Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Hwmon client for disk and solid state drives with temperature sensors
  4 * Copyright (C) 2019 Zodiac Inflight Innovations
  5 *
  6 * With input from:
  7 *    Hwmon client for S.M.A.R.T. hard disk drives with temperature sensors.
  8 *    (C) 2018 Linus Walleij
  9 *
 10 *    hwmon: Driver for SCSI/ATA temperature sensors
 11 *    by Constantin Baranov <const@mimas.ru>, submitted September 2009
 12 *
 13 * This drive supports reporting the temperature of SATA drives. It can be
 14 * easily extended to report the temperature of SCSI drives.
 15 *
 16 * The primary means to read drive temperatures and temperature limits
 17 * for ATA drives is the SCT Command Transport feature set as specified in
 18 * ATA8-ACS.
 19 * It can be used to read the current drive temperature, temperature limits,
 20 * and historic minimum and maximum temperatures. The SCT Command Transport
 21 * feature set is documented in "AT Attachment 8 - ATA/ATAPI Command Set
 22 * (ATA8-ACS)".
 23 *
 24 * If the SCT Command Transport feature set is not available, drive temperatures
 25 * may be readable through SMART attributes. Since SMART attributes are not well
 26 * defined, this method is only used as fallback mechanism.
 27 *
 28 * There are three SMART attributes which may report drive temperatures.
 29 * Those are defined as follows (from
 30 * http://www.cropel.com/library/smart-attribute-list.aspx).
 31 *
 32 * 190	Temperature	Temperature, monitored by a sensor somewhere inside
 33 *			the drive. Raw value typicaly holds the actual
 34 *			temperature (hexadecimal) in its rightmost two digits.
 35 *
 36 * 194	Temperature	Temperature, monitored by a sensor somewhere inside
 37 *			the drive. Raw value typicaly holds the actual
 38 *			temperature (hexadecimal) in its rightmost two digits.
 39 *
 40 * 231	Temperature	Temperature, monitored by a sensor somewhere inside
 41 *			the drive. Raw value typicaly holds the actual
 42 *			temperature (hexadecimal) in its rightmost two digits.
 43 *
 44 * Wikipedia defines attributes a bit differently.
 45 *
 46 * 190	Temperature	Value is equal to (100-temp. °C), allowing manufacturer
 47 *	Difference or	to set a minimum threshold which corresponds to a
 48 *	Airflow		maximum temperature. This also follows the convention of
 49 *	Temperature	100 being a best-case value and lower values being
 50 *			undesirable. However, some older drives may instead
 51 *			report raw Temperature (identical to 0xC2) or
 52 *			Temperature minus 50 here.
 53 * 194	Temperature or	Indicates the device temperature, if the appropriate
 54 *	Temperature	sensor is fitted. Lowest byte of the raw value contains
 55 *	Celsius		the exact temperature value (Celsius degrees).
 56 * 231	Life Left	Indicates the approximate SSD life left, in terms of
 57 *	(SSDs) or	program/erase cycles or available reserved blocks.
 58 *	Temperature	A normalized value of 100 represents a new drive, with
 59 *			a threshold value at 10 indicating a need for
 60 *			replacement. A value of 0 may mean that the drive is
 61 *			operating in read-only mode to allow data recovery.
 62 *			Previously (pre-2010) occasionally used for Drive
 63 *			Temperature (more typically reported at 0xC2).
 64 *
 65 * Common denominator is that the first raw byte reports the temperature
 66 * in degrees C on almost all drives. Some drives may report a fractional
 67 * temperature in the second raw byte.
 68 *
 69 * Known exceptions (from libatasmart):
 70 * - SAMSUNG SV0412H and SAMSUNG SV1204H) report the temperature in 10th
 71 *   degrees C in the first two raw bytes.
 72 * - A few Maxtor drives report an unknown or bad value in attribute 194.
 73 * - Certain Apple SSD drives report an unknown value in attribute 190.
 74 *   Only certain firmware versions are affected.
 75 *
 76 * Those exceptions affect older ATA drives and are currently ignored.
 77 * Also, the second raw byte (possibly reporting the fractional temperature)
 78 * is currently ignored.
 79 *
 80 * Many drives also report temperature limits in additional SMART data raw
 81 * bytes. The format of those is not well defined and varies widely.
 82 * The driver does not currently attempt to report those limits.
 83 *
 84 * According to data in smartmontools, attribute 231 is rarely used to report
 85 * drive temperatures. At the same time, several drives report SSD life left
 86 * in attribute 231, but do not support temperature sensors. For this reason,
 87 * attribute 231 is currently ignored.
 88 *
 89 * Following above definitions, temperatures are reported as follows.
 90 *   If SCT Command Transport is supported, it is used to read the
 91 *   temperature and, if available, temperature limits.
 92 * - Otherwise, if SMART attribute 194 is supported, it is used to read
 93 *   the temperature.
 94 * - Otherwise, if SMART attribute 190 is supported, it is used to read
 95 *   the temperature.
 96 */
 97
 98#include <linux/ata.h>
 99#include <linux/bits.h>
100#include <linux/device.h>
101#include <linux/hwmon.h>
102#include <linux/kernel.h>
103#include <linux/list.h>
104#include <linux/module.h>
105#include <linux/mutex.h>
106#include <scsi/scsi_cmnd.h>
107#include <scsi/scsi_device.h>
108#include <scsi/scsi_driver.h>
109#include <scsi/scsi_proto.h>
110
111struct drivetemp_data {
112	struct list_head list;		/* list of instantiated devices */
113	struct mutex lock;		/* protect data buffer accesses */
114	struct scsi_device *sdev;	/* SCSI device */
115	struct device *dev;		/* instantiating device */
116	struct device *hwdev;		/* hardware monitoring device */
117	u8 smartdata[ATA_SECT_SIZE];	/* local buffer */
118	int (*get_temp)(struct drivetemp_data *st, u32 attr, long *val);
119	bool have_temp_lowest;		/* lowest temp in SCT status */
120	bool have_temp_highest;		/* highest temp in SCT status */
121	bool have_temp_min;		/* have min temp */
122	bool have_temp_max;		/* have max temp */
123	bool have_temp_lcrit;		/* have lower critical limit */
124	bool have_temp_crit;		/* have critical limit */
125	int temp_min;			/* min temp */
126	int temp_max;			/* max temp */
127	int temp_lcrit;			/* lower critical limit */
128	int temp_crit;			/* critical limit */
129};
130
131static LIST_HEAD(drivetemp_devlist);
132
133#define ATA_MAX_SMART_ATTRS	30
134#define SMART_TEMP_PROP_190	190
135#define SMART_TEMP_PROP_194	194
136
137#define SCT_STATUS_REQ_ADDR	0xe0
138#define  SCT_STATUS_VERSION_LOW		0	/* log byte offsets */
139#define  SCT_STATUS_VERSION_HIGH	1
140#define  SCT_STATUS_TEMP		200
141#define  SCT_STATUS_TEMP_LOWEST		201
142#define  SCT_STATUS_TEMP_HIGHEST	202
143#define SCT_READ_LOG_ADDR	0xe1
144#define  SMART_READ_LOG			0xd5
145#define  SMART_WRITE_LOG		0xd6
146
147#define INVALID_TEMP		0x80
148
149#define temp_is_valid(temp)	((temp) != INVALID_TEMP)
150#define temp_from_sct(temp)	(((s8)(temp)) * 1000)
151
152static inline bool ata_id_smart_supported(u16 *id)
153{
154	return id[ATA_ID_COMMAND_SET_1] & BIT(0);
155}
156
157static inline bool ata_id_smart_enabled(u16 *id)
158{
159	return id[ATA_ID_CFS_ENABLE_1] & BIT(0);
160}
161
162static int drivetemp_scsi_command(struct drivetemp_data *st,
163				 u8 ata_command, u8 feature,
164				 u8 lba_low, u8 lba_mid, u8 lba_high)
165{
166	u8 scsi_cmd[MAX_COMMAND_SIZE];
167	enum req_op op;
168	int err;
169
170	memset(scsi_cmd, 0, sizeof(scsi_cmd));
171	scsi_cmd[0] = ATA_16;
172	if (ata_command == ATA_CMD_SMART && feature == SMART_WRITE_LOG) {
173		scsi_cmd[1] = (5 << 1);	/* PIO Data-out */
174		/*
175		 * No off.line or cc, write to dev, block count in sector count
176		 * field.
177		 */
178		scsi_cmd[2] = 0x06;
179		op = REQ_OP_DRV_OUT;
180	} else {
181		scsi_cmd[1] = (4 << 1);	/* PIO Data-in */
182		/*
183		 * No off.line or cc, read from dev, block count in sector count
184		 * field.
185		 */
186		scsi_cmd[2] = 0x0e;
187		op = REQ_OP_DRV_IN;
188	}
189	scsi_cmd[4] = feature;
190	scsi_cmd[6] = 1;	/* 1 sector */
191	scsi_cmd[8] = lba_low;
192	scsi_cmd[10] = lba_mid;
193	scsi_cmd[12] = lba_high;
194	scsi_cmd[14] = ata_command;
195
196	err = scsi_execute_cmd(st->sdev, scsi_cmd, op, st->smartdata,
197			       ATA_SECT_SIZE, 10 * HZ, 5, NULL);
198	if (err > 0)
199		err = -EIO;
200	return err;
201}
202
203static int drivetemp_ata_command(struct drivetemp_data *st, u8 feature,
204				 u8 select)
205{
206	return drivetemp_scsi_command(st, ATA_CMD_SMART, feature, select,
207				     ATA_SMART_LBAM_PASS, ATA_SMART_LBAH_PASS);
208}
209
210static int drivetemp_get_smarttemp(struct drivetemp_data *st, u32 attr,
211				  long *temp)
212{
213	u8 *buf = st->smartdata;
214	bool have_temp = false;
215	u8 temp_raw;
216	u8 csum;
217	int err;
218	int i;
219
220	err = drivetemp_ata_command(st, ATA_SMART_READ_VALUES, 0);
221	if (err)
222		return err;
223
224	/* Checksum the read value table */
225	csum = 0;
226	for (i = 0; i < ATA_SECT_SIZE; i++)
227		csum += buf[i];
228	if (csum) {
229		dev_dbg(&st->sdev->sdev_gendev,
230			"checksum error reading SMART values\n");
231		return -EIO;
232	}
233
234	for (i = 0; i < ATA_MAX_SMART_ATTRS; i++) {
235		u8 *attr = buf + i * 12;
236		int id = attr[2];
237
238		if (!id)
239			continue;
240
241		if (id == SMART_TEMP_PROP_190) {
242			temp_raw = attr[7];
243			have_temp = true;
244		}
245		if (id == SMART_TEMP_PROP_194) {
246			temp_raw = attr[7];
247			have_temp = true;
248			break;
249		}
250	}
251
252	if (have_temp) {
253		*temp = temp_raw * 1000;
254		return 0;
255	}
256
257	return -ENXIO;
258}
259
260static int drivetemp_get_scttemp(struct drivetemp_data *st, u32 attr, long *val)
261{
262	u8 *buf = st->smartdata;
263	int err;
264
265	err = drivetemp_ata_command(st, SMART_READ_LOG, SCT_STATUS_REQ_ADDR);
266	if (err)
267		return err;
268	switch (attr) {
269	case hwmon_temp_input:
270		if (!temp_is_valid(buf[SCT_STATUS_TEMP]))
271			return -ENODATA;
272		*val = temp_from_sct(buf[SCT_STATUS_TEMP]);
273		break;
274	case hwmon_temp_lowest:
275		if (!temp_is_valid(buf[SCT_STATUS_TEMP_LOWEST]))
276			return -ENODATA;
277		*val = temp_from_sct(buf[SCT_STATUS_TEMP_LOWEST]);
278		break;
279	case hwmon_temp_highest:
280		if (!temp_is_valid(buf[SCT_STATUS_TEMP_HIGHEST]))
281			return -ENODATA;
282		*val = temp_from_sct(buf[SCT_STATUS_TEMP_HIGHEST]);
283		break;
284	default:
285		err = -EINVAL;
286		break;
287	}
288	return err;
289}
290
291static const char * const sct_avoid_models[] = {
292/*
293 * These drives will have WRITE FPDMA QUEUED command timeouts and sometimes just
294 * freeze until power-cycled under heavy write loads when their temperature is
295 * getting polled in SCT mode. The SMART mode seems to be fine, though.
296 *
297 * While only the 3 TB model (DT01ACA3) was actually caught exhibiting the
298 * problem let's play safe here to avoid data corruption and ban the whole
299 * DT01ACAx family.
300
301 * The models from this array are prefix-matched.
302 */
303	"TOSHIBA DT01ACA",
304};
305
306static bool drivetemp_sct_avoid(struct drivetemp_data *st)
307{
308	struct scsi_device *sdev = st->sdev;
309	unsigned int ctr;
310
311	if (!sdev->model)
312		return false;
313
314	/*
315	 * The "model" field contains just the raw SCSI INQUIRY response
316	 * "product identification" field, which has a width of 16 bytes.
317	 * This field is space-filled, but is NOT NULL-terminated.
318	 */
319	for (ctr = 0; ctr < ARRAY_SIZE(sct_avoid_models); ctr++)
320		if (!strncmp(sdev->model, sct_avoid_models[ctr],
321			     strlen(sct_avoid_models[ctr])))
322			return true;
323
324	return false;
325}
326
327static int drivetemp_identify_sata(struct drivetemp_data *st)
328{
329	struct scsi_device *sdev = st->sdev;
330	u8 *buf = st->smartdata;
331	struct scsi_vpd *vpd;
332	bool is_ata, is_sata;
333	bool have_sct_data_table;
334	bool have_sct_temp;
335	bool have_smart;
336	bool have_sct;
337	u16 *ata_id;
338	u16 version;
339	long temp;
340	int err;
341
342	/* SCSI-ATA Translation present? */
343	rcu_read_lock();
344	vpd = rcu_dereference(sdev->vpd_pg89);
345
346	/*
347	 * Verify that ATA IDENTIFY DEVICE data is included in ATA Information
348	 * VPD and that the drive implements the SATA protocol.
349	 */
350	if (!vpd || vpd->len < 572 || vpd->data[56] != ATA_CMD_ID_ATA ||
351	    vpd->data[36] != 0x34) {
352		rcu_read_unlock();
353		return -ENODEV;
354	}
355	ata_id = (u16 *)&vpd->data[60];
356	is_ata = ata_id_is_ata(ata_id);
357	is_sata = ata_id_is_sata(ata_id);
358	have_sct = ata_id_sct_supported(ata_id);
359	have_sct_data_table = ata_id_sct_data_tables(ata_id);
360	have_smart = ata_id_smart_supported(ata_id) &&
361				ata_id_smart_enabled(ata_id);
362
363	rcu_read_unlock();
364
365	/* bail out if this is not a SATA device */
366	if (!is_ata || !is_sata)
367		return -ENODEV;
368
369	if (have_sct && drivetemp_sct_avoid(st)) {
370		dev_notice(&sdev->sdev_gendev,
371			   "will avoid using SCT for temperature monitoring\n");
372		have_sct = false;
373	}
374
375	if (!have_sct)
376		goto skip_sct;
377
378	err = drivetemp_ata_command(st, SMART_READ_LOG, SCT_STATUS_REQ_ADDR);
379	if (err)
380		goto skip_sct;
381
382	version = (buf[SCT_STATUS_VERSION_HIGH] << 8) |
383		  buf[SCT_STATUS_VERSION_LOW];
384	if (version != 2 && version != 3)
385		goto skip_sct;
386
387	have_sct_temp = temp_is_valid(buf[SCT_STATUS_TEMP]);
388	if (!have_sct_temp)
389		goto skip_sct;
390
391	st->have_temp_lowest = temp_is_valid(buf[SCT_STATUS_TEMP_LOWEST]);
392	st->have_temp_highest = temp_is_valid(buf[SCT_STATUS_TEMP_HIGHEST]);
393
394	if (!have_sct_data_table)
395		goto skip_sct_data;
396
397	/* Request and read temperature history table */
398	memset(buf, '\0', sizeof(st->smartdata));
399	buf[0] = 5;	/* data table command */
400	buf[2] = 1;	/* read table */
401	buf[4] = 2;	/* temperature history table */
402
403	err = drivetemp_ata_command(st, SMART_WRITE_LOG, SCT_STATUS_REQ_ADDR);
404	if (err)
405		goto skip_sct_data;
406
407	err = drivetemp_ata_command(st, SMART_READ_LOG, SCT_READ_LOG_ADDR);
408	if (err)
409		goto skip_sct_data;
410
411	/*
412	 * Temperature limits per AT Attachment 8 -
413	 * ATA/ATAPI Command Set (ATA8-ACS)
414	 */
415	st->have_temp_max = temp_is_valid(buf[6]);
416	st->have_temp_crit = temp_is_valid(buf[7]);
417	st->have_temp_min = temp_is_valid(buf[8]);
418	st->have_temp_lcrit = temp_is_valid(buf[9]);
419
420	st->temp_max = temp_from_sct(buf[6]);
421	st->temp_crit = temp_from_sct(buf[7]);
422	st->temp_min = temp_from_sct(buf[8]);
423	st->temp_lcrit = temp_from_sct(buf[9]);
424
425skip_sct_data:
426	if (have_sct_temp) {
427		st->get_temp = drivetemp_get_scttemp;
428		return 0;
429	}
430skip_sct:
431	if (!have_smart)
432		return -ENODEV;
433	st->get_temp = drivetemp_get_smarttemp;
434	return drivetemp_get_smarttemp(st, hwmon_temp_input, &temp);
435}
436
437static int drivetemp_identify(struct drivetemp_data *st)
438{
439	struct scsi_device *sdev = st->sdev;
440
441	/* Bail out immediately if there is no inquiry data */
442	if (!sdev->inquiry || sdev->inquiry_len < 16)
443		return -ENODEV;
444
445	/* Disk device? */
446	if (sdev->type != TYPE_DISK && sdev->type != TYPE_ZBC)
447		return -ENODEV;
448
449	return drivetemp_identify_sata(st);
450}
451
452static int drivetemp_read(struct device *dev, enum hwmon_sensor_types type,
453			 u32 attr, int channel, long *val)
454{
455	struct drivetemp_data *st = dev_get_drvdata(dev);
456	int err = 0;
457
458	if (type != hwmon_temp)
459		return -EINVAL;
460
461	switch (attr) {
462	case hwmon_temp_input:
463	case hwmon_temp_lowest:
464	case hwmon_temp_highest:
465		mutex_lock(&st->lock);
466		err = st->get_temp(st, attr, val);
467		mutex_unlock(&st->lock);
468		break;
469	case hwmon_temp_lcrit:
470		*val = st->temp_lcrit;
471		break;
472	case hwmon_temp_min:
473		*val = st->temp_min;
474		break;
475	case hwmon_temp_max:
476		*val = st->temp_max;
477		break;
478	case hwmon_temp_crit:
479		*val = st->temp_crit;
480		break;
481	default:
482		err = -EINVAL;
483		break;
484	}
485	return err;
486}
487
488static umode_t drivetemp_is_visible(const void *data,
489				   enum hwmon_sensor_types type,
490				   u32 attr, int channel)
491{
492	const struct drivetemp_data *st = data;
493
494	switch (type) {
495	case hwmon_temp:
496		switch (attr) {
497		case hwmon_temp_input:
498			return 0444;
499		case hwmon_temp_lowest:
500			if (st->have_temp_lowest)
501				return 0444;
502			break;
503		case hwmon_temp_highest:
504			if (st->have_temp_highest)
505				return 0444;
506			break;
507		case hwmon_temp_min:
508			if (st->have_temp_min)
509				return 0444;
510			break;
511		case hwmon_temp_max:
512			if (st->have_temp_max)
513				return 0444;
514			break;
515		case hwmon_temp_lcrit:
516			if (st->have_temp_lcrit)
517				return 0444;
518			break;
519		case hwmon_temp_crit:
520			if (st->have_temp_crit)
521				return 0444;
522			break;
523		default:
524			break;
525		}
526		break;
527	default:
528		break;
529	}
530	return 0;
531}
532
533static const struct hwmon_channel_info * const drivetemp_info[] = {
534	HWMON_CHANNEL_INFO(chip,
535			   HWMON_C_REGISTER_TZ),
536	HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT |
537			   HWMON_T_LOWEST | HWMON_T_HIGHEST |
538			   HWMON_T_MIN | HWMON_T_MAX |
539			   HWMON_T_LCRIT | HWMON_T_CRIT),
540	NULL
541};
542
543static const struct hwmon_ops drivetemp_ops = {
544	.is_visible = drivetemp_is_visible,
545	.read = drivetemp_read,
546};
547
548static const struct hwmon_chip_info drivetemp_chip_info = {
549	.ops = &drivetemp_ops,
550	.info = drivetemp_info,
551};
552
553/*
554 * The device argument points to sdev->sdev_dev. Its parent is
555 * sdev->sdev_gendev, which we can use to get the scsi_device pointer.
556 */
557static int drivetemp_add(struct device *dev)
558{
559	struct scsi_device *sdev = to_scsi_device(dev->parent);
560	struct drivetemp_data *st;
561	int err;
562
563	st = kzalloc(sizeof(*st), GFP_KERNEL);
564	if (!st)
565		return -ENOMEM;
566
567	st->sdev = sdev;
568	st->dev = dev;
569	mutex_init(&st->lock);
570
571	if (drivetemp_identify(st)) {
572		err = -ENODEV;
573		goto abort;
574	}
575
576	st->hwdev = hwmon_device_register_with_info(dev->parent, "drivetemp",
577						    st, &drivetemp_chip_info,
578						    NULL);
579	if (IS_ERR(st->hwdev)) {
580		err = PTR_ERR(st->hwdev);
581		goto abort;
582	}
583
584	list_add(&st->list, &drivetemp_devlist);
585	return 0;
586
587abort:
588	kfree(st);
589	return err;
590}
591
592static void drivetemp_remove(struct device *dev)
593{
594	struct drivetemp_data *st, *tmp;
595
596	list_for_each_entry_safe(st, tmp, &drivetemp_devlist, list) {
597		if (st->dev == dev) {
598			list_del(&st->list);
599			hwmon_device_unregister(st->hwdev);
600			kfree(st);
601			break;
602		}
603	}
604}
605
606static struct class_interface drivetemp_interface = {
607	.add_dev = drivetemp_add,
608	.remove_dev = drivetemp_remove,
609};
610
611static int __init drivetemp_init(void)
612{
613	return scsi_register_interface(&drivetemp_interface);
614}
615
616static void __exit drivetemp_exit(void)
617{
618	scsi_unregister_interface(&drivetemp_interface);
619}
620
621module_init(drivetemp_init);
622module_exit(drivetemp_exit);
623
624MODULE_AUTHOR("Guenter Roeck <linus@roeck-us.net>");
625MODULE_DESCRIPTION("Hard drive temperature monitor");
626MODULE_LICENSE("GPL");
627MODULE_ALIAS("platform:drivetemp");