Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
Note: File does not exist in v3.1.
   1/*
   2 * GTT virtualization
   3 *
   4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the "Software"),
   8 * to deal in the Software without restriction, including without limitation
   9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  10 * and/or sell copies of the Software, and to permit persons to whom the
  11 * Software is furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice (including the next
  14 * paragraph) shall be included in all copies or substantial portions of the
  15 * Software.
  16 *
  17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  23 * SOFTWARE.
  24 *
  25 * Authors:
  26 *    Zhi Wang <zhi.a.wang@intel.com>
  27 *    Zhenyu Wang <zhenyuw@linux.intel.com>
  28 *    Xiao Zheng <xiao.zheng@intel.com>
  29 *
  30 * Contributors:
  31 *    Min He <min.he@intel.com>
  32 *    Bing Niu <bing.niu@intel.com>
  33 *
  34 */
  35
  36#include "i915_drv.h"
  37#include "gvt.h"
  38#include "i915_pvinfo.h"
  39#include "trace.h"
  40
  41#include "gt/intel_gt_regs.h"
  42#include <linux/vmalloc.h>
  43
  44#if defined(VERBOSE_DEBUG)
  45#define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
  46#else
  47#define gvt_vdbg_mm(fmt, args...)
  48#endif
  49
  50static bool enable_out_of_sync = false;
  51static int preallocated_oos_pages = 8192;
  52
  53/*
  54 * validate a gm address and related range size,
  55 * translate it to host gm address
  56 */
  57bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
  58{
  59	if (size == 0)
  60		return vgpu_gmadr_is_valid(vgpu, addr);
  61
  62	if (vgpu_gmadr_is_aperture(vgpu, addr) &&
  63	    vgpu_gmadr_is_aperture(vgpu, addr + size - 1))
  64		return true;
  65	else if (vgpu_gmadr_is_hidden(vgpu, addr) &&
  66		 vgpu_gmadr_is_hidden(vgpu, addr + size - 1))
  67		return true;
  68
  69	gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n",
  70		     addr, size);
  71	return false;
  72}
  73
  74/* translate a guest gmadr to host gmadr */
  75int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
  76{
  77	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
  78
  79	if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr),
  80		     "invalid guest gmadr %llx\n", g_addr))
  81		return -EACCES;
  82
  83	if (vgpu_gmadr_is_aperture(vgpu, g_addr))
  84		*h_addr = vgpu_aperture_gmadr_base(vgpu)
  85			  + (g_addr - vgpu_aperture_offset(vgpu));
  86	else
  87		*h_addr = vgpu_hidden_gmadr_base(vgpu)
  88			  + (g_addr - vgpu_hidden_offset(vgpu));
  89	return 0;
  90}
  91
  92/* translate a host gmadr to guest gmadr */
  93int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
  94{
  95	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
  96
  97	if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr),
  98		     "invalid host gmadr %llx\n", h_addr))
  99		return -EACCES;
 100
 101	if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
 102		*g_addr = vgpu_aperture_gmadr_base(vgpu)
 103			+ (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
 104	else
 105		*g_addr = vgpu_hidden_gmadr_base(vgpu)
 106			+ (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
 107	return 0;
 108}
 109
 110int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
 111			     unsigned long *h_index)
 112{
 113	u64 h_addr;
 114	int ret;
 115
 116	ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
 117				       &h_addr);
 118	if (ret)
 119		return ret;
 120
 121	*h_index = h_addr >> I915_GTT_PAGE_SHIFT;
 122	return 0;
 123}
 124
 125int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
 126			     unsigned long *g_index)
 127{
 128	u64 g_addr;
 129	int ret;
 130
 131	ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
 132				       &g_addr);
 133	if (ret)
 134		return ret;
 135
 136	*g_index = g_addr >> I915_GTT_PAGE_SHIFT;
 137	return 0;
 138}
 139
 140#define gtt_type_is_entry(type) \
 141	(type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
 142	 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
 143	 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
 144
 145#define gtt_type_is_pt(type) \
 146	(type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
 147
 148#define gtt_type_is_pte_pt(type) \
 149	(type == GTT_TYPE_PPGTT_PTE_PT)
 150
 151#define gtt_type_is_root_pointer(type) \
 152	(gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
 153
 154#define gtt_init_entry(e, t, p, v) do { \
 155	(e)->type = t; \
 156	(e)->pdev = p; \
 157	memcpy(&(e)->val64, &v, sizeof(v)); \
 158} while (0)
 159
 160/*
 161 * Mappings between GTT_TYPE* enumerations.
 162 * Following information can be found according to the given type:
 163 * - type of next level page table
 164 * - type of entry inside this level page table
 165 * - type of entry with PSE set
 166 *
 167 * If the given type doesn't have such a kind of information,
 168 * e.g. give a l4 root entry type, then request to get its PSE type,
 169 * give a PTE page table type, then request to get its next level page
 170 * table type, as we know l4 root entry doesn't have a PSE bit,
 171 * and a PTE page table doesn't have a next level page table type,
 172 * GTT_TYPE_INVALID will be returned. This is useful when traversing a
 173 * page table.
 174 */
 175
 176struct gtt_type_table_entry {
 177	int entry_type;
 178	int pt_type;
 179	int next_pt_type;
 180	int pse_entry_type;
 181};
 182
 183#define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
 184	[type] = { \
 185		.entry_type = e_type, \
 186		.pt_type = cpt_type, \
 187		.next_pt_type = npt_type, \
 188		.pse_entry_type = pse_type, \
 189	}
 190
 191static const struct gtt_type_table_entry gtt_type_table[] = {
 192	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
 193			GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
 194			GTT_TYPE_INVALID,
 195			GTT_TYPE_PPGTT_PML4_PT,
 196			GTT_TYPE_INVALID),
 197	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
 198			GTT_TYPE_PPGTT_PML4_ENTRY,
 199			GTT_TYPE_PPGTT_PML4_PT,
 200			GTT_TYPE_PPGTT_PDP_PT,
 201			GTT_TYPE_INVALID),
 202	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
 203			GTT_TYPE_PPGTT_PML4_ENTRY,
 204			GTT_TYPE_PPGTT_PML4_PT,
 205			GTT_TYPE_PPGTT_PDP_PT,
 206			GTT_TYPE_INVALID),
 207	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
 208			GTT_TYPE_PPGTT_PDP_ENTRY,
 209			GTT_TYPE_PPGTT_PDP_PT,
 210			GTT_TYPE_PPGTT_PDE_PT,
 211			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
 212	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
 213			GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
 214			GTT_TYPE_INVALID,
 215			GTT_TYPE_PPGTT_PDE_PT,
 216			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
 217	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
 218			GTT_TYPE_PPGTT_PDP_ENTRY,
 219			GTT_TYPE_PPGTT_PDP_PT,
 220			GTT_TYPE_PPGTT_PDE_PT,
 221			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
 222	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
 223			GTT_TYPE_PPGTT_PDE_ENTRY,
 224			GTT_TYPE_PPGTT_PDE_PT,
 225			GTT_TYPE_PPGTT_PTE_PT,
 226			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
 227	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
 228			GTT_TYPE_PPGTT_PDE_ENTRY,
 229			GTT_TYPE_PPGTT_PDE_PT,
 230			GTT_TYPE_PPGTT_PTE_PT,
 231			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
 232	/* We take IPS bit as 'PSE' for PTE level. */
 233	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
 234			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
 235			GTT_TYPE_PPGTT_PTE_PT,
 236			GTT_TYPE_INVALID,
 237			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
 238	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
 239			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
 240			GTT_TYPE_PPGTT_PTE_PT,
 241			GTT_TYPE_INVALID,
 242			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
 243	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
 244			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
 245			GTT_TYPE_PPGTT_PTE_PT,
 246			GTT_TYPE_INVALID,
 247			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
 248	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
 249			GTT_TYPE_PPGTT_PDE_ENTRY,
 250			GTT_TYPE_PPGTT_PDE_PT,
 251			GTT_TYPE_INVALID,
 252			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
 253	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
 254			GTT_TYPE_PPGTT_PDP_ENTRY,
 255			GTT_TYPE_PPGTT_PDP_PT,
 256			GTT_TYPE_INVALID,
 257			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
 258	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
 259			GTT_TYPE_GGTT_PTE,
 260			GTT_TYPE_INVALID,
 261			GTT_TYPE_INVALID,
 262			GTT_TYPE_INVALID),
 263};
 264
 265static inline int get_next_pt_type(int type)
 266{
 267	return gtt_type_table[type].next_pt_type;
 268}
 269
 270static inline int get_entry_type(int type)
 271{
 272	return gtt_type_table[type].entry_type;
 273}
 274
 275static inline int get_pse_type(int type)
 276{
 277	return gtt_type_table[type].pse_entry_type;
 278}
 279
 280static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index)
 281{
 282	void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
 283
 284	return readq(addr);
 285}
 286
 287static void ggtt_invalidate(struct intel_gt *gt)
 288{
 289	mmio_hw_access_pre(gt);
 290	intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
 291	mmio_hw_access_post(gt);
 292}
 293
 294static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte)
 295{
 296	void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
 297
 298	writeq(pte, addr);
 299}
 300
 301static inline int gtt_get_entry64(void *pt,
 302		struct intel_gvt_gtt_entry *e,
 303		unsigned long index, bool hypervisor_access, unsigned long gpa,
 304		struct intel_vgpu *vgpu)
 305{
 306	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
 307	int ret;
 308
 309	if (WARN_ON(info->gtt_entry_size != 8))
 310		return -EINVAL;
 311
 312	if (hypervisor_access) {
 313		ret = intel_gvt_read_gpa(vgpu, gpa +
 314				(index << info->gtt_entry_size_shift),
 315				&e->val64, 8);
 316		if (WARN_ON(ret))
 317			return ret;
 318	} else if (!pt) {
 319		e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index);
 320	} else {
 321		e->val64 = *((u64 *)pt + index);
 322	}
 323	return 0;
 324}
 325
 326static inline int gtt_set_entry64(void *pt,
 327		struct intel_gvt_gtt_entry *e,
 328		unsigned long index, bool hypervisor_access, unsigned long gpa,
 329		struct intel_vgpu *vgpu)
 330{
 331	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
 332	int ret;
 333
 334	if (WARN_ON(info->gtt_entry_size != 8))
 335		return -EINVAL;
 336
 337	if (hypervisor_access) {
 338		ret = intel_gvt_write_gpa(vgpu, gpa +
 339				(index << info->gtt_entry_size_shift),
 340				&e->val64, 8);
 341		if (WARN_ON(ret))
 342			return ret;
 343	} else if (!pt) {
 344		write_pte64(vgpu->gvt->gt->ggtt, index, e->val64);
 345	} else {
 346		*((u64 *)pt + index) = e->val64;
 347	}
 348	return 0;
 349}
 350
 351#define GTT_HAW 46
 352
 353#define ADDR_1G_MASK	GENMASK_ULL(GTT_HAW - 1, 30)
 354#define ADDR_2M_MASK	GENMASK_ULL(GTT_HAW - 1, 21)
 355#define ADDR_64K_MASK	GENMASK_ULL(GTT_HAW - 1, 16)
 356#define ADDR_4K_MASK	GENMASK_ULL(GTT_HAW - 1, 12)
 357
 358#define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
 359#define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
 360
 361#define GTT_64K_PTE_STRIDE 16
 362
 363static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
 364{
 365	unsigned long pfn;
 366
 367	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
 368		pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
 369	else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
 370		pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
 371	else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
 372		pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
 373	else
 374		pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
 375	return pfn;
 376}
 377
 378static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
 379{
 380	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
 381		e->val64 &= ~ADDR_1G_MASK;
 382		pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
 383	} else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
 384		e->val64 &= ~ADDR_2M_MASK;
 385		pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
 386	} else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
 387		e->val64 &= ~ADDR_64K_MASK;
 388		pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
 389	} else {
 390		e->val64 &= ~ADDR_4K_MASK;
 391		pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
 392	}
 393
 394	e->val64 |= (pfn << PAGE_SHIFT);
 395}
 396
 397static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
 398{
 399	return !!(e->val64 & _PAGE_PSE);
 400}
 401
 402static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
 403{
 404	if (gen8_gtt_test_pse(e)) {
 405		switch (e->type) {
 406		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
 407			e->val64 &= ~_PAGE_PSE;
 408			e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
 409			break;
 410		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
 411			e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
 412			e->val64 &= ~_PAGE_PSE;
 413			break;
 414		default:
 415			WARN_ON(1);
 416		}
 417	}
 418}
 419
 420static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
 421{
 422	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
 423		return false;
 424
 425	return !!(e->val64 & GEN8_PDE_IPS_64K);
 426}
 427
 428static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
 429{
 430	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
 431		return;
 432
 433	e->val64 &= ~GEN8_PDE_IPS_64K;
 434}
 435
 436static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
 437{
 438	/*
 439	 * i915 writes PDP root pointer registers without present bit,
 440	 * it also works, so we need to treat root pointer entry
 441	 * specifically.
 442	 */
 443	if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
 444			|| e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
 445		return (e->val64 != 0);
 446	else
 447		return (e->val64 & GEN8_PAGE_PRESENT);
 448}
 449
 450static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
 451{
 452	e->val64 &= ~GEN8_PAGE_PRESENT;
 453}
 454
 455static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
 456{
 457	e->val64 |= GEN8_PAGE_PRESENT;
 458}
 459
 460static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
 461{
 462	return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
 463}
 464
 465static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
 466{
 467	e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
 468}
 469
 470static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
 471{
 472	e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
 473}
 474
 475/*
 476 * Per-platform GMA routines.
 477 */
 478static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
 479{
 480	unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
 481
 482	trace_gma_index(__func__, gma, x);
 483	return x;
 484}
 485
 486#define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
 487static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
 488{ \
 489	unsigned long x = (exp); \
 490	trace_gma_index(__func__, gma, x); \
 491	return x; \
 492}
 493
 494DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
 495DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
 496DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
 497DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
 498DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
 499
 500static const struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
 501	.get_entry = gtt_get_entry64,
 502	.set_entry = gtt_set_entry64,
 503	.clear_present = gtt_entry_clear_present,
 504	.set_present = gtt_entry_set_present,
 505	.test_present = gen8_gtt_test_present,
 506	.test_pse = gen8_gtt_test_pse,
 507	.clear_pse = gen8_gtt_clear_pse,
 508	.clear_ips = gen8_gtt_clear_ips,
 509	.test_ips = gen8_gtt_test_ips,
 510	.clear_64k_splited = gen8_gtt_clear_64k_splited,
 511	.set_64k_splited = gen8_gtt_set_64k_splited,
 512	.test_64k_splited = gen8_gtt_test_64k_splited,
 513	.get_pfn = gen8_gtt_get_pfn,
 514	.set_pfn = gen8_gtt_set_pfn,
 515};
 516
 517static const struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
 518	.gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
 519	.gma_to_pte_index = gen8_gma_to_pte_index,
 520	.gma_to_pde_index = gen8_gma_to_pde_index,
 521	.gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
 522	.gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
 523	.gma_to_pml4_index = gen8_gma_to_pml4_index,
 524};
 525
 526/* Update entry type per pse and ips bit. */
 527static void update_entry_type_for_real(const struct intel_gvt_gtt_pte_ops *pte_ops,
 528	struct intel_gvt_gtt_entry *entry, bool ips)
 529{
 530	switch (entry->type) {
 531	case GTT_TYPE_PPGTT_PDE_ENTRY:
 532	case GTT_TYPE_PPGTT_PDP_ENTRY:
 533		if (pte_ops->test_pse(entry))
 534			entry->type = get_pse_type(entry->type);
 535		break;
 536	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
 537		if (ips)
 538			entry->type = get_pse_type(entry->type);
 539		break;
 540	default:
 541		GEM_BUG_ON(!gtt_type_is_entry(entry->type));
 542	}
 543
 544	GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
 545}
 546
 547/*
 548 * MM helpers.
 549 */
 550static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
 551		struct intel_gvt_gtt_entry *entry, unsigned long index,
 552		bool guest)
 553{
 554	const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
 555
 556	GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
 557
 558	entry->type = mm->ppgtt_mm.root_entry_type;
 559	pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
 560			   mm->ppgtt_mm.shadow_pdps,
 561			   entry, index, false, 0, mm->vgpu);
 562	update_entry_type_for_real(pte_ops, entry, false);
 563}
 564
 565static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
 566		struct intel_gvt_gtt_entry *entry, unsigned long index)
 567{
 568	_ppgtt_get_root_entry(mm, entry, index, true);
 569}
 570
 571static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
 572		struct intel_gvt_gtt_entry *entry, unsigned long index)
 573{
 574	_ppgtt_get_root_entry(mm, entry, index, false);
 575}
 576
 577static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
 578		struct intel_gvt_gtt_entry *entry, unsigned long index,
 579		bool guest)
 580{
 581	const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
 582
 583	pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
 584			   mm->ppgtt_mm.shadow_pdps,
 585			   entry, index, false, 0, mm->vgpu);
 586}
 587
 588static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
 589		struct intel_gvt_gtt_entry *entry, unsigned long index)
 590{
 591	_ppgtt_set_root_entry(mm, entry, index, false);
 592}
 593
 594static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
 595		struct intel_gvt_gtt_entry *entry, unsigned long index)
 596{
 597	const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
 598
 599	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
 600
 601	entry->type = GTT_TYPE_GGTT_PTE;
 602	pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
 603			   false, 0, mm->vgpu);
 604}
 605
 606static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
 607		struct intel_gvt_gtt_entry *entry, unsigned long index)
 608{
 609	const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
 610
 611	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
 612
 613	pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
 614			   false, 0, mm->vgpu);
 615}
 616
 617static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
 618		struct intel_gvt_gtt_entry *entry, unsigned long index)
 619{
 620	const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
 621
 622	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
 623
 624	pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
 625}
 626
 627static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
 628		struct intel_gvt_gtt_entry *entry, unsigned long index)
 629{
 630	const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
 631	unsigned long offset = index;
 632
 633	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
 634
 635	if (vgpu_gmadr_is_aperture(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
 636		offset -= (vgpu_aperture_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
 637		mm->ggtt_mm.host_ggtt_aperture[offset] = entry->val64;
 638	} else if (vgpu_gmadr_is_hidden(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
 639		offset -= (vgpu_hidden_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
 640		mm->ggtt_mm.host_ggtt_hidden[offset] = entry->val64;
 641	}
 642
 643	pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
 644}
 645
 646/*
 647 * PPGTT shadow page table helpers.
 648 */
 649static inline int ppgtt_spt_get_entry(
 650		struct intel_vgpu_ppgtt_spt *spt,
 651		void *page_table, int type,
 652		struct intel_gvt_gtt_entry *e, unsigned long index,
 653		bool guest)
 654{
 655	struct intel_gvt *gvt = spt->vgpu->gvt;
 656	const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
 657	int ret;
 658
 659	e->type = get_entry_type(type);
 660
 661	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
 662		return -EINVAL;
 663
 664	ret = ops->get_entry(page_table, e, index, guest,
 665			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
 666			spt->vgpu);
 667	if (ret)
 668		return ret;
 669
 670	update_entry_type_for_real(ops, e, guest ?
 671				   spt->guest_page.pde_ips : false);
 672
 673	gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
 674		    type, e->type, index, e->val64);
 675	return 0;
 676}
 677
 678static inline int ppgtt_spt_set_entry(
 679		struct intel_vgpu_ppgtt_spt *spt,
 680		void *page_table, int type,
 681		struct intel_gvt_gtt_entry *e, unsigned long index,
 682		bool guest)
 683{
 684	struct intel_gvt *gvt = spt->vgpu->gvt;
 685	const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
 686
 687	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
 688		return -EINVAL;
 689
 690	gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
 691		    type, e->type, index, e->val64);
 692
 693	return ops->set_entry(page_table, e, index, guest,
 694			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
 695			spt->vgpu);
 696}
 697
 698#define ppgtt_get_guest_entry(spt, e, index) \
 699	ppgtt_spt_get_entry(spt, NULL, \
 700		spt->guest_page.type, e, index, true)
 701
 702#define ppgtt_set_guest_entry(spt, e, index) \
 703	ppgtt_spt_set_entry(spt, NULL, \
 704		spt->guest_page.type, e, index, true)
 705
 706#define ppgtt_get_shadow_entry(spt, e, index) \
 707	ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
 708		spt->shadow_page.type, e, index, false)
 709
 710#define ppgtt_set_shadow_entry(spt, e, index) \
 711	ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
 712		spt->shadow_page.type, e, index, false)
 713
 714static void *alloc_spt(gfp_t gfp_mask)
 715{
 716	struct intel_vgpu_ppgtt_spt *spt;
 717
 718	spt = kzalloc(sizeof(*spt), gfp_mask);
 719	if (!spt)
 720		return NULL;
 721
 722	spt->shadow_page.page = alloc_page(gfp_mask);
 723	if (!spt->shadow_page.page) {
 724		kfree(spt);
 725		return NULL;
 726	}
 727	return spt;
 728}
 729
 730static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
 731{
 732	__free_page(spt->shadow_page.page);
 733	kfree(spt);
 734}
 735
 736static int detach_oos_page(struct intel_vgpu *vgpu,
 737		struct intel_vgpu_oos_page *oos_page);
 738
 739static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
 740{
 741	struct device *kdev = spt->vgpu->gvt->gt->i915->drm.dev;
 742
 743	trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
 744
 745	dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
 746		       DMA_BIDIRECTIONAL);
 747
 748	radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
 749
 750	if (spt->guest_page.gfn) {
 751		if (spt->guest_page.oos_page)
 752			detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
 753
 754		intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
 755	}
 756
 757	list_del_init(&spt->post_shadow_list);
 758	free_spt(spt);
 759}
 760
 761static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
 762{
 763	struct intel_vgpu_ppgtt_spt *spt, *spn;
 764	struct radix_tree_iter iter;
 765	LIST_HEAD(all_spt);
 766	void __rcu **slot;
 767
 768	rcu_read_lock();
 769	radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
 770		spt = radix_tree_deref_slot(slot);
 771		list_move(&spt->post_shadow_list, &all_spt);
 772	}
 773	rcu_read_unlock();
 774
 775	list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
 776		ppgtt_free_spt(spt);
 777}
 778
 779static int ppgtt_handle_guest_write_page_table_bytes(
 780		struct intel_vgpu_ppgtt_spt *spt,
 781		u64 pa, void *p_data, int bytes);
 782
 783static int ppgtt_write_protection_handler(
 784		struct intel_vgpu_page_track *page_track,
 785		u64 gpa, void *data, int bytes)
 786{
 787	struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
 788
 789	int ret;
 790
 791	if (bytes != 4 && bytes != 8)
 792		return -EINVAL;
 793
 794	ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
 795	if (ret)
 796		return ret;
 797	return ret;
 798}
 799
 800/* Find a spt by guest gfn. */
 801static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
 802		struct intel_vgpu *vgpu, unsigned long gfn)
 803{
 804	struct intel_vgpu_page_track *track;
 805
 806	track = intel_vgpu_find_page_track(vgpu, gfn);
 807	if (track && track->handler == ppgtt_write_protection_handler)
 808		return track->priv_data;
 809
 810	return NULL;
 811}
 812
 813/* Find the spt by shadow page mfn. */
 814static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
 815		struct intel_vgpu *vgpu, unsigned long mfn)
 816{
 817	return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
 818}
 819
 820static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
 821
 822/* Allocate shadow page table without guest page. */
 823static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
 824		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
 825{
 826	struct device *kdev = vgpu->gvt->gt->i915->drm.dev;
 827	struct intel_vgpu_ppgtt_spt *spt = NULL;
 828	dma_addr_t daddr;
 829	int ret;
 830
 831retry:
 832	spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
 833	if (!spt) {
 834		if (reclaim_one_ppgtt_mm(vgpu->gvt))
 835			goto retry;
 836
 837		gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
 838		return ERR_PTR(-ENOMEM);
 839	}
 840
 841	spt->vgpu = vgpu;
 842	atomic_set(&spt->refcount, 1);
 843	INIT_LIST_HEAD(&spt->post_shadow_list);
 844
 845	/*
 846	 * Init shadow_page.
 847	 */
 848	spt->shadow_page.type = type;
 849	daddr = dma_map_page(kdev, spt->shadow_page.page,
 850			     0, 4096, DMA_BIDIRECTIONAL);
 851	if (dma_mapping_error(kdev, daddr)) {
 852		gvt_vgpu_err("fail to map dma addr\n");
 853		ret = -EINVAL;
 854		goto err_free_spt;
 855	}
 856	spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
 857	spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
 858
 859	ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
 860	if (ret)
 861		goto err_unmap_dma;
 862
 863	return spt;
 864
 865err_unmap_dma:
 866	dma_unmap_page(kdev, daddr, PAGE_SIZE, DMA_BIDIRECTIONAL);
 867err_free_spt:
 868	free_spt(spt);
 869	return ERR_PTR(ret);
 870}
 871
 872/* Allocate shadow page table associated with specific gfn. */
 873static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
 874		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
 875		unsigned long gfn, bool guest_pde_ips)
 876{
 877	struct intel_vgpu_ppgtt_spt *spt;
 878	int ret;
 879
 880	spt = ppgtt_alloc_spt(vgpu, type);
 881	if (IS_ERR(spt))
 882		return spt;
 883
 884	/*
 885	 * Init guest_page.
 886	 */
 887	ret = intel_vgpu_register_page_track(vgpu, gfn,
 888			ppgtt_write_protection_handler, spt);
 889	if (ret) {
 890		ppgtt_free_spt(spt);
 891		return ERR_PTR(ret);
 892	}
 893
 894	spt->guest_page.type = type;
 895	spt->guest_page.gfn = gfn;
 896	spt->guest_page.pde_ips = guest_pde_ips;
 897
 898	trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
 899
 900	return spt;
 901}
 902
 903#define pt_entry_size_shift(spt) \
 904	((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
 905
 906#define pt_entries(spt) \
 907	(I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
 908
 909#define for_each_present_guest_entry(spt, e, i) \
 910	for (i = 0; i < pt_entries(spt); \
 911	     i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
 912		if (!ppgtt_get_guest_entry(spt, e, i) && \
 913		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
 914
 915#define for_each_present_shadow_entry(spt, e, i) \
 916	for (i = 0; i < pt_entries(spt); \
 917	     i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
 918		if (!ppgtt_get_shadow_entry(spt, e, i) && \
 919		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
 920
 921#define for_each_shadow_entry(spt, e, i) \
 922	for (i = 0; i < pt_entries(spt); \
 923	     i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
 924		if (!ppgtt_get_shadow_entry(spt, e, i))
 925
 926static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
 927{
 928	int v = atomic_read(&spt->refcount);
 929
 930	trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
 931	atomic_inc(&spt->refcount);
 932}
 933
 934static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
 935{
 936	int v = atomic_read(&spt->refcount);
 937
 938	trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
 939	return atomic_dec_return(&spt->refcount);
 940}
 941
 942static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
 943
 944static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
 945		struct intel_gvt_gtt_entry *e)
 946{
 947	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
 948	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
 949	struct intel_vgpu_ppgtt_spt *s;
 950	enum intel_gvt_gtt_type cur_pt_type;
 951
 952	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
 953
 954	if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
 955		&& e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
 956		cur_pt_type = get_next_pt_type(e->type);
 957
 958		if (!gtt_type_is_pt(cur_pt_type) ||
 959				!gtt_type_is_pt(cur_pt_type + 1)) {
 960			drm_WARN(&i915->drm, 1,
 961				 "Invalid page table type, cur_pt_type is: %d\n",
 962				 cur_pt_type);
 963			return -EINVAL;
 964		}
 965
 966		cur_pt_type += 1;
 967
 968		if (ops->get_pfn(e) ==
 969			vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
 970			return 0;
 971	}
 972	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
 973	if (!s) {
 974		gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
 975				ops->get_pfn(e));
 976		return -ENXIO;
 977	}
 978	return ppgtt_invalidate_spt(s);
 979}
 980
 981static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
 982		struct intel_gvt_gtt_entry *entry)
 983{
 984	struct intel_vgpu *vgpu = spt->vgpu;
 985	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
 986	unsigned long pfn;
 987	int type;
 988
 989	pfn = ops->get_pfn(entry);
 990	type = spt->shadow_page.type;
 991
 992	/* Uninitialized spte or unshadowed spte. */
 993	if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
 994		return;
 995
 996	intel_gvt_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
 997}
 998
 999static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
1000{
1001	struct intel_vgpu *vgpu = spt->vgpu;
1002	struct intel_gvt_gtt_entry e;
1003	unsigned long index;
1004	int ret;
1005
1006	trace_spt_change(spt->vgpu->id, "die", spt,
1007			spt->guest_page.gfn, spt->shadow_page.type);
1008
1009	if (ppgtt_put_spt(spt) > 0)
1010		return 0;
1011
1012	for_each_present_shadow_entry(spt, &e, index) {
1013		switch (e.type) {
1014		case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1015			gvt_vdbg_mm("invalidate 4K entry\n");
1016			ppgtt_invalidate_pte(spt, &e);
1017			break;
1018		case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1019			/* We don't setup 64K shadow entry so far. */
1020			WARN(1, "suspicious 64K gtt entry\n");
1021			continue;
1022		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1023			gvt_vdbg_mm("invalidate 2M entry\n");
1024			continue;
1025		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1026			WARN(1, "GVT doesn't support 1GB page\n");
1027			continue;
1028		case GTT_TYPE_PPGTT_PML4_ENTRY:
1029		case GTT_TYPE_PPGTT_PDP_ENTRY:
1030		case GTT_TYPE_PPGTT_PDE_ENTRY:
1031			gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1032			ret = ppgtt_invalidate_spt_by_shadow_entry(
1033					spt->vgpu, &e);
1034			if (ret)
1035				goto fail;
1036			break;
1037		default:
1038			GEM_BUG_ON(1);
1039		}
1040	}
1041
1042	trace_spt_change(spt->vgpu->id, "release", spt,
1043			 spt->guest_page.gfn, spt->shadow_page.type);
1044	ppgtt_free_spt(spt);
1045	return 0;
1046fail:
1047	gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1048			spt, e.val64, e.type);
1049	return ret;
1050}
1051
1052static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1053{
1054	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1055
1056	if (GRAPHICS_VER(dev_priv) == 9) {
1057		u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1058			GAMW_ECO_ENABLE_64K_IPS_FIELD;
1059
1060		return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1061	} else if (GRAPHICS_VER(dev_priv) >= 11) {
1062		/* 64K paging only controlled by IPS bit in PTE now. */
1063		return true;
1064	} else
1065		return false;
1066}
1067
1068static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1069
1070static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1071		struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1072{
1073	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1074	struct intel_vgpu_ppgtt_spt *spt = NULL;
1075	bool ips = false;
1076	int ret;
1077
1078	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1079
1080	if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1081		ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1082
1083	spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1084	if (spt) {
1085		ppgtt_get_spt(spt);
1086
1087		if (ips != spt->guest_page.pde_ips) {
1088			spt->guest_page.pde_ips = ips;
1089
1090			gvt_dbg_mm("reshadow PDE since ips changed\n");
1091			clear_page(spt->shadow_page.vaddr);
1092			ret = ppgtt_populate_spt(spt);
1093			if (ret) {
1094				ppgtt_put_spt(spt);
1095				goto err;
1096			}
1097		}
1098	} else {
1099		int type = get_next_pt_type(we->type);
1100
1101		if (!gtt_type_is_pt(type)) {
1102			ret = -EINVAL;
1103			goto err;
1104		}
1105
1106		spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1107		if (IS_ERR(spt)) {
1108			ret = PTR_ERR(spt);
1109			goto err;
1110		}
1111
1112		ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1113		if (ret)
1114			goto err_free_spt;
1115
1116		ret = ppgtt_populate_spt(spt);
1117		if (ret)
1118			goto err_free_spt;
1119
1120		trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1121				 spt->shadow_page.type);
1122	}
1123	return spt;
1124
1125err_free_spt:
1126	ppgtt_free_spt(spt);
1127	spt = NULL;
1128err:
1129	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1130		     spt, we->val64, we->type);
1131	return ERR_PTR(ret);
1132}
1133
1134static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1135		struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1136{
1137	const struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1138
1139	se->type = ge->type;
1140	se->val64 = ge->val64;
1141
1142	/* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1143	if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1144		ops->clear_ips(se);
1145
1146	ops->set_pfn(se, s->shadow_page.mfn);
1147}
1148
1149static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1150	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1151	struct intel_gvt_gtt_entry *se)
1152{
1153	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1154	struct intel_vgpu_ppgtt_spt *sub_spt;
1155	struct intel_gvt_gtt_entry sub_se;
1156	unsigned long start_gfn;
1157	dma_addr_t dma_addr;
1158	unsigned long sub_index;
1159	int ret;
1160
1161	gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1162
1163	start_gfn = ops->get_pfn(se);
1164
1165	sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1166	if (IS_ERR(sub_spt))
1167		return PTR_ERR(sub_spt);
1168
1169	for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1170		ret = intel_gvt_dma_map_guest_page(vgpu, start_gfn + sub_index,
1171						   PAGE_SIZE, &dma_addr);
1172		if (ret)
1173			goto err;
1174		sub_se.val64 = se->val64;
1175
1176		/* Copy the PAT field from PDE. */
1177		sub_se.val64 &= ~_PAGE_PAT;
1178		sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1179
1180		ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1181		ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1182	}
1183
1184	/* Clear dirty field. */
1185	se->val64 &= ~_PAGE_DIRTY;
1186
1187	ops->clear_pse(se);
1188	ops->clear_ips(se);
1189	ops->set_pfn(se, sub_spt->shadow_page.mfn);
1190	ppgtt_set_shadow_entry(spt, se, index);
1191	return 0;
1192err:
1193	/* Cancel the existing address mappings of DMA addr. */
1194	for_each_present_shadow_entry(sub_spt, &sub_se, sub_index) {
1195		gvt_vdbg_mm("invalidate 4K entry\n");
1196		ppgtt_invalidate_pte(sub_spt, &sub_se);
1197	}
1198	/* Release the new allocated spt. */
1199	trace_spt_change(sub_spt->vgpu->id, "release", sub_spt,
1200		sub_spt->guest_page.gfn, sub_spt->shadow_page.type);
1201	ppgtt_free_spt(sub_spt);
1202	return ret;
1203}
1204
1205static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1206	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1207	struct intel_gvt_gtt_entry *se)
1208{
1209	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1210	struct intel_gvt_gtt_entry entry = *se;
1211	unsigned long start_gfn;
1212	dma_addr_t dma_addr;
1213	int i, ret;
1214
1215	gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1216
1217	GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1218
1219	start_gfn = ops->get_pfn(se);
1220
1221	entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1222	ops->set_64k_splited(&entry);
1223
1224	for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1225		ret = intel_gvt_dma_map_guest_page(vgpu, start_gfn + i,
1226						   PAGE_SIZE, &dma_addr);
1227		if (ret)
1228			return ret;
1229
1230		ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1231		ppgtt_set_shadow_entry(spt, &entry, index + i);
1232	}
1233	return 0;
1234}
1235
1236static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1237	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1238	struct intel_gvt_gtt_entry *ge)
1239{
1240	const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1241	struct intel_gvt_gtt_entry se = *ge;
1242	unsigned long gfn;
1243	dma_addr_t dma_addr;
1244	int ret;
1245
1246	if (!pte_ops->test_present(ge))
1247		return 0;
1248
1249	gfn = pte_ops->get_pfn(ge);
1250
1251	switch (ge->type) {
1252	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1253		gvt_vdbg_mm("shadow 4K gtt entry\n");
1254		ret = intel_gvt_dma_map_guest_page(vgpu, gfn, PAGE_SIZE, &dma_addr);
1255		if (ret)
1256			return -ENXIO;
1257		break;
1258	case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1259		gvt_vdbg_mm("shadow 64K gtt entry\n");
1260		/*
1261		 * The layout of 64K page is special, the page size is
1262		 * controlled by uper PDE. To be simple, we always split
1263		 * 64K page to smaller 4K pages in shadow PT.
1264		 */
1265		return split_64KB_gtt_entry(vgpu, spt, index, &se);
1266	case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1267		gvt_vdbg_mm("shadow 2M gtt entry\n");
1268		if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M) ||
1269		    intel_gvt_dma_map_guest_page(vgpu, gfn,
1270						 I915_GTT_PAGE_SIZE_2M, &dma_addr))
1271			return split_2MB_gtt_entry(vgpu, spt, index, &se);
1272		break;
1273	case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1274		gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1275		return -EINVAL;
1276	default:
1277		GEM_BUG_ON(1);
1278		return -EINVAL;
1279	}
1280
1281	/* Successfully shadowed a 4K or 2M page (without splitting). */
1282	pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1283	ppgtt_set_shadow_entry(spt, &se, index);
1284	return 0;
1285}
1286
1287static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1288{
1289	struct intel_vgpu *vgpu = spt->vgpu;
1290	struct intel_vgpu_ppgtt_spt *s;
1291	struct intel_gvt_gtt_entry se, ge;
1292	unsigned long i;
1293	int ret;
1294
1295	trace_spt_change(spt->vgpu->id, "born", spt,
1296			 spt->guest_page.gfn, spt->shadow_page.type);
1297
1298	for_each_present_guest_entry(spt, &ge, i) {
1299		if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1300			s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1301			if (IS_ERR(s)) {
1302				ret = PTR_ERR(s);
1303				goto fail;
1304			}
1305			ppgtt_get_shadow_entry(spt, &se, i);
1306			ppgtt_generate_shadow_entry(&se, s, &ge);
1307			ppgtt_set_shadow_entry(spt, &se, i);
1308		} else {
1309			ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1310			if (ret)
1311				goto fail;
1312		}
1313	}
1314	return 0;
1315fail:
1316	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1317			spt, ge.val64, ge.type);
1318	return ret;
1319}
1320
1321static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1322		struct intel_gvt_gtt_entry *se, unsigned long index)
1323{
1324	struct intel_vgpu *vgpu = spt->vgpu;
1325	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1326	int ret;
1327
1328	trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1329			       spt->shadow_page.type, se->val64, index);
1330
1331	gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1332		    se->type, index, se->val64);
1333
1334	if (!ops->test_present(se))
1335		return 0;
1336
1337	if (ops->get_pfn(se) ==
1338	    vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1339		return 0;
1340
1341	if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1342		struct intel_vgpu_ppgtt_spt *s =
1343			intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1344		if (!s) {
1345			gvt_vgpu_err("fail to find guest page\n");
1346			ret = -ENXIO;
1347			goto fail;
1348		}
1349		ret = ppgtt_invalidate_spt(s);
1350		if (ret)
1351			goto fail;
1352	} else {
1353		/* We don't setup 64K shadow entry so far. */
1354		WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1355		     "suspicious 64K entry\n");
1356		ppgtt_invalidate_pte(spt, se);
1357	}
1358
1359	return 0;
1360fail:
1361	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1362			spt, se->val64, se->type);
1363	return ret;
1364}
1365
1366static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1367		struct intel_gvt_gtt_entry *we, unsigned long index)
1368{
1369	struct intel_vgpu *vgpu = spt->vgpu;
1370	struct intel_gvt_gtt_entry m;
1371	struct intel_vgpu_ppgtt_spt *s;
1372	int ret;
1373
1374	trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1375			       we->val64, index);
1376
1377	gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1378		    we->type, index, we->val64);
1379
1380	if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1381		s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1382		if (IS_ERR(s)) {
1383			ret = PTR_ERR(s);
1384			goto fail;
1385		}
1386		ppgtt_get_shadow_entry(spt, &m, index);
1387		ppgtt_generate_shadow_entry(&m, s, we);
1388		ppgtt_set_shadow_entry(spt, &m, index);
1389	} else {
1390		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1391		if (ret)
1392			goto fail;
1393	}
1394	return 0;
1395fail:
1396	gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1397		spt, we->val64, we->type);
1398	return ret;
1399}
1400
1401static int sync_oos_page(struct intel_vgpu *vgpu,
1402		struct intel_vgpu_oos_page *oos_page)
1403{
1404	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1405	struct intel_gvt *gvt = vgpu->gvt;
1406	const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1407	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1408	struct intel_gvt_gtt_entry old, new;
1409	int index;
1410	int ret;
1411
1412	trace_oos_change(vgpu->id, "sync", oos_page->id,
1413			 spt, spt->guest_page.type);
1414
1415	old.type = new.type = get_entry_type(spt->guest_page.type);
1416	old.val64 = new.val64 = 0;
1417
1418	for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1419				info->gtt_entry_size_shift); index++) {
1420		ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1421		ops->get_entry(NULL, &new, index, true,
1422			       spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1423
1424		if (old.val64 == new.val64
1425			&& !test_and_clear_bit(index, spt->post_shadow_bitmap))
1426			continue;
1427
1428		trace_oos_sync(vgpu->id, oos_page->id,
1429				spt, spt->guest_page.type,
1430				new.val64, index);
1431
1432		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1433		if (ret)
1434			return ret;
1435
1436		ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1437	}
1438
1439	spt->guest_page.write_cnt = 0;
1440	list_del_init(&spt->post_shadow_list);
1441	return 0;
1442}
1443
1444static int detach_oos_page(struct intel_vgpu *vgpu,
1445		struct intel_vgpu_oos_page *oos_page)
1446{
1447	struct intel_gvt *gvt = vgpu->gvt;
1448	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1449
1450	trace_oos_change(vgpu->id, "detach", oos_page->id,
1451			 spt, spt->guest_page.type);
1452
1453	spt->guest_page.write_cnt = 0;
1454	spt->guest_page.oos_page = NULL;
1455	oos_page->spt = NULL;
1456
1457	list_del_init(&oos_page->vm_list);
1458	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1459
1460	return 0;
1461}
1462
1463static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1464		struct intel_vgpu_ppgtt_spt *spt)
1465{
1466	struct intel_gvt *gvt = spt->vgpu->gvt;
1467	int ret;
1468
1469	ret = intel_gvt_read_gpa(spt->vgpu,
1470			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1471			oos_page->mem, I915_GTT_PAGE_SIZE);
1472	if (ret)
1473		return ret;
1474
1475	oos_page->spt = spt;
1476	spt->guest_page.oos_page = oos_page;
1477
1478	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1479
1480	trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1481			 spt, spt->guest_page.type);
1482	return 0;
1483}
1484
1485static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1486{
1487	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1488	int ret;
1489
1490	ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1491	if (ret)
1492		return ret;
1493
1494	trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1495			 spt, spt->guest_page.type);
1496
1497	list_del_init(&oos_page->vm_list);
1498	return sync_oos_page(spt->vgpu, oos_page);
1499}
1500
1501static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1502{
1503	struct intel_gvt *gvt = spt->vgpu->gvt;
1504	struct intel_gvt_gtt *gtt = &gvt->gtt;
1505	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1506	int ret;
1507
1508	WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1509
1510	if (list_empty(&gtt->oos_page_free_list_head)) {
1511		oos_page = container_of(gtt->oos_page_use_list_head.next,
1512			struct intel_vgpu_oos_page, list);
1513		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1514		if (ret)
1515			return ret;
1516		ret = detach_oos_page(spt->vgpu, oos_page);
1517		if (ret)
1518			return ret;
1519	} else
1520		oos_page = container_of(gtt->oos_page_free_list_head.next,
1521			struct intel_vgpu_oos_page, list);
1522	return attach_oos_page(oos_page, spt);
1523}
1524
1525static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1526{
1527	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1528
1529	if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1530		return -EINVAL;
1531
1532	trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1533			 spt, spt->guest_page.type);
1534
1535	list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1536	return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1537}
1538
1539/**
1540 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1541 * @vgpu: a vGPU
1542 *
1543 * This function is called before submitting a guest workload to host,
1544 * to sync all the out-of-synced shadow for vGPU
1545 *
1546 * Returns:
1547 * Zero on success, negative error code if failed.
1548 */
1549int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1550{
1551	struct list_head *pos, *n;
1552	struct intel_vgpu_oos_page *oos_page;
1553	int ret;
1554
1555	if (!enable_out_of_sync)
1556		return 0;
1557
1558	list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1559		oos_page = container_of(pos,
1560				struct intel_vgpu_oos_page, vm_list);
1561		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1562		if (ret)
1563			return ret;
1564	}
1565	return 0;
1566}
1567
1568/*
1569 * The heart of PPGTT shadow page table.
1570 */
1571static int ppgtt_handle_guest_write_page_table(
1572		struct intel_vgpu_ppgtt_spt *spt,
1573		struct intel_gvt_gtt_entry *we, unsigned long index)
1574{
1575	struct intel_vgpu *vgpu = spt->vgpu;
1576	int type = spt->shadow_page.type;
1577	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1578	struct intel_gvt_gtt_entry old_se;
1579	int new_present;
1580	int i, ret;
1581
1582	new_present = ops->test_present(we);
1583
1584	/*
1585	 * Adding the new entry first and then removing the old one, that can
1586	 * guarantee the ppgtt table is validated during the window between
1587	 * adding and removal.
1588	 */
1589	ppgtt_get_shadow_entry(spt, &old_se, index);
1590
1591	if (new_present) {
1592		ret = ppgtt_handle_guest_entry_add(spt, we, index);
1593		if (ret)
1594			goto fail;
1595	}
1596
1597	ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1598	if (ret)
1599		goto fail;
1600
1601	if (!new_present) {
1602		/* For 64KB splited entries, we need clear them all. */
1603		if (ops->test_64k_splited(&old_se) &&
1604		    !(index % GTT_64K_PTE_STRIDE)) {
1605			gvt_vdbg_mm("remove splited 64K shadow entries\n");
1606			for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1607				ops->clear_64k_splited(&old_se);
1608				ops->set_pfn(&old_se,
1609					vgpu->gtt.scratch_pt[type].page_mfn);
1610				ppgtt_set_shadow_entry(spt, &old_se, index + i);
1611			}
1612		} else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1613			   old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1614			ops->clear_pse(&old_se);
1615			ops->set_pfn(&old_se,
1616				     vgpu->gtt.scratch_pt[type].page_mfn);
1617			ppgtt_set_shadow_entry(spt, &old_se, index);
1618		} else {
1619			ops->set_pfn(&old_se,
1620				     vgpu->gtt.scratch_pt[type].page_mfn);
1621			ppgtt_set_shadow_entry(spt, &old_se, index);
1622		}
1623	}
1624
1625	return 0;
1626fail:
1627	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1628			spt, we->val64, we->type);
1629	return ret;
1630}
1631
1632
1633
1634static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1635{
1636	return enable_out_of_sync
1637		&& gtt_type_is_pte_pt(spt->guest_page.type)
1638		&& spt->guest_page.write_cnt >= 2;
1639}
1640
1641static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1642		unsigned long index)
1643{
1644	set_bit(index, spt->post_shadow_bitmap);
1645	if (!list_empty(&spt->post_shadow_list))
1646		return;
1647
1648	list_add_tail(&spt->post_shadow_list,
1649			&spt->vgpu->gtt.post_shadow_list_head);
1650}
1651
1652/**
1653 * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1654 * @vgpu: a vGPU
1655 *
1656 * This function is called before submitting a guest workload to host,
1657 * to flush all the post shadows for a vGPU.
1658 *
1659 * Returns:
1660 * Zero on success, negative error code if failed.
1661 */
1662int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1663{
1664	struct list_head *pos, *n;
1665	struct intel_vgpu_ppgtt_spt *spt;
1666	struct intel_gvt_gtt_entry ge;
1667	unsigned long index;
1668	int ret;
1669
1670	list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1671		spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1672				post_shadow_list);
1673
1674		for_each_set_bit(index, spt->post_shadow_bitmap,
1675				GTT_ENTRY_NUM_IN_ONE_PAGE) {
1676			ppgtt_get_guest_entry(spt, &ge, index);
1677
1678			ret = ppgtt_handle_guest_write_page_table(spt,
1679							&ge, index);
1680			if (ret)
1681				return ret;
1682			clear_bit(index, spt->post_shadow_bitmap);
1683		}
1684		list_del_init(&spt->post_shadow_list);
1685	}
1686	return 0;
1687}
1688
1689static int ppgtt_handle_guest_write_page_table_bytes(
1690		struct intel_vgpu_ppgtt_spt *spt,
1691		u64 pa, void *p_data, int bytes)
1692{
1693	struct intel_vgpu *vgpu = spt->vgpu;
1694	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1695	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1696	struct intel_gvt_gtt_entry we, se;
1697	unsigned long index;
1698	int ret;
1699
1700	index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1701
1702	ppgtt_get_guest_entry(spt, &we, index);
1703
1704	/*
1705	 * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1706	 * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1707	 * ignored.
1708	 */
1709	if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1710	    (index % GTT_64K_PTE_STRIDE)) {
1711		gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1712			    index);
1713		return 0;
1714	}
1715
1716	if (bytes == info->gtt_entry_size) {
1717		ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1718		if (ret)
1719			return ret;
1720	} else {
1721		if (!test_bit(index, spt->post_shadow_bitmap)) {
1722			int type = spt->shadow_page.type;
1723
1724			ppgtt_get_shadow_entry(spt, &se, index);
1725			ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1726			if (ret)
1727				return ret;
1728			ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1729			ppgtt_set_shadow_entry(spt, &se, index);
1730		}
1731		ppgtt_set_post_shadow(spt, index);
1732	}
1733
1734	if (!enable_out_of_sync)
1735		return 0;
1736
1737	spt->guest_page.write_cnt++;
1738
1739	if (spt->guest_page.oos_page)
1740		ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1741				false, 0, vgpu);
1742
1743	if (can_do_out_of_sync(spt)) {
1744		if (!spt->guest_page.oos_page)
1745			ppgtt_allocate_oos_page(spt);
1746
1747		ret = ppgtt_set_guest_page_oos(spt);
1748		if (ret < 0)
1749			return ret;
1750	}
1751	return 0;
1752}
1753
1754static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1755{
1756	struct intel_vgpu *vgpu = mm->vgpu;
1757	struct intel_gvt *gvt = vgpu->gvt;
1758	struct intel_gvt_gtt *gtt = &gvt->gtt;
1759	const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1760	struct intel_gvt_gtt_entry se;
1761	int index;
1762
1763	if (!mm->ppgtt_mm.shadowed)
1764		return;
1765
1766	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1767		ppgtt_get_shadow_root_entry(mm, &se, index);
1768
1769		if (!ops->test_present(&se))
1770			continue;
1771
1772		ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1773		se.val64 = 0;
1774		ppgtt_set_shadow_root_entry(mm, &se, index);
1775
1776		trace_spt_guest_change(vgpu->id, "destroy root pointer",
1777				       NULL, se.type, se.val64, index);
1778	}
1779
1780	mm->ppgtt_mm.shadowed = false;
1781}
1782
1783
1784static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1785{
1786	struct intel_vgpu *vgpu = mm->vgpu;
1787	struct intel_gvt *gvt = vgpu->gvt;
1788	struct intel_gvt_gtt *gtt = &gvt->gtt;
1789	const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1790	struct intel_vgpu_ppgtt_spt *spt;
1791	struct intel_gvt_gtt_entry ge, se;
1792	int index, ret;
1793
1794	if (mm->ppgtt_mm.shadowed)
1795		return 0;
1796
1797	if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status))
1798		return -EINVAL;
1799
1800	mm->ppgtt_mm.shadowed = true;
1801
1802	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1803		ppgtt_get_guest_root_entry(mm, &ge, index);
1804
1805		if (!ops->test_present(&ge))
1806			continue;
1807
1808		trace_spt_guest_change(vgpu->id, __func__, NULL,
1809				       ge.type, ge.val64, index);
1810
1811		spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1812		if (IS_ERR(spt)) {
1813			gvt_vgpu_err("fail to populate guest root pointer\n");
1814			ret = PTR_ERR(spt);
1815			goto fail;
1816		}
1817		ppgtt_generate_shadow_entry(&se, spt, &ge);
1818		ppgtt_set_shadow_root_entry(mm, &se, index);
1819
1820		trace_spt_guest_change(vgpu->id, "populate root pointer",
1821				       NULL, se.type, se.val64, index);
1822	}
1823
1824	return 0;
1825fail:
1826	invalidate_ppgtt_mm(mm);
1827	return ret;
1828}
1829
1830static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1831{
1832	struct intel_vgpu_mm *mm;
1833
1834	mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1835	if (!mm)
1836		return NULL;
1837
1838	mm->vgpu = vgpu;
1839	kref_init(&mm->ref);
1840	atomic_set(&mm->pincount, 0);
1841
1842	return mm;
1843}
1844
1845static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1846{
1847	kfree(mm);
1848}
1849
1850/**
1851 * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1852 * @vgpu: a vGPU
1853 * @root_entry_type: ppgtt root entry type
1854 * @pdps: guest pdps.
1855 *
1856 * This function is used to create a ppgtt mm object for a vGPU.
1857 *
1858 * Returns:
1859 * Zero on success, negative error code in pointer if failed.
1860 */
1861struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1862		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
1863{
1864	struct intel_gvt *gvt = vgpu->gvt;
1865	struct intel_vgpu_mm *mm;
1866	int ret;
1867
1868	mm = vgpu_alloc_mm(vgpu);
1869	if (!mm)
1870		return ERR_PTR(-ENOMEM);
1871
1872	mm->type = INTEL_GVT_MM_PPGTT;
1873
1874	GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1875		   root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1876	mm->ppgtt_mm.root_entry_type = root_entry_type;
1877
1878	INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1879	INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1880	INIT_LIST_HEAD(&mm->ppgtt_mm.link);
1881
1882	if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1883		mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1884	else
1885		memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1886		       sizeof(mm->ppgtt_mm.guest_pdps));
1887
1888	ret = shadow_ppgtt_mm(mm);
1889	if (ret) {
1890		gvt_vgpu_err("failed to shadow ppgtt mm\n");
1891		vgpu_free_mm(mm);
1892		return ERR_PTR(ret);
1893	}
1894
1895	list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1896
1897	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1898	list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1899	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1900
1901	return mm;
1902}
1903
1904static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1905{
1906	struct intel_vgpu_mm *mm;
1907	unsigned long nr_entries;
1908
1909	mm = vgpu_alloc_mm(vgpu);
1910	if (!mm)
1911		return ERR_PTR(-ENOMEM);
1912
1913	mm->type = INTEL_GVT_MM_GGTT;
1914
1915	nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1916	mm->ggtt_mm.virtual_ggtt =
1917		vzalloc(array_size(nr_entries,
1918				   vgpu->gvt->device_info.gtt_entry_size));
1919	if (!mm->ggtt_mm.virtual_ggtt) {
1920		vgpu_free_mm(mm);
1921		return ERR_PTR(-ENOMEM);
1922	}
1923
1924	mm->ggtt_mm.host_ggtt_aperture = vzalloc((vgpu_aperture_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1925	if (!mm->ggtt_mm.host_ggtt_aperture) {
1926		vfree(mm->ggtt_mm.virtual_ggtt);
1927		vgpu_free_mm(mm);
1928		return ERR_PTR(-ENOMEM);
1929	}
1930
1931	mm->ggtt_mm.host_ggtt_hidden = vzalloc((vgpu_hidden_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1932	if (!mm->ggtt_mm.host_ggtt_hidden) {
1933		vfree(mm->ggtt_mm.host_ggtt_aperture);
1934		vfree(mm->ggtt_mm.virtual_ggtt);
1935		vgpu_free_mm(mm);
1936		return ERR_PTR(-ENOMEM);
1937	}
1938
1939	return mm;
1940}
1941
1942/**
1943 * _intel_vgpu_mm_release - destroy a mm object
1944 * @mm_ref: a kref object
1945 *
1946 * This function is used to destroy a mm object for vGPU
1947 *
1948 */
1949void _intel_vgpu_mm_release(struct kref *mm_ref)
1950{
1951	struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1952
1953	if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1954		gvt_err("vgpu mm pin count bug detected\n");
1955
1956	if (mm->type == INTEL_GVT_MM_PPGTT) {
1957		list_del(&mm->ppgtt_mm.list);
1958
1959		mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1960		list_del(&mm->ppgtt_mm.lru_list);
1961		mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1962
1963		invalidate_ppgtt_mm(mm);
1964	} else {
1965		vfree(mm->ggtt_mm.virtual_ggtt);
1966		vfree(mm->ggtt_mm.host_ggtt_aperture);
1967		vfree(mm->ggtt_mm.host_ggtt_hidden);
1968	}
1969
1970	vgpu_free_mm(mm);
1971}
1972
1973/**
1974 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1975 * @mm: a vGPU mm object
1976 *
1977 * This function is called when user doesn't want to use a vGPU mm object
1978 */
1979void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1980{
1981	atomic_dec_if_positive(&mm->pincount);
1982}
1983
1984/**
1985 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1986 * @mm: target vgpu mm
1987 *
1988 * This function is called when user wants to use a vGPU mm object. If this
1989 * mm object hasn't been shadowed yet, the shadow will be populated at this
1990 * time.
1991 *
1992 * Returns:
1993 * Zero on success, negative error code if failed.
1994 */
1995int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1996{
1997	int ret;
1998
1999	atomic_inc(&mm->pincount);
2000
2001	if (mm->type == INTEL_GVT_MM_PPGTT) {
2002		ret = shadow_ppgtt_mm(mm);
2003		if (ret)
2004			return ret;
2005
2006		mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2007		list_move_tail(&mm->ppgtt_mm.lru_list,
2008			       &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
2009		mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2010	}
2011
2012	return 0;
2013}
2014
2015static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
2016{
2017	struct intel_vgpu_mm *mm;
2018	struct list_head *pos, *n;
2019
2020	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
2021
2022	list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
2023		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
2024
2025		if (atomic_read(&mm->pincount))
2026			continue;
2027
2028		list_del_init(&mm->ppgtt_mm.lru_list);
2029		mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2030		invalidate_ppgtt_mm(mm);
2031		return 1;
2032	}
2033	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2034	return 0;
2035}
2036
2037/*
2038 * GMA translation APIs.
2039 */
2040static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2041		struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2042{
2043	struct intel_vgpu *vgpu = mm->vgpu;
2044	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2045	struct intel_vgpu_ppgtt_spt *s;
2046
2047	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2048	if (!s)
2049		return -ENXIO;
2050
2051	if (!guest)
2052		ppgtt_get_shadow_entry(s, e, index);
2053	else
2054		ppgtt_get_guest_entry(s, e, index);
2055	return 0;
2056}
2057
2058/**
2059 * intel_vgpu_gma_to_gpa - translate a gma to GPA
2060 * @mm: mm object. could be a PPGTT or GGTT mm object
2061 * @gma: graphics memory address in this mm object
2062 *
2063 * This function is used to translate a graphics memory address in specific
2064 * graphics memory space to guest physical address.
2065 *
2066 * Returns:
2067 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2068 */
2069unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2070{
2071	struct intel_vgpu *vgpu = mm->vgpu;
2072	struct intel_gvt *gvt = vgpu->gvt;
2073	const struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2074	const struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2075	unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2076	unsigned long gma_index[4];
2077	struct intel_gvt_gtt_entry e;
2078	int i, levels = 0;
2079	int ret;
2080
2081	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2082		   mm->type != INTEL_GVT_MM_PPGTT);
2083
2084	if (mm->type == INTEL_GVT_MM_GGTT) {
2085		if (!vgpu_gmadr_is_valid(vgpu, gma))
2086			goto err;
2087
2088		ggtt_get_guest_entry(mm, &e,
2089			gma_ops->gma_to_ggtt_pte_index(gma));
2090
2091		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2092			+ (gma & ~I915_GTT_PAGE_MASK);
2093
2094		trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2095	} else {
2096		switch (mm->ppgtt_mm.root_entry_type) {
2097		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2098			ppgtt_get_shadow_root_entry(mm, &e, 0);
2099
2100			gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2101			gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2102			gma_index[2] = gma_ops->gma_to_pde_index(gma);
2103			gma_index[3] = gma_ops->gma_to_pte_index(gma);
2104			levels = 4;
2105			break;
2106		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2107			ppgtt_get_shadow_root_entry(mm, &e,
2108					gma_ops->gma_to_l3_pdp_index(gma));
2109
2110			gma_index[0] = gma_ops->gma_to_pde_index(gma);
2111			gma_index[1] = gma_ops->gma_to_pte_index(gma);
2112			levels = 2;
2113			break;
2114		default:
2115			GEM_BUG_ON(1);
2116		}
2117
2118		/* walk the shadow page table and get gpa from guest entry */
2119		for (i = 0; i < levels; i++) {
2120			ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2121				(i == levels - 1));
2122			if (ret)
2123				goto err;
2124
2125			if (!pte_ops->test_present(&e)) {
2126				gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2127				goto err;
2128			}
2129		}
2130
2131		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2132					(gma & ~I915_GTT_PAGE_MASK);
2133		trace_gma_translate(vgpu->id, "ppgtt", 0,
2134				    mm->ppgtt_mm.root_entry_type, gma, gpa);
2135	}
2136
2137	return gpa;
2138err:
2139	gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2140	return INTEL_GVT_INVALID_ADDR;
2141}
2142
2143static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2144	unsigned int off, void *p_data, unsigned int bytes)
2145{
2146	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2147	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2148	unsigned long index = off >> info->gtt_entry_size_shift;
2149	unsigned long gma;
2150	struct intel_gvt_gtt_entry e;
2151
2152	if (bytes != 4 && bytes != 8)
2153		return -EINVAL;
2154
2155	gma = index << I915_GTT_PAGE_SHIFT;
2156	if (!intel_gvt_ggtt_validate_range(vgpu,
2157					   gma, 1 << I915_GTT_PAGE_SHIFT)) {
2158		gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma);
2159		memset(p_data, 0, bytes);
2160		return 0;
2161	}
2162
2163	ggtt_get_guest_entry(ggtt_mm, &e, index);
2164	memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2165			bytes);
2166	return 0;
2167}
2168
2169/**
2170 * intel_vgpu_emulate_ggtt_mmio_read - emulate GTT MMIO register read
2171 * @vgpu: a vGPU
2172 * @off: register offset
2173 * @p_data: data will be returned to guest
2174 * @bytes: data length
2175 *
2176 * This function is used to emulate the GTT MMIO register read
2177 *
2178 * Returns:
2179 * Zero on success, error code if failed.
2180 */
2181int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2182	void *p_data, unsigned int bytes)
2183{
2184	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2185	int ret;
2186
2187	if (bytes != 4 && bytes != 8)
2188		return -EINVAL;
2189
2190	off -= info->gtt_start_offset;
2191	ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2192	return ret;
2193}
2194
2195static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2196		struct intel_gvt_gtt_entry *entry)
2197{
2198	const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2199	unsigned long pfn;
2200
2201	pfn = pte_ops->get_pfn(entry);
2202	if (pfn != vgpu->gvt->gtt.scratch_mfn)
2203		intel_gvt_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
2204}
2205
2206static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2207	void *p_data, unsigned int bytes)
2208{
2209	struct intel_gvt *gvt = vgpu->gvt;
2210	const struct intel_gvt_device_info *info = &gvt->device_info;
2211	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2212	const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2213	unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2214	unsigned long gma, gfn;
2215	struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2216	struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2217	dma_addr_t dma_addr;
2218	int ret;
2219	struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2220	bool partial_update = false;
2221
2222	if (bytes != 4 && bytes != 8)
2223		return -EINVAL;
2224
2225	gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2226
2227	/* the VM may configure the whole GM space when ballooning is used */
2228	if (!vgpu_gmadr_is_valid(vgpu, gma))
2229		return 0;
2230
2231	e.type = GTT_TYPE_GGTT_PTE;
2232	memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2233			bytes);
2234
2235	/* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2236	 * write, save the first 4 bytes in a list and update virtual
2237	 * PTE. Only update shadow PTE when the second 4 bytes comes.
2238	 */
2239	if (bytes < info->gtt_entry_size) {
2240		bool found = false;
2241
2242		list_for_each_entry_safe(pos, n,
2243				&ggtt_mm->ggtt_mm.partial_pte_list, list) {
2244			if (g_gtt_index == pos->offset >>
2245					info->gtt_entry_size_shift) {
2246				if (off != pos->offset) {
2247					/* the second partial part*/
2248					int last_off = pos->offset &
2249						(info->gtt_entry_size - 1);
2250
2251					memcpy((void *)&e.val64 + last_off,
2252						(void *)&pos->data + last_off,
2253						bytes);
2254
2255					list_del(&pos->list);
2256					kfree(pos);
2257					found = true;
2258					break;
2259				}
2260
2261				/* update of the first partial part */
2262				pos->data = e.val64;
2263				ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2264				return 0;
2265			}
2266		}
2267
2268		if (!found) {
2269			/* the first partial part */
2270			partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2271			if (!partial_pte)
2272				return -ENOMEM;
2273			partial_pte->offset = off;
2274			partial_pte->data = e.val64;
2275			list_add_tail(&partial_pte->list,
2276				&ggtt_mm->ggtt_mm.partial_pte_list);
2277			partial_update = true;
2278		}
2279	}
2280
2281	if (!partial_update && (ops->test_present(&e))) {
2282		gfn = ops->get_pfn(&e);
2283		m.val64 = e.val64;
2284		m.type = e.type;
2285
2286		ret = intel_gvt_dma_map_guest_page(vgpu, gfn, PAGE_SIZE,
2287						   &dma_addr);
2288		if (ret) {
2289			gvt_vgpu_err("fail to populate guest ggtt entry\n");
2290			/* guest driver may read/write the entry when partial
2291			 * update the entry in this situation p2m will fail
2292			 * setting the shadow entry to point to a scratch page
2293			 */
2294			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2295		} else
2296			ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2297	} else {
2298		ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2299		ops->clear_present(&m);
2300	}
2301
2302	ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2303
2304	ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2305	ggtt_invalidate_pte(vgpu, &e);
2306
2307	ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2308	ggtt_invalidate(gvt->gt);
2309	return 0;
2310}
2311
2312/*
2313 * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2314 * @vgpu: a vGPU
2315 * @off: register offset
2316 * @p_data: data from guest write
2317 * @bytes: data length
2318 *
2319 * This function is used to emulate the GTT MMIO register write
2320 *
2321 * Returns:
2322 * Zero on success, error code if failed.
2323 */
2324int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2325		unsigned int off, void *p_data, unsigned int bytes)
2326{
2327	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2328	int ret;
2329	struct intel_vgpu_submission *s = &vgpu->submission;
2330	struct intel_engine_cs *engine;
2331	int i;
2332
2333	if (bytes != 4 && bytes != 8)
2334		return -EINVAL;
2335
2336	off -= info->gtt_start_offset;
2337	ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2338
2339	/* if ggtt of last submitted context is written,
2340	 * that context is probably got unpinned.
2341	 * Set last shadowed ctx to invalid.
2342	 */
2343	for_each_engine(engine, vgpu->gvt->gt, i) {
2344		if (!s->last_ctx[i].valid)
2345			continue;
2346
2347		if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift))
2348			s->last_ctx[i].valid = false;
2349	}
2350	return ret;
2351}
2352
2353static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2354		enum intel_gvt_gtt_type type)
2355{
2356	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
2357	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2358	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2359	int page_entry_num = I915_GTT_PAGE_SIZE >>
2360				vgpu->gvt->device_info.gtt_entry_size_shift;
2361	void *scratch_pt;
2362	int i;
2363	struct device *dev = vgpu->gvt->gt->i915->drm.dev;
2364	dma_addr_t daddr;
2365
2366	if (drm_WARN_ON(&i915->drm,
2367			type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2368		return -EINVAL;
2369
2370	scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2371	if (!scratch_pt) {
2372		gvt_vgpu_err("fail to allocate scratch page\n");
2373		return -ENOMEM;
2374	}
2375
2376	daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0, 4096, DMA_BIDIRECTIONAL);
2377	if (dma_mapping_error(dev, daddr)) {
2378		gvt_vgpu_err("fail to dmamap scratch_pt\n");
2379		__free_page(virt_to_page(scratch_pt));
2380		return -ENOMEM;
2381	}
2382	gtt->scratch_pt[type].page_mfn =
2383		(unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2384	gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2385	gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2386			vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2387
2388	/* Build the tree by full filled the scratch pt with the entries which
2389	 * point to the next level scratch pt or scratch page. The
2390	 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2391	 * 'type' pt.
2392	 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2393	 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2394	 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2395	 */
2396	if (type > GTT_TYPE_PPGTT_PTE_PT) {
2397		struct intel_gvt_gtt_entry se;
2398
2399		memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2400		se.type = get_entry_type(type - 1);
2401		ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2402
2403		/* The entry parameters like present/writeable/cache type
2404		 * set to the same as i915's scratch page tree.
2405		 */
2406		se.val64 |= GEN8_PAGE_PRESENT | GEN8_PAGE_RW;
2407		if (type == GTT_TYPE_PPGTT_PDE_PT)
2408			se.val64 |= PPAT_CACHED;
2409
2410		for (i = 0; i < page_entry_num; i++)
2411			ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2412	}
2413
2414	return 0;
2415}
2416
2417static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2418{
2419	int i;
2420	struct device *dev = vgpu->gvt->gt->i915->drm.dev;
2421	dma_addr_t daddr;
2422
2423	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2424		if (vgpu->gtt.scratch_pt[i].page != NULL) {
2425			daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2426					I915_GTT_PAGE_SHIFT);
2427			dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
2428			__free_page(vgpu->gtt.scratch_pt[i].page);
2429			vgpu->gtt.scratch_pt[i].page = NULL;
2430			vgpu->gtt.scratch_pt[i].page_mfn = 0;
2431		}
2432	}
2433
2434	return 0;
2435}
2436
2437static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2438{
2439	int i, ret;
2440
2441	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2442		ret = alloc_scratch_pages(vgpu, i);
2443		if (ret)
2444			goto err;
2445	}
2446
2447	return 0;
2448
2449err:
2450	release_scratch_page_tree(vgpu);
2451	return ret;
2452}
2453
2454/**
2455 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2456 * @vgpu: a vGPU
2457 *
2458 * This function is used to initialize per-vGPU graphics memory virtualization
2459 * components.
2460 *
2461 * Returns:
2462 * Zero on success, error code if failed.
2463 */
2464int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2465{
2466	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2467
2468	INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2469
2470	INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2471	INIT_LIST_HEAD(&gtt->oos_page_list_head);
2472	INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2473
2474	gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2475	if (IS_ERR(gtt->ggtt_mm)) {
2476		gvt_vgpu_err("fail to create mm for ggtt.\n");
2477		return PTR_ERR(gtt->ggtt_mm);
2478	}
2479
2480	intel_vgpu_reset_ggtt(vgpu, false);
2481
2482	INIT_LIST_HEAD(&gtt->ggtt_mm->ggtt_mm.partial_pte_list);
2483
2484	return create_scratch_page_tree(vgpu);
2485}
2486
2487void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2488{
2489	struct list_head *pos, *n;
2490	struct intel_vgpu_mm *mm;
2491
2492	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2493		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2494		intel_vgpu_destroy_mm(mm);
2495	}
2496
2497	if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2498		gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2499
2500	if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2501		gvt_err("Why we still has spt not freed?\n");
2502		ppgtt_free_all_spt(vgpu);
2503	}
2504}
2505
2506static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2507{
2508	struct intel_gvt_partial_pte *pos, *next;
2509
2510	list_for_each_entry_safe(pos, next,
2511				 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2512				 list) {
2513		gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2514			pos->offset, pos->data);
2515		kfree(pos);
2516	}
2517	intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2518	vgpu->gtt.ggtt_mm = NULL;
2519}
2520
2521/**
2522 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2523 * @vgpu: a vGPU
2524 *
2525 * This function is used to clean up per-vGPU graphics memory virtualization
2526 * components.
2527 *
2528 * Returns:
2529 * Zero on success, error code if failed.
2530 */
2531void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2532{
2533	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2534	intel_vgpu_destroy_ggtt_mm(vgpu);
2535	release_scratch_page_tree(vgpu);
2536}
2537
2538static void clean_spt_oos(struct intel_gvt *gvt)
2539{
2540	struct intel_gvt_gtt *gtt = &gvt->gtt;
2541	struct list_head *pos, *n;
2542	struct intel_vgpu_oos_page *oos_page;
2543
2544	WARN(!list_empty(&gtt->oos_page_use_list_head),
2545		"someone is still using oos page\n");
2546
2547	list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2548		oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2549		list_del(&oos_page->list);
2550		free_page((unsigned long)oos_page->mem);
2551		kfree(oos_page);
2552	}
2553}
2554
2555static int setup_spt_oos(struct intel_gvt *gvt)
2556{
2557	struct intel_gvt_gtt *gtt = &gvt->gtt;
2558	struct intel_vgpu_oos_page *oos_page;
2559	int i;
2560	int ret;
2561
2562	INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2563	INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2564
2565	for (i = 0; i < preallocated_oos_pages; i++) {
2566		oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2567		if (!oos_page) {
2568			ret = -ENOMEM;
2569			goto fail;
2570		}
2571		oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
2572		if (!oos_page->mem) {
2573			ret = -ENOMEM;
2574			kfree(oos_page);
2575			goto fail;
2576		}
2577
2578		INIT_LIST_HEAD(&oos_page->list);
2579		INIT_LIST_HEAD(&oos_page->vm_list);
2580		oos_page->id = i;
2581		list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2582	}
2583
2584	gvt_dbg_mm("%d oos pages preallocated\n", i);
2585
2586	return 0;
2587fail:
2588	clean_spt_oos(gvt);
2589	return ret;
2590}
2591
2592/**
2593 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2594 * @vgpu: a vGPU
2595 * @pdps: pdp root array
2596 *
2597 * This function is used to find a PPGTT mm object from mm object pool
2598 *
2599 * Returns:
2600 * pointer to mm object on success, NULL if failed.
2601 */
2602struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2603		u64 pdps[])
2604{
2605	struct intel_vgpu_mm *mm;
2606	struct list_head *pos;
2607
2608	list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2609		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2610
2611		switch (mm->ppgtt_mm.root_entry_type) {
2612		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2613			if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2614				return mm;
2615			break;
2616		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2617			if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2618				    sizeof(mm->ppgtt_mm.guest_pdps)))
2619				return mm;
2620			break;
2621		default:
2622			GEM_BUG_ON(1);
2623		}
2624	}
2625	return NULL;
2626}
2627
2628/**
2629 * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2630 * @vgpu: a vGPU
2631 * @root_entry_type: ppgtt root entry type
2632 * @pdps: guest pdps
2633 *
2634 * This function is used to find or create a PPGTT mm object from a guest.
2635 *
2636 * Returns:
2637 * Zero on success, negative error code if failed.
2638 */
2639struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2640		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
2641{
2642	struct intel_vgpu_mm *mm;
2643
2644	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2645	if (mm) {
2646		intel_vgpu_mm_get(mm);
2647	} else {
2648		mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2649		if (IS_ERR(mm))
2650			gvt_vgpu_err("fail to create mm\n");
2651	}
2652	return mm;
2653}
2654
2655/**
2656 * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2657 * @vgpu: a vGPU
2658 * @pdps: guest pdps
2659 *
2660 * This function is used to find a PPGTT mm object from a guest and destroy it.
2661 *
2662 * Returns:
2663 * Zero on success, negative error code if failed.
2664 */
2665int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2666{
2667	struct intel_vgpu_mm *mm;
2668
2669	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2670	if (!mm) {
2671		gvt_vgpu_err("fail to find ppgtt instance.\n");
2672		return -EINVAL;
2673	}
2674	intel_vgpu_mm_put(mm);
2675	return 0;
2676}
2677
2678/**
2679 * intel_gvt_init_gtt - initialize mm components of a GVT device
2680 * @gvt: GVT device
2681 *
2682 * This function is called at the initialization stage, to initialize
2683 * the mm components of a GVT device.
2684 *
2685 * Returns:
2686 * zero on success, negative error code if failed.
2687 */
2688int intel_gvt_init_gtt(struct intel_gvt *gvt)
2689{
2690	int ret;
2691	void *page;
2692	struct device *dev = gvt->gt->i915->drm.dev;
2693	dma_addr_t daddr;
2694
2695	gvt_dbg_core("init gtt\n");
2696
2697	gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2698	gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2699
2700	page = (void *)get_zeroed_page(GFP_KERNEL);
2701	if (!page) {
2702		gvt_err("fail to allocate scratch ggtt page\n");
2703		return -ENOMEM;
2704	}
2705
2706	daddr = dma_map_page(dev, virt_to_page(page), 0,
2707			4096, DMA_BIDIRECTIONAL);
2708	if (dma_mapping_error(dev, daddr)) {
2709		gvt_err("fail to dmamap scratch ggtt page\n");
2710		__free_page(virt_to_page(page));
2711		return -ENOMEM;
2712	}
2713
2714	gvt->gtt.scratch_page = virt_to_page(page);
2715	gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2716
2717	if (enable_out_of_sync) {
2718		ret = setup_spt_oos(gvt);
2719		if (ret) {
2720			gvt_err("fail to initialize SPT oos\n");
2721			dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
2722			__free_page(gvt->gtt.scratch_page);
2723			return ret;
2724		}
2725	}
2726	INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2727	mutex_init(&gvt->gtt.ppgtt_mm_lock);
2728	return 0;
2729}
2730
2731/**
2732 * intel_gvt_clean_gtt - clean up mm components of a GVT device
2733 * @gvt: GVT device
2734 *
2735 * This function is called at the driver unloading stage, to clean up
2736 * the mm components of a GVT device.
2737 *
2738 */
2739void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2740{
2741	struct device *dev = gvt->gt->i915->drm.dev;
2742	dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2743					I915_GTT_PAGE_SHIFT);
2744
2745	dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
2746
2747	__free_page(gvt->gtt.scratch_page);
2748
2749	if (enable_out_of_sync)
2750		clean_spt_oos(gvt);
2751}
2752
2753/**
2754 * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2755 * @vgpu: a vGPU
2756 *
2757 * This function is called when invalidate all PPGTT instances of a vGPU.
2758 *
2759 */
2760void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2761{
2762	struct list_head *pos, *n;
2763	struct intel_vgpu_mm *mm;
2764
2765	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2766		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2767		if (mm->type == INTEL_GVT_MM_PPGTT) {
2768			mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2769			list_del_init(&mm->ppgtt_mm.lru_list);
2770			mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2771			if (mm->ppgtt_mm.shadowed)
2772				invalidate_ppgtt_mm(mm);
2773		}
2774	}
2775}
2776
2777/**
2778 * intel_vgpu_reset_ggtt - reset the GGTT entry
2779 * @vgpu: a vGPU
2780 * @invalidate_old: invalidate old entries
2781 *
2782 * This function is called at the vGPU create stage
2783 * to reset all the GGTT entries.
2784 *
2785 */
2786void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2787{
2788	struct intel_gvt *gvt = vgpu->gvt;
2789	const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2790	struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2791	struct intel_gvt_gtt_entry old_entry;
2792	u32 index;
2793	u32 num_entries;
2794
2795	pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2796	pte_ops->set_present(&entry);
2797
2798	index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2799	num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2800	while (num_entries--) {
2801		if (invalidate_old) {
2802			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2803			ggtt_invalidate_pte(vgpu, &old_entry);
2804		}
2805		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2806	}
2807
2808	index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2809	num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2810	while (num_entries--) {
2811		if (invalidate_old) {
2812			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2813			ggtt_invalidate_pte(vgpu, &old_entry);
2814		}
2815		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2816	}
2817
2818	ggtt_invalidate(gvt->gt);
2819}
2820
2821/**
2822 * intel_gvt_restore_ggtt - restore all vGPU's ggtt entries
2823 * @gvt: intel gvt device
2824 *
2825 * This function is called at driver resume stage to restore
2826 * GGTT entries of every vGPU.
2827 *
2828 */
2829void intel_gvt_restore_ggtt(struct intel_gvt *gvt)
2830{
2831	struct intel_vgpu *vgpu;
2832	struct intel_vgpu_mm *mm;
2833	int id;
2834	gen8_pte_t pte;
2835	u32 idx, num_low, num_hi, offset;
2836
2837	/* Restore dirty host ggtt for all vGPUs */
2838	idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
2839		mm = vgpu->gtt.ggtt_mm;
2840
2841		num_low = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2842		offset = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2843		for (idx = 0; idx < num_low; idx++) {
2844			pte = mm->ggtt_mm.host_ggtt_aperture[idx];
2845			if (pte & GEN8_PAGE_PRESENT)
2846				write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2847		}
2848
2849		num_hi = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2850		offset = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2851		for (idx = 0; idx < num_hi; idx++) {
2852			pte = mm->ggtt_mm.host_ggtt_hidden[idx];
2853			if (pte & GEN8_PAGE_PRESENT)
2854				write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2855		}
2856	}
2857}