Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright 2019 NXP.
  4 *
  5 * Scaling algorithms were contributed by Dzung Hoang <dzung.hoang@nxp.com>
  6 */
  7
  8#include <linux/device.h>
  9#include <linux/slab.h>
 10
 11#include "dcss-dev.h"
 12
 13#define DCSS_SCALER_CTRL			0x00
 14#define   SCALER_EN				BIT(0)
 15#define   REPEAT_EN				BIT(4)
 16#define   SCALE2MEM_EN				BIT(8)
 17#define   MEM2OFIFO_EN				BIT(12)
 18#define DCSS_SCALER_OFIFO_CTRL			0x04
 19#define   OFIFO_LOW_THRES_POS			0
 20#define   OFIFO_LOW_THRES_MASK			GENMASK(9, 0)
 21#define   OFIFO_HIGH_THRES_POS			16
 22#define   OFIFO_HIGH_THRES_MASK			GENMASK(25, 16)
 23#define   UNDERRUN_DETECT_CLR			BIT(26)
 24#define   LOW_THRES_DETECT_CLR			BIT(27)
 25#define   HIGH_THRES_DETECT_CLR			BIT(28)
 26#define   UNDERRUN_DETECT_EN			BIT(29)
 27#define   LOW_THRES_DETECT_EN			BIT(30)
 28#define   HIGH_THRES_DETECT_EN			BIT(31)
 29#define DCSS_SCALER_SDATA_CTRL			0x08
 30#define   YUV_EN				BIT(0)
 31#define   RTRAM_8LINES				BIT(1)
 32#define   Y_UV_BYTE_SWAP			BIT(4)
 33#define   A2R10G10B10_FORMAT_POS		8
 34#define   A2R10G10B10_FORMAT_MASK		GENMASK(11, 8)
 35#define DCSS_SCALER_BIT_DEPTH			0x0C
 36#define   LUM_BIT_DEPTH_POS			0
 37#define   LUM_BIT_DEPTH_MASK			GENMASK(1, 0)
 38#define   CHR_BIT_DEPTH_POS			4
 39#define   CHR_BIT_DEPTH_MASK			GENMASK(5, 4)
 40#define DCSS_SCALER_SRC_FORMAT			0x10
 41#define DCSS_SCALER_DST_FORMAT			0x14
 42#define   FORMAT_MASK				GENMASK(1, 0)
 43#define DCSS_SCALER_SRC_LUM_RES			0x18
 44#define DCSS_SCALER_SRC_CHR_RES			0x1C
 45#define DCSS_SCALER_DST_LUM_RES			0x20
 46#define DCSS_SCALER_DST_CHR_RES			0x24
 47#define   WIDTH_POS				0
 48#define   WIDTH_MASK				GENMASK(11, 0)
 49#define   HEIGHT_POS				16
 50#define   HEIGHT_MASK				GENMASK(27, 16)
 51#define DCSS_SCALER_V_LUM_START			0x48
 52#define   V_START_MASK				GENMASK(15, 0)
 53#define DCSS_SCALER_V_LUM_INC			0x4C
 54#define   V_INC_MASK				GENMASK(15, 0)
 55#define DCSS_SCALER_H_LUM_START			0x50
 56#define   H_START_MASK				GENMASK(18, 0)
 57#define DCSS_SCALER_H_LUM_INC			0x54
 58#define   H_INC_MASK				GENMASK(15, 0)
 59#define DCSS_SCALER_V_CHR_START			0x58
 60#define DCSS_SCALER_V_CHR_INC			0x5C
 61#define DCSS_SCALER_H_CHR_START			0x60
 62#define DCSS_SCALER_H_CHR_INC			0x64
 63#define DCSS_SCALER_COEF_VLUM			0x80
 64#define DCSS_SCALER_COEF_HLUM			0x140
 65#define DCSS_SCALER_COEF_VCHR			0x200
 66#define DCSS_SCALER_COEF_HCHR			0x300
 67
 68struct dcss_scaler_ch {
 69	void __iomem *base_reg;
 70	u32 base_ofs;
 71	struct dcss_scaler *scl;
 72
 73	u32 sdata_ctrl;
 74	u32 scaler_ctrl;
 75
 76	bool scaler_ctrl_chgd;
 77
 78	u32 c_vstart;
 79	u32 c_hstart;
 80
 81	bool use_nn_interpolation;
 82};
 83
 84struct dcss_scaler {
 85	struct device *dev;
 86
 87	struct dcss_ctxld *ctxld;
 88	u32 ctx_id;
 89
 90	struct dcss_scaler_ch ch[3];
 91};
 92
 93/* scaler coefficients generator */
 94#define PSC_FRAC_BITS 30
 95#define PSC_FRAC_SCALE BIT(PSC_FRAC_BITS)
 96#define PSC_BITS_FOR_PHASE 4
 97#define PSC_NUM_PHASES 16
 98#define PSC_STORED_PHASES (PSC_NUM_PHASES / 2 + 1)
 99#define PSC_NUM_TAPS 7
100#define PSC_NUM_TAPS_RGBA 5
101#define PSC_COEFF_PRECISION 10
102#define PSC_PHASE_FRACTION_BITS 13
103#define PSC_PHASE_MASK (PSC_NUM_PHASES - 1)
104#define PSC_Q_FRACTION 19
105#define PSC_Q_ROUND_OFFSET (1 << (PSC_Q_FRACTION - 1))
106
107/**
108 * mult_q() - Performs fixed-point multiplication.
109 * @A: multiplier
110 * @B: multiplicand
111 */
112static int mult_q(int A, int B)
113{
114	int result;
115	s64 temp;
116
117	temp = (int64_t)A * (int64_t)B;
118	temp += PSC_Q_ROUND_OFFSET;
119	result = (int)(temp >> PSC_Q_FRACTION);
120	return result;
121}
122
123/**
124 * div_q() - Performs fixed-point division.
125 * @A: dividend
126 * @B: divisor
127 */
128static int div_q(int A, int B)
129{
130	int result;
131	s64 temp;
132
133	temp = (int64_t)A << PSC_Q_FRACTION;
134	if ((temp >= 0 && B >= 0) || (temp < 0 && B < 0))
135		temp += B / 2;
136	else
137		temp -= B / 2;
138
139	result = div_s64(temp, B);
140	return result;
141}
142
143/**
144 * exp_approx_q() - Compute approximation to exp(x) function using Taylor
145 *		    series.
146 * @x: fixed-point argument of exp function
147 */
148static int exp_approx_q(int x)
149{
150	int sum = 1 << PSC_Q_FRACTION;
151	int term = 1 << PSC_Q_FRACTION;
152
153	term = mult_q(term, div_q(x, 1 << PSC_Q_FRACTION));
154	sum += term;
155	term = mult_q(term, div_q(x, 2 << PSC_Q_FRACTION));
156	sum += term;
157	term = mult_q(term, div_q(x, 3 << PSC_Q_FRACTION));
158	sum += term;
159	term = mult_q(term, div_q(x, 4 << PSC_Q_FRACTION));
160	sum += term;
161
162	return sum;
163}
164
165/**
166 * dcss_scaler_gaussian_filter() - Generate gaussian prototype filter.
167 * @fc_q: fixed-point cutoff frequency normalized to range [0, 1]
168 * @use_5_taps: indicates whether to use 5 taps or 7 taps
169 * @coef: output filter coefficients
170 */
171static void dcss_scaler_gaussian_filter(int fc_q, bool use_5_taps,
172					bool phase0_identity,
173					int coef[][PSC_NUM_TAPS])
174{
175	int sigma_q, g0_q, g1_q, g2_q;
176	int tap_cnt1, tap_cnt2, tap_idx, phase_cnt;
177	int mid;
178	int phase;
179	int i;
180	int taps;
181
182	if (use_5_taps)
183		for (phase = 0; phase < PSC_STORED_PHASES; phase++) {
184			coef[phase][0] = 0;
185			coef[phase][PSC_NUM_TAPS - 1] = 0;
186		}
187
188	/* seed coefficient scanner */
189	taps = use_5_taps ? PSC_NUM_TAPS_RGBA : PSC_NUM_TAPS;
190	mid = (PSC_NUM_PHASES * taps) / 2 - 1;
191	phase_cnt = (PSC_NUM_PHASES * (PSC_NUM_TAPS + 1)) / 2;
192	tap_cnt1 = (PSC_NUM_PHASES * PSC_NUM_TAPS) / 2;
193	tap_cnt2 = (PSC_NUM_PHASES * PSC_NUM_TAPS) / 2;
194
195	/* seed gaussian filter generator */
196	sigma_q = div_q(PSC_Q_ROUND_OFFSET, fc_q);
197	g0_q = 1 << PSC_Q_FRACTION;
198	g1_q = exp_approx_q(div_q(-PSC_Q_ROUND_OFFSET,
199				  mult_q(sigma_q, sigma_q)));
200	g2_q = mult_q(g1_q, g1_q);
201	coef[phase_cnt & PSC_PHASE_MASK][tap_cnt1 >> PSC_BITS_FOR_PHASE] = g0_q;
202
203	for (i = 0; i < mid; i++) {
204		phase_cnt++;
205		tap_cnt1--;
206		tap_cnt2++;
207
208		g0_q = mult_q(g0_q, g1_q);
209		g1_q = mult_q(g1_q, g2_q);
210
211		if ((phase_cnt & PSC_PHASE_MASK) <= 8) {
212			tap_idx = tap_cnt1 >> PSC_BITS_FOR_PHASE;
213			coef[phase_cnt & PSC_PHASE_MASK][tap_idx] = g0_q;
214		}
215		if (((-phase_cnt) & PSC_PHASE_MASK) <= 8) {
216			tap_idx = tap_cnt2 >> PSC_BITS_FOR_PHASE;
217			coef[(-phase_cnt) & PSC_PHASE_MASK][tap_idx] = g0_q;
218		}
219	}
220
221	phase_cnt++;
222	tap_cnt1--;
223	coef[phase_cnt & PSC_PHASE_MASK][tap_cnt1 >> PSC_BITS_FOR_PHASE] = 0;
224
225	/* override phase 0 with identity filter if specified */
226	if (phase0_identity)
227		for (i = 0; i < PSC_NUM_TAPS; i++)
228			coef[0][i] = i == (PSC_NUM_TAPS >> 1) ?
229						(1 << PSC_COEFF_PRECISION) : 0;
230
231	/* normalize coef */
232	for (phase = 0; phase < PSC_STORED_PHASES; phase++) {
233		int sum = 0;
234		s64 ll_temp;
235
236		for (i = 0; i < PSC_NUM_TAPS; i++)
237			sum += coef[phase][i];
238		for (i = 0; i < PSC_NUM_TAPS; i++) {
239			ll_temp = coef[phase][i];
240			ll_temp <<= PSC_COEFF_PRECISION;
241			ll_temp += sum >> 1;
242			ll_temp = div_s64(ll_temp, sum);
243			coef[phase][i] = (int)ll_temp;
244		}
245	}
246}
247
248static void dcss_scaler_nearest_neighbor_filter(bool use_5_taps,
249						int coef[][PSC_NUM_TAPS])
250{
251	int i, j;
252
253	for (i = 0; i < PSC_STORED_PHASES; i++)
254		for (j = 0; j < PSC_NUM_TAPS; j++)
255			coef[i][j] = j == PSC_NUM_TAPS >> 1 ?
256						(1 << PSC_COEFF_PRECISION) : 0;
257}
258
259/**
260 * dcss_scaler_filter_design() - Compute filter coefficients using
261 *				 Gaussian filter.
262 * @src_length: length of input
263 * @dst_length: length of output
264 * @use_5_taps: 0 for 7 taps per phase, 1 for 5 taps
265 * @coef: output coefficients
266 */
267static void dcss_scaler_filter_design(int src_length, int dst_length,
268				      bool use_5_taps, bool phase0_identity,
269				      int coef[][PSC_NUM_TAPS],
270				      bool nn_interpolation)
271{
272	int fc_q;
273
274	/* compute cutoff frequency */
275	if (dst_length >= src_length)
276		fc_q = div_q(1, PSC_NUM_PHASES);
277	else
278		fc_q = div_q(dst_length, src_length * PSC_NUM_PHASES);
279
280	if (nn_interpolation)
281		dcss_scaler_nearest_neighbor_filter(use_5_taps, coef);
282	else
283		/* compute gaussian filter coefficients */
284		dcss_scaler_gaussian_filter(fc_q, use_5_taps, phase0_identity, coef);
285}
286
287static void dcss_scaler_write(struct dcss_scaler_ch *ch, u32 val, u32 ofs)
288{
289	struct dcss_scaler *scl = ch->scl;
290
291	dcss_ctxld_write(scl->ctxld, scl->ctx_id, val, ch->base_ofs + ofs);
292}
293
294static int dcss_scaler_ch_init_all(struct dcss_scaler *scl,
295				   unsigned long scaler_base)
296{
297	struct dcss_scaler_ch *ch;
298	int i;
299
300	for (i = 0; i < 3; i++) {
301		ch = &scl->ch[i];
302
303		ch->base_ofs = scaler_base + i * 0x400;
304
305		ch->base_reg = devm_ioremap(scl->dev, ch->base_ofs, SZ_4K);
306		if (!ch->base_reg) {
307			dev_err(scl->dev, "scaler: unable to remap ch base\n");
308			return -ENOMEM;
309		}
310
311		ch->scl = scl;
312	}
313
314	return 0;
315}
316
317int dcss_scaler_init(struct dcss_dev *dcss, unsigned long scaler_base)
318{
319	struct dcss_scaler *scaler;
320
321	scaler = devm_kzalloc(dcss->dev, sizeof(*scaler), GFP_KERNEL);
322	if (!scaler)
323		return -ENOMEM;
324
325	dcss->scaler = scaler;
326	scaler->dev = dcss->dev;
327	scaler->ctxld = dcss->ctxld;
328	scaler->ctx_id = CTX_SB_HP;
329
330	if (dcss_scaler_ch_init_all(scaler, scaler_base))
331		return -ENOMEM;
332
333	return 0;
334}
335
336void dcss_scaler_exit(struct dcss_scaler *scl)
337{
338	int ch_no;
339
340	for (ch_no = 0; ch_no < 3; ch_no++) {
341		struct dcss_scaler_ch *ch = &scl->ch[ch_no];
342
343		dcss_writel(0, ch->base_reg + DCSS_SCALER_CTRL);
344	}
345}
346
347void dcss_scaler_ch_enable(struct dcss_scaler *scl, int ch_num, bool en)
348{
349	struct dcss_scaler_ch *ch = &scl->ch[ch_num];
350	u32 scaler_ctrl;
351
352	scaler_ctrl = en ? SCALER_EN | REPEAT_EN : 0;
353
354	if (en)
355		dcss_scaler_write(ch, ch->sdata_ctrl, DCSS_SCALER_SDATA_CTRL);
356
357	if (ch->scaler_ctrl != scaler_ctrl)
358		ch->scaler_ctrl_chgd = true;
359
360	ch->scaler_ctrl = scaler_ctrl;
361}
362
363static void dcss_scaler_yuv_enable(struct dcss_scaler_ch *ch, bool en)
364{
365	ch->sdata_ctrl &= ~YUV_EN;
366	ch->sdata_ctrl |= en ? YUV_EN : 0;
367}
368
369static void dcss_scaler_rtr_8lines_enable(struct dcss_scaler_ch *ch, bool en)
370{
371	ch->sdata_ctrl &= ~RTRAM_8LINES;
372	ch->sdata_ctrl |= en ? RTRAM_8LINES : 0;
373}
374
375static void dcss_scaler_bit_depth_set(struct dcss_scaler_ch *ch, int depth)
376{
377	u32 val;
378
379	val = depth == 30 ? 2 : 0;
380
381	dcss_scaler_write(ch,
382			  ((val << CHR_BIT_DEPTH_POS) & CHR_BIT_DEPTH_MASK) |
383			  ((val << LUM_BIT_DEPTH_POS) & LUM_BIT_DEPTH_MASK),
384			  DCSS_SCALER_BIT_DEPTH);
385}
386
387enum buffer_format {
388	BUF_FMT_YUV420,
389	BUF_FMT_YUV422,
390	BUF_FMT_ARGB8888_YUV444,
391};
392
393enum chroma_location {
394	PSC_LOC_HORZ_0_VERT_1_OVER_4 = 0,
395	PSC_LOC_HORZ_1_OVER_4_VERT_1_OVER_4 = 1,
396	PSC_LOC_HORZ_0_VERT_0 = 2,
397	PSC_LOC_HORZ_1_OVER_4_VERT_0 = 3,
398	PSC_LOC_HORZ_0_VERT_1_OVER_2 = 4,
399	PSC_LOC_HORZ_1_OVER_4_VERT_1_OVER_2 = 5
400};
401
402static void dcss_scaler_format_set(struct dcss_scaler_ch *ch,
403				   enum buffer_format src_fmt,
404				   enum buffer_format dst_fmt)
405{
406	dcss_scaler_write(ch, src_fmt, DCSS_SCALER_SRC_FORMAT);
407	dcss_scaler_write(ch, dst_fmt, DCSS_SCALER_DST_FORMAT);
408}
409
410static void dcss_scaler_res_set(struct dcss_scaler_ch *ch,
411				int src_xres, int src_yres,
412				int dst_xres, int dst_yres,
413				u32 pix_format, enum buffer_format dst_format)
414{
415	u32 lsrc_xres, lsrc_yres, csrc_xres, csrc_yres;
416	u32 ldst_xres, ldst_yres, cdst_xres, cdst_yres;
417	bool src_is_444 = true;
418
419	lsrc_xres = src_xres;
420	csrc_xres = src_xres;
421	lsrc_yres = src_yres;
422	csrc_yres = src_yres;
423	ldst_xres = dst_xres;
424	cdst_xres = dst_xres;
425	ldst_yres = dst_yres;
426	cdst_yres = dst_yres;
427
428	if (pix_format == DRM_FORMAT_UYVY || pix_format == DRM_FORMAT_VYUY ||
429	    pix_format == DRM_FORMAT_YUYV || pix_format == DRM_FORMAT_YVYU) {
430		csrc_xres >>= 1;
431		src_is_444 = false;
432	} else if (pix_format == DRM_FORMAT_NV12 ||
433		   pix_format == DRM_FORMAT_NV21) {
434		csrc_xres >>= 1;
435		csrc_yres >>= 1;
436		src_is_444 = false;
437	}
438
439	if (dst_format == BUF_FMT_YUV422)
440		cdst_xres >>= 1;
441
442	/* for 4:4:4 to 4:2:2 conversion, source height should be 1 less */
443	if (src_is_444 && dst_format == BUF_FMT_YUV422) {
444		lsrc_yres--;
445		csrc_yres--;
446	}
447
448	dcss_scaler_write(ch, (((lsrc_yres - 1) << HEIGHT_POS) & HEIGHT_MASK) |
449			       (((lsrc_xres - 1) << WIDTH_POS) & WIDTH_MASK),
450			  DCSS_SCALER_SRC_LUM_RES);
451	dcss_scaler_write(ch, (((csrc_yres - 1) << HEIGHT_POS) & HEIGHT_MASK) |
452			       (((csrc_xres - 1) << WIDTH_POS) & WIDTH_MASK),
453			  DCSS_SCALER_SRC_CHR_RES);
454	dcss_scaler_write(ch, (((ldst_yres - 1) << HEIGHT_POS) & HEIGHT_MASK) |
455			       (((ldst_xres - 1) << WIDTH_POS) & WIDTH_MASK),
456			  DCSS_SCALER_DST_LUM_RES);
457	dcss_scaler_write(ch, (((cdst_yres - 1) << HEIGHT_POS) & HEIGHT_MASK) |
458			       (((cdst_xres - 1) << WIDTH_POS) & WIDTH_MASK),
459			  DCSS_SCALER_DST_CHR_RES);
460}
461
462#define downscale_fp(factor, fp_pos)		((factor) << (fp_pos))
463#define upscale_fp(factor, fp_pos)		((1 << (fp_pos)) / (factor))
464
465struct dcss_scaler_factors {
466	int downscale;
467	int upscale;
468};
469
470static const struct dcss_scaler_factors dcss_scaler_factors[] = {
471	{3, 8}, {5, 8}, {5, 8},
472};
473
474static void dcss_scaler_fractions_set(struct dcss_scaler_ch *ch,
475				      int src_xres, int src_yres,
476				      int dst_xres, int dst_yres,
477				      u32 src_format, u32 dst_format,
478				      enum chroma_location src_chroma_loc)
479{
480	int src_c_xres, src_c_yres, dst_c_xres, dst_c_yres;
481	u32 l_vinc, l_hinc, c_vinc, c_hinc;
482	u32 c_vstart, c_hstart;
483
484	src_c_xres = src_xres;
485	src_c_yres = src_yres;
486	dst_c_xres = dst_xres;
487	dst_c_yres = dst_yres;
488
489	c_vstart = 0;
490	c_hstart = 0;
491
492	/* adjustments for source chroma location */
493	if (src_format == BUF_FMT_YUV420) {
494		/* vertical input chroma position adjustment */
495		switch (src_chroma_loc) {
496		case PSC_LOC_HORZ_0_VERT_1_OVER_4:
497		case PSC_LOC_HORZ_1_OVER_4_VERT_1_OVER_4:
498			/*
499			 * move chroma up to first luma line
500			 * (1/4 chroma input line spacing)
501			 */
502			c_vstart -= (1 << (PSC_PHASE_FRACTION_BITS - 2));
503			break;
504		case PSC_LOC_HORZ_0_VERT_1_OVER_2:
505		case PSC_LOC_HORZ_1_OVER_4_VERT_1_OVER_2:
506			/*
507			 * move chroma up to first luma line
508			 * (1/2 chroma input line spacing)
509			 */
510			c_vstart -= (1 << (PSC_PHASE_FRACTION_BITS - 1));
511			break;
512		default:
513			break;
514		}
515		/* horizontal input chroma position adjustment */
516		switch (src_chroma_loc) {
517		case PSC_LOC_HORZ_1_OVER_4_VERT_1_OVER_4:
518		case PSC_LOC_HORZ_1_OVER_4_VERT_0:
519		case PSC_LOC_HORZ_1_OVER_4_VERT_1_OVER_2:
520			/* move chroma left 1/4 chroma input sample spacing */
521			c_hstart -= (1 << (PSC_PHASE_FRACTION_BITS - 2));
522			break;
523		default:
524			break;
525		}
526	}
527
528	/* adjustments to chroma resolution */
529	if (src_format == BUF_FMT_YUV420) {
530		src_c_xres >>= 1;
531		src_c_yres >>= 1;
532	} else if (src_format == BUF_FMT_YUV422) {
533		src_c_xres >>= 1;
534	}
535
536	if (dst_format == BUF_FMT_YUV422)
537		dst_c_xres >>= 1;
538
539	l_vinc = ((src_yres << 13) + (dst_yres >> 1)) / dst_yres;
540	c_vinc = ((src_c_yres << 13) + (dst_c_yres >> 1)) / dst_c_yres;
541	l_hinc = ((src_xres << 13) + (dst_xres >> 1)) / dst_xres;
542	c_hinc = ((src_c_xres << 13) + (dst_c_xres >> 1)) / dst_c_xres;
543
544	/* save chroma start phase */
545	ch->c_vstart = c_vstart;
546	ch->c_hstart = c_hstart;
547
548	dcss_scaler_write(ch, 0, DCSS_SCALER_V_LUM_START);
549	dcss_scaler_write(ch, l_vinc, DCSS_SCALER_V_LUM_INC);
550
551	dcss_scaler_write(ch, 0, DCSS_SCALER_H_LUM_START);
552	dcss_scaler_write(ch, l_hinc, DCSS_SCALER_H_LUM_INC);
553
554	dcss_scaler_write(ch, c_vstart, DCSS_SCALER_V_CHR_START);
555	dcss_scaler_write(ch, c_vinc, DCSS_SCALER_V_CHR_INC);
556
557	dcss_scaler_write(ch, c_hstart, DCSS_SCALER_H_CHR_START);
558	dcss_scaler_write(ch, c_hinc, DCSS_SCALER_H_CHR_INC);
559}
560
561int dcss_scaler_get_min_max_ratios(struct dcss_scaler *scl, int ch_num,
562				   int *min, int *max)
563{
564	*min = upscale_fp(dcss_scaler_factors[ch_num].upscale, 16);
565	*max = downscale_fp(dcss_scaler_factors[ch_num].downscale, 16);
566
567	return 0;
568}
569
570static void dcss_scaler_program_5_coef_set(struct dcss_scaler_ch *ch,
571					   int base_addr,
572					   int coef[][PSC_NUM_TAPS])
573{
574	int i, phase;
575
576	for (i = 0; i < PSC_STORED_PHASES; i++) {
577		dcss_scaler_write(ch, ((coef[i][1] & 0xfff) << 16 |
578				       (coef[i][2] & 0xfff) << 4  |
579				       (coef[i][3] & 0xf00) >> 8),
580				  base_addr + i * sizeof(u32));
581		dcss_scaler_write(ch, ((coef[i][3] & 0x0ff) << 20 |
582				       (coef[i][4] & 0xfff) << 8  |
583				       (coef[i][5] & 0xff0) >> 4),
584				  base_addr + 0x40 + i * sizeof(u32));
585		dcss_scaler_write(ch, ((coef[i][5] & 0x00f) << 24),
586				  base_addr + 0x80 + i * sizeof(u32));
587	}
588
589	/* reverse both phase and tap orderings */
590	for (phase = (PSC_NUM_PHASES >> 1) - 1;
591			i < PSC_NUM_PHASES; i++, phase--) {
592		dcss_scaler_write(ch, ((coef[phase][5] & 0xfff) << 16 |
593				       (coef[phase][4] & 0xfff) << 4  |
594				       (coef[phase][3] & 0xf00) >> 8),
595				  base_addr + i * sizeof(u32));
596		dcss_scaler_write(ch, ((coef[phase][3] & 0x0ff) << 20 |
597				       (coef[phase][2] & 0xfff) << 8  |
598				       (coef[phase][1] & 0xff0) >> 4),
599				  base_addr + 0x40 + i * sizeof(u32));
600		dcss_scaler_write(ch, ((coef[phase][1] & 0x00f) << 24),
601				  base_addr + 0x80 + i * sizeof(u32));
602	}
603}
604
605static void dcss_scaler_program_7_coef_set(struct dcss_scaler_ch *ch,
606					   int base_addr,
607					   int coef[][PSC_NUM_TAPS])
608{
609	int i, phase;
610
611	for (i = 0; i < PSC_STORED_PHASES; i++) {
612		dcss_scaler_write(ch, ((coef[i][0] & 0xfff) << 16 |
613				       (coef[i][1] & 0xfff) << 4  |
614				       (coef[i][2] & 0xf00) >> 8),
615				  base_addr + i * sizeof(u32));
616		dcss_scaler_write(ch, ((coef[i][2] & 0x0ff) << 20 |
617				       (coef[i][3] & 0xfff) << 8  |
618				       (coef[i][4] & 0xff0) >> 4),
619				  base_addr + 0x40 + i * sizeof(u32));
620		dcss_scaler_write(ch, ((coef[i][4] & 0x00f) << 24 |
621				       (coef[i][5] & 0xfff) << 12 |
622				       (coef[i][6] & 0xfff)),
623				  base_addr + 0x80 + i * sizeof(u32));
624	}
625
626	/* reverse both phase and tap orderings */
627	for (phase = (PSC_NUM_PHASES >> 1) - 1;
628			i < PSC_NUM_PHASES; i++, phase--) {
629		dcss_scaler_write(ch, ((coef[phase][6] & 0xfff) << 16 |
630				       (coef[phase][5] & 0xfff) << 4  |
631				       (coef[phase][4] & 0xf00) >> 8),
632				  base_addr + i * sizeof(u32));
633		dcss_scaler_write(ch, ((coef[phase][4] & 0x0ff) << 20 |
634				       (coef[phase][3] & 0xfff) << 8  |
635				       (coef[phase][2] & 0xff0) >> 4),
636				  base_addr + 0x40 + i * sizeof(u32));
637		dcss_scaler_write(ch, ((coef[phase][2] & 0x00f) << 24 |
638				       (coef[phase][1] & 0xfff) << 12 |
639				       (coef[phase][0] & 0xfff)),
640				  base_addr + 0x80 + i * sizeof(u32));
641	}
642}
643
644static void dcss_scaler_yuv_coef_set(struct dcss_scaler_ch *ch,
645				     enum buffer_format src_format,
646				     enum buffer_format dst_format,
647				     bool use_5_taps,
648				     int src_xres, int src_yres, int dst_xres,
649				     int dst_yres)
650{
651	int coef[PSC_STORED_PHASES][PSC_NUM_TAPS];
652	bool program_5_taps = use_5_taps ||
653			      (dst_format == BUF_FMT_YUV422 &&
654			       src_format == BUF_FMT_ARGB8888_YUV444);
655
656	/* horizontal luma */
657	dcss_scaler_filter_design(src_xres, dst_xres, false,
658				  src_xres == dst_xres, coef,
659				  ch->use_nn_interpolation);
660	dcss_scaler_program_7_coef_set(ch, DCSS_SCALER_COEF_HLUM, coef);
661
662	/* vertical luma */
663	dcss_scaler_filter_design(src_yres, dst_yres, program_5_taps,
664				  src_yres == dst_yres, coef,
665				  ch->use_nn_interpolation);
666
667	if (program_5_taps)
668		dcss_scaler_program_5_coef_set(ch, DCSS_SCALER_COEF_VLUM, coef);
669	else
670		dcss_scaler_program_7_coef_set(ch, DCSS_SCALER_COEF_VLUM, coef);
671
672	/* adjust chroma resolution */
673	if (src_format != BUF_FMT_ARGB8888_YUV444)
674		src_xres >>= 1;
675	if (src_format == BUF_FMT_YUV420)
676		src_yres >>= 1;
677	if (dst_format != BUF_FMT_ARGB8888_YUV444)
678		dst_xres >>= 1;
679	if (dst_format == BUF_FMT_YUV420) /* should not happen */
680		dst_yres >>= 1;
681
682	/* horizontal chroma */
683	dcss_scaler_filter_design(src_xres, dst_xres, false,
684				  (src_xres == dst_xres) && (ch->c_hstart == 0),
685				  coef, ch->use_nn_interpolation);
686
687	dcss_scaler_program_7_coef_set(ch, DCSS_SCALER_COEF_HCHR, coef);
688
689	/* vertical chroma */
690	dcss_scaler_filter_design(src_yres, dst_yres, program_5_taps,
691				  (src_yres == dst_yres) && (ch->c_vstart == 0),
692				  coef, ch->use_nn_interpolation);
693	if (program_5_taps)
694		dcss_scaler_program_5_coef_set(ch, DCSS_SCALER_COEF_VCHR, coef);
695	else
696		dcss_scaler_program_7_coef_set(ch, DCSS_SCALER_COEF_VCHR, coef);
697}
698
699static void dcss_scaler_rgb_coef_set(struct dcss_scaler_ch *ch,
700				     int src_xres, int src_yres, int dst_xres,
701				     int dst_yres)
702{
703	int coef[PSC_STORED_PHASES][PSC_NUM_TAPS];
704
705	/* horizontal RGB */
706	dcss_scaler_filter_design(src_xres, dst_xres, false,
707				  src_xres == dst_xres, coef,
708				  ch->use_nn_interpolation);
709	dcss_scaler_program_7_coef_set(ch, DCSS_SCALER_COEF_HLUM, coef);
710
711	/* vertical RGB */
712	dcss_scaler_filter_design(src_yres, dst_yres, false,
713				  src_yres == dst_yres, coef,
714				  ch->use_nn_interpolation);
715	dcss_scaler_program_7_coef_set(ch, DCSS_SCALER_COEF_VLUM, coef);
716}
717
718static void dcss_scaler_set_rgb10_order(struct dcss_scaler_ch *ch,
719					const struct drm_format_info *format)
720{
721	u32 a2r10g10b10_format;
722
723	if (format->is_yuv)
724		return;
725
726	ch->sdata_ctrl &= ~A2R10G10B10_FORMAT_MASK;
727
728	if (format->depth != 30)
729		return;
730
731	switch (format->format) {
732	case DRM_FORMAT_ARGB2101010:
733	case DRM_FORMAT_XRGB2101010:
734		a2r10g10b10_format = 0;
735		break;
736
737	case DRM_FORMAT_ABGR2101010:
738	case DRM_FORMAT_XBGR2101010:
739		a2r10g10b10_format = 5;
740		break;
741
742	case DRM_FORMAT_RGBA1010102:
743	case DRM_FORMAT_RGBX1010102:
744		a2r10g10b10_format = 6;
745		break;
746
747	case DRM_FORMAT_BGRA1010102:
748	case DRM_FORMAT_BGRX1010102:
749		a2r10g10b10_format = 11;
750		break;
751
752	default:
753		a2r10g10b10_format = 0;
754		break;
755	}
756
757	ch->sdata_ctrl |= a2r10g10b10_format << A2R10G10B10_FORMAT_POS;
758}
759
760void dcss_scaler_set_filter(struct dcss_scaler *scl, int ch_num,
761			    enum drm_scaling_filter scaling_filter)
762{
763	struct dcss_scaler_ch *ch = &scl->ch[ch_num];
764
765	ch->use_nn_interpolation = scaling_filter == DRM_SCALING_FILTER_NEAREST_NEIGHBOR;
766}
767
768void dcss_scaler_setup(struct dcss_scaler *scl, int ch_num,
769		       const struct drm_format_info *format,
770		       int src_xres, int src_yres, int dst_xres, int dst_yres,
771		       u32 vrefresh_hz)
772{
773	struct dcss_scaler_ch *ch = &scl->ch[ch_num];
774	unsigned int pixel_depth = 0;
775	bool rtr_8line_en = false;
776	bool use_5_taps = false;
777	enum buffer_format src_format = BUF_FMT_ARGB8888_YUV444;
778	enum buffer_format dst_format = BUF_FMT_ARGB8888_YUV444;
779	u32 pix_format = format->format;
780
781	if (format->is_yuv) {
782		dcss_scaler_yuv_enable(ch, true);
783
784		if (pix_format == DRM_FORMAT_NV12 ||
785		    pix_format == DRM_FORMAT_NV21) {
786			rtr_8line_en = true;
787			src_format = BUF_FMT_YUV420;
788		} else if (pix_format == DRM_FORMAT_UYVY ||
789			   pix_format == DRM_FORMAT_VYUY ||
790			   pix_format == DRM_FORMAT_YUYV ||
791			   pix_format == DRM_FORMAT_YVYU) {
792			src_format = BUF_FMT_YUV422;
793		}
794
795		use_5_taps = !rtr_8line_en;
796	} else {
797		dcss_scaler_yuv_enable(ch, false);
798
799		pixel_depth = format->depth;
800	}
801
802	dcss_scaler_fractions_set(ch, src_xres, src_yres, dst_xres,
803				  dst_yres, src_format, dst_format,
804				  PSC_LOC_HORZ_0_VERT_1_OVER_4);
805
806	if (format->is_yuv)
807		dcss_scaler_yuv_coef_set(ch, src_format, dst_format,
808					 use_5_taps, src_xres, src_yres,
809					 dst_xres, dst_yres);
810	else
811		dcss_scaler_rgb_coef_set(ch, src_xres, src_yres,
812					 dst_xres, dst_yres);
813
814	dcss_scaler_rtr_8lines_enable(ch, rtr_8line_en);
815	dcss_scaler_bit_depth_set(ch, pixel_depth);
816	dcss_scaler_set_rgb10_order(ch, format);
817	dcss_scaler_format_set(ch, src_format, dst_format);
818	dcss_scaler_res_set(ch, src_xres, src_yres, dst_xres, dst_yres,
819			    pix_format, dst_format);
820}
821
822/* This function will be called from interrupt context. */
823void dcss_scaler_write_sclctrl(struct dcss_scaler *scl)
824{
825	int chnum;
826
827	dcss_ctxld_assert_locked(scl->ctxld);
828
829	for (chnum = 0; chnum < 3; chnum++) {
830		struct dcss_scaler_ch *ch = &scl->ch[chnum];
831
832		if (ch->scaler_ctrl_chgd) {
833			dcss_ctxld_write_irqsafe(scl->ctxld, scl->ctx_id,
834						 ch->scaler_ctrl,
835						 ch->base_ofs +
836						 DCSS_SCALER_CTRL);
837			ch->scaler_ctrl_chgd = false;
838		}
839	}
840}