
920 continue;
921 } else if (*str == '.' && integer_part) {
922 integer_part = false;
923 } else {
924 return -EINVAL;
925 }
926 str++;
927 }
928
929 if (negative) {
930 if (i)
931 i = -i;
932 else
933 f = -f;
934 }
935
936 *integer = i;
937 *fract = f;
938
939 return 0;
940}
941
942/**
943 * iio_str_to_fixpoint() - Parse a fixed-point number from a string
944 * @str: The string to parse
945 * @fract_mult: Multiplier for the first decimal place, should be a power of 10
946 * @integer: The integer part of the number
947 * @fract: The fractional part of the number
948 *
949 * Returns:
950 * 0 on success, or a negative error code if the string could not be parsed.
951 */
952int iio_str_to_fixpoint(const char *str, int fract_mult,
953 int *integer, int *fract)
954{
955 return __iio_str_to_fixpoint(str, fract_mult, integer, fract, false);
956}
957EXPORT_SYMBOL_GPL(iio_str_to_fixpoint);
958
959static ssize_t iio_write_channel_info(struct device *dev,
960 struct device_attribute *attr,
961 const char *buf,
962 size_t len)
963{
964 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
965 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
966 int ret, fract_mult = 100000;
967 int integer, fract = 0;
968 bool is_char = false;
969 bool scale_db = false;
970
971 /* Assumes decimal - precision based on number of digits */
972 if (!indio_dev->info->write_raw)
973 return -EINVAL;
974
975 if (indio_dev->info->write_raw_get_fmt)
976 switch (indio_dev->info->write_raw_get_fmt(indio_dev,
977 this_attr->c, this_attr->address)) {
978 case IIO_VAL_INT:
979 fract_mult = 0;
980 break;
981 case IIO_VAL_INT_PLUS_MICRO_DB:
982 scale_db = true;
983 fallthrough;
984 case IIO_VAL_INT_PLUS_MICRO:
985 fract_mult = 100000;
986 break;
987 case IIO_VAL_INT_PLUS_NANO:
988 fract_mult = 100000000;
989 break;
990 case IIO_VAL_CHAR:
991 is_char = true;
992 break;
993 default:
994 return -EINVAL;
995 }
996
997 if (is_char) {
998 char ch;
999
1000 if (sscanf(buf, "%c", &ch) != 1)
1001 return -EINVAL;
1002 integer = ch;
1003 } else {
1004 ret = __iio_str_to_fixpoint(buf, fract_mult, &integer, &fract,
1005 scale_db);
1006 if (ret)
1007 return ret;
1008 }
1009
1010 ret = indio_dev->info->write_raw(indio_dev, this_attr->c,
1011 integer, fract, this_attr->address);
1012 if (ret)
1013 return ret;
1014
1015 return len;
1016}
1017
1018static
1019int __iio_device_attr_init(struct device_attribute *dev_attr,
1020 const char *postfix,
1021 struct iio_chan_spec const *chan,
1022 ssize_t (*readfunc)(struct device *dev,
1023 struct device_attribute *attr,
1024 char *buf),
1025 ssize_t (*writefunc)(struct device *dev,
1026 struct device_attribute *attr,
1027 const char *buf,
1028 size_t len),
1029 enum iio_shared_by shared_by)
1030{
1031 int ret = 0;
1032 char *name = NULL;
1033 char *full_postfix;
1034
1035 sysfs_attr_init(&dev_attr->attr);
1036
1037 /* Build up postfix of <extend_name>_<modifier>_postfix */
1038 if (chan->modified && (shared_by == IIO_SEPARATE)) {
1039 if (chan->extend_name)
1040 full_postfix = kasprintf(GFP_KERNEL, "%s_%s_%s",
1041 iio_modifier_names[chan->channel2],
1042 chan->extend_name,
1043 postfix);
1044 else
1045 full_postfix = kasprintf(GFP_KERNEL, "%s_%s",
1046 iio_modifier_names[chan->channel2],
1047 postfix);
1048 } else {
1049 if (chan->extend_name == NULL || shared_by != IIO_SEPARATE)
1050 full_postfix = kstrdup(postfix, GFP_KERNEL);
1051 else
1052 full_postfix = kasprintf(GFP_KERNEL,
1053 "%s_%s",
1054 chan->extend_name,
1055 postfix);
1056 }
1057 if (full_postfix == NULL)
1058 return -ENOMEM;
1059
1060 if (chan->differential) { /* Differential can not have modifier */
1061 switch (shared_by) {
1062 case IIO_SHARED_BY_ALL:
1063 name = kasprintf(GFP_KERNEL, "%s", full_postfix);
1064 break;
1065 case IIO_SHARED_BY_DIR:
1066 name = kasprintf(GFP_KERNEL, "%s_%s",
1067 iio_direction[chan->output],
1068 full_postfix);
1069 break;
1070 case IIO_SHARED_BY_TYPE:
1071 name = kasprintf(GFP_KERNEL, "%s_%s-%s_%s",
1072 iio_direction[chan->output],
1073 iio_chan_type_name_spec[chan->type],
1074 iio_chan_type_name_spec[chan->type],
1075 full_postfix);
1076 break;
1077 case IIO_SEPARATE:
1078 if (!chan->indexed) {
1079 WARN(1, "Differential channels must be indexed\n");
1080 ret = -EINVAL;
1081 goto error_free_full_postfix;
1082 }
1083 name = kasprintf(GFP_KERNEL,
1084 "%s_%s%d-%s%d_%s",
1085 iio_direction[chan->output],
1086 iio_chan_type_name_spec[chan->type],
1087 chan->channel,
1088 iio_chan_type_name_spec[chan->type],
1089 chan->channel2,
1090 full_postfix);
1091 break;
1092 }
1093 } else { /* Single ended */
1094 switch (shared_by) {
1095 case IIO_SHARED_BY_ALL:
1096 name = kasprintf(GFP_KERNEL, "%s", full_postfix);
1097 break;
1098 case IIO_SHARED_BY_DIR:
1099 name = kasprintf(GFP_KERNEL, "%s_%s",
1100 iio_direction[chan->output],
1101 full_postfix);
1102 break;
1103 case IIO_SHARED_BY_TYPE:
1104 name = kasprintf(GFP_KERNEL, "%s_%s_%s",
1105 iio_direction[chan->output],
1106 iio_chan_type_name_spec[chan->type],
1107 full_postfix);
1108 break;
1109
1110 case IIO_SEPARATE:
1111 if (chan->indexed)
1112 name = kasprintf(GFP_KERNEL, "%s_%s%d_%s",
1113 iio_direction[chan->output],
1114 iio_chan_type_name_spec[chan->type],
1115 chan->channel,
1116 full_postfix);
1117 else
1118 name = kasprintf(GFP_KERNEL, "%s_%s_%s",
1119 iio_direction[chan->output],
1120 iio_chan_type_name_spec[chan->type],
1121 full_postfix);
1122 break;
1123 }
1124 }
1125 if (name == NULL) {
1126 ret = -ENOMEM;
1127 goto error_free_full_postfix;
1128 }
1129 dev_attr->attr.name = name;
1130
1131 if (readfunc) {
1132 dev_attr->attr.mode |= 0444;
1133 dev_attr->show = readfunc;
1134 }
1135
1136 if (writefunc) {
1137 dev_attr->attr.mode |= 0200;
1138 dev_attr->store = writefunc;
1139 }
1140
1141error_free_full_postfix:
1142 kfree(full_postfix);
1143
1144 return ret;
1145}
1146
1147static void __iio_device_attr_deinit(struct device_attribute *dev_attr)
1148{
1149 kfree(dev_attr->attr.name);
1150}
1151
1152int __iio_add_chan_devattr(const char *postfix,
1153 struct iio_chan_spec const *chan,
1154 ssize_t (*readfunc)(struct device *dev,
1155 struct device_attribute *attr,
1156 char *buf),
1157 ssize_t (*writefunc)(struct device *dev,
1158 struct device_attribute *attr,
1159 const char *buf,
1160 size_t len),
1161 u64 mask,
1162 enum iio_shared_by shared_by,
1163 struct device *dev,
1164 struct iio_buffer *buffer,
1165 struct list_head *attr_list)
1166{
1167 int ret;
1168 struct iio_dev_attr *iio_attr, *t;
1169
1170 iio_attr = kzalloc(sizeof(*iio_attr), GFP_KERNEL);
1171 if (iio_attr == NULL)
1172 return -ENOMEM;
1173 ret = __iio_device_attr_init(&iio_attr->dev_attr,
1174 postfix, chan,
1175 readfunc, writefunc, shared_by);
1176 if (ret)
1177 goto error_iio_dev_attr_free;
1178 iio_attr->c = chan;
1179 iio_attr->address = mask;
1180 iio_attr->buffer = buffer;
1181 list_for_each_entry(t, attr_list, l)
1182 if (strcmp(t->dev_attr.attr.name,
1183 iio_attr->dev_attr.attr.name) == 0) {
1184 if (shared_by == IIO_SEPARATE)
1185 dev_err(dev, "tried to double register : %s\n",
1186 t->dev_attr.attr.name);
1187 ret = -EBUSY;
1188 goto error_device_attr_deinit;
1189 }
1190 list_add(&iio_attr->l, attr_list);
1191
1192 return 0;
1193
1194error_device_attr_deinit:
1195 __iio_device_attr_deinit(&iio_attr->dev_attr);
1196error_iio_dev_attr_free:
1197 kfree(iio_attr);
1198 return ret;
1199}
1200
1201static int iio_device_add_channel_label(struct iio_dev *indio_dev,
1202 struct iio_chan_spec const *chan)
1203{
1204 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1205 int ret;
1206
1207 if (!indio_dev->info->read_label && !chan->extend_name)
1208 return 0;
1209
1210 ret = __iio_add_chan_devattr("label",
1211 chan,
1212 &iio_read_channel_label,
1213 NULL,
1214 0,
1215 IIO_SEPARATE,
1216 &indio_dev->dev,
1217 NULL,
1218 &iio_dev_opaque->channel_attr_list);
1219 if (ret < 0)
1220 return ret;
1221
1222 return 1;
1223}
1224
1225static int iio_device_add_info_mask_type(struct iio_dev *indio_dev,
1226 struct iio_chan_spec const *chan,
1227 enum iio_shared_by shared_by,
1228 const long *infomask)
1229{
1230 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1231 int i, ret, attrcount = 0;
1232
1233 for_each_set_bit(i, infomask, sizeof(*infomask)*8) {
1234 if (i >= ARRAY_SIZE(iio_chan_info_postfix))
1235 return -EINVAL;
1236 ret = __iio_add_chan_devattr(iio_chan_info_postfix[i],
1237 chan,
1238 &iio_read_channel_info,
1239 &iio_write_channel_info,
1240 i,
1241 shared_by,
1242 &indio_dev->dev,
1243 NULL,
1244 &iio_dev_opaque->channel_attr_list);
1245 if ((ret == -EBUSY) && (shared_by != IIO_SEPARATE))
1246 continue;
1247 if (ret < 0)
1248 return ret;
1249 attrcount++;
1250 }
1251
1252 return attrcount;
1253}
1254
1255static int iio_device_add_info_mask_type_avail(struct iio_dev *indio_dev,
1256 struct iio_chan_spec const *chan,
1257 enum iio_shared_by shared_by,
1258 const long *infomask)
1259{
1260 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1261 int i, ret, attrcount = 0;
1262 char *avail_postfix;
1263
1264 for_each_set_bit(i, infomask, sizeof(*infomask) * 8) {
1265 if (i >= ARRAY_SIZE(iio_chan_info_postfix))
1266 return -EINVAL;
1267 avail_postfix = kasprintf(GFP_KERNEL,
1268 "%s_available",
1269 iio_chan_info_postfix[i]);
1270 if (!avail_postfix)
1271 return -ENOMEM;
1272
1273 ret = __iio_add_chan_devattr(avail_postfix,
1274 chan,
1275 &iio_read_channel_info_avail,
1276 NULL,
1277 i,
1278 shared_by,
1279 &indio_dev->dev,
1280 NULL,
1281 &iio_dev_opaque->channel_attr_list);
1282 kfree(avail_postfix);
1283 if ((ret == -EBUSY) && (shared_by != IIO_SEPARATE))
1284 continue;
1285 if (ret < 0)
1286 return ret;
1287 attrcount++;
1288 }
1289
1290 return attrcount;
1291}
1292
1293static int iio_device_add_channel_sysfs(struct iio_dev *indio_dev,
1294 struct iio_chan_spec const *chan)
1295{
1296 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1297 int ret, attrcount = 0;
1298 const struct iio_chan_spec_ext_info *ext_info;
1299
1300 if (chan->channel < 0)
1301 return 0;
1302 ret = iio_device_add_info_mask_type(indio_dev, chan,
1303 IIO_SEPARATE,
1304 &chan->info_mask_separate);
1305 if (ret < 0)
1306 return ret;
1307 attrcount += ret;
1308
1309 ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1310 IIO_SEPARATE,
1311 &chan->info_mask_separate_available);
1312 if (ret < 0)
1313 return ret;
1314 attrcount += ret;
1315
1316 ret = iio_device_add_info_mask_type(indio_dev, chan,
1317 IIO_SHARED_BY_TYPE,
1318 &chan->info_mask_shared_by_type);
1319 if (ret < 0)
1320 return ret;
1321 attrcount += ret;
1322
1323 ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1324 IIO_SHARED_BY_TYPE,
1325 &chan->info_mask_shared_by_type_available);
1326 if (ret < 0)
1327 return ret;
1328 attrcount += ret;
1329
1330 ret = iio_device_add_info_mask_type(indio_dev, chan,
1331 IIO_SHARED_BY_DIR,
1332 &chan->info_mask_shared_by_dir);
1333 if (ret < 0)
1334 return ret;
1335 attrcount += ret;
1336
1337 ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1338 IIO_SHARED_BY_DIR,
1339 &chan->info_mask_shared_by_dir_available);
1340 if (ret < 0)
1341 return ret;
1342 attrcount += ret;
1343
1344 ret = iio_device_add_info_mask_type(indio_dev, chan,
1345 IIO_SHARED_BY_ALL,
1346 &chan->info_mask_shared_by_all);
1347 if (ret < 0)
1348 return ret;
1349 attrcount += ret;
1350
1351 ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1352 IIO_SHARED_BY_ALL,
1353 &chan->info_mask_shared_by_all_available);
1354 if (ret < 0)
1355 return ret;
1356 attrcount += ret;
1357
1358 ret = iio_device_add_channel_label(indio_dev, chan);
1359 if (ret < 0)
1360 return ret;
1361 attrcount += ret;
1362
1363 if (chan->ext_info) {
1364 unsigned int i = 0;
1365
1366 for (ext_info = chan->ext_info; ext_info->name; ext_info++) {
1367 ret = __iio_add_chan_devattr(ext_info->name,
1368 chan,
1369 ext_info->read ?
1370 &iio_read_channel_ext_info : NULL,
1371 ext_info->write ?
1372 &iio_write_channel_ext_info : NULL,
1373 i,
1374 ext_info->shared,
1375 &indio_dev->dev,
1376 NULL,
1377 &iio_dev_opaque->channel_attr_list);
1378 i++;
1379 if (ret == -EBUSY && ext_info->shared)
1380 continue;
1381
1382 if (ret)
1383 return ret;
1384
1385 attrcount++;
1386 }
1387 }
1388
1389 return attrcount;
1390}
1391
1392/**
1393 * iio_free_chan_devattr_list() - Free a list of IIO device attributes
1394 * @attr_list: List of IIO device attributes
1395 *
1396 * This function frees the memory allocated for each of the IIO device
1397 * attributes in the list.
1398 */
1399void iio_free_chan_devattr_list(struct list_head *attr_list)
1400{
1401 struct iio_dev_attr *p, *n;
1402
1403 list_for_each_entry_safe(p, n, attr_list, l) {
1404 kfree_const(p->dev_attr.attr.name);
1405 list_del(&p->l);
1406 kfree(p);
1407 }
1408}
1409
1410static ssize_t name_show(struct device *dev, struct device_attribute *attr,
1411 char *buf)
1412{
1413 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1414
1415 return sysfs_emit(buf, "%s\n", indio_dev->name);
1416}
1417
1418static DEVICE_ATTR_RO(name);
1419
1420static ssize_t label_show(struct device *dev, struct device_attribute *attr,
1421 char *buf)
1422{
1423 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1424
1425 return sysfs_emit(buf, "%s\n", indio_dev->label);
1426}
1427
1428static DEVICE_ATTR_RO(label);
1429
1430static const char * const clock_names[] = {
1431 [CLOCK_REALTIME] = "realtime",
1432 [CLOCK_MONOTONIC] = "monotonic",
1433 [CLOCK_PROCESS_CPUTIME_ID] = "process_cputime_id",
1434 [CLOCK_THREAD_CPUTIME_ID] = "thread_cputime_id",
1435 [CLOCK_MONOTONIC_RAW] = "monotonic_raw",
1436 [CLOCK_REALTIME_COARSE] = "realtime_coarse",
1437 [CLOCK_MONOTONIC_COARSE] = "monotonic_coarse",
1438 [CLOCK_BOOTTIME] = "boottime",
1439 [CLOCK_REALTIME_ALARM] = "realtime_alarm",
1440 [CLOCK_BOOTTIME_ALARM] = "boottime_alarm",
1441 [CLOCK_SGI_CYCLE] = "sgi_cycle",
1442 [CLOCK_TAI] = "tai",
1443};
1444
1445static ssize_t current_timestamp_clock_show(struct device *dev,
1446 struct device_attribute *attr,
1447 char *buf)
1448{
1449 const struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1450 const clockid_t clk = iio_device_get_clock(indio_dev);
1451
1452 switch (clk) {
1453 case CLOCK_REALTIME:
1454 case CLOCK_MONOTONIC:
1455 case CLOCK_MONOTONIC_RAW:
1456 case CLOCK_REALTIME_COARSE:
1457 case CLOCK_MONOTONIC_COARSE:
1458 case CLOCK_BOOTTIME:
1459 case CLOCK_TAI:
1460 break;
1461 default:
1462 BUG();
1463 }
1464
1465 return sysfs_emit(buf, "%s\n", clock_names[clk]);
1466}
1467
1468static ssize_t current_timestamp_clock_store(struct device *dev,
1469 struct device_attribute *attr,
1470 const char *buf, size_t len)
1471{
1472 clockid_t clk;
1473 int ret;
1474
1475 ret = sysfs_match_string(clock_names, buf);
1476 if (ret < 0)
1477 return ret;
1478 clk = ret;
1479
1480 switch (clk) {
1481 case CLOCK_REALTIME:
1482 case CLOCK_MONOTONIC:
1483 case CLOCK_MONOTONIC_RAW:
1484 case CLOCK_REALTIME_COARSE:
1485 case CLOCK_MONOTONIC_COARSE:
1486 case CLOCK_BOOTTIME:
1487 case CLOCK_TAI:
1488 break;
1489 default:
1490 return -EINVAL;
1491 }
1492
1493 ret = iio_device_set_clock(dev_to_iio_dev(dev), clk);
1494 if (ret)
1495 return ret;
1496
1497 return len;
1498}
1499
1500int iio_device_register_sysfs_group(struct iio_dev *indio_dev,
1501 const struct attribute_group *group)
1502{
1503 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1504 const struct attribute_group **new, **old = iio_dev_opaque->groups;
1505 unsigned int cnt = iio_dev_opaque->groupcounter;
1506
1507 new = krealloc_array(old, cnt + 2, sizeof(*new), GFP_KERNEL);
1508 if (!new)
1509 return -ENOMEM;
1510
1511 new[iio_dev_opaque->groupcounter++] = group;
1512 new[iio_dev_opaque->groupcounter] = NULL;
1513
1514 iio_dev_opaque->groups = new;
1515
1516 return 0;
1517}
1518
1519static DEVICE_ATTR_RW(current_timestamp_clock);
1520
1521static int iio_device_register_sysfs(struct iio_dev *indio_dev)
1522{
1523 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1524 int i, ret = 0, attrcount, attrn, attrcount_orig = 0;
1525 struct iio_dev_attr *p;
1526 struct attribute **attr, *clk = NULL;
1527
1528 /* First count elements in any existing group */
1529 if (indio_dev->info->attrs) {
1530 attr = indio_dev->info->attrs->attrs;
1531 while (*attr++ != NULL)
1532 attrcount_orig++;
1533 }
1534 attrcount = attrcount_orig;
1535 /*
1536 * New channel registration method - relies on the fact a group does
1537 * not need to be initialized if its name is NULL.
1538 */
1539 if (indio_dev->channels)
1540 for (i = 0; i < indio_dev->num_channels; i++) {
1541 const struct iio_chan_spec *chan =
1542 &indio_dev->channels[i];
1543
1544 if (chan->type == IIO_TIMESTAMP)
1545 clk = &dev_attr_current_timestamp_clock.attr;
1546
1547 ret = iio_device_add_channel_sysfs(indio_dev, chan);
1548 if (ret < 0)
1549 goto error_clear_attrs;
1550 attrcount += ret;
1551 }
1552
1553 if (iio_dev_opaque->event_interface)
1554 clk = &dev_attr_current_timestamp_clock.attr;
1555
1556 if (indio_dev->name)
1557 attrcount++;
1558 if (indio_dev->label)
1559 attrcount++;
1560 if (clk)
1561 attrcount++;
1562
1563 iio_dev_opaque->chan_attr_group.attrs =
1564 kcalloc(attrcount + 1,
1565 sizeof(iio_dev_opaque->chan_attr_group.attrs[0]),
1566 GFP_KERNEL);
1567 if (iio_dev_opaque->chan_attr_group.attrs == NULL) {
1568 ret = -ENOMEM;
1569 goto error_clear_attrs;
1570 }
1571 /* Copy across original attributes, and point to original binary attributes */
1572 if (indio_dev->info->attrs) {
1573 memcpy(iio_dev_opaque->chan_attr_group.attrs,
1574 indio_dev->info->attrs->attrs,
1575 sizeof(iio_dev_opaque->chan_attr_group.attrs[0])
1576 *attrcount_orig);
1577 iio_dev_opaque->chan_attr_group.is_visible =
1578 indio_dev->info->attrs->is_visible;
1579 iio_dev_opaque->chan_attr_group.bin_attrs =
1580 indio_dev->info->attrs->bin_attrs;
1581 }
1582 attrn = attrcount_orig;
1583 /* Add all elements from the list. */
1584 list_for_each_entry(p, &iio_dev_opaque->channel_attr_list, l)
1585 iio_dev_opaque->chan_attr_group.attrs[attrn++] = &p->dev_attr.attr;
1586 if (indio_dev->name)
1587 iio_dev_opaque->chan_attr_group.attrs[attrn++] = &dev_attr_name.attr;
1588 if (indio_dev->label)
1589 iio_dev_opaque->chan_attr_group.attrs[attrn++] = &dev_attr_label.attr;
1590 if (clk)
1591 iio_dev_opaque->chan_attr_group.attrs[attrn++] = clk;
1592
1593 ret = iio_device_register_sysfs_group(indio_dev,
1594 &iio_dev_opaque->chan_attr_group);
1595 if (ret)
1596 goto error_free_chan_attrs;
1597
1598 return 0;
1599
1600error_free_chan_attrs:
1601 kfree(iio_dev_opaque->chan_attr_group.attrs);
1602 iio_dev_opaque->chan_attr_group.attrs = NULL;
1603error_clear_attrs:
1604 iio_free_chan_devattr_list(&iio_dev_opaque->channel_attr_list);
1605
1606 return ret;
1607}
1608
1609static void iio_device_unregister_sysfs(struct iio_dev *indio_dev)
1610{
1611 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1612
1613 iio_free_chan_devattr_list(&iio_dev_opaque->channel_attr_list);
1614 kfree(iio_dev_opaque->chan_attr_group.attrs);
1615 iio_dev_opaque->chan_attr_group.attrs = NULL;
1616 kfree(iio_dev_opaque->groups);
1617 iio_dev_opaque->groups = NULL;
1618}
1619
1620static void iio_dev_release(struct device *device)
1621{
1622 struct iio_dev *indio_dev = dev_to_iio_dev(device);
1623 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1624
1625 if (indio_dev->modes & INDIO_ALL_TRIGGERED_MODES)
1626 iio_device_unregister_trigger_consumer(indio_dev);
1627 iio_device_unregister_eventset(indio_dev);
1628 iio_device_unregister_sysfs(indio_dev);
1629
1630 iio_device_detach_buffers(indio_dev);
1631
1632 lockdep_unregister_key(&iio_dev_opaque->mlock_key);
1633
1634 ida_free(&iio_ida, iio_dev_opaque->id);
1635 kfree(iio_dev_opaque);
1636}
1637
1638const struct device_type iio_device_type = {
1639 .name = "iio_device",
1640 .release = iio_dev_release,
1641};
1642
1643/**
1644 * iio_device_alloc() - allocate an iio_dev from a driver
1645 * @parent: Parent device.
1646 * @sizeof_priv: Space to allocate for private structure.
1647 *
1648 * Returns:
1649 * Pointer to allocated iio_dev on success, NULL on failure.
1650 */
1651struct iio_dev *iio_device_alloc(struct device *parent, int sizeof_priv)
1652{
1653 struct iio_dev_opaque *iio_dev_opaque;
1654 struct iio_dev *indio_dev;
1655 size_t alloc_size;
1656
1657 if (sizeof_priv)
1658 alloc_size = ALIGN(sizeof(*iio_dev_opaque), IIO_DMA_MINALIGN) + sizeof_priv;
1659 else
1660 alloc_size = sizeof(*iio_dev_opaque);
1661
1662 iio_dev_opaque = kzalloc(alloc_size, GFP_KERNEL);
1663 if (!iio_dev_opaque)
1664 return NULL;
1665
1666 indio_dev = &iio_dev_opaque->indio_dev;
1667
1668 if (sizeof_priv)
1669 ACCESS_PRIVATE(indio_dev, priv) = (char *)iio_dev_opaque +
1670 ALIGN(sizeof(*iio_dev_opaque), IIO_DMA_MINALIGN);
1671
1672 indio_dev->dev.parent = parent;
1673 indio_dev->dev.type = &iio_device_type;
1674 indio_dev->dev.bus = &iio_bus_type;
1675 device_initialize(&indio_dev->dev);
1676 mutex_init(&iio_dev_opaque->mlock);
1677 mutex_init(&iio_dev_opaque->info_exist_lock);
1678 INIT_LIST_HEAD(&iio_dev_opaque->channel_attr_list);
1679
1680 iio_dev_opaque->id = ida_alloc(&iio_ida, GFP_KERNEL);
1681 if (iio_dev_opaque->id < 0) {
1682 /* cannot use a dev_err as the name isn't available */
1683 pr_err("failed to get device id\n");
1684 kfree(iio_dev_opaque);
1685 return NULL;
1686 }
1687
1688 if (dev_set_name(&indio_dev->dev, "iio:device%d", iio_dev_opaque->id)) {
1689 ida_free(&iio_ida, iio_dev_opaque->id);
1690 kfree(iio_dev_opaque);
1691 return NULL;
1692 }
1693
1694 INIT_LIST_HEAD(&iio_dev_opaque->buffer_list);
1695 INIT_LIST_HEAD(&iio_dev_opaque->ioctl_handlers);
1696
1697 lockdep_register_key(&iio_dev_opaque->mlock_key);
1698 lockdep_set_class(&iio_dev_opaque->mlock, &iio_dev_opaque->mlock_key);
1699
1700 return indio_dev;
1701}
1702EXPORT_SYMBOL(iio_device_alloc);
1703
1704/**
1705 * iio_device_free() - free an iio_dev from a driver
1706 * @dev: the iio_dev associated with the device
1707 */
1708void iio_device_free(struct iio_dev *dev)
1709{
1710 if (dev)
1711 put_device(&dev->dev);
1712}
1713EXPORT_SYMBOL(iio_device_free);
1714
1715static void devm_iio_device_release(void *iio_dev)
1716{
1717 iio_device_free(iio_dev);
1718}
1719
1720/**
1721 * devm_iio_device_alloc - Resource-managed iio_device_alloc()
1722 * @parent: Device to allocate iio_dev for, and parent for this IIO device
1723 * @sizeof_priv: Space to allocate for private structure.
1724 *
1725 * Managed iio_device_alloc. iio_dev allocated with this function is
1726 * automatically freed on driver detach.
1727 *
1728 * Returns:
1729 * Pointer to allocated iio_dev on success, NULL on failure.
1730 */
1731struct iio_dev *devm_iio_device_alloc(struct device *parent, int sizeof_priv)
1732{
1733 struct iio_dev *iio_dev;
1734 int ret;
1735
1736 iio_dev = iio_device_alloc(parent, sizeof_priv);
1737 if (!iio_dev)
1738 return NULL;
1739
1740 ret = devm_add_action_or_reset(parent, devm_iio_device_release,
1741 iio_dev);
1742 if (ret)
1743 return NULL;
1744
1745 return iio_dev;
1746}
1747EXPORT_SYMBOL_GPL(devm_iio_device_alloc);
1748
1749/**
1750 * iio_chrdev_open() - chrdev file open for buffer access and ioctls
1751 * @inode: Inode structure for identifying the device in the file system
1752 * @filp: File structure for iio device used to keep and later access
1753 * private data
1754 *
1755 * Returns: 0 on success or -EBUSY if the device is already opened
1756 */
1757static int iio_chrdev_open(struct inode *inode, struct file *filp)
1758{
1759 struct iio_dev_opaque *iio_dev_opaque =
1760 container_of(inode->i_cdev, struct iio_dev_opaque, chrdev);
1761 struct iio_dev *indio_dev = &iio_dev_opaque->indio_dev;
1762 struct iio_dev_buffer_pair *ib;
1763
1764 if (test_and_set_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags))
1765 return -EBUSY;
1766
1767 iio_device_get(indio_dev);
1768
1769 ib = kmalloc(sizeof(*ib), GFP_KERNEL);
1770 if (!ib) {
1771 iio_device_put(indio_dev);
1772 clear_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags);
1773 return -ENOMEM;
1774 }
1775
1776 ib->indio_dev = indio_dev;
1777 ib->buffer = indio_dev->buffer;
1778
1779 filp->private_data = ib;
1780
1781 return 0;
1782}
1783
1784/**
1785 * iio_chrdev_release() - chrdev file close buffer access and ioctls
1786 * @inode: Inode structure pointer for the char device
1787 * @filp: File structure pointer for the char device
1788 *
1789 * Returns: 0 for successful release.
1790 */
1791static int iio_chrdev_release(struct inode *inode, struct file *filp)
1792{
1793 struct iio_dev_buffer_pair *ib = filp->private_data;
1794 struct iio_dev_opaque *iio_dev_opaque =
1795 container_of(inode->i_cdev, struct iio_dev_opaque, chrdev);
1796 struct iio_dev *indio_dev = &iio_dev_opaque->indio_dev;
1797
1798 kfree(ib);
1799 clear_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags);
1800 iio_device_put(indio_dev);
1801
1802 return 0;
1803}
1804
1805void iio_device_ioctl_handler_register(struct iio_dev *indio_dev,
1806 struct iio_ioctl_handler *h)
1807{
1808 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1809
1810 list_add_tail(&h->entry, &iio_dev_opaque->ioctl_handlers);
1811}
1812
1813void iio_device_ioctl_handler_unregister(struct iio_ioctl_handler *h)
1814{
1815 list_del(&h->entry);
1816}
1817
1818static long iio_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1819{
1820 struct iio_dev_buffer_pair *ib = filp->private_data;
1821 struct iio_dev *indio_dev = ib->indio_dev;
1822 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1823 struct iio_ioctl_handler *h;
1824 int ret;
1825
1826 guard(mutex)(&iio_dev_opaque->info_exist_lock);
1827 /*
1828 * The NULL check here is required to prevent crashing when a device
1829 * is being removed while userspace would still have open file handles
1830 * to try to access this device.
1831 */
1832 if (!indio_dev->info)
1833 return -ENODEV;
1834
1835 list_for_each_entry(h, &iio_dev_opaque->ioctl_handlers, entry) {
1836 ret = h->ioctl(indio_dev, filp, cmd, arg);
1837 if (ret != IIO_IOCTL_UNHANDLED)
1838 return ret;
1839 }
1840
1841 return -ENODEV;
1842}
1843
1844static const struct file_operations iio_buffer_fileops = {
1845 .owner = THIS_MODULE,
1846 .llseek = noop_llseek,
1847 .read = iio_buffer_read_outer_addr,
1848 .write = iio_buffer_write_outer_addr,
1849 .poll = iio_buffer_poll_addr,
1850 .unlocked_ioctl = iio_ioctl,
1851 .compat_ioctl = compat_ptr_ioctl,
1852 .open = iio_chrdev_open,
1853 .release = iio_chrdev_release,
1854};
1855
1856static const struct file_operations iio_event_fileops = {
1857 .owner = THIS_MODULE,
1858 .llseek = noop_llseek,
1859 .unlocked_ioctl = iio_ioctl,
1860 .compat_ioctl = compat_ptr_ioctl,
1861 .open = iio_chrdev_open,
1862 .release = iio_chrdev_release,
1863};
1864
1865static int iio_check_unique_scan_index(struct iio_dev *indio_dev)
1866{
1867 int i, j;
1868 const struct iio_chan_spec *channels = indio_dev->channels;
1869
1870 if (!(indio_dev->modes & INDIO_ALL_BUFFER_MODES))
1871 return 0;
1872
1873 for (i = 0; i < indio_dev->num_channels - 1; i++) {
1874 if (channels[i].scan_index < 0)
1875 continue;
1876 for (j = i + 1; j < indio_dev->num_channels; j++)
1877 if (channels[i].scan_index == channels[j].scan_index) {
1878 dev_err(&indio_dev->dev,
1879 "Duplicate scan index %d\n",
1880 channels[i].scan_index);
1881 return -EINVAL;
1882 }
1883 }
1884
1885 return 0;
1886}
1887
1888static int iio_check_extended_name(const struct iio_dev *indio_dev)
1889{
1890 unsigned int i;
1891
1892 if (!indio_dev->info->read_label)
1893 return 0;
1894
1895 for (i = 0; i < indio_dev->num_channels; i++) {
1896 if (indio_dev->channels[i].extend_name) {
1897 dev_err(&indio_dev->dev,
1898 "Cannot use labels and extend_name at the same time\n");
1899 return -EINVAL;
1900 }
1901 }
1902
1903 return 0;
1904}
1905
1906static const struct iio_buffer_setup_ops noop_ring_setup_ops;
1907
1908static void iio_sanity_check_avail_scan_masks(struct iio_dev *indio_dev)
1909{
1910 unsigned int num_masks, masklength, longs_per_mask;
1911 const unsigned long *av_masks;
1912 int i;
1913
1914 av_masks = indio_dev->available_scan_masks;
1915 masklength = iio_get_masklength(indio_dev);
1916 longs_per_mask = BITS_TO_LONGS(masklength);
1917
1918 /*
1919 * The code determining how many available_scan_masks is in the array
1920 * will be assuming the end of masks when first long with all bits
1921 * zeroed is encountered. This is incorrect for masks where mask
1922 * consists of more than one long, and where some of the available masks
1923 * has long worth of bits zeroed (but has subsequent bit(s) set). This
1924 * is a safety measure against bug where array of masks is terminated by
1925 * a single zero while mask width is greater than width of a long.
1926 */
1927 if (longs_per_mask > 1)
1928 dev_warn(indio_dev->dev.parent,
1929 "multi long available scan masks not fully supported\n");
1930
1931 if (bitmap_empty(av_masks, masklength))
1932 dev_warn(indio_dev->dev.parent, "empty scan mask\n");
1933
1934 for (num_masks = 0; *av_masks; num_masks++)
1935 av_masks += longs_per_mask;
1936
1937 if (num_masks < 2)
1938 return;
1939
1940 av_masks = indio_dev->available_scan_masks;
1941
1942 /*
1943 * Go through all the masks from first to one before the last, and see
1944 * that no mask found later from the available_scan_masks array is a
1945 * subset of mask found earlier. If this happens, then the mask found
1946 * later will never get used because scanning the array is stopped when
1947 * the first suitable mask is found. Drivers should order the array of
1948 * available masks in the order of preference (presumably the least
1949 * costy to access masks first).
1950 */
1951 for (i = 0; i < num_masks - 1; i++) {
1952 const unsigned long *mask1;
1953 int j;
1954
1955 mask1 = av_masks + i * longs_per_mask;
1956 for (j = i + 1; j < num_masks; j++) {
1957 const unsigned long *mask2;
1958
1959 mask2 = av_masks + j * longs_per_mask;
1960 if (bitmap_subset(mask2, mask1, masklength))
1961 dev_warn(indio_dev->dev.parent,
1962 "available_scan_mask %d subset of %d. Never used\n",
1963 j, i);
1964 }
1965 }
1966}
1967
1968/**
1969 * iio_active_scan_mask_index - Get index of the active scan mask inside the
1970 * available scan masks array
1971 * @indio_dev: the IIO device containing the active and available scan masks
1972 *
1973 * Returns: the index or -EINVAL if active_scan_mask is not set
1974 */
1975int iio_active_scan_mask_index(struct iio_dev *indio_dev)
1976
1977{
1978 const unsigned long *av_masks;
1979 unsigned int masklength = iio_get_masklength(indio_dev);
1980 int i = 0;
1981
1982 if (!indio_dev->active_scan_mask)
1983 return -EINVAL;
1984
1985 /*
1986 * As in iio_scan_mask_match and iio_sanity_check_avail_scan_masks,
1987 * the condition here do not handle multi-long masks correctly.
1988 * It only checks the first long to be zero, and will use such mask
1989 * as a terminator even if there was bits set after the first long.
1990 *
1991 * This should be fine since the available_scan_mask has already been
1992 * sanity tested using iio_sanity_check_avail_scan_masks.
1993 *
1994 * See iio_scan_mask_match and iio_sanity_check_avail_scan_masks for
1995 * more details
1996 */
1997 av_masks = indio_dev->available_scan_masks;
1998 while (*av_masks) {
1999 if (indio_dev->active_scan_mask == av_masks)
2000 return i;
2001 av_masks += BITS_TO_LONGS(masklength);
2002 i++;
2003 }
2004
2005 dev_warn(indio_dev->dev.parent,
2006 "active scan mask is not part of the available scan masks\n");
2007 return -EINVAL;
2008}
2009EXPORT_SYMBOL_GPL(iio_active_scan_mask_index);
2010
2011int __iio_device_register(struct iio_dev *indio_dev, struct module *this_mod)
2012{
2013 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2014 struct fwnode_handle *fwnode = NULL;
2015 int ret;
2016
2017 if (!indio_dev->info)
2018 return -EINVAL;
2019
2020 iio_dev_opaque->driver_module = this_mod;
2021
2022 /* If the calling driver did not initialize firmware node, do it here */
2023 if (dev_fwnode(&indio_dev->dev))
2024 fwnode = dev_fwnode(&indio_dev->dev);
2025 /* The default dummy IIO device has no parent */
2026 else if (indio_dev->dev.parent)
2027 fwnode = dev_fwnode(indio_dev->dev.parent);
2028 device_set_node(&indio_dev->dev, fwnode);
2029
2030 fwnode_property_read_string(fwnode, "label", &indio_dev->label);
2031
2032 ret = iio_check_unique_scan_index(indio_dev);
2033 if (ret < 0)
2034 return ret;
2035
2036 ret = iio_check_extended_name(indio_dev);
2037 if (ret < 0)
2038 return ret;
2039
2040 iio_device_register_debugfs(indio_dev);
2041
2042 ret = iio_buffers_alloc_sysfs_and_mask(indio_dev);
2043 if (ret) {
2044 dev_err(indio_dev->dev.parent,
2045 "Failed to create buffer sysfs interfaces\n");
2046 goto error_unreg_debugfs;
2047 }
2048
2049 if (indio_dev->available_scan_masks)
2050 iio_sanity_check_avail_scan_masks(indio_dev);
2051
2052 ret = iio_device_register_sysfs(indio_dev);
2053 if (ret) {
2054 dev_err(indio_dev->dev.parent,
2055 "Failed to register sysfs interfaces\n");
2056 goto error_buffer_free_sysfs;
2057 }
2058 ret = iio_device_register_eventset(indio_dev);
2059 if (ret) {
2060 dev_err(indio_dev->dev.parent,
2061 "Failed to register event set\n");
2062 goto error_free_sysfs;
2063 }
2064 if (indio_dev->modes & INDIO_ALL_TRIGGERED_MODES)
2065 iio_device_register_trigger_consumer(indio_dev);
2066
2067 if ((indio_dev->modes & INDIO_ALL_BUFFER_MODES) &&
2068 indio_dev->setup_ops == NULL)
2069 indio_dev->setup_ops = &noop_ring_setup_ops;
2070
2071 if (iio_dev_opaque->attached_buffers_cnt)
2072 cdev_init(&iio_dev_opaque->chrdev, &iio_buffer_fileops);
2073 else if (iio_dev_opaque->event_interface)
2074 cdev_init(&iio_dev_opaque->chrdev, &iio_event_fileops);
2075
2076 if (iio_dev_opaque->attached_buffers_cnt || iio_dev_opaque->event_interface) {
2077 indio_dev->dev.devt = MKDEV(MAJOR(iio_devt), iio_dev_opaque->id);
2078 iio_dev_opaque->chrdev.owner = this_mod;
2079 }
2080
2081 /* assign device groups now; they should be all registered now */
2082 indio_dev->dev.groups = iio_dev_opaque->groups;
2083
2084 ret = cdev_device_add(&iio_dev_opaque->chrdev, &indio_dev->dev);
2085 if (ret < 0)
2086 goto error_unreg_eventset;
2087
2088 return 0;
2089
2090error_unreg_eventset:
2091 iio_device_unregister_eventset(indio_dev);
2092error_free_sysfs:
2093 iio_device_unregister_sysfs(indio_dev);
2094error_buffer_free_sysfs:
2095 iio_buffers_free_sysfs_and_mask(indio_dev);
2096error_unreg_debugfs:
2097 iio_device_unregister_debugfs(indio_dev);
2098 return ret;
2099}
2100EXPORT_SYMBOL(__iio_device_register);
2101
2102/**
2103 * iio_device_unregister() - unregister a device from the IIO subsystem
2104 * @indio_dev: Device structure representing the device.
2105 */
2106void iio_device_unregister(struct iio_dev *indio_dev)
2107{
2108 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2109
2110 cdev_device_del(&iio_dev_opaque->chrdev, &indio_dev->dev);
2111
2112 scoped_guard(mutex, &iio_dev_opaque->info_exist_lock) {
2113 iio_device_unregister_debugfs(indio_dev);
2114
2115 iio_disable_all_buffers(indio_dev);
2116
2117 indio_dev->info = NULL;
2118
2119 iio_device_wakeup_eventset(indio_dev);
2120 iio_buffer_wakeup_poll(indio_dev);
2121 }
2122
2123 iio_buffers_free_sysfs_and_mask(indio_dev);
2124}
2125EXPORT_SYMBOL(iio_device_unregister);
2126
2127static void devm_iio_device_unreg(void *indio_dev)
2128{
2129 iio_device_unregister(indio_dev);
2130}
2131
2132int __devm_iio_device_register(struct device *dev, struct iio_dev *indio_dev,
2133 struct module *this_mod)
2134{
2135 int ret;
2136
2137 ret = __iio_device_register(indio_dev, this_mod);
2138 if (ret)
2139 return ret;
2140
2141 return devm_add_action_or_reset(dev, devm_iio_device_unreg, indio_dev);
2142}
2143EXPORT_SYMBOL_GPL(__devm_iio_device_register);
2144
2145/**
2146 * iio_device_claim_direct_mode - Keep device in direct mode
2147 * @indio_dev: the iio_dev associated with the device
2148 *
2149 * If the device is in direct mode it is guaranteed to stay
2150 * that way until iio_device_release_direct_mode() is called.
2151 *
2152 * Use with iio_device_release_direct_mode()
2153 *
2154 * Returns: 0 on success, -EBUSY on failure.
2155 */
2156int iio_device_claim_direct_mode(struct iio_dev *indio_dev)
2157{
2158 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2159
2160 mutex_lock(&iio_dev_opaque->mlock);
2161
2162 if (iio_buffer_enabled(indio_dev)) {
2163 mutex_unlock(&iio_dev_opaque->mlock);
2164 return -EBUSY;
2165 }
2166 return 0;
2167}
2168EXPORT_SYMBOL_GPL(iio_device_claim_direct_mode);
2169
2170/**
2171 * iio_device_release_direct_mode - releases claim on direct mode
2172 * @indio_dev: the iio_dev associated with the device
2173 *
2174 * Release the claim. Device is no longer guaranteed to stay
2175 * in direct mode.
2176 *
2177 * Use with iio_device_claim_direct_mode()
2178 */
2179void iio_device_release_direct_mode(struct iio_dev *indio_dev)
2180{
2181 mutex_unlock(&to_iio_dev_opaque(indio_dev)->mlock);
2182}
2183EXPORT_SYMBOL_GPL(iio_device_release_direct_mode);
2184
2185/**
2186 * iio_device_claim_buffer_mode - Keep device in buffer mode
2187 * @indio_dev: the iio_dev associated with the device
2188 *
2189 * If the device is in buffer mode it is guaranteed to stay
2190 * that way until iio_device_release_buffer_mode() is called.
2191 *
2192 * Use with iio_device_release_buffer_mode().
2193 *
2194 * Returns: 0 on success, -EBUSY on failure.
2195 */
2196int iio_device_claim_buffer_mode(struct iio_dev *indio_dev)
2197{
2198 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2199
2200 mutex_lock(&iio_dev_opaque->mlock);
2201
2202 if (iio_buffer_enabled(indio_dev))
2203 return 0;
2204
2205 mutex_unlock(&iio_dev_opaque->mlock);
2206 return -EBUSY;
2207}
2208EXPORT_SYMBOL_GPL(iio_device_claim_buffer_mode);
2209
2210/**
2211 * iio_device_release_buffer_mode - releases claim on buffer mode
2212 * @indio_dev: the iio_dev associated with the device
2213 *
2214 * Release the claim. Device is no longer guaranteed to stay
2215 * in buffer mode.
2216 *
2217 * Use with iio_device_claim_buffer_mode().
2218 */
2219void iio_device_release_buffer_mode(struct iio_dev *indio_dev)
2220{
2221 mutex_unlock(&to_iio_dev_opaque(indio_dev)->mlock);
2222}
2223EXPORT_SYMBOL_GPL(iio_device_release_buffer_mode);
2224
2225/**
2226 * iio_device_get_current_mode() - helper function providing read-only access to
2227 * the opaque @currentmode variable
2228 * @indio_dev: IIO device structure for device
2229 */
2230int iio_device_get_current_mode(struct iio_dev *indio_dev)
2231{
2232 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2233
2234 return iio_dev_opaque->currentmode;
2235}
2236EXPORT_SYMBOL_GPL(iio_device_get_current_mode);
2237
2238subsys_initcall(iio_init);
2239module_exit(iio_exit);
2240
2241MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>");
2242MODULE_DESCRIPTION("Industrial I/O core");
2243MODULE_LICENSE("GPL");