Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: MIT
   2/*
   3 * Copyright © 2022 Intel Corporation
   4 */
   5
   6#include <linux/debugfs.h>
   7
   8#include <drm/drm_blend.h>
   9
  10#include "i915_drv.h"
  11#include "i915_reg.h"
  12#include "i9xx_wm.h"
  13#include "intel_atomic.h"
  14#include "intel_atomic_plane.h"
  15#include "intel_bw.h"
  16#include "intel_cdclk.h"
  17#include "intel_crtc.h"
  18#include "intel_cursor_regs.h"
  19#include "intel_de.h"
  20#include "intel_display.h"
  21#include "intel_display_power.h"
  22#include "intel_display_types.h"
  23#include "intel_fb.h"
  24#include "intel_fixed.h"
  25#include "intel_pcode.h"
  26#include "intel_wm.h"
  27#include "skl_universal_plane_regs.h"
  28#include "skl_watermark.h"
  29#include "skl_watermark_regs.h"
  30
  31/*It is expected that DSB can do posted writes to every register in
  32 * the pipe and planes within 100us. For flip queue use case, the
  33 * recommended DSB execution time is 100us + one SAGV block time.
  34 */
  35#define DSB_EXE_TIME 100
  36
  37static void skl_sagv_disable(struct drm_i915_private *i915);
  38
  39/* Stores plane specific WM parameters */
  40struct skl_wm_params {
  41	bool x_tiled, y_tiled;
  42	bool rc_surface;
  43	bool is_planar;
  44	u32 width;
  45	u8 cpp;
  46	u32 plane_pixel_rate;
  47	u32 y_min_scanlines;
  48	u32 plane_bytes_per_line;
  49	uint_fixed_16_16_t plane_blocks_per_line;
  50	uint_fixed_16_16_t y_tile_minimum;
  51	u32 linetime_us;
  52	u32 dbuf_block_size;
  53};
  54
  55u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *i915)
  56{
  57	u8 enabled_slices = 0;
  58	enum dbuf_slice slice;
  59
  60	for_each_dbuf_slice(i915, slice) {
  61		if (intel_de_read(i915, DBUF_CTL_S(slice)) & DBUF_POWER_STATE)
  62			enabled_slices |= BIT(slice);
  63	}
  64
  65	return enabled_slices;
  66}
  67
  68/*
  69 * FIXME: We still don't have the proper code detect if we need to apply the WA,
  70 * so assume we'll always need it in order to avoid underruns.
  71 */
  72static bool skl_needs_memory_bw_wa(struct drm_i915_private *i915)
  73{
  74	return DISPLAY_VER(i915) == 9;
  75}
  76
  77bool
  78intel_has_sagv(struct drm_i915_private *i915)
  79{
  80	return HAS_SAGV(i915) &&
  81		i915->display.sagv.status != I915_SAGV_NOT_CONTROLLED;
  82}
  83
  84static u32
  85intel_sagv_block_time(struct drm_i915_private *i915)
  86{
  87	if (DISPLAY_VER(i915) >= 14) {
  88		u32 val;
  89
  90		val = intel_de_read(i915, MTL_LATENCY_SAGV);
  91
  92		return REG_FIELD_GET(MTL_LATENCY_QCLK_SAGV, val);
  93	} else if (DISPLAY_VER(i915) >= 12) {
  94		u32 val = 0;
  95		int ret;
  96
  97		ret = snb_pcode_read(&i915->uncore,
  98				     GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
  99				     &val, NULL);
 100		if (ret) {
 101			drm_dbg_kms(&i915->drm, "Couldn't read SAGV block time!\n");
 102			return 0;
 103		}
 104
 105		return val;
 106	} else if (DISPLAY_VER(i915) == 11) {
 107		return 10;
 108	} else if (HAS_SAGV(i915)) {
 109		return 30;
 110	} else {
 111		return 0;
 112	}
 113}
 114
 115static void intel_sagv_init(struct drm_i915_private *i915)
 116{
 117	if (!HAS_SAGV(i915))
 118		i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
 119
 120	/*
 121	 * Probe to see if we have working SAGV control.
 122	 * For icl+ this was already determined by intel_bw_init_hw().
 123	 */
 124	if (DISPLAY_VER(i915) < 11)
 125		skl_sagv_disable(i915);
 126
 127	drm_WARN_ON(&i915->drm, i915->display.sagv.status == I915_SAGV_UNKNOWN);
 128
 129	i915->display.sagv.block_time_us = intel_sagv_block_time(i915);
 130
 131	drm_dbg_kms(&i915->drm, "SAGV supported: %s, original SAGV block time: %u us\n",
 132		    str_yes_no(intel_has_sagv(i915)), i915->display.sagv.block_time_us);
 133
 134	/* avoid overflow when adding with wm0 latency/etc. */
 135	if (drm_WARN(&i915->drm, i915->display.sagv.block_time_us > U16_MAX,
 136		     "Excessive SAGV block time %u, ignoring\n",
 137		     i915->display.sagv.block_time_us))
 138		i915->display.sagv.block_time_us = 0;
 139
 140	if (!intel_has_sagv(i915))
 141		i915->display.sagv.block_time_us = 0;
 142}
 143
 144/*
 145 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 146 * depending on power and performance requirements. The display engine access
 147 * to system memory is blocked during the adjustment time. Because of the
 148 * blocking time, having this enabled can cause full system hangs and/or pipe
 149 * underruns if we don't meet all of the following requirements:
 150 *
 151 *  - <= 1 pipe enabled
 152 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 153 *  - We're not using an interlaced display configuration
 154 */
 155static void skl_sagv_enable(struct drm_i915_private *i915)
 156{
 157	int ret;
 158
 159	if (!intel_has_sagv(i915))
 160		return;
 161
 162	if (i915->display.sagv.status == I915_SAGV_ENABLED)
 163		return;
 164
 165	drm_dbg_kms(&i915->drm, "Enabling SAGV\n");
 166	ret = snb_pcode_write(&i915->uncore, GEN9_PCODE_SAGV_CONTROL,
 167			      GEN9_SAGV_ENABLE);
 168
 169	/* We don't need to wait for SAGV when enabling */
 170
 171	/*
 172	 * Some skl systems, pre-release machines in particular,
 173	 * don't actually have SAGV.
 174	 */
 175	if (IS_SKYLAKE(i915) && ret == -ENXIO) {
 176		drm_dbg(&i915->drm, "No SAGV found on system, ignoring\n");
 177		i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
 178		return;
 179	} else if (ret < 0) {
 180		drm_err(&i915->drm, "Failed to enable SAGV\n");
 181		return;
 182	}
 183
 184	i915->display.sagv.status = I915_SAGV_ENABLED;
 185}
 186
 187static void skl_sagv_disable(struct drm_i915_private *i915)
 188{
 189	int ret;
 190
 191	if (!intel_has_sagv(i915))
 192		return;
 193
 194	if (i915->display.sagv.status == I915_SAGV_DISABLED)
 195		return;
 196
 197	drm_dbg_kms(&i915->drm, "Disabling SAGV\n");
 198	/* bspec says to keep retrying for at least 1 ms */
 199	ret = skl_pcode_request(&i915->uncore, GEN9_PCODE_SAGV_CONTROL,
 200				GEN9_SAGV_DISABLE,
 201				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
 202				1);
 203	/*
 204	 * Some skl systems, pre-release machines in particular,
 205	 * don't actually have SAGV.
 206	 */
 207	if (IS_SKYLAKE(i915) && ret == -ENXIO) {
 208		drm_dbg(&i915->drm, "No SAGV found on system, ignoring\n");
 209		i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
 210		return;
 211	} else if (ret < 0) {
 212		drm_err(&i915->drm, "Failed to disable SAGV (%d)\n", ret);
 213		return;
 214	}
 215
 216	i915->display.sagv.status = I915_SAGV_DISABLED;
 217}
 218
 219static void skl_sagv_pre_plane_update(struct intel_atomic_state *state)
 220{
 221	struct drm_i915_private *i915 = to_i915(state->base.dev);
 222	const struct intel_bw_state *new_bw_state =
 223		intel_atomic_get_new_bw_state(state);
 224
 225	if (!new_bw_state)
 226		return;
 227
 228	if (!intel_can_enable_sagv(i915, new_bw_state))
 229		skl_sagv_disable(i915);
 230}
 231
 232static void skl_sagv_post_plane_update(struct intel_atomic_state *state)
 233{
 234	struct drm_i915_private *i915 = to_i915(state->base.dev);
 235	const struct intel_bw_state *new_bw_state =
 236		intel_atomic_get_new_bw_state(state);
 237
 238	if (!new_bw_state)
 239		return;
 240
 241	if (intel_can_enable_sagv(i915, new_bw_state))
 242		skl_sagv_enable(i915);
 243}
 244
 245static void icl_sagv_pre_plane_update(struct intel_atomic_state *state)
 246{
 247	struct drm_i915_private *i915 = to_i915(state->base.dev);
 248	const struct intel_bw_state *old_bw_state =
 249		intel_atomic_get_old_bw_state(state);
 250	const struct intel_bw_state *new_bw_state =
 251		intel_atomic_get_new_bw_state(state);
 252	u16 old_mask, new_mask;
 253
 254	if (!new_bw_state)
 255		return;
 256
 257	old_mask = old_bw_state->qgv_points_mask;
 258	new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;
 259
 260	if (old_mask == new_mask)
 261		return;
 262
 263	WARN_ON(!new_bw_state->base.changed);
 264
 265	drm_dbg_kms(&i915->drm, "Restricting QGV points: 0x%x -> 0x%x\n",
 266		    old_mask, new_mask);
 267
 268	/*
 269	 * Restrict required qgv points before updating the configuration.
 270	 * According to BSpec we can't mask and unmask qgv points at the same
 271	 * time. Also masking should be done before updating the configuration
 272	 * and unmasking afterwards.
 273	 */
 274	icl_pcode_restrict_qgv_points(i915, new_mask);
 275}
 276
 277static void icl_sagv_post_plane_update(struct intel_atomic_state *state)
 278{
 279	struct drm_i915_private *i915 = to_i915(state->base.dev);
 280	const struct intel_bw_state *old_bw_state =
 281		intel_atomic_get_old_bw_state(state);
 282	const struct intel_bw_state *new_bw_state =
 283		intel_atomic_get_new_bw_state(state);
 284	u16 old_mask, new_mask;
 285
 286	if (!new_bw_state)
 287		return;
 288
 289	old_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;
 290	new_mask = new_bw_state->qgv_points_mask;
 291
 292	if (old_mask == new_mask)
 293		return;
 294
 295	WARN_ON(!new_bw_state->base.changed);
 296
 297	drm_dbg_kms(&i915->drm, "Relaxing QGV points: 0x%x -> 0x%x\n",
 298		    old_mask, new_mask);
 299
 300	/*
 301	 * Allow required qgv points after updating the configuration.
 302	 * According to BSpec we can't mask and unmask qgv points at the same
 303	 * time. Also masking should be done before updating the configuration
 304	 * and unmasking afterwards.
 305	 */
 306	icl_pcode_restrict_qgv_points(i915, new_mask);
 307}
 308
 309void intel_sagv_pre_plane_update(struct intel_atomic_state *state)
 310{
 311	struct drm_i915_private *i915 = to_i915(state->base.dev);
 312
 313	/*
 314	 * Just return if we can't control SAGV or don't have it.
 315	 * This is different from situation when we have SAGV but just can't
 316	 * afford it due to DBuf limitation - in case if SAGV is completely
 317	 * disabled in a BIOS, we are not even allowed to send a PCode request,
 318	 * as it will throw an error. So have to check it here.
 319	 */
 320	if (!intel_has_sagv(i915))
 321		return;
 322
 323	if (DISPLAY_VER(i915) >= 11)
 324		icl_sagv_pre_plane_update(state);
 325	else
 326		skl_sagv_pre_plane_update(state);
 327}
 328
 329void intel_sagv_post_plane_update(struct intel_atomic_state *state)
 330{
 331	struct drm_i915_private *i915 = to_i915(state->base.dev);
 332
 333	/*
 334	 * Just return if we can't control SAGV or don't have it.
 335	 * This is different from situation when we have SAGV but just can't
 336	 * afford it due to DBuf limitation - in case if SAGV is completely
 337	 * disabled in a BIOS, we are not even allowed to send a PCode request,
 338	 * as it will throw an error. So have to check it here.
 339	 */
 340	if (!intel_has_sagv(i915))
 341		return;
 342
 343	if (DISPLAY_VER(i915) >= 11)
 344		icl_sagv_post_plane_update(state);
 345	else
 346		skl_sagv_post_plane_update(state);
 347}
 348
 349static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
 350{
 351	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 352	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
 353	enum plane_id plane_id;
 354	int max_level = INT_MAX;
 355
 356	if (!intel_has_sagv(i915))
 357		return false;
 358
 359	if (!crtc_state->hw.active)
 360		return true;
 361
 362	if (crtc_state->hw.pipe_mode.flags & DRM_MODE_FLAG_INTERLACE)
 363		return false;
 364
 365	for_each_plane_id_on_crtc(crtc, plane_id) {
 366		const struct skl_plane_wm *wm =
 367			&crtc_state->wm.skl.optimal.planes[plane_id];
 368		int level;
 369
 370		/* Skip this plane if it's not enabled */
 371		if (!wm->wm[0].enable)
 372			continue;
 373
 374		/* Find the highest enabled wm level for this plane */
 375		for (level = i915->display.wm.num_levels - 1;
 376		     !wm->wm[level].enable; --level)
 377		     { }
 378
 379		/* Highest common enabled wm level for all planes */
 380		max_level = min(level, max_level);
 381	}
 382
 383	/* No enabled planes? */
 384	if (max_level == INT_MAX)
 385		return true;
 386
 387	for_each_plane_id_on_crtc(crtc, plane_id) {
 388		const struct skl_plane_wm *wm =
 389			&crtc_state->wm.skl.optimal.planes[plane_id];
 390
 391		/*
 392		 * All enabled planes must have enabled a common wm level that
 393		 * can tolerate memory latencies higher than sagv_block_time_us
 394		 */
 395		if (wm->wm[0].enable && !wm->wm[max_level].can_sagv)
 396			return false;
 397	}
 398
 399	return true;
 400}
 401
 402static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
 403{
 404	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 405	enum plane_id plane_id;
 406
 407	if (!crtc_state->hw.active)
 408		return true;
 409
 410	for_each_plane_id_on_crtc(crtc, plane_id) {
 411		const struct skl_plane_wm *wm =
 412			&crtc_state->wm.skl.optimal.planes[plane_id];
 413
 414		if (wm->wm[0].enable && !wm->sagv.wm0.enable)
 415			return false;
 416	}
 417
 418	return true;
 419}
 420
 421static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
 422{
 423	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 424	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
 425
 426	if (!i915->display.params.enable_sagv)
 427		return false;
 428
 429	if (DISPLAY_VER(i915) >= 12)
 430		return tgl_crtc_can_enable_sagv(crtc_state);
 431	else
 432		return skl_crtc_can_enable_sagv(crtc_state);
 433}
 434
 435bool intel_can_enable_sagv(struct drm_i915_private *i915,
 436			   const struct intel_bw_state *bw_state)
 437{
 438	if (DISPLAY_VER(i915) < 11 &&
 439	    bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes))
 440		return false;
 441
 442	return bw_state->pipe_sagv_reject == 0;
 443}
 444
 445static int intel_compute_sagv_mask(struct intel_atomic_state *state)
 446{
 447	struct drm_i915_private *i915 = to_i915(state->base.dev);
 448	int ret;
 449	struct intel_crtc *crtc;
 450	struct intel_crtc_state *new_crtc_state;
 451	struct intel_bw_state *new_bw_state = NULL;
 452	const struct intel_bw_state *old_bw_state = NULL;
 453	int i;
 454
 455	for_each_new_intel_crtc_in_state(state, crtc,
 456					 new_crtc_state, i) {
 457		struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal;
 458
 459		new_bw_state = intel_atomic_get_bw_state(state);
 460		if (IS_ERR(new_bw_state))
 461			return PTR_ERR(new_bw_state);
 462
 463		old_bw_state = intel_atomic_get_old_bw_state(state);
 464
 465		/*
 466		 * We store use_sagv_wm in the crtc state rather than relying on
 467		 * that bw state since we have no convenient way to get at the
 468		 * latter from the plane commit hooks (especially in the legacy
 469		 * cursor case).
 470		 *
 471		 * drm_atomic_check_only() gets upset if we pull more crtcs
 472		 * into the state, so we have to calculate this based on the
 473		 * individual intel_crtc_can_enable_sagv() rather than
 474		 * the overall intel_can_enable_sagv(). Otherwise the
 475		 * crtcs not included in the commit would not switch to the
 476		 * SAGV watermarks when we are about to enable SAGV, and that
 477		 * would lead to underruns. This does mean extra power draw
 478		 * when only a subset of the crtcs are blocking SAGV as the
 479		 * other crtcs can't be allowed to use the more optimal
 480		 * normal (ie. non-SAGV) watermarks.
 481		 */
 482		pipe_wm->use_sagv_wm = !HAS_HW_SAGV_WM(i915) &&
 483			DISPLAY_VER(i915) >= 12 &&
 484			intel_crtc_can_enable_sagv(new_crtc_state);
 485
 486		if (intel_crtc_can_enable_sagv(new_crtc_state))
 487			new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe);
 488		else
 489			new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe);
 490	}
 491
 492	if (!new_bw_state)
 493		return 0;
 494
 495	new_bw_state->active_pipes =
 496		intel_calc_active_pipes(state, old_bw_state->active_pipes);
 497
 498	if (new_bw_state->active_pipes != old_bw_state->active_pipes) {
 499		ret = intel_atomic_lock_global_state(&new_bw_state->base);
 500		if (ret)
 501			return ret;
 502	}
 503
 504	if (intel_can_enable_sagv(i915, new_bw_state) !=
 505	    intel_can_enable_sagv(i915, old_bw_state)) {
 506		ret = intel_atomic_serialize_global_state(&new_bw_state->base);
 507		if (ret)
 508			return ret;
 509	} else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) {
 510		ret = intel_atomic_lock_global_state(&new_bw_state->base);
 511		if (ret)
 512			return ret;
 513	}
 514
 515	return 0;
 516}
 517
 518static u16 skl_ddb_entry_init(struct skl_ddb_entry *entry,
 519			      u16 start, u16 end)
 520{
 521	entry->start = start;
 522	entry->end = end;
 523
 524	return end;
 525}
 526
 527static int intel_dbuf_slice_size(struct drm_i915_private *i915)
 528{
 529	return DISPLAY_INFO(i915)->dbuf.size /
 530		hweight8(DISPLAY_INFO(i915)->dbuf.slice_mask);
 531}
 532
 533static void
 534skl_ddb_entry_for_slices(struct drm_i915_private *i915, u8 slice_mask,
 535			 struct skl_ddb_entry *ddb)
 536{
 537	int slice_size = intel_dbuf_slice_size(i915);
 538
 539	if (!slice_mask) {
 540		ddb->start = 0;
 541		ddb->end = 0;
 542		return;
 543	}
 544
 545	ddb->start = (ffs(slice_mask) - 1) * slice_size;
 546	ddb->end = fls(slice_mask) * slice_size;
 547
 548	WARN_ON(ddb->start >= ddb->end);
 549	WARN_ON(ddb->end > DISPLAY_INFO(i915)->dbuf.size);
 550}
 551
 552static unsigned int mbus_ddb_offset(struct drm_i915_private *i915, u8 slice_mask)
 553{
 554	struct skl_ddb_entry ddb;
 555
 556	if (slice_mask & (BIT(DBUF_S1) | BIT(DBUF_S2)))
 557		slice_mask = BIT(DBUF_S1);
 558	else if (slice_mask & (BIT(DBUF_S3) | BIT(DBUF_S4)))
 559		slice_mask = BIT(DBUF_S3);
 560
 561	skl_ddb_entry_for_slices(i915, slice_mask, &ddb);
 562
 563	return ddb.start;
 564}
 565
 566u32 skl_ddb_dbuf_slice_mask(struct drm_i915_private *i915,
 567			    const struct skl_ddb_entry *entry)
 568{
 569	int slice_size = intel_dbuf_slice_size(i915);
 570	enum dbuf_slice start_slice, end_slice;
 571	u8 slice_mask = 0;
 572
 573	if (!skl_ddb_entry_size(entry))
 574		return 0;
 575
 576	start_slice = entry->start / slice_size;
 577	end_slice = (entry->end - 1) / slice_size;
 578
 579	/*
 580	 * Per plane DDB entry can in a really worst case be on multiple slices
 581	 * but single entry is anyway contigious.
 582	 */
 583	while (start_slice <= end_slice) {
 584		slice_mask |= BIT(start_slice);
 585		start_slice++;
 586	}
 587
 588	return slice_mask;
 589}
 590
 591static unsigned int intel_crtc_ddb_weight(const struct intel_crtc_state *crtc_state)
 592{
 593	const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
 594	int hdisplay, vdisplay;
 595
 596	if (!crtc_state->hw.active)
 597		return 0;
 598
 599	/*
 600	 * Watermark/ddb requirement highly depends upon width of the
 601	 * framebuffer, So instead of allocating DDB equally among pipes
 602	 * distribute DDB based on resolution/width of the display.
 603	 */
 604	drm_mode_get_hv_timing(pipe_mode, &hdisplay, &vdisplay);
 605
 606	return hdisplay;
 607}
 608
 609static void intel_crtc_dbuf_weights(const struct intel_dbuf_state *dbuf_state,
 610				    enum pipe for_pipe,
 611				    unsigned int *weight_start,
 612				    unsigned int *weight_end,
 613				    unsigned int *weight_total)
 614{
 615	struct drm_i915_private *i915 =
 616		to_i915(dbuf_state->base.state->base.dev);
 617	enum pipe pipe;
 618
 619	*weight_start = 0;
 620	*weight_end = 0;
 621	*weight_total = 0;
 622
 623	for_each_pipe(i915, pipe) {
 624		int weight = dbuf_state->weight[pipe];
 625
 626		/*
 627		 * Do not account pipes using other slice sets
 628		 * luckily as of current BSpec slice sets do not partially
 629		 * intersect(pipes share either same one slice or same slice set
 630		 * i.e no partial intersection), so it is enough to check for
 631		 * equality for now.
 632		 */
 633		if (dbuf_state->slices[pipe] != dbuf_state->slices[for_pipe])
 634			continue;
 635
 636		*weight_total += weight;
 637		if (pipe < for_pipe) {
 638			*weight_start += weight;
 639			*weight_end += weight;
 640		} else if (pipe == for_pipe) {
 641			*weight_end += weight;
 642		}
 643	}
 644}
 645
 646static int
 647skl_crtc_allocate_ddb(struct intel_atomic_state *state, struct intel_crtc *crtc)
 648{
 649	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
 650	unsigned int weight_total, weight_start, weight_end;
 651	const struct intel_dbuf_state *old_dbuf_state =
 652		intel_atomic_get_old_dbuf_state(state);
 653	struct intel_dbuf_state *new_dbuf_state =
 654		intel_atomic_get_new_dbuf_state(state);
 655	struct intel_crtc_state *crtc_state;
 656	struct skl_ddb_entry ddb_slices;
 657	enum pipe pipe = crtc->pipe;
 658	unsigned int mbus_offset = 0;
 659	u32 ddb_range_size;
 660	u32 dbuf_slice_mask;
 661	u32 start, end;
 662	int ret;
 663
 664	if (new_dbuf_state->weight[pipe] == 0) {
 665		skl_ddb_entry_init(&new_dbuf_state->ddb[pipe], 0, 0);
 666		goto out;
 667	}
 668
 669	dbuf_slice_mask = new_dbuf_state->slices[pipe];
 670
 671	skl_ddb_entry_for_slices(i915, dbuf_slice_mask, &ddb_slices);
 672	mbus_offset = mbus_ddb_offset(i915, dbuf_slice_mask);
 673	ddb_range_size = skl_ddb_entry_size(&ddb_slices);
 674
 675	intel_crtc_dbuf_weights(new_dbuf_state, pipe,
 676				&weight_start, &weight_end, &weight_total);
 677
 678	start = ddb_range_size * weight_start / weight_total;
 679	end = ddb_range_size * weight_end / weight_total;
 680
 681	skl_ddb_entry_init(&new_dbuf_state->ddb[pipe],
 682			   ddb_slices.start - mbus_offset + start,
 683			   ddb_slices.start - mbus_offset + end);
 684
 685out:
 686	if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe] &&
 687	    skl_ddb_entry_equal(&old_dbuf_state->ddb[pipe],
 688				&new_dbuf_state->ddb[pipe]))
 689		return 0;
 690
 691	ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
 692	if (ret)
 693		return ret;
 694
 695	crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
 696	if (IS_ERR(crtc_state))
 697		return PTR_ERR(crtc_state);
 698
 699	/*
 700	 * Used for checking overlaps, so we need absolute
 701	 * offsets instead of MBUS relative offsets.
 702	 */
 703	crtc_state->wm.skl.ddb.start = mbus_offset + new_dbuf_state->ddb[pipe].start;
 704	crtc_state->wm.skl.ddb.end = mbus_offset + new_dbuf_state->ddb[pipe].end;
 705
 706	drm_dbg_kms(&i915->drm,
 707		    "[CRTC:%d:%s] dbuf slices 0x%x -> 0x%x, ddb (%d - %d) -> (%d - %d), active pipes 0x%x -> 0x%x\n",
 708		    crtc->base.base.id, crtc->base.name,
 709		    old_dbuf_state->slices[pipe], new_dbuf_state->slices[pipe],
 710		    old_dbuf_state->ddb[pipe].start, old_dbuf_state->ddb[pipe].end,
 711		    new_dbuf_state->ddb[pipe].start, new_dbuf_state->ddb[pipe].end,
 712		    old_dbuf_state->active_pipes, new_dbuf_state->active_pipes);
 713
 714	return 0;
 715}
 716
 717static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
 718				 int width, const struct drm_format_info *format,
 719				 u64 modifier, unsigned int rotation,
 720				 u32 plane_pixel_rate, struct skl_wm_params *wp,
 721				 int color_plane, unsigned int pan_x);
 722
 723static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
 724				 struct intel_plane *plane,
 725				 int level,
 726				 unsigned int latency,
 727				 const struct skl_wm_params *wp,
 728				 const struct skl_wm_level *result_prev,
 729				 struct skl_wm_level *result /* out */);
 730
 731static unsigned int skl_wm_latency(struct drm_i915_private *i915, int level,
 732				   const struct skl_wm_params *wp)
 733{
 734	unsigned int latency = i915->display.wm.skl_latency[level];
 735
 736	if (latency == 0)
 737		return 0;
 738
 739	/*
 740	 * WaIncreaseLatencyIPCEnabled: kbl,cfl
 741	 * Display WA #1141: kbl,cfl
 742	 */
 743	if ((IS_KABYLAKE(i915) || IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) &&
 744	    skl_watermark_ipc_enabled(i915))
 745		latency += 4;
 746
 747	if (skl_needs_memory_bw_wa(i915) && wp && wp->x_tiled)
 748		latency += 15;
 749
 750	return latency;
 751}
 752
 753static unsigned int
 754skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
 755		      int num_active)
 756{
 757	struct intel_plane *plane = to_intel_plane(crtc_state->uapi.crtc->cursor);
 758	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
 759	struct skl_wm_level wm = {};
 760	int ret, min_ddb_alloc = 0;
 761	struct skl_wm_params wp;
 762	int level;
 763
 764	ret = skl_compute_wm_params(crtc_state, 256,
 765				    drm_format_info(DRM_FORMAT_ARGB8888),
 766				    DRM_FORMAT_MOD_LINEAR,
 767				    DRM_MODE_ROTATE_0,
 768				    crtc_state->pixel_rate, &wp, 0, 0);
 769	drm_WARN_ON(&i915->drm, ret);
 770
 771	for (level = 0; level < i915->display.wm.num_levels; level++) {
 772		unsigned int latency = skl_wm_latency(i915, level, &wp);
 773
 774		skl_compute_plane_wm(crtc_state, plane, level, latency, &wp, &wm, &wm);
 775		if (wm.min_ddb_alloc == U16_MAX)
 776			break;
 777
 778		min_ddb_alloc = wm.min_ddb_alloc;
 779	}
 780
 781	return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
 782}
 783
 784static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
 785{
 786	skl_ddb_entry_init(entry,
 787			   REG_FIELD_GET(PLANE_BUF_START_MASK, reg),
 788			   REG_FIELD_GET(PLANE_BUF_END_MASK, reg));
 789	if (entry->end)
 790		entry->end++;
 791}
 792
 793static void
 794skl_ddb_get_hw_plane_state(struct drm_i915_private *i915,
 795			   const enum pipe pipe,
 796			   const enum plane_id plane_id,
 797			   struct skl_ddb_entry *ddb,
 798			   struct skl_ddb_entry *ddb_y)
 799{
 800	u32 val;
 801
 802	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
 803	if (plane_id == PLANE_CURSOR) {
 804		val = intel_de_read(i915, CUR_BUF_CFG(pipe));
 805		skl_ddb_entry_init_from_hw(ddb, val);
 806		return;
 807	}
 808
 809	val = intel_de_read(i915, PLANE_BUF_CFG(pipe, plane_id));
 810	skl_ddb_entry_init_from_hw(ddb, val);
 811
 812	if (DISPLAY_VER(i915) >= 11)
 813		return;
 814
 815	val = intel_de_read(i915, PLANE_NV12_BUF_CFG(pipe, plane_id));
 816	skl_ddb_entry_init_from_hw(ddb_y, val);
 817}
 818
 819static void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
 820				      struct skl_ddb_entry *ddb,
 821				      struct skl_ddb_entry *ddb_y)
 822{
 823	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
 824	enum intel_display_power_domain power_domain;
 825	enum pipe pipe = crtc->pipe;
 826	intel_wakeref_t wakeref;
 827	enum plane_id plane_id;
 828
 829	power_domain = POWER_DOMAIN_PIPE(pipe);
 830	wakeref = intel_display_power_get_if_enabled(i915, power_domain);
 831	if (!wakeref)
 832		return;
 833
 834	for_each_plane_id_on_crtc(crtc, plane_id)
 835		skl_ddb_get_hw_plane_state(i915, pipe,
 836					   plane_id,
 837					   &ddb[plane_id],
 838					   &ddb_y[plane_id]);
 839
 840	intel_display_power_put(i915, power_domain, wakeref);
 841}
 842
 843struct dbuf_slice_conf_entry {
 844	u8 active_pipes;
 845	u8 dbuf_mask[I915_MAX_PIPES];
 846	bool join_mbus;
 847};
 848
 849/*
 850 * Table taken from Bspec 12716
 851 * Pipes do have some preferred DBuf slice affinity,
 852 * plus there are some hardcoded requirements on how
 853 * those should be distributed for multipipe scenarios.
 854 * For more DBuf slices algorithm can get even more messy
 855 * and less readable, so decided to use a table almost
 856 * as is from BSpec itself - that way it is at least easier
 857 * to compare, change and check.
 858 */
 859static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
 860/* Autogenerated with igt/tools/intel_dbuf_map tool: */
 861{
 862	{
 863		.active_pipes = BIT(PIPE_A),
 864		.dbuf_mask = {
 865			[PIPE_A] = BIT(DBUF_S1),
 866		},
 867	},
 868	{
 869		.active_pipes = BIT(PIPE_B),
 870		.dbuf_mask = {
 871			[PIPE_B] = BIT(DBUF_S1),
 872		},
 873	},
 874	{
 875		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
 876		.dbuf_mask = {
 877			[PIPE_A] = BIT(DBUF_S1),
 878			[PIPE_B] = BIT(DBUF_S2),
 879		},
 880	},
 881	{
 882		.active_pipes = BIT(PIPE_C),
 883		.dbuf_mask = {
 884			[PIPE_C] = BIT(DBUF_S2),
 885		},
 886	},
 887	{
 888		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
 889		.dbuf_mask = {
 890			[PIPE_A] = BIT(DBUF_S1),
 891			[PIPE_C] = BIT(DBUF_S2),
 892		},
 893	},
 894	{
 895		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
 896		.dbuf_mask = {
 897			[PIPE_B] = BIT(DBUF_S1),
 898			[PIPE_C] = BIT(DBUF_S2),
 899		},
 900	},
 901	{
 902		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
 903		.dbuf_mask = {
 904			[PIPE_A] = BIT(DBUF_S1),
 905			[PIPE_B] = BIT(DBUF_S1),
 906			[PIPE_C] = BIT(DBUF_S2),
 907		},
 908	},
 909	{}
 910};
 911
 912/*
 913 * Table taken from Bspec 49255
 914 * Pipes do have some preferred DBuf slice affinity,
 915 * plus there are some hardcoded requirements on how
 916 * those should be distributed for multipipe scenarios.
 917 * For more DBuf slices algorithm can get even more messy
 918 * and less readable, so decided to use a table almost
 919 * as is from BSpec itself - that way it is at least easier
 920 * to compare, change and check.
 921 */
 922static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
 923/* Autogenerated with igt/tools/intel_dbuf_map tool: */
 924{
 925	{
 926		.active_pipes = BIT(PIPE_A),
 927		.dbuf_mask = {
 928			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
 929		},
 930	},
 931	{
 932		.active_pipes = BIT(PIPE_B),
 933		.dbuf_mask = {
 934			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
 935		},
 936	},
 937	{
 938		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
 939		.dbuf_mask = {
 940			[PIPE_A] = BIT(DBUF_S2),
 941			[PIPE_B] = BIT(DBUF_S1),
 942		},
 943	},
 944	{
 945		.active_pipes = BIT(PIPE_C),
 946		.dbuf_mask = {
 947			[PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
 948		},
 949	},
 950	{
 951		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
 952		.dbuf_mask = {
 953			[PIPE_A] = BIT(DBUF_S1),
 954			[PIPE_C] = BIT(DBUF_S2),
 955		},
 956	},
 957	{
 958		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
 959		.dbuf_mask = {
 960			[PIPE_B] = BIT(DBUF_S1),
 961			[PIPE_C] = BIT(DBUF_S2),
 962		},
 963	},
 964	{
 965		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
 966		.dbuf_mask = {
 967			[PIPE_A] = BIT(DBUF_S1),
 968			[PIPE_B] = BIT(DBUF_S1),
 969			[PIPE_C] = BIT(DBUF_S2),
 970		},
 971	},
 972	{
 973		.active_pipes = BIT(PIPE_D),
 974		.dbuf_mask = {
 975			[PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
 976		},
 977	},
 978	{
 979		.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
 980		.dbuf_mask = {
 981			[PIPE_A] = BIT(DBUF_S1),
 982			[PIPE_D] = BIT(DBUF_S2),
 983		},
 984	},
 985	{
 986		.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
 987		.dbuf_mask = {
 988			[PIPE_B] = BIT(DBUF_S1),
 989			[PIPE_D] = BIT(DBUF_S2),
 990		},
 991	},
 992	{
 993		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
 994		.dbuf_mask = {
 995			[PIPE_A] = BIT(DBUF_S1),
 996			[PIPE_B] = BIT(DBUF_S1),
 997			[PIPE_D] = BIT(DBUF_S2),
 998		},
 999	},
1000	{
1001		.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
1002		.dbuf_mask = {
1003			[PIPE_C] = BIT(DBUF_S1),
1004			[PIPE_D] = BIT(DBUF_S2),
1005		},
1006	},
1007	{
1008		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
1009		.dbuf_mask = {
1010			[PIPE_A] = BIT(DBUF_S1),
1011			[PIPE_C] = BIT(DBUF_S2),
1012			[PIPE_D] = BIT(DBUF_S2),
1013		},
1014	},
1015	{
1016		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1017		.dbuf_mask = {
1018			[PIPE_B] = BIT(DBUF_S1),
1019			[PIPE_C] = BIT(DBUF_S2),
1020			[PIPE_D] = BIT(DBUF_S2),
1021		},
1022	},
1023	{
1024		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1025		.dbuf_mask = {
1026			[PIPE_A] = BIT(DBUF_S1),
1027			[PIPE_B] = BIT(DBUF_S1),
1028			[PIPE_C] = BIT(DBUF_S2),
1029			[PIPE_D] = BIT(DBUF_S2),
1030		},
1031	},
1032	{}
1033};
1034
1035static const struct dbuf_slice_conf_entry dg2_allowed_dbufs[] = {
1036	{
1037		.active_pipes = BIT(PIPE_A),
1038		.dbuf_mask = {
1039			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1040		},
1041	},
1042	{
1043		.active_pipes = BIT(PIPE_B),
1044		.dbuf_mask = {
1045			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
1046		},
1047	},
1048	{
1049		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
1050		.dbuf_mask = {
1051			[PIPE_A] = BIT(DBUF_S1),
1052			[PIPE_B] = BIT(DBUF_S2),
1053		},
1054	},
1055	{
1056		.active_pipes = BIT(PIPE_C),
1057		.dbuf_mask = {
1058			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1059		},
1060	},
1061	{
1062		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
1063		.dbuf_mask = {
1064			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1065			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1066		},
1067	},
1068	{
1069		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
1070		.dbuf_mask = {
1071			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
1072			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1073		},
1074	},
1075	{
1076		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
1077		.dbuf_mask = {
1078			[PIPE_A] = BIT(DBUF_S1),
1079			[PIPE_B] = BIT(DBUF_S2),
1080			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1081		},
1082	},
1083	{
1084		.active_pipes = BIT(PIPE_D),
1085		.dbuf_mask = {
1086			[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
1087		},
1088	},
1089	{
1090		.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
1091		.dbuf_mask = {
1092			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1093			[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
1094		},
1095	},
1096	{
1097		.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
1098		.dbuf_mask = {
1099			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
1100			[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
1101		},
1102	},
1103	{
1104		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
1105		.dbuf_mask = {
1106			[PIPE_A] = BIT(DBUF_S1),
1107			[PIPE_B] = BIT(DBUF_S2),
1108			[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
1109		},
1110	},
1111	{
1112		.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
1113		.dbuf_mask = {
1114			[PIPE_C] = BIT(DBUF_S3),
1115			[PIPE_D] = BIT(DBUF_S4),
1116		},
1117	},
1118	{
1119		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
1120		.dbuf_mask = {
1121			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1122			[PIPE_C] = BIT(DBUF_S3),
1123			[PIPE_D] = BIT(DBUF_S4),
1124		},
1125	},
1126	{
1127		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1128		.dbuf_mask = {
1129			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
1130			[PIPE_C] = BIT(DBUF_S3),
1131			[PIPE_D] = BIT(DBUF_S4),
1132		},
1133	},
1134	{
1135		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1136		.dbuf_mask = {
1137			[PIPE_A] = BIT(DBUF_S1),
1138			[PIPE_B] = BIT(DBUF_S2),
1139			[PIPE_C] = BIT(DBUF_S3),
1140			[PIPE_D] = BIT(DBUF_S4),
1141		},
1142	},
1143	{}
1144};
1145
1146static const struct dbuf_slice_conf_entry adlp_allowed_dbufs[] = {
1147	/*
1148	 * Keep the join_mbus cases first so check_mbus_joined()
1149	 * will prefer them over the !join_mbus cases.
1150	 */
1151	{
1152		.active_pipes = BIT(PIPE_A),
1153		.dbuf_mask = {
1154			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
1155		},
1156		.join_mbus = true,
1157	},
1158	{
1159		.active_pipes = BIT(PIPE_B),
1160		.dbuf_mask = {
1161			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
1162		},
1163		.join_mbus = true,
1164	},
1165	{
1166		.active_pipes = BIT(PIPE_A),
1167		.dbuf_mask = {
1168			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1169		},
1170		.join_mbus = false,
1171	},
1172	{
1173		.active_pipes = BIT(PIPE_B),
1174		.dbuf_mask = {
1175			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1176		},
1177		.join_mbus = false,
1178	},
1179	{
1180		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
1181		.dbuf_mask = {
1182			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1183			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1184		},
1185	},
1186	{
1187		.active_pipes = BIT(PIPE_C),
1188		.dbuf_mask = {
1189			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1190		},
1191	},
1192	{
1193		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
1194		.dbuf_mask = {
1195			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1196			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1197		},
1198	},
1199	{
1200		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
1201		.dbuf_mask = {
1202			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1203			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1204		},
1205	},
1206	{
1207		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
1208		.dbuf_mask = {
1209			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1210			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1211			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1212		},
1213	},
1214	{
1215		.active_pipes = BIT(PIPE_D),
1216		.dbuf_mask = {
1217			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1218		},
1219	},
1220	{
1221		.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
1222		.dbuf_mask = {
1223			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1224			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1225		},
1226	},
1227	{
1228		.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
1229		.dbuf_mask = {
1230			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1231			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1232		},
1233	},
1234	{
1235		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
1236		.dbuf_mask = {
1237			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1238			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1239			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1240		},
1241	},
1242	{
1243		.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
1244		.dbuf_mask = {
1245			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1246			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1247		},
1248	},
1249	{
1250		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
1251		.dbuf_mask = {
1252			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1253			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1254			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1255		},
1256	},
1257	{
1258		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1259		.dbuf_mask = {
1260			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1261			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1262			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1263		},
1264	},
1265	{
1266		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1267		.dbuf_mask = {
1268			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1269			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1270			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1271			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1272		},
1273	},
1274	{}
1275
1276};
1277
1278static bool check_mbus_joined(u8 active_pipes,
1279			      const struct dbuf_slice_conf_entry *dbuf_slices)
1280{
1281	int i;
1282
1283	for (i = 0; dbuf_slices[i].active_pipes != 0; i++) {
1284		if (dbuf_slices[i].active_pipes == active_pipes)
1285			return dbuf_slices[i].join_mbus;
1286	}
1287	return false;
1288}
1289
1290static bool adlp_check_mbus_joined(u8 active_pipes)
1291{
1292	return check_mbus_joined(active_pipes, adlp_allowed_dbufs);
1293}
1294
1295static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus,
1296			      const struct dbuf_slice_conf_entry *dbuf_slices)
1297{
1298	int i;
1299
1300	for (i = 0; dbuf_slices[i].active_pipes != 0; i++) {
1301		if (dbuf_slices[i].active_pipes == active_pipes &&
1302		    dbuf_slices[i].join_mbus == join_mbus)
1303			return dbuf_slices[i].dbuf_mask[pipe];
1304	}
1305	return 0;
1306}
1307
1308/*
1309 * This function finds an entry with same enabled pipe configuration and
1310 * returns correspondent DBuf slice mask as stated in BSpec for particular
1311 * platform.
1312 */
1313static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
1314{
1315	/*
1316	 * FIXME: For ICL this is still a bit unclear as prev BSpec revision
1317	 * required calculating "pipe ratio" in order to determine
1318	 * if one or two slices can be used for single pipe configurations
1319	 * as additional constraint to the existing table.
1320	 * However based on recent info, it should be not "pipe ratio"
1321	 * but rather ratio between pixel_rate and cdclk with additional
1322	 * constants, so for now we are using only table until this is
1323	 * clarified. Also this is the reason why crtc_state param is
1324	 * still here - we will need it once those additional constraints
1325	 * pop up.
1326	 */
1327	return compute_dbuf_slices(pipe, active_pipes, join_mbus,
1328				   icl_allowed_dbufs);
1329}
1330
1331static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
1332{
1333	return compute_dbuf_slices(pipe, active_pipes, join_mbus,
1334				   tgl_allowed_dbufs);
1335}
1336
1337static u8 adlp_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
1338{
1339	return compute_dbuf_slices(pipe, active_pipes, join_mbus,
1340				   adlp_allowed_dbufs);
1341}
1342
1343static u8 dg2_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
1344{
1345	return compute_dbuf_slices(pipe, active_pipes, join_mbus,
1346				   dg2_allowed_dbufs);
1347}
1348
1349static u8 skl_compute_dbuf_slices(struct intel_crtc *crtc, u8 active_pipes, bool join_mbus)
1350{
1351	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1352	enum pipe pipe = crtc->pipe;
1353
1354	if (IS_DG2(i915))
1355		return dg2_compute_dbuf_slices(pipe, active_pipes, join_mbus);
1356	else if (DISPLAY_VER(i915) >= 13)
1357		return adlp_compute_dbuf_slices(pipe, active_pipes, join_mbus);
1358	else if (DISPLAY_VER(i915) == 12)
1359		return tgl_compute_dbuf_slices(pipe, active_pipes, join_mbus);
1360	else if (DISPLAY_VER(i915) == 11)
1361		return icl_compute_dbuf_slices(pipe, active_pipes, join_mbus);
1362	/*
1363	 * For anything else just return one slice yet.
1364	 * Should be extended for other platforms.
1365	 */
1366	return active_pipes & BIT(pipe) ? BIT(DBUF_S1) : 0;
1367}
1368
1369static bool
1370use_minimal_wm0_only(const struct intel_crtc_state *crtc_state,
1371		     struct intel_plane *plane)
1372{
1373	struct drm_i915_private *i915 = to_i915(plane->base.dev);
1374
1375	return DISPLAY_VER(i915) >= 13 &&
1376	       crtc_state->uapi.async_flip &&
1377	       plane->async_flip;
1378}
1379
1380static u64
1381skl_total_relative_data_rate(const struct intel_crtc_state *crtc_state)
1382{
1383	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1384	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1385	enum plane_id plane_id;
1386	u64 data_rate = 0;
1387
1388	for_each_plane_id_on_crtc(crtc, plane_id) {
1389		if (plane_id == PLANE_CURSOR)
1390			continue;
1391
1392		data_rate += crtc_state->rel_data_rate[plane_id];
1393
1394		if (DISPLAY_VER(i915) < 11)
1395			data_rate += crtc_state->rel_data_rate_y[plane_id];
1396	}
1397
1398	return data_rate;
1399}
1400
1401const struct skl_wm_level *
1402skl_plane_wm_level(const struct skl_pipe_wm *pipe_wm,
1403		   enum plane_id plane_id,
1404		   int level)
1405{
1406	const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
1407
1408	if (level == 0 && pipe_wm->use_sagv_wm)
1409		return &wm->sagv.wm0;
1410
1411	return &wm->wm[level];
1412}
1413
1414const struct skl_wm_level *
1415skl_plane_trans_wm(const struct skl_pipe_wm *pipe_wm,
1416		   enum plane_id plane_id)
1417{
1418	const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
1419
1420	if (pipe_wm->use_sagv_wm)
1421		return &wm->sagv.trans_wm;
1422
1423	return &wm->trans_wm;
1424}
1425
1426/*
1427 * We only disable the watermarks for each plane if
1428 * they exceed the ddb allocation of said plane. This
1429 * is done so that we don't end up touching cursor
1430 * watermarks needlessly when some other plane reduces
1431 * our max possible watermark level.
1432 *
1433 * Bspec has this to say about the PLANE_WM enable bit:
1434 * "All the watermarks at this level for all enabled
1435 *  planes must be enabled before the level will be used."
1436 * So this is actually safe to do.
1437 */
1438static void
1439skl_check_wm_level(struct skl_wm_level *wm, const struct skl_ddb_entry *ddb)
1440{
1441	if (wm->min_ddb_alloc > skl_ddb_entry_size(ddb))
1442		memset(wm, 0, sizeof(*wm));
1443}
1444
1445static void
1446skl_check_nv12_wm_level(struct skl_wm_level *wm, struct skl_wm_level *uv_wm,
1447			const struct skl_ddb_entry *ddb_y, const struct skl_ddb_entry *ddb)
1448{
1449	if (wm->min_ddb_alloc > skl_ddb_entry_size(ddb_y) ||
1450	    uv_wm->min_ddb_alloc > skl_ddb_entry_size(ddb)) {
1451		memset(wm, 0, sizeof(*wm));
1452		memset(uv_wm, 0, sizeof(*uv_wm));
1453	}
1454}
1455
1456static bool skl_need_wm_copy_wa(struct drm_i915_private *i915, int level,
1457				const struct skl_plane_wm *wm)
1458{
1459	/*
1460	 * Wa_1408961008:icl, ehl
1461	 * Wa_14012656716:tgl, adl
1462	 * Wa_14017887344:icl
1463	 * Wa_14017868169:adl, tgl
1464	 * Due to some power saving optimizations, different subsystems
1465	 * like PSR, might still use even disabled wm level registers,
1466	 * for "reference", so lets keep at least the values sane.
1467	 * Considering amount of WA requiring us to do similar things, was
1468	 * decided to simply do it for all of the platforms, as those wm
1469	 * levels are disabled, this isn't going to do harm anyway.
1470	 */
1471	return level > 0 && !wm->wm[level].enable;
1472}
1473
1474struct skl_plane_ddb_iter {
1475	u64 data_rate;
1476	u16 start, size;
1477};
1478
1479static void
1480skl_allocate_plane_ddb(struct skl_plane_ddb_iter *iter,
1481		       struct skl_ddb_entry *ddb,
1482		       const struct skl_wm_level *wm,
1483		       u64 data_rate)
1484{
1485	u16 size, extra = 0;
1486
1487	if (data_rate) {
1488		extra = min_t(u16, iter->size,
1489			      DIV64_U64_ROUND_UP(iter->size * data_rate,
1490						 iter->data_rate));
1491		iter->size -= extra;
1492		iter->data_rate -= data_rate;
1493	}
1494
1495	/*
1496	 * Keep ddb entry of all disabled planes explicitly zeroed
1497	 * to avoid skl_ddb_add_affected_planes() adding them to
1498	 * the state when other planes change their allocations.
1499	 */
1500	size = wm->min_ddb_alloc + extra;
1501	if (size)
1502		iter->start = skl_ddb_entry_init(ddb, iter->start,
1503						 iter->start + size);
1504}
1505
1506static int
1507skl_crtc_allocate_plane_ddb(struct intel_atomic_state *state,
1508			    struct intel_crtc *crtc)
1509{
1510	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1511	struct intel_crtc_state *crtc_state =
1512		intel_atomic_get_new_crtc_state(state, crtc);
1513	const struct intel_dbuf_state *dbuf_state =
1514		intel_atomic_get_new_dbuf_state(state);
1515	const struct skl_ddb_entry *alloc = &dbuf_state->ddb[crtc->pipe];
1516	int num_active = hweight8(dbuf_state->active_pipes);
1517	struct skl_plane_ddb_iter iter;
1518	enum plane_id plane_id;
1519	u16 cursor_size;
1520	u32 blocks;
1521	int level;
1522
1523	/* Clear the partitioning for disabled planes. */
1524	memset(crtc_state->wm.skl.plane_ddb, 0, sizeof(crtc_state->wm.skl.plane_ddb));
1525	memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
1526
1527	if (!crtc_state->hw.active)
1528		return 0;
1529
1530	iter.start = alloc->start;
1531	iter.size = skl_ddb_entry_size(alloc);
1532	if (iter.size == 0)
1533		return 0;
1534
1535	/* Allocate fixed number of blocks for cursor. */
1536	cursor_size = skl_cursor_allocation(crtc_state, num_active);
1537	iter.size -= cursor_size;
1538	skl_ddb_entry_init(&crtc_state->wm.skl.plane_ddb[PLANE_CURSOR],
1539			   alloc->end - cursor_size, alloc->end);
1540
1541	iter.data_rate = skl_total_relative_data_rate(crtc_state);
1542
1543	/*
1544	 * Find the highest watermark level for which we can satisfy the block
1545	 * requirement of active planes.
1546	 */
1547	for (level = i915->display.wm.num_levels - 1; level >= 0; level--) {
1548		blocks = 0;
1549		for_each_plane_id_on_crtc(crtc, plane_id) {
1550			const struct skl_plane_wm *wm =
1551				&crtc_state->wm.skl.optimal.planes[plane_id];
1552
1553			if (plane_id == PLANE_CURSOR) {
1554				const struct skl_ddb_entry *ddb =
1555					&crtc_state->wm.skl.plane_ddb[plane_id];
1556
1557				if (wm->wm[level].min_ddb_alloc > skl_ddb_entry_size(ddb)) {
1558					drm_WARN_ON(&i915->drm,
1559						    wm->wm[level].min_ddb_alloc != U16_MAX);
1560					blocks = U32_MAX;
1561					break;
1562				}
1563				continue;
1564			}
1565
1566			blocks += wm->wm[level].min_ddb_alloc;
1567			blocks += wm->uv_wm[level].min_ddb_alloc;
1568		}
1569
1570		if (blocks <= iter.size) {
1571			iter.size -= blocks;
1572			break;
1573		}
1574	}
1575
1576	if (level < 0) {
1577		drm_dbg_kms(&i915->drm,
1578			    "Requested display configuration exceeds system DDB limitations");
1579		drm_dbg_kms(&i915->drm, "minimum required %d/%d\n",
1580			    blocks, iter.size);
1581		return -EINVAL;
1582	}
1583
1584	/* avoid the WARN later when we don't allocate any extra DDB */
1585	if (iter.data_rate == 0)
1586		iter.size = 0;
1587
1588	/*
1589	 * Grant each plane the blocks it requires at the highest achievable
1590	 * watermark level, plus an extra share of the leftover blocks
1591	 * proportional to its relative data rate.
1592	 */
1593	for_each_plane_id_on_crtc(crtc, plane_id) {
1594		struct skl_ddb_entry *ddb =
1595			&crtc_state->wm.skl.plane_ddb[plane_id];
1596		struct skl_ddb_entry *ddb_y =
1597			&crtc_state->wm.skl.plane_ddb_y[plane_id];
1598		const struct skl_plane_wm *wm =
1599			&crtc_state->wm.skl.optimal.planes[plane_id];
1600
1601		if (plane_id == PLANE_CURSOR)
1602			continue;
1603
1604		if (DISPLAY_VER(i915) < 11 &&
1605		    crtc_state->nv12_planes & BIT(plane_id)) {
1606			skl_allocate_plane_ddb(&iter, ddb_y, &wm->wm[level],
1607					       crtc_state->rel_data_rate_y[plane_id]);
1608			skl_allocate_plane_ddb(&iter, ddb, &wm->uv_wm[level],
1609					       crtc_state->rel_data_rate[plane_id]);
1610		} else {
1611			skl_allocate_plane_ddb(&iter, ddb, &wm->wm[level],
1612					       crtc_state->rel_data_rate[plane_id]);
1613		}
1614	}
1615	drm_WARN_ON(&i915->drm, iter.size != 0 || iter.data_rate != 0);
1616
1617	/*
1618	 * When we calculated watermark values we didn't know how high
1619	 * of a level we'd actually be able to hit, so we just marked
1620	 * all levels as "enabled."  Go back now and disable the ones
1621	 * that aren't actually possible.
1622	 */
1623	for (level++; level < i915->display.wm.num_levels; level++) {
1624		for_each_plane_id_on_crtc(crtc, plane_id) {
1625			const struct skl_ddb_entry *ddb =
1626				&crtc_state->wm.skl.plane_ddb[plane_id];
1627			const struct skl_ddb_entry *ddb_y =
1628				&crtc_state->wm.skl.plane_ddb_y[plane_id];
1629			struct skl_plane_wm *wm =
1630				&crtc_state->wm.skl.optimal.planes[plane_id];
1631
1632			if (DISPLAY_VER(i915) < 11 &&
1633			    crtc_state->nv12_planes & BIT(plane_id))
1634				skl_check_nv12_wm_level(&wm->wm[level],
1635							&wm->uv_wm[level],
1636							ddb_y, ddb);
1637			else
1638				skl_check_wm_level(&wm->wm[level], ddb);
1639
1640			if (skl_need_wm_copy_wa(i915, level, wm)) {
1641				wm->wm[level].blocks = wm->wm[level - 1].blocks;
1642				wm->wm[level].lines = wm->wm[level - 1].lines;
1643				wm->wm[level].ignore_lines = wm->wm[level - 1].ignore_lines;
1644			}
1645		}
1646	}
1647
1648	/*
1649	 * Go back and disable the transition and SAGV watermarks
1650	 * if it turns out we don't have enough DDB blocks for them.
1651	 */
1652	for_each_plane_id_on_crtc(crtc, plane_id) {
1653		const struct skl_ddb_entry *ddb =
1654			&crtc_state->wm.skl.plane_ddb[plane_id];
1655		const struct skl_ddb_entry *ddb_y =
1656			&crtc_state->wm.skl.plane_ddb_y[plane_id];
1657		struct skl_plane_wm *wm =
1658			&crtc_state->wm.skl.optimal.planes[plane_id];
1659
1660		if (DISPLAY_VER(i915) < 11 &&
1661		    crtc_state->nv12_planes & BIT(plane_id)) {
1662			skl_check_wm_level(&wm->trans_wm, ddb_y);
1663		} else {
1664			WARN_ON(skl_ddb_entry_size(ddb_y));
1665
1666			skl_check_wm_level(&wm->trans_wm, ddb);
1667		}
1668
1669		skl_check_wm_level(&wm->sagv.wm0, ddb);
1670		skl_check_wm_level(&wm->sagv.trans_wm, ddb);
1671	}
1672
1673	return 0;
1674}
1675
1676/*
1677 * The max latency should be 257 (max the punit can code is 255 and we add 2us
1678 * for the read latency) and cpp should always be <= 8, so that
1679 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
1680 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
1681 */
1682static uint_fixed_16_16_t
1683skl_wm_method1(const struct drm_i915_private *i915, u32 pixel_rate,
1684	       u8 cpp, u32 latency, u32 dbuf_block_size)
1685{
1686	u32 wm_intermediate_val;
1687	uint_fixed_16_16_t ret;
1688
1689	if (latency == 0)
1690		return FP_16_16_MAX;
1691
1692	wm_intermediate_val = latency * pixel_rate * cpp;
1693	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
1694
1695	if (DISPLAY_VER(i915) >= 10)
1696		ret = add_fixed16_u32(ret, 1);
1697
1698	return ret;
1699}
1700
1701static uint_fixed_16_16_t
1702skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
1703	       uint_fixed_16_16_t plane_blocks_per_line)
1704{
1705	u32 wm_intermediate_val;
1706	uint_fixed_16_16_t ret;
1707
1708	if (latency == 0)
1709		return FP_16_16_MAX;
1710
1711	wm_intermediate_val = latency * pixel_rate;
1712	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
1713					   pipe_htotal * 1000);
1714	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
1715	return ret;
1716}
1717
1718static uint_fixed_16_16_t
1719intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
1720{
1721	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
1722	u32 pixel_rate;
1723	u32 crtc_htotal;
1724	uint_fixed_16_16_t linetime_us;
1725
1726	if (!crtc_state->hw.active)
1727		return u32_to_fixed16(0);
1728
1729	pixel_rate = crtc_state->pixel_rate;
1730
1731	if (drm_WARN_ON(&i915->drm, pixel_rate == 0))
1732		return u32_to_fixed16(0);
1733
1734	crtc_htotal = crtc_state->hw.pipe_mode.crtc_htotal;
1735	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
1736
1737	return linetime_us;
1738}
1739
1740static int
1741skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
1742		      int width, const struct drm_format_info *format,
1743		      u64 modifier, unsigned int rotation,
1744		      u32 plane_pixel_rate, struct skl_wm_params *wp,
1745		      int color_plane, unsigned int pan_x)
1746{
1747	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1748	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1749	u32 interm_pbpl;
1750
1751	/* only planar format has two planes */
1752	if (color_plane == 1 &&
1753	    !intel_format_info_is_yuv_semiplanar(format, modifier)) {
1754		drm_dbg_kms(&i915->drm,
1755			    "Non planar format have single plane\n");
1756		return -EINVAL;
1757	}
1758
1759	wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
1760	wp->y_tiled = modifier != I915_FORMAT_MOD_X_TILED &&
1761		intel_fb_is_tiled_modifier(modifier);
1762	wp->rc_surface = intel_fb_is_ccs_modifier(modifier);
1763	wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
1764
1765	wp->width = width;
1766	if (color_plane == 1 && wp->is_planar)
1767		wp->width /= 2;
1768
1769	wp->cpp = format->cpp[color_plane];
1770	wp->plane_pixel_rate = plane_pixel_rate;
1771
1772	if (DISPLAY_VER(i915) >= 11 &&
1773	    modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
1774		wp->dbuf_block_size = 256;
1775	else
1776		wp->dbuf_block_size = 512;
1777
1778	if (drm_rotation_90_or_270(rotation)) {
1779		switch (wp->cpp) {
1780		case 1:
1781			wp->y_min_scanlines = 16;
1782			break;
1783		case 2:
1784			wp->y_min_scanlines = 8;
1785			break;
1786		case 4:
1787			wp->y_min_scanlines = 4;
1788			break;
1789		default:
1790			MISSING_CASE(wp->cpp);
1791			return -EINVAL;
1792		}
1793	} else {
1794		wp->y_min_scanlines = 4;
1795	}
1796
1797	if (skl_needs_memory_bw_wa(i915))
1798		wp->y_min_scanlines *= 2;
1799
1800	wp->plane_bytes_per_line = wp->width * wp->cpp;
1801	if (wp->y_tiled) {
1802		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
1803					   wp->y_min_scanlines,
1804					   wp->dbuf_block_size);
1805
1806		if (DISPLAY_VER(i915) >= 30)
1807			interm_pbpl += (pan_x != 0);
1808		else if (DISPLAY_VER(i915) >= 10)
1809			interm_pbpl++;
1810
1811		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
1812							wp->y_min_scanlines);
1813	} else {
1814		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
1815					   wp->dbuf_block_size);
1816
1817		if (!wp->x_tiled || DISPLAY_VER(i915) >= 10)
1818			interm_pbpl++;
1819
1820		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
1821	}
1822
1823	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
1824					     wp->plane_blocks_per_line);
1825
1826	wp->linetime_us = fixed16_to_u32_round_up(intel_get_linetime_us(crtc_state));
1827
1828	return 0;
1829}
1830
1831static int
1832skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
1833			    const struct intel_plane_state *plane_state,
1834			    struct skl_wm_params *wp, int color_plane)
1835{
1836	const struct drm_framebuffer *fb = plane_state->hw.fb;
1837	int width;
1838
1839	/*
1840	 * Src coordinates are already rotated by 270 degrees for
1841	 * the 90/270 degree plane rotation cases (to match the
1842	 * GTT mapping), hence no need to account for rotation here.
1843	 */
1844	width = drm_rect_width(&plane_state->uapi.src) >> 16;
1845
1846	return skl_compute_wm_params(crtc_state, width,
1847				     fb->format, fb->modifier,
1848				     plane_state->hw.rotation,
1849				     intel_plane_pixel_rate(crtc_state, plane_state),
1850				     wp, color_plane,
1851				     plane_state->uapi.src.x1);
1852}
1853
1854static bool skl_wm_has_lines(struct drm_i915_private *i915, int level)
1855{
1856	if (DISPLAY_VER(i915) >= 10)
1857		return true;
1858
1859	/* The number of lines are ignored for the level 0 watermark. */
1860	return level > 0;
1861}
1862
1863static int skl_wm_max_lines(struct drm_i915_private *i915)
1864{
1865	if (DISPLAY_VER(i915) >= 13)
1866		return 255;
1867	else
1868		return 31;
1869}
1870
1871static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
1872				 struct intel_plane *plane,
1873				 int level,
1874				 unsigned int latency,
1875				 const struct skl_wm_params *wp,
1876				 const struct skl_wm_level *result_prev,
1877				 struct skl_wm_level *result /* out */)
1878{
1879	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
1880	uint_fixed_16_16_t method1, method2;
1881	uint_fixed_16_16_t selected_result;
1882	u32 blocks, lines, min_ddb_alloc = 0;
1883
1884	if (latency == 0 ||
1885	    (use_minimal_wm0_only(crtc_state, plane) && level > 0)) {
1886		/* reject it */
1887		result->min_ddb_alloc = U16_MAX;
1888		return;
1889	}
1890
1891	method1 = skl_wm_method1(i915, wp->plane_pixel_rate,
1892				 wp->cpp, latency, wp->dbuf_block_size);
1893	method2 = skl_wm_method2(wp->plane_pixel_rate,
1894				 crtc_state->hw.pipe_mode.crtc_htotal,
1895				 latency,
1896				 wp->plane_blocks_per_line);
1897
1898	if (wp->y_tiled) {
1899		selected_result = max_fixed16(method2, wp->y_tile_minimum);
1900	} else {
1901		if ((wp->cpp * crtc_state->hw.pipe_mode.crtc_htotal /
1902		     wp->dbuf_block_size < 1) &&
1903		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
1904			selected_result = method2;
1905		} else if (latency >= wp->linetime_us) {
1906			if (DISPLAY_VER(i915) == 9)
1907				selected_result = min_fixed16(method1, method2);
1908			else
1909				selected_result = method2;
1910		} else {
1911			selected_result = method1;
1912		}
1913	}
1914
1915	blocks = fixed16_to_u32_round_up(selected_result);
1916	if (DISPLAY_VER(i915) < 30)
1917		blocks++;
1918
1919	/*
1920	 * Lets have blocks at minimum equivalent to plane_blocks_per_line
1921	 * as there will be at minimum one line for lines configuration. This
1922	 * is a work around for FIFO underruns observed with resolutions like
1923	 * 4k 60 Hz in single channel DRAM configurations.
1924	 *
1925	 * As per the Bspec 49325, if the ddb allocation can hold at least
1926	 * one plane_blocks_per_line, we should have selected method2 in
1927	 * the above logic. Assuming that modern versions have enough dbuf
1928	 * and method2 guarantees blocks equivalent to at least 1 line,
1929	 * select the blocks as plane_blocks_per_line.
1930	 *
1931	 * TODO: Revisit the logic when we have better understanding on DRAM
1932	 * channels' impact on the level 0 memory latency and the relevant
1933	 * wm calculations.
1934	 */
1935	if (skl_wm_has_lines(i915, level))
1936		blocks = max(blocks,
1937			     fixed16_to_u32_round_up(wp->plane_blocks_per_line));
1938	lines = div_round_up_fixed16(selected_result,
1939				     wp->plane_blocks_per_line);
1940
1941	if (DISPLAY_VER(i915) == 9) {
1942		/* Display WA #1125: skl,bxt,kbl */
1943		if (level == 0 && wp->rc_surface)
1944			blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
1945
1946		/* Display WA #1126: skl,bxt,kbl */
1947		if (level >= 1 && level <= 7) {
1948			if (wp->y_tiled) {
1949				blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
1950				lines += wp->y_min_scanlines;
1951			} else {
1952				blocks++;
1953			}
1954
1955			/*
1956			 * Make sure result blocks for higher latency levels are
1957			 * at least as high as level below the current level.
1958			 * Assumption in DDB algorithm optimization for special
1959			 * cases. Also covers Display WA #1125 for RC.
1960			 */
1961			if (result_prev->blocks > blocks)
1962				blocks = result_prev->blocks;
1963		}
1964	}
1965
1966	if (DISPLAY_VER(i915) >= 11) {
1967		if (wp->y_tiled) {
1968			int extra_lines;
1969
1970			if (lines % wp->y_min_scanlines == 0)
1971				extra_lines = wp->y_min_scanlines;
1972			else
1973				extra_lines = wp->y_min_scanlines * 2 -
1974					lines % wp->y_min_scanlines;
1975
1976			min_ddb_alloc = mul_round_up_u32_fixed16(lines + extra_lines,
1977								 wp->plane_blocks_per_line);
1978		} else {
1979			min_ddb_alloc = blocks + DIV_ROUND_UP(blocks, 10);
1980		}
1981	}
1982
1983	if (!skl_wm_has_lines(i915, level))
1984		lines = 0;
1985
1986	if (lines > skl_wm_max_lines(i915)) {
1987		/* reject it */
1988		result->min_ddb_alloc = U16_MAX;
1989		return;
1990	}
1991
1992	/*
1993	 * If lines is valid, assume we can use this watermark level
1994	 * for now.  We'll come back and disable it after we calculate the
1995	 * DDB allocation if it turns out we don't actually have enough
1996	 * blocks to satisfy it.
1997	 */
1998	result->blocks = blocks;
1999	result->lines = lines;
2000	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
2001	result->min_ddb_alloc = max(min_ddb_alloc, blocks) + 1;
2002	result->enable = true;
2003
2004	if (DISPLAY_VER(i915) < 12 && i915->display.sagv.block_time_us)
2005		result->can_sagv = latency >= i915->display.sagv.block_time_us;
2006}
2007
2008static void
2009skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
2010		      struct intel_plane *plane,
2011		      const struct skl_wm_params *wm_params,
2012		      struct skl_wm_level *levels)
2013{
2014	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
2015	struct skl_wm_level *result_prev = &levels[0];
2016	int level;
2017
2018	for (level = 0; level < i915->display.wm.num_levels; level++) {
2019		struct skl_wm_level *result = &levels[level];
2020		unsigned int latency = skl_wm_latency(i915, level, wm_params);
2021
2022		skl_compute_plane_wm(crtc_state, plane, level, latency,
2023				     wm_params, result_prev, result);
2024
2025		result_prev = result;
2026	}
2027}
2028
2029static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state,
2030				struct intel_plane *plane,
2031				const struct skl_wm_params *wm_params,
2032				struct skl_plane_wm *plane_wm)
2033{
2034	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
2035	struct skl_wm_level *sagv_wm = &plane_wm->sagv.wm0;
2036	struct skl_wm_level *levels = plane_wm->wm;
2037	unsigned int latency = 0;
2038
2039	if (i915->display.sagv.block_time_us)
2040		latency = i915->display.sagv.block_time_us +
2041			skl_wm_latency(i915, 0, wm_params);
2042
2043	skl_compute_plane_wm(crtc_state, plane, 0, latency,
2044			     wm_params, &levels[0],
2045			     sagv_wm);
2046}
2047
2048static void skl_compute_transition_wm(struct drm_i915_private *i915,
2049				      struct skl_wm_level *trans_wm,
2050				      const struct skl_wm_level *wm0,
2051				      const struct skl_wm_params *wp)
2052{
2053	u16 trans_min, trans_amount, trans_y_tile_min;
2054	u16 wm0_blocks, trans_offset, blocks;
2055
2056	/* Transition WM don't make any sense if ipc is disabled */
2057	if (!skl_watermark_ipc_enabled(i915))
2058		return;
2059
2060	/*
2061	 * WaDisableTWM:skl,kbl,cfl,bxt
2062	 * Transition WM are not recommended by HW team for GEN9
2063	 */
2064	if (DISPLAY_VER(i915) == 9)
2065		return;
2066
2067	if (DISPLAY_VER(i915) >= 11)
2068		trans_min = 4;
2069	else
2070		trans_min = 14;
2071
2072	/* Display WA #1140: glk,cnl */
2073	if (DISPLAY_VER(i915) == 10)
2074		trans_amount = 0;
2075	else
2076		trans_amount = 10; /* This is configurable amount */
2077
2078	trans_offset = trans_min + trans_amount;
2079
2080	/*
2081	 * The spec asks for Selected Result Blocks for wm0 (the real value),
2082	 * not Result Blocks (the integer value). Pay attention to the capital
2083	 * letters. The value wm_l0->blocks is actually Result Blocks, but
2084	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
2085	 * and since we later will have to get the ceiling of the sum in the
2086	 * transition watermarks calculation, we can just pretend Selected
2087	 * Result Blocks is Result Blocks minus 1 and it should work for the
2088	 * current platforms.
2089	 */
2090	wm0_blocks = wm0->blocks - 1;
2091
2092	if (wp->y_tiled) {
2093		trans_y_tile_min =
2094			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
2095		blocks = max(wm0_blocks, trans_y_tile_min) + trans_offset;
2096	} else {
2097		blocks = wm0_blocks + trans_offset;
2098	}
2099	blocks++;
2100
2101	/*
2102	 * Just assume we can enable the transition watermark.  After
2103	 * computing the DDB we'll come back and disable it if that
2104	 * assumption turns out to be false.
2105	 */
2106	trans_wm->blocks = blocks;
2107	trans_wm->min_ddb_alloc = max_t(u16, wm0->min_ddb_alloc, blocks + 1);
2108	trans_wm->enable = true;
2109}
2110
2111static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
2112				     const struct intel_plane_state *plane_state,
2113				     struct intel_plane *plane, int color_plane)
2114{
2115	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2116	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2117	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane->id];
2118	struct skl_wm_params wm_params;
2119	int ret;
2120
2121	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
2122					  &wm_params, color_plane);
2123	if (ret)
2124		return ret;
2125
2126	skl_compute_wm_levels(crtc_state, plane, &wm_params, wm->wm);
2127
2128	skl_compute_transition_wm(i915, &wm->trans_wm,
2129				  &wm->wm[0], &wm_params);
2130
2131	if (DISPLAY_VER(i915) >= 12) {
2132		tgl_compute_sagv_wm(crtc_state, plane, &wm_params, wm);
2133
2134		skl_compute_transition_wm(i915, &wm->sagv.trans_wm,
2135					  &wm->sagv.wm0, &wm_params);
2136	}
2137
2138	return 0;
2139}
2140
2141static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
2142				 const struct intel_plane_state *plane_state,
2143				 struct intel_plane *plane)
2144{
2145	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane->id];
2146	struct skl_wm_params wm_params;
2147	int ret;
2148
2149	wm->is_planar = true;
2150
2151	/* uv plane watermarks must also be validated for NV12/Planar */
2152	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
2153					  &wm_params, 1);
2154	if (ret)
2155		return ret;
2156
2157	skl_compute_wm_levels(crtc_state, plane, &wm_params, wm->uv_wm);
2158
2159	return 0;
2160}
2161
2162static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
2163			      const struct intel_plane_state *plane_state)
2164{
2165	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2166	enum plane_id plane_id = plane->id;
2167	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
2168	const struct drm_framebuffer *fb = plane_state->hw.fb;
2169	int ret;
2170
2171	memset(wm, 0, sizeof(*wm));
2172
2173	if (!intel_wm_plane_visible(crtc_state, plane_state))
2174		return 0;
2175
2176	ret = skl_build_plane_wm_single(crtc_state, plane_state,
2177					plane, 0);
2178	if (ret)
2179		return ret;
2180
2181	if (fb->format->is_yuv && fb->format->num_planes > 1) {
2182		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
2183					    plane);
2184		if (ret)
2185			return ret;
2186	}
2187
2188	return 0;
2189}
2190
2191static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
2192			      const struct intel_plane_state *plane_state)
2193{
2194	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2195	struct drm_i915_private *i915 = to_i915(plane->base.dev);
2196	enum plane_id plane_id = plane->id;
2197	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
2198	int ret;
2199
2200	/* Watermarks calculated in master */
2201	if (plane_state->planar_slave)
2202		return 0;
2203
2204	memset(wm, 0, sizeof(*wm));
2205
2206	if (plane_state->planar_linked_plane) {
2207		const struct drm_framebuffer *fb = plane_state->hw.fb;
2208
2209		drm_WARN_ON(&i915->drm,
2210			    !intel_wm_plane_visible(crtc_state, plane_state));
2211		drm_WARN_ON(&i915->drm, !fb->format->is_yuv ||
2212			    fb->format->num_planes == 1);
2213
2214		ret = skl_build_plane_wm_single(crtc_state, plane_state,
2215						plane_state->planar_linked_plane, 0);
2216		if (ret)
2217			return ret;
2218
2219		ret = skl_build_plane_wm_single(crtc_state, plane_state,
2220						plane, 1);
2221		if (ret)
2222			return ret;
2223	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
2224		ret = skl_build_plane_wm_single(crtc_state, plane_state,
2225						plane, 0);
2226		if (ret)
2227			return ret;
2228	}
2229
2230	return 0;
2231}
2232
2233static bool
2234skl_is_vblank_too_short(const struct intel_crtc_state *crtc_state,
2235			int wm0_lines, int latency)
2236{
2237	const struct drm_display_mode *adjusted_mode =
2238		&crtc_state->hw.adjusted_mode;
2239
2240	/* FIXME missing scaler and DSC pre-fill time */
2241	return crtc_state->framestart_delay +
2242		intel_usecs_to_scanlines(adjusted_mode, latency) +
2243		wm0_lines >
2244		adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vblank_start;
2245}
2246
2247static int skl_max_wm0_lines(const struct intel_crtc_state *crtc_state)
2248{
2249	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2250	enum plane_id plane_id;
2251	int wm0_lines = 0;
2252
2253	for_each_plane_id_on_crtc(crtc, plane_id) {
2254		const struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
2255
2256		/* FIXME what about !skl_wm_has_lines() platforms? */
2257		wm0_lines = max_t(int, wm0_lines, wm->wm[0].lines);
2258	}
2259
2260	return wm0_lines;
2261}
2262
2263static int skl_max_wm_level_for_vblank(struct intel_crtc_state *crtc_state,
2264				       int wm0_lines)
2265{
2266	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2267	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2268	int level;
2269
2270	for (level = i915->display.wm.num_levels - 1; level >= 0; level--) {
2271		int latency;
2272
2273		/* FIXME should we care about the latency w/a's? */
2274		latency = skl_wm_latency(i915, level, NULL);
2275		if (latency == 0)
2276			continue;
2277
2278		/* FIXME is it correct to use 0 latency for wm0 here? */
2279		if (level == 0)
2280			latency = 0;
2281
2282		if (!skl_is_vblank_too_short(crtc_state, wm0_lines, latency))
2283			return level;
2284	}
2285
2286	return -EINVAL;
2287}
2288
2289static int skl_wm_check_vblank(struct intel_crtc_state *crtc_state)
2290{
2291	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2292	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2293	int wm0_lines, level;
2294
2295	if (!crtc_state->hw.active)
2296		return 0;
2297
2298	wm0_lines = skl_max_wm0_lines(crtc_state);
2299
2300	level = skl_max_wm_level_for_vblank(crtc_state, wm0_lines);
2301	if (level < 0)
2302		return level;
2303
2304	/*
2305	 * PSR needs to toggle LATENCY_REPORTING_REMOVED_PIPE_*
2306	 * based on whether we're limited by the vblank duration.
2307	 */
2308	crtc_state->wm_level_disabled = level < i915->display.wm.num_levels - 1;
2309
2310	for (level++; level < i915->display.wm.num_levels; level++) {
2311		enum plane_id plane_id;
2312
2313		for_each_plane_id_on_crtc(crtc, plane_id) {
2314			struct skl_plane_wm *wm =
2315				&crtc_state->wm.skl.optimal.planes[plane_id];
2316
2317			/*
2318			 * FIXME just clear enable or flag the entire
2319			 * thing as bad via min_ddb_alloc=U16_MAX?
2320			 */
2321			wm->wm[level].enable = false;
2322			wm->uv_wm[level].enable = false;
2323		}
2324	}
2325
2326	if (DISPLAY_VER(i915) >= 12 &&
2327	    i915->display.sagv.block_time_us &&
2328	    skl_is_vblank_too_short(crtc_state, wm0_lines,
2329				    i915->display.sagv.block_time_us)) {
2330		enum plane_id plane_id;
2331
2332		for_each_plane_id_on_crtc(crtc, plane_id) {
2333			struct skl_plane_wm *wm =
2334				&crtc_state->wm.skl.optimal.planes[plane_id];
2335
2336			wm->sagv.wm0.enable = false;
2337			wm->sagv.trans_wm.enable = false;
2338		}
2339	}
2340
2341	return 0;
2342}
2343
2344static int skl_build_pipe_wm(struct intel_atomic_state *state,
2345			     struct intel_crtc *crtc)
2346{
2347	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2348	struct intel_crtc_state *crtc_state =
2349		intel_atomic_get_new_crtc_state(state, crtc);
2350	const struct intel_plane_state *plane_state;
2351	struct intel_plane *plane;
2352	int ret, i;
2353
2354	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
2355		/*
2356		 * FIXME should perhaps check {old,new}_plane_crtc->hw.crtc
2357		 * instead but we don't populate that correctly for NV12 Y
2358		 * planes so for now hack this.
2359		 */
2360		if (plane->pipe != crtc->pipe)
2361			continue;
2362
2363		if (DISPLAY_VER(i915) >= 11)
2364			ret = icl_build_plane_wm(crtc_state, plane_state);
2365		else
2366			ret = skl_build_plane_wm(crtc_state, plane_state);
2367		if (ret)
2368			return ret;
2369	}
2370
2371	crtc_state->wm.skl.optimal = crtc_state->wm.skl.raw;
2372
2373	return skl_wm_check_vblank(crtc_state);
2374}
2375
2376static bool skl_wm_level_equals(const struct skl_wm_level *l1,
2377				const struct skl_wm_level *l2)
2378{
2379	return l1->enable == l2->enable &&
2380		l1->ignore_lines == l2->ignore_lines &&
2381		l1->lines == l2->lines &&
2382		l1->blocks == l2->blocks;
2383}
2384
2385static bool skl_plane_wm_equals(struct drm_i915_private *i915,
2386				const struct skl_plane_wm *wm1,
2387				const struct skl_plane_wm *wm2)
2388{
2389	int level;
2390
2391	for (level = 0; level < i915->display.wm.num_levels; level++) {
2392		/*
2393		 * We don't check uv_wm as the hardware doesn't actually
2394		 * use it. It only gets used for calculating the required
2395		 * ddb allocation.
2396		 */
2397		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
2398			return false;
2399	}
2400
2401	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm) &&
2402		skl_wm_level_equals(&wm1->sagv.wm0, &wm2->sagv.wm0) &&
2403		skl_wm_level_equals(&wm1->sagv.trans_wm, &wm2->sagv.trans_wm);
2404}
2405
2406static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
2407				    const struct skl_ddb_entry *b)
2408{
2409	return a->start < b->end && b->start < a->end;
2410}
2411
2412static void skl_ddb_entry_union(struct skl_ddb_entry *a,
2413				const struct skl_ddb_entry *b)
2414{
2415	if (a->end && b->end) {
2416		a->start = min(a->start, b->start);
2417		a->end = max(a->end, b->end);
2418	} else if (b->end) {
2419		a->start = b->start;
2420		a->end = b->end;
2421	}
2422}
2423
2424bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
2425				 const struct skl_ddb_entry *entries,
2426				 int num_entries, int ignore_idx)
2427{
2428	int i;
2429
2430	for (i = 0; i < num_entries; i++) {
2431		if (i != ignore_idx &&
2432		    skl_ddb_entries_overlap(ddb, &entries[i]))
2433			return true;
2434	}
2435
2436	return false;
2437}
2438
2439static int
2440skl_ddb_add_affected_planes(struct intel_atomic_state *state,
2441			    struct intel_crtc *crtc)
2442{
2443	struct drm_i915_private *i915 = to_i915(state->base.dev);
2444	const struct intel_crtc_state *old_crtc_state =
2445		intel_atomic_get_old_crtc_state(state, crtc);
2446	struct intel_crtc_state *new_crtc_state =
2447		intel_atomic_get_new_crtc_state(state, crtc);
2448	struct intel_plane *plane;
2449
2450	for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
2451		struct intel_plane_state *plane_state;
2452		enum plane_id plane_id = plane->id;
2453
2454		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb[plane_id],
2455					&new_crtc_state->wm.skl.plane_ddb[plane_id]) &&
2456		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
2457					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]))
2458			continue;
2459
2460		if (new_crtc_state->do_async_flip) {
2461			drm_dbg_kms(&i915->drm, "[PLANE:%d:%s] Can't change DDB during async flip\n",
2462				    plane->base.base.id, plane->base.name);
2463			return -EINVAL;
2464		}
2465
2466		plane_state = intel_atomic_get_plane_state(state, plane);
2467		if (IS_ERR(plane_state))
2468			return PTR_ERR(plane_state);
2469
2470		new_crtc_state->update_planes |= BIT(plane_id);
2471		new_crtc_state->async_flip_planes = 0;
2472		new_crtc_state->do_async_flip = false;
2473	}
2474
2475	return 0;
2476}
2477
2478static u8 intel_dbuf_enabled_slices(const struct intel_dbuf_state *dbuf_state)
2479{
2480	struct drm_i915_private *i915 = to_i915(dbuf_state->base.state->base.dev);
2481	u8 enabled_slices;
2482	enum pipe pipe;
2483
2484	/*
2485	 * FIXME: For now we always enable slice S1 as per
2486	 * the Bspec display initialization sequence.
2487	 */
2488	enabled_slices = BIT(DBUF_S1);
2489
2490	for_each_pipe(i915, pipe)
2491		enabled_slices |= dbuf_state->slices[pipe];
2492
2493	return enabled_slices;
2494}
2495
2496static int
2497skl_compute_ddb(struct intel_atomic_state *state)
2498{
2499	struct drm_i915_private *i915 = to_i915(state->base.dev);
2500	const struct intel_dbuf_state *old_dbuf_state;
2501	struct intel_dbuf_state *new_dbuf_state = NULL;
2502	struct intel_crtc_state *new_crtc_state;
2503	struct intel_crtc *crtc;
2504	int ret, i;
2505
2506	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
2507		new_dbuf_state = intel_atomic_get_dbuf_state(state);
2508		if (IS_ERR(new_dbuf_state))
2509			return PTR_ERR(new_dbuf_state);
2510
2511		old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
2512		break;
2513	}
2514
2515	if (!new_dbuf_state)
2516		return 0;
2517
2518	new_dbuf_state->active_pipes =
2519		intel_calc_active_pipes(state, old_dbuf_state->active_pipes);
2520
2521	if (old_dbuf_state->active_pipes != new_dbuf_state->active_pipes) {
2522		ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
2523		if (ret)
2524			return ret;
2525	}
2526
2527	if (HAS_MBUS_JOINING(i915)) {
2528		new_dbuf_state->joined_mbus =
2529			adlp_check_mbus_joined(new_dbuf_state->active_pipes);
2530
2531		if (old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
2532			ret = intel_cdclk_state_set_joined_mbus(state, new_dbuf_state->joined_mbus);
2533			if (ret)
2534				return ret;
2535		}
2536	}
2537
2538	for_each_intel_crtc(&i915->drm, crtc) {
2539		enum pipe pipe = crtc->pipe;
2540
2541		new_dbuf_state->slices[pipe] =
2542			skl_compute_dbuf_slices(crtc, new_dbuf_state->active_pipes,
2543						new_dbuf_state->joined_mbus);
2544
2545		if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe])
2546			continue;
2547
2548		ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
2549		if (ret)
2550			return ret;
2551	}
2552
2553	new_dbuf_state->enabled_slices = intel_dbuf_enabled_slices(new_dbuf_state);
2554
2555	if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices ||
2556	    old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
2557		ret = intel_atomic_serialize_global_state(&new_dbuf_state->base);
2558		if (ret)
2559			return ret;
2560
2561		drm_dbg_kms(&i915->drm,
2562			    "Enabled dbuf slices 0x%x -> 0x%x (total dbuf slices 0x%x), mbus joined? %s->%s\n",
2563			    old_dbuf_state->enabled_slices,
2564			    new_dbuf_state->enabled_slices,
2565			    DISPLAY_INFO(i915)->dbuf.slice_mask,
2566			    str_yes_no(old_dbuf_state->joined_mbus),
2567			    str_yes_no(new_dbuf_state->joined_mbus));
2568	}
2569
2570	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
2571		enum pipe pipe = crtc->pipe;
2572
2573		new_dbuf_state->weight[pipe] = intel_crtc_ddb_weight(new_crtc_state);
2574
2575		if (old_dbuf_state->weight[pipe] == new_dbuf_state->weight[pipe])
2576			continue;
2577
2578		ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
2579		if (ret)
2580			return ret;
2581	}
2582
2583	for_each_intel_crtc(&i915->drm, crtc) {
2584		ret = skl_crtc_allocate_ddb(state, crtc);
2585		if (ret)
2586			return ret;
2587	}
2588
2589	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
2590		ret = skl_crtc_allocate_plane_ddb(state, crtc);
2591		if (ret)
2592			return ret;
2593
2594		ret = skl_ddb_add_affected_planes(state, crtc);
2595		if (ret)
2596			return ret;
2597	}
2598
2599	return 0;
2600}
2601
2602static char enast(bool enable)
2603{
2604	return enable ? '*' : ' ';
2605}
2606
2607static void
2608skl_print_wm_changes(struct intel_atomic_state *state)
2609{
2610	struct drm_i915_private *i915 = to_i915(state->base.dev);
2611	const struct intel_crtc_state *old_crtc_state;
2612	const struct intel_crtc_state *new_crtc_state;
2613	struct intel_plane *plane;
2614	struct intel_crtc *crtc;
2615	int i;
2616
2617	if (!drm_debug_enabled(DRM_UT_KMS))
2618		return;
2619
2620	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
2621					    new_crtc_state, i) {
2622		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
2623
2624		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
2625		new_pipe_wm = &new_crtc_state->wm.skl.optimal;
2626
2627		for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
2628			enum plane_id plane_id = plane->id;
2629			const struct skl_ddb_entry *old, *new;
2630
2631			old = &old_crtc_state->wm.skl.plane_ddb[plane_id];
2632			new = &new_crtc_state->wm.skl.plane_ddb[plane_id];
2633
2634			if (skl_ddb_entry_equal(old, new))
2635				continue;
2636
2637			drm_dbg_kms(&i915->drm,
2638				    "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
2639				    plane->base.base.id, plane->base.name,
2640				    old->start, old->end, new->start, new->end,
2641				    skl_ddb_entry_size(old), skl_ddb_entry_size(new));
2642		}
2643
2644		for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
2645			enum plane_id plane_id = plane->id;
2646			const struct skl_plane_wm *old_wm, *new_wm;
2647
2648			old_wm = &old_pipe_wm->planes[plane_id];
2649			new_wm = &new_pipe_wm->planes[plane_id];
2650
2651			if (skl_plane_wm_equals(i915, old_wm, new_wm))
2652				continue;
2653
2654			drm_dbg_kms(&i915->drm,
2655				    "[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm"
2656				    " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm\n",
2657				    plane->base.base.id, plane->base.name,
2658				    enast(old_wm->wm[0].enable), enast(old_wm->wm[1].enable),
2659				    enast(old_wm->wm[2].enable), enast(old_wm->wm[3].enable),
2660				    enast(old_wm->wm[4].enable), enast(old_wm->wm[5].enable),
2661				    enast(old_wm->wm[6].enable), enast(old_wm->wm[7].enable),
2662				    enast(old_wm->trans_wm.enable),
2663				    enast(old_wm->sagv.wm0.enable),
2664				    enast(old_wm->sagv.trans_wm.enable),
2665				    enast(new_wm->wm[0].enable), enast(new_wm->wm[1].enable),
2666				    enast(new_wm->wm[2].enable), enast(new_wm->wm[3].enable),
2667				    enast(new_wm->wm[4].enable), enast(new_wm->wm[5].enable),
2668				    enast(new_wm->wm[6].enable), enast(new_wm->wm[7].enable),
2669				    enast(new_wm->trans_wm.enable),
2670				    enast(new_wm->sagv.wm0.enable),
2671				    enast(new_wm->sagv.trans_wm.enable));
2672
2673			drm_dbg_kms(&i915->drm,
2674				    "[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d"
2675				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d\n",
2676				    plane->base.base.id, plane->base.name,
2677				    enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].lines,
2678				    enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].lines,
2679				    enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].lines,
2680				    enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].lines,
2681				    enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].lines,
2682				    enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].lines,
2683				    enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].lines,
2684				    enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].lines,
2685				    enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.lines,
2686				    enast(old_wm->sagv.wm0.ignore_lines), old_wm->sagv.wm0.lines,
2687				    enast(old_wm->sagv.trans_wm.ignore_lines), old_wm->sagv.trans_wm.lines,
2688				    enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].lines,
2689				    enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].lines,
2690				    enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].lines,
2691				    enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].lines,
2692				    enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].lines,
2693				    enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].lines,
2694				    enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].lines,
2695				    enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].lines,
2696				    enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.lines,
2697				    enast(new_wm->sagv.wm0.ignore_lines), new_wm->sagv.wm0.lines,
2698				    enast(new_wm->sagv.trans_wm.ignore_lines), new_wm->sagv.trans_wm.lines);
2699
2700			drm_dbg_kms(&i915->drm,
2701				    "[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
2702				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
2703				    plane->base.base.id, plane->base.name,
2704				    old_wm->wm[0].blocks, old_wm->wm[1].blocks,
2705				    old_wm->wm[2].blocks, old_wm->wm[3].blocks,
2706				    old_wm->wm[4].blocks, old_wm->wm[5].blocks,
2707				    old_wm->wm[6].blocks, old_wm->wm[7].blocks,
2708				    old_wm->trans_wm.blocks,
2709				    old_wm->sagv.wm0.blocks,
2710				    old_wm->sagv.trans_wm.blocks,
2711				    new_wm->wm[0].blocks, new_wm->wm[1].blocks,
2712				    new_wm->wm[2].blocks, new_wm->wm[3].blocks,
2713				    new_wm->wm[4].blocks, new_wm->wm[5].blocks,
2714				    new_wm->wm[6].blocks, new_wm->wm[7].blocks,
2715				    new_wm->trans_wm.blocks,
2716				    new_wm->sagv.wm0.blocks,
2717				    new_wm->sagv.trans_wm.blocks);
2718
2719			drm_dbg_kms(&i915->drm,
2720				    "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
2721				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
2722				    plane->base.base.id, plane->base.name,
2723				    old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
2724				    old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
2725				    old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
2726				    old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
2727				    old_wm->trans_wm.min_ddb_alloc,
2728				    old_wm->sagv.wm0.min_ddb_alloc,
2729				    old_wm->sagv.trans_wm.min_ddb_alloc,
2730				    new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
2731				    new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
2732				    new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
2733				    new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
2734				    new_wm->trans_wm.min_ddb_alloc,
2735				    new_wm->sagv.wm0.min_ddb_alloc,
2736				    new_wm->sagv.trans_wm.min_ddb_alloc);
2737		}
2738	}
2739}
2740
2741static bool skl_plane_selected_wm_equals(struct intel_plane *plane,
2742					 const struct skl_pipe_wm *old_pipe_wm,
2743					 const struct skl_pipe_wm *new_pipe_wm)
2744{
2745	struct drm_i915_private *i915 = to_i915(plane->base.dev);
2746	int level;
2747
2748	for (level = 0; level < i915->display.wm.num_levels; level++) {
2749		/*
2750		 * We don't check uv_wm as the hardware doesn't actually
2751		 * use it. It only gets used for calculating the required
2752		 * ddb allocation.
2753		 */
2754		if (!skl_wm_level_equals(skl_plane_wm_level(old_pipe_wm, plane->id, level),
2755					 skl_plane_wm_level(new_pipe_wm, plane->id, level)))
2756			return false;
2757	}
2758
2759	if (HAS_HW_SAGV_WM(i915)) {
2760		const struct skl_plane_wm *old_wm = &old_pipe_wm->planes[plane->id];
2761		const struct skl_plane_wm *new_wm = &new_pipe_wm->planes[plane->id];
2762
2763		if (!skl_wm_level_equals(&old_wm->sagv.wm0, &new_wm->sagv.wm0) ||
2764		    !skl_wm_level_equals(&old_wm->sagv.trans_wm, &new_wm->sagv.trans_wm))
2765			return false;
2766	}
2767
2768	return skl_wm_level_equals(skl_plane_trans_wm(old_pipe_wm, plane->id),
2769				   skl_plane_trans_wm(new_pipe_wm, plane->id));
2770}
2771
2772/*
2773 * To make sure the cursor watermark registers are always consistent
2774 * with our computed state the following scenario needs special
2775 * treatment:
2776 *
2777 * 1. enable cursor
2778 * 2. move cursor entirely offscreen
2779 * 3. disable cursor
2780 *
2781 * Step 2. does call .disable_plane() but does not zero the watermarks
2782 * (since we consider an offscreen cursor still active for the purposes
2783 * of watermarks). Step 3. would not normally call .disable_plane()
2784 * because the actual plane visibility isn't changing, and we don't
2785 * deallocate the cursor ddb until the pipe gets disabled. So we must
2786 * force step 3. to call .disable_plane() to update the watermark
2787 * registers properly.
2788 *
2789 * Other planes do not suffer from this issues as their watermarks are
2790 * calculated based on the actual plane visibility. The only time this
2791 * can trigger for the other planes is during the initial readout as the
2792 * default value of the watermarks registers is not zero.
2793 */
2794static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
2795				      struct intel_crtc *crtc)
2796{
2797	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2798	const struct intel_crtc_state *old_crtc_state =
2799		intel_atomic_get_old_crtc_state(state, crtc);
2800	struct intel_crtc_state *new_crtc_state =
2801		intel_atomic_get_new_crtc_state(state, crtc);
2802	struct intel_plane *plane;
2803
2804	for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
2805		struct intel_plane_state *plane_state;
2806		enum plane_id plane_id = plane->id;
2807
2808		/*
2809		 * Force a full wm update for every plane on modeset.
2810		 * Required because the reset value of the wm registers
2811		 * is non-zero, whereas we want all disabled planes to
2812		 * have zero watermarks. So if we turn off the relevant
2813		 * power well the hardware state will go out of sync
2814		 * with the software state.
2815		 */
2816		if (!intel_crtc_needs_modeset(new_crtc_state) &&
2817		    skl_plane_selected_wm_equals(plane,
2818						 &old_crtc_state->wm.skl.optimal,
2819						 &new_crtc_state->wm.skl.optimal))
2820			continue;
2821
2822		if (new_crtc_state->do_async_flip) {
2823			drm_dbg_kms(&i915->drm, "[PLANE:%d:%s] Can't change watermarks during async flip\n",
2824				    plane->base.base.id, plane->base.name);
2825			return -EINVAL;
2826		}
2827
2828		plane_state = intel_atomic_get_plane_state(state, plane);
2829		if (IS_ERR(plane_state))
2830			return PTR_ERR(plane_state);
2831
2832		new_crtc_state->update_planes |= BIT(plane_id);
2833		new_crtc_state->async_flip_planes = 0;
2834		new_crtc_state->do_async_flip = false;
2835	}
2836
2837	return 0;
2838}
2839
2840/*
2841 * If Fixed Refresh Rate or For VRR case Vmin = Vmax = Flipline:
2842 * Program DEEP PKG_C_LATENCY Pkg C with highest valid latency from
2843 * watermark level1 and up and above. If watermark level 1 is
2844 * invalid program it with all 1's.
2845 * Program PKG_C_LATENCY Added Wake Time = DSB execution time
2846 * If Variable Refresh Rate where Vmin != Vmax != Flipline:
2847 * Program DEEP PKG_C_LATENCY Pkg C with all 1's.
2848 * Program PKG_C_LATENCY Added Wake Time = 0
2849 */
2850static void
2851skl_program_dpkgc_latency(struct drm_i915_private *i915, bool enable_dpkgc)
2852{
2853	u32 max_latency = 0;
2854	u32 clear = 0, val = 0;
2855	u32 added_wake_time = 0;
2856
2857	if (DISPLAY_VER(i915) < 20)
2858		return;
2859
2860	if (enable_dpkgc) {
2861		max_latency = skl_watermark_max_latency(i915, 1);
2862		if (max_latency == 0)
2863			max_latency = LNL_PKG_C_LATENCY_MASK;
2864		added_wake_time = DSB_EXE_TIME +
2865			i915->display.sagv.block_time_us;
2866	} else {
2867		max_latency = LNL_PKG_C_LATENCY_MASK;
2868		added_wake_time = 0;
2869	}
2870
2871	clear |= LNL_ADDED_WAKE_TIME_MASK | LNL_PKG_C_LATENCY_MASK;
2872	val |= REG_FIELD_PREP(LNL_PKG_C_LATENCY_MASK, max_latency);
2873	val |= REG_FIELD_PREP(LNL_ADDED_WAKE_TIME_MASK, added_wake_time);
2874
2875	intel_uncore_rmw(&i915->uncore, LNL_PKG_C_LATENCY, clear, val);
2876}
2877
2878static int
2879skl_compute_wm(struct intel_atomic_state *state)
2880{
2881	struct intel_crtc *crtc;
2882	struct intel_crtc_state __maybe_unused *new_crtc_state;
2883	int ret, i;
2884	bool enable_dpkgc = false;
2885
2886	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
2887		ret = skl_build_pipe_wm(state, crtc);
2888		if (ret)
2889			return ret;
2890	}
2891
2892	ret = skl_compute_ddb(state);
2893	if (ret)
2894		return ret;
2895
2896	ret = intel_compute_sagv_mask(state);
2897	if (ret)
2898		return ret;
2899
2900	/*
2901	 * skl_compute_ddb() will have adjusted the final watermarks
2902	 * based on how much ddb is available. Now we can actually
2903	 * check if the final watermarks changed.
2904	 */
2905	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
2906		ret = skl_wm_add_affected_planes(state, crtc);
2907		if (ret)
2908			return ret;
2909
2910		if ((new_crtc_state->vrr.vmin == new_crtc_state->vrr.vmax &&
2911		     new_crtc_state->vrr.vmin == new_crtc_state->vrr.flipline) ||
2912		    !new_crtc_state->vrr.enable)
2913			enable_dpkgc = true;
2914	}
2915
2916	skl_program_dpkgc_latency(to_i915(state->base.dev), enable_dpkgc);
2917
2918	skl_print_wm_changes(state);
2919
2920	return 0;
2921}
2922
2923static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level)
2924{
2925	level->enable = val & PLANE_WM_EN;
2926	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
2927	level->blocks = REG_FIELD_GET(PLANE_WM_BLOCKS_MASK, val);
2928	level->lines = REG_FIELD_GET(PLANE_WM_LINES_MASK, val);
2929}
2930
2931static void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
2932				     struct skl_pipe_wm *out)
2933{
2934	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2935	enum pipe pipe = crtc->pipe;
2936	enum plane_id plane_id;
2937	int level;
2938	u32 val;
2939
2940	for_each_plane_id_on_crtc(crtc, plane_id) {
2941		struct skl_plane_wm *wm = &out->planes[plane_id];
2942
2943		for (level = 0; level < i915->display.wm.num_levels; level++) {
2944			if (plane_id != PLANE_CURSOR)
2945				val = intel_de_read(i915, PLANE_WM(pipe, plane_id, level));
2946			else
2947				val = intel_de_read(i915, CUR_WM(pipe, level));
2948
2949			skl_wm_level_from_reg_val(val, &wm->wm[level]);
2950		}
2951
2952		if (plane_id != PLANE_CURSOR)
2953			val = intel_de_read(i915, PLANE_WM_TRANS(pipe, plane_id));
2954		else
2955			val = intel_de_read(i915, CUR_WM_TRANS(pipe));
2956
2957		skl_wm_level_from_reg_val(val, &wm->trans_wm);
2958
2959		if (HAS_HW_SAGV_WM(i915)) {
2960			if (plane_id != PLANE_CURSOR)
2961				val = intel_de_read(i915, PLANE_WM_SAGV(pipe, plane_id));
2962			else
2963				val = intel_de_read(i915, CUR_WM_SAGV(pipe));
2964
2965			skl_wm_level_from_reg_val(val, &wm->sagv.wm0);
2966
2967			if (plane_id != PLANE_CURSOR)
2968				val = intel_de_read(i915, PLANE_WM_SAGV_TRANS(pipe, plane_id));
2969			else
2970				val = intel_de_read(i915, CUR_WM_SAGV_TRANS(pipe));
2971
2972			skl_wm_level_from_reg_val(val, &wm->sagv.trans_wm);
2973		} else if (DISPLAY_VER(i915) >= 12) {
2974			wm->sagv.wm0 = wm->wm[0];
2975			wm->sagv.trans_wm = wm->trans_wm;
2976		}
2977	}
2978}
2979
2980static void skl_wm_get_hw_state(struct drm_i915_private *i915)
2981{
2982	struct intel_display *display = &i915->display;
2983	struct intel_dbuf_state *dbuf_state =
2984		to_intel_dbuf_state(i915->display.dbuf.obj.state);
2985	struct intel_crtc *crtc;
2986
2987	if (HAS_MBUS_JOINING(i915))
2988		dbuf_state->joined_mbus = intel_de_read(i915, MBUS_CTL) & MBUS_JOIN;
2989
2990	dbuf_state->mdclk_cdclk_ratio = intel_mdclk_cdclk_ratio(display, &display->cdclk.hw);
2991
2992	for_each_intel_crtc(&i915->drm, crtc) {
2993		struct intel_crtc_state *crtc_state =
2994			to_intel_crtc_state(crtc->base.state);
2995		enum pipe pipe = crtc->pipe;
2996		unsigned int mbus_offset;
2997		enum plane_id plane_id;
2998		u8 slices;
2999
3000		memset(&crtc_state->wm.skl.optimal, 0,
3001		       sizeof(crtc_state->wm.skl.optimal));
3002		if (crtc_state->hw.active)
3003			skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
3004		crtc_state->wm.skl.raw = crtc_state->wm.skl.optimal;
3005
3006		memset(&dbuf_state->ddb[pipe], 0, sizeof(dbuf_state->ddb[pipe]));
3007
3008		for_each_plane_id_on_crtc(crtc, plane_id) {
3009			struct skl_ddb_entry *ddb =
3010				&crtc_state->wm.skl.plane_ddb[plane_id];
3011			struct skl_ddb_entry *ddb_y =
3012				&crtc_state->wm.skl.plane_ddb_y[plane_id];
3013
3014			if (!crtc_state->hw.active)
3015				continue;
3016
3017			skl_ddb_get_hw_plane_state(i915, crtc->pipe,
3018						   plane_id, ddb, ddb_y);
3019
3020			skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb);
3021			skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb_y);
3022		}
3023
3024		dbuf_state->weight[pipe] = intel_crtc_ddb_weight(crtc_state);
3025
3026		/*
3027		 * Used for checking overlaps, so we need absolute
3028		 * offsets instead of MBUS relative offsets.
3029		 */
3030		slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes,
3031						 dbuf_state->joined_mbus);
3032		mbus_offset = mbus_ddb_offset(i915, slices);
3033		crtc_state->wm.skl.ddb.start = mbus_offset + dbuf_state->ddb[pipe].start;
3034		crtc_state->wm.skl.ddb.end = mbus_offset + dbuf_state->ddb[pipe].end;
3035
3036		/* The slices actually used by the planes on the pipe */
3037		dbuf_state->slices[pipe] =
3038			skl_ddb_dbuf_slice_mask(i915, &crtc_state->wm.skl.ddb);
3039
3040		drm_dbg_kms(&i915->drm,
3041			    "[CRTC:%d:%s] dbuf slices 0x%x, ddb (%d - %d), active pipes 0x%x, mbus joined: %s\n",
3042			    crtc->base.base.id, crtc->base.name,
3043			    dbuf_state->slices[pipe], dbuf_state->ddb[pipe].start,
3044			    dbuf_state->ddb[pipe].end, dbuf_state->active_pipes,
3045			    str_yes_no(dbuf_state->joined_mbus));
3046	}
3047
3048	dbuf_state->enabled_slices = i915->display.dbuf.enabled_slices;
3049}
3050
3051static bool skl_dbuf_is_misconfigured(struct drm_i915_private *i915)
3052{
3053	const struct intel_dbuf_state *dbuf_state =
3054		to_intel_dbuf_state(i915->display.dbuf.obj.state);
3055	struct skl_ddb_entry entries[I915_MAX_PIPES] = {};
3056	struct intel_crtc *crtc;
3057
3058	for_each_intel_crtc(&i915->drm, crtc) {
3059		const struct intel_crtc_state *crtc_state =
3060			to_intel_crtc_state(crtc->base.state);
3061
3062		entries[crtc->pipe] = crtc_state->wm.skl.ddb;
3063	}
3064
3065	for_each_intel_crtc(&i915->drm, crtc) {
3066		const struct intel_crtc_state *crtc_state =
3067			to_intel_crtc_state(crtc->base.state);
3068		u8 slices;
3069
3070		slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes,
3071						 dbuf_state->joined_mbus);
3072		if (dbuf_state->slices[crtc->pipe] & ~slices)
3073			return true;
3074
3075		if (skl_ddb_allocation_overlaps(&crtc_state->wm.skl.ddb, entries,
3076						I915_MAX_PIPES, crtc->pipe))
3077			return true;
3078	}
3079
3080	return false;
3081}
3082
3083static void skl_wm_sanitize(struct drm_i915_private *i915)
3084{
3085	struct intel_crtc *crtc;
3086
3087	/*
3088	 * On TGL/RKL (at least) the BIOS likes to assign the planes
3089	 * to the wrong DBUF slices. This will cause an infinite loop
3090	 * in skl_commit_modeset_enables() as it can't find a way to
3091	 * transition between the old bogus DBUF layout to the new
3092	 * proper DBUF layout without DBUF allocation overlaps between
3093	 * the planes (which cannot be allowed or else the hardware
3094	 * may hang). If we detect a bogus DBUF layout just turn off
3095	 * all the planes so that skl_commit_modeset_enables() can
3096	 * simply ignore them.
3097	 */
3098	if (!skl_dbuf_is_misconfigured(i915))
3099		return;
3100
3101	drm_dbg_kms(&i915->drm, "BIOS has misprogrammed the DBUF, disabling all planes\n");
3102
3103	for_each_intel_crtc(&i915->drm, crtc) {
3104		struct intel_plane *plane = to_intel_plane(crtc->base.primary);
3105		const struct intel_plane_state *plane_state =
3106			to_intel_plane_state(plane->base.state);
3107		struct intel_crtc_state *crtc_state =
3108			to_intel_crtc_state(crtc->base.state);
3109
3110		if (plane_state->uapi.visible)
3111			intel_plane_disable_noatomic(crtc, plane);
3112
3113		drm_WARN_ON(&i915->drm, crtc_state->active_planes != 0);
3114
3115		memset(&crtc_state->wm.skl.ddb, 0, sizeof(crtc_state->wm.skl.ddb));
3116	}
3117}
3118
3119static void skl_wm_get_hw_state_and_sanitize(struct drm_i915_private *i915)
3120{
3121	skl_wm_get_hw_state(i915);
3122	skl_wm_sanitize(i915);
3123}
3124
3125void intel_wm_state_verify(struct intel_atomic_state *state,
3126			   struct intel_crtc *crtc)
3127{
3128	struct drm_i915_private *i915 = to_i915(state->base.dev);
3129	const struct intel_crtc_state *new_crtc_state =
3130		intel_atomic_get_new_crtc_state(state, crtc);
3131	struct skl_hw_state {
3132		struct skl_ddb_entry ddb[I915_MAX_PLANES];
3133		struct skl_ddb_entry ddb_y[I915_MAX_PLANES];
3134		struct skl_pipe_wm wm;
3135	} *hw;
3136	const struct skl_pipe_wm *sw_wm = &new_crtc_state->wm.skl.optimal;
3137	struct intel_plane *plane;
3138	u8 hw_enabled_slices;
3139	int level;
3140
3141	if (DISPLAY_VER(i915) < 9 || !new_crtc_state->hw.active)
3142		return;
3143
3144	hw = kzalloc(sizeof(*hw), GFP_KERNEL);
3145	if (!hw)
3146		return;
3147
3148	skl_pipe_wm_get_hw_state(crtc, &hw->wm);
3149
3150	skl_pipe_ddb_get_hw_state(crtc, hw->ddb, hw->ddb_y);
3151
3152	hw_enabled_slices = intel_enabled_dbuf_slices_mask(i915);
3153
3154	if (DISPLAY_VER(i915) >= 11 &&
3155	    hw_enabled_slices != i915->display.dbuf.enabled_slices)
3156		drm_err(&i915->drm,
3157			"mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n",
3158			i915->display.dbuf.enabled_slices,
3159			hw_enabled_slices);
3160
3161	for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
3162		const struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
3163		const struct skl_wm_level *hw_wm_level, *sw_wm_level;
3164
3165		/* Watermarks */
3166		for (level = 0; level < i915->display.wm.num_levels; level++) {
3167			hw_wm_level = &hw->wm.planes[plane->id].wm[level];
3168			sw_wm_level = skl_plane_wm_level(sw_wm, plane->id, level);
3169
3170			if (skl_wm_level_equals(hw_wm_level, sw_wm_level))
3171				continue;
3172
3173			drm_err(&i915->drm,
3174				"[PLANE:%d:%s] mismatch in WM%d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
3175				plane->base.base.id, plane->base.name, level,
3176				sw_wm_level->enable,
3177				sw_wm_level->blocks,
3178				sw_wm_level->lines,
3179				hw_wm_level->enable,
3180				hw_wm_level->blocks,
3181				hw_wm_level->lines);
3182		}
3183
3184		hw_wm_level = &hw->wm.planes[plane->id].trans_wm;
3185		sw_wm_level = skl_plane_trans_wm(sw_wm, plane->id);
3186
3187		if (!skl_wm_level_equals(hw_wm_level, sw_wm_level)) {
3188			drm_err(&i915->drm,
3189				"[PLANE:%d:%s] mismatch in trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
3190				plane->base.base.id, plane->base.name,
3191				sw_wm_level->enable,
3192				sw_wm_level->blocks,
3193				sw_wm_level->lines,
3194				hw_wm_level->enable,
3195				hw_wm_level->blocks,
3196				hw_wm_level->lines);
3197		}
3198
3199		hw_wm_level = &hw->wm.planes[plane->id].sagv.wm0;
3200		sw_wm_level = &sw_wm->planes[plane->id].sagv.wm0;
3201
3202		if (HAS_HW_SAGV_WM(i915) &&
3203		    !skl_wm_level_equals(hw_wm_level, sw_wm_level)) {
3204			drm_err(&i915->drm,
3205				"[PLANE:%d:%s] mismatch in SAGV WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
3206				plane->base.base.id, plane->base.name,
3207				sw_wm_level->enable,
3208				sw_wm_level->blocks,
3209				sw_wm_level->lines,
3210				hw_wm_level->enable,
3211				hw_wm_level->blocks,
3212				hw_wm_level->lines);
3213		}
3214
3215		hw_wm_level = &hw->wm.planes[plane->id].sagv.trans_wm;
3216		sw_wm_level = &sw_wm->planes[plane->id].sagv.trans_wm;
3217
3218		if (HAS_HW_SAGV_WM(i915) &&
3219		    !skl_wm_level_equals(hw_wm_level, sw_wm_level)) {
3220			drm_err(&i915->drm,
3221				"[PLANE:%d:%s] mismatch in SAGV trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
3222				plane->base.base.id, plane->base.name,
3223				sw_wm_level->enable,
3224				sw_wm_level->blocks,
3225				sw_wm_level->lines,
3226				hw_wm_level->enable,
3227				hw_wm_level->blocks,
3228				hw_wm_level->lines);
3229		}
3230
3231		/* DDB */
3232		hw_ddb_entry = &hw->ddb[PLANE_CURSOR];
3233		sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb[PLANE_CURSOR];
3234
3235		if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
3236			drm_err(&i915->drm,
3237				"[PLANE:%d:%s] mismatch in DDB (expected (%u,%u), found (%u,%u))\n",
3238				plane->base.base.id, plane->base.name,
3239				sw_ddb_entry->start, sw_ddb_entry->end,
3240				hw_ddb_entry->start, hw_ddb_entry->end);
3241		}
3242	}
3243
3244	kfree(hw);
3245}
3246
3247bool skl_watermark_ipc_enabled(struct drm_i915_private *i915)
3248{
3249	return i915->display.wm.ipc_enabled;
3250}
3251
3252void skl_watermark_ipc_update(struct drm_i915_private *i915)
3253{
3254	if (!HAS_IPC(i915))
3255		return;
3256
3257	intel_de_rmw(i915, DISP_ARB_CTL2, DISP_IPC_ENABLE,
3258		     skl_watermark_ipc_enabled(i915) ? DISP_IPC_ENABLE : 0);
3259}
3260
3261static bool skl_watermark_ipc_can_enable(struct drm_i915_private *i915)
3262{
3263	/* Display WA #0477 WaDisableIPC: skl */
3264	if (IS_SKYLAKE(i915))
3265		return false;
3266
3267	/* Display WA #1141: SKL:all KBL:all CFL */
3268	if (IS_KABYLAKE(i915) ||
3269	    IS_COFFEELAKE(i915) ||
3270	    IS_COMETLAKE(i915))
3271		return i915->dram_info.symmetric_memory;
3272
3273	return true;
3274}
3275
3276void skl_watermark_ipc_init(struct drm_i915_private *i915)
3277{
3278	if (!HAS_IPC(i915))
3279		return;
3280
3281	i915->display.wm.ipc_enabled = skl_watermark_ipc_can_enable(i915);
3282
3283	skl_watermark_ipc_update(i915);
3284}
3285
3286static void
3287adjust_wm_latency(struct drm_i915_private *i915,
3288		  u16 wm[], int num_levels, int read_latency)
3289{
3290	bool wm_lv_0_adjust_needed = i915->dram_info.wm_lv_0_adjust_needed;
3291	int i, level;
3292
3293	/*
3294	 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
3295	 * need to be disabled. We make sure to sanitize the values out
3296	 * of the punit to satisfy this requirement.
3297	 */
3298	for (level = 1; level < num_levels; level++) {
3299		if (wm[level] == 0) {
3300			for (i = level + 1; i < num_levels; i++)
3301				wm[i] = 0;
3302
3303			num_levels = level;
3304			break;
3305		}
3306	}
3307
3308	/*
3309	 * WaWmMemoryReadLatency
3310	 *
3311	 * punit doesn't take into account the read latency so we need
3312	 * to add proper adjustement to each valid level we retrieve
3313	 * from the punit when level 0 response data is 0us.
3314	 */
3315	if (wm[0] == 0) {
3316		for (level = 0; level < num_levels; level++)
3317			wm[level] += read_latency;
3318	}
3319
3320	/*
3321	 * WA Level-0 adjustment for 16GB DIMMs: SKL+
3322	 * If we could not get dimm info enable this WA to prevent from
3323	 * any underrun. If not able to get Dimm info assume 16GB dimm
3324	 * to avoid any underrun.
3325	 */
3326	if (wm_lv_0_adjust_needed)
3327		wm[0] += 1;
3328}
3329
3330static void mtl_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
3331{
3332	int num_levels = i915->display.wm.num_levels;
3333	u32 val;
3334
3335	val = intel_de_read(i915, MTL_LATENCY_LP0_LP1);
3336	wm[0] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val);
3337	wm[1] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val);
3338
3339	val = intel_de_read(i915, MTL_LATENCY_LP2_LP3);
3340	wm[2] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val);
3341	wm[3] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val);
3342
3343	val = intel_de_read(i915, MTL_LATENCY_LP4_LP5);
3344	wm[4] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val);
3345	wm[5] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val);
3346
3347	adjust_wm_latency(i915, wm, num_levels, 6);
3348}
3349
3350static void skl_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
3351{
3352	int num_levels = i915->display.wm.num_levels;
3353	int read_latency = DISPLAY_VER(i915) >= 12 ? 3 : 2;
3354	int mult = IS_DG2(i915) ? 2 : 1;
3355	u32 val;
3356	int ret;
3357
3358	/* read the first set of memory latencies[0:3] */
3359	val = 0; /* data0 to be programmed to 0 for first set */
3360	ret = snb_pcode_read(&i915->uncore, GEN9_PCODE_READ_MEM_LATENCY, &val, NULL);
3361	if (ret) {
3362		drm_err(&i915->drm, "SKL Mailbox read error = %d\n", ret);
3363		return;
3364	}
3365
3366	wm[0] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_0_4_MASK, val) * mult;
3367	wm[1] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_1_5_MASK, val) * mult;
3368	wm[2] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_2_6_MASK, val) * mult;
3369	wm[3] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_3_7_MASK, val) * mult;
3370
3371	/* read the second set of memory latencies[4:7] */
3372	val = 1; /* data0 to be programmed to 1 for second set */
3373	ret = snb_pcode_read(&i915->uncore, GEN9_PCODE_READ_MEM_LATENCY, &val, NULL);
3374	if (ret) {
3375		drm_err(&i915->drm, "SKL Mailbox read error = %d\n", ret);
3376		return;
3377	}
3378
3379	wm[4] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_0_4_MASK, val) * mult;
3380	wm[5] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_1_5_MASK, val) * mult;
3381	wm[6] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_2_6_MASK, val) * mult;
3382	wm[7] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_3_7_MASK, val) * mult;
3383
3384	adjust_wm_latency(i915, wm, num_levels, read_latency);
3385}
3386
3387static void skl_setup_wm_latency(struct drm_i915_private *i915)
3388{
3389	if (HAS_HW_SAGV_WM(i915))
3390		i915->display.wm.num_levels = 6;
3391	else
3392		i915->display.wm.num_levels = 8;
3393
3394	if (DISPLAY_VER(i915) >= 14)
3395		mtl_read_wm_latency(i915, i915->display.wm.skl_latency);
3396	else
3397		skl_read_wm_latency(i915, i915->display.wm.skl_latency);
3398
3399	intel_print_wm_latency(i915, "Gen9 Plane", i915->display.wm.skl_latency);
3400}
3401
3402static const struct intel_wm_funcs skl_wm_funcs = {
3403	.compute_global_watermarks = skl_compute_wm,
3404	.get_hw_state = skl_wm_get_hw_state_and_sanitize,
3405};
3406
3407void skl_wm_init(struct drm_i915_private *i915)
3408{
3409	intel_sagv_init(i915);
3410
3411	skl_setup_wm_latency(i915);
3412
3413	i915->display.funcs.wm = &skl_wm_funcs;
3414}
3415
3416static struct intel_global_state *intel_dbuf_duplicate_state(struct intel_global_obj *obj)
3417{
3418	struct intel_dbuf_state *dbuf_state;
3419
3420	dbuf_state = kmemdup(obj->state, sizeof(*dbuf_state), GFP_KERNEL);
3421	if (!dbuf_state)
3422		return NULL;
3423
3424	return &dbuf_state->base;
3425}
3426
3427static void intel_dbuf_destroy_state(struct intel_global_obj *obj,
3428				     struct intel_global_state *state)
3429{
3430	kfree(state);
3431}
3432
3433static const struct intel_global_state_funcs intel_dbuf_funcs = {
3434	.atomic_duplicate_state = intel_dbuf_duplicate_state,
3435	.atomic_destroy_state = intel_dbuf_destroy_state,
3436};
3437
3438struct intel_dbuf_state *
3439intel_atomic_get_dbuf_state(struct intel_atomic_state *state)
3440{
3441	struct drm_i915_private *i915 = to_i915(state->base.dev);
3442	struct intel_global_state *dbuf_state;
3443
3444	dbuf_state = intel_atomic_get_global_obj_state(state, &i915->display.dbuf.obj);
3445	if (IS_ERR(dbuf_state))
3446		return ERR_CAST(dbuf_state);
3447
3448	return to_intel_dbuf_state(dbuf_state);
3449}
3450
3451int intel_dbuf_init(struct drm_i915_private *i915)
3452{
3453	struct intel_dbuf_state *dbuf_state;
3454
3455	dbuf_state = kzalloc(sizeof(*dbuf_state), GFP_KERNEL);
3456	if (!dbuf_state)
3457		return -ENOMEM;
3458
3459	intel_atomic_global_obj_init(i915, &i915->display.dbuf.obj,
3460				     &dbuf_state->base, &intel_dbuf_funcs);
3461
3462	return 0;
3463}
3464
3465static bool xelpdp_is_only_pipe_per_dbuf_bank(enum pipe pipe, u8 active_pipes)
3466{
3467	switch (pipe) {
3468	case PIPE_A:
3469		return !(active_pipes & BIT(PIPE_D));
3470	case PIPE_D:
3471		return !(active_pipes & BIT(PIPE_A));
3472	case PIPE_B:
3473		return !(active_pipes & BIT(PIPE_C));
3474	case PIPE_C:
3475		return !(active_pipes & BIT(PIPE_B));
3476	default: /* to suppress compiler warning */
3477		MISSING_CASE(pipe);
3478		break;
3479	}
3480
3481	return false;
3482}
3483
3484static void intel_mbus_dbox_update(struct intel_atomic_state *state)
3485{
3486	struct drm_i915_private *i915 = to_i915(state->base.dev);
3487	const struct intel_dbuf_state *new_dbuf_state, *old_dbuf_state;
3488	const struct intel_crtc *crtc;
3489	u32 val = 0;
3490
3491	if (DISPLAY_VER(i915) < 11)
3492		return;
3493
3494	new_dbuf_state = intel_atomic_get_new_dbuf_state(state);
3495	old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
3496	if (!new_dbuf_state ||
3497	    (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus &&
3498	     new_dbuf_state->active_pipes == old_dbuf_state->active_pipes))
3499		return;
3500
3501	if (DISPLAY_VER(i915) >= 14)
3502		val |= MBUS_DBOX_I_CREDIT(2);
3503
3504	if (DISPLAY_VER(i915) >= 12) {
3505		val |= MBUS_DBOX_B2B_TRANSACTIONS_MAX(16);
3506		val |= MBUS_DBOX_B2B_TRANSACTIONS_DELAY(1);
3507		val |= MBUS_DBOX_REGULATE_B2B_TRANSACTIONS_EN;
3508	}
3509
3510	if (DISPLAY_VER(i915) >= 14)
3511		val |= new_dbuf_state->joined_mbus ? MBUS_DBOX_A_CREDIT(12) :
3512						     MBUS_DBOX_A_CREDIT(8);
3513	else if (IS_ALDERLAKE_P(i915))
3514		/* Wa_22010947358:adl-p */
3515		val |= new_dbuf_state->joined_mbus ? MBUS_DBOX_A_CREDIT(6) :
3516						     MBUS_DBOX_A_CREDIT(4);
3517	else
3518		val |= MBUS_DBOX_A_CREDIT(2);
3519
3520	if (DISPLAY_VER(i915) >= 14) {
3521		val |= MBUS_DBOX_B_CREDIT(0xA);
3522	} else if (IS_ALDERLAKE_P(i915)) {
3523		val |= MBUS_DBOX_BW_CREDIT(2);
3524		val |= MBUS_DBOX_B_CREDIT(8);
3525	} else if (DISPLAY_VER(i915) >= 12) {
3526		val |= MBUS_DBOX_BW_CREDIT(2);
3527		val |= MBUS_DBOX_B_CREDIT(12);
3528	} else {
3529		val |= MBUS_DBOX_BW_CREDIT(1);
3530		val |= MBUS_DBOX_B_CREDIT(8);
3531	}
3532
3533	for_each_intel_crtc_in_pipe_mask(&i915->drm, crtc, new_dbuf_state->active_pipes) {
3534		u32 pipe_val = val;
3535
3536		if (DISPLAY_VERx100(i915) == 1400) {
3537			if (xelpdp_is_only_pipe_per_dbuf_bank(crtc->pipe,
3538							      new_dbuf_state->active_pipes))
3539				pipe_val |= MBUS_DBOX_BW_8CREDITS_MTL;
3540			else
3541				pipe_val |= MBUS_DBOX_BW_4CREDITS_MTL;
3542		}
3543
3544		intel_de_write(i915, PIPE_MBUS_DBOX_CTL(crtc->pipe), pipe_val);
3545	}
3546}
3547
3548int intel_dbuf_state_set_mdclk_cdclk_ratio(struct intel_atomic_state *state,
3549					   int ratio)
3550{
3551	struct intel_dbuf_state *dbuf_state;
3552
3553	dbuf_state = intel_atomic_get_dbuf_state(state);
3554	if (IS_ERR(dbuf_state))
3555		return PTR_ERR(dbuf_state);
3556
3557	dbuf_state->mdclk_cdclk_ratio = ratio;
3558
3559	return intel_atomic_lock_global_state(&dbuf_state->base);
3560}
3561
3562void intel_dbuf_mdclk_cdclk_ratio_update(struct drm_i915_private *i915,
3563					 int ratio, bool joined_mbus)
3564{
3565	enum dbuf_slice slice;
3566
3567	if (!HAS_MBUS_JOINING(i915))
3568		return;
3569
3570	if (DISPLAY_VER(i915) >= 20)
3571		intel_de_rmw(i915, MBUS_CTL, MBUS_TRANSLATION_THROTTLE_MIN_MASK,
3572			     MBUS_TRANSLATION_THROTTLE_MIN(ratio - 1));
3573
3574	if (joined_mbus)
3575		ratio *= 2;
3576
3577	drm_dbg_kms(&i915->drm, "Updating dbuf ratio to %d (mbus joined: %s)\n",
3578		    ratio, str_yes_no(joined_mbus));
3579
3580	for_each_dbuf_slice(i915, slice)
3581		intel_de_rmw(i915, DBUF_CTL_S(slice),
3582			     DBUF_MIN_TRACKER_STATE_SERVICE_MASK,
3583			     DBUF_MIN_TRACKER_STATE_SERVICE(ratio - 1));
3584}
3585
3586static void intel_dbuf_mdclk_min_tracker_update(struct intel_atomic_state *state)
3587{
3588	struct drm_i915_private *i915 = to_i915(state->base.dev);
3589	const struct intel_dbuf_state *old_dbuf_state =
3590		intel_atomic_get_old_dbuf_state(state);
3591	const struct intel_dbuf_state *new_dbuf_state =
3592		intel_atomic_get_new_dbuf_state(state);
3593	int mdclk_cdclk_ratio;
3594
3595	if (intel_cdclk_is_decreasing_later(state)) {
3596		/* cdclk/mdclk will be changed later by intel_set_cdclk_post_plane_update() */
3597		mdclk_cdclk_ratio = old_dbuf_state->mdclk_cdclk_ratio;
3598	} else {
3599		/* cdclk/mdclk already changed by intel_set_cdclk_pre_plane_update() */
3600		mdclk_cdclk_ratio = new_dbuf_state->mdclk_cdclk_ratio;
3601	}
3602
3603	intel_dbuf_mdclk_cdclk_ratio_update(i915, mdclk_cdclk_ratio,
3604					    new_dbuf_state->joined_mbus);
3605}
3606
3607static enum pipe intel_mbus_joined_pipe(struct intel_atomic_state *state,
3608					const struct intel_dbuf_state *dbuf_state)
3609{
3610	struct intel_display *display = to_intel_display(state);
3611	struct drm_i915_private *i915 = to_i915(state->base.dev);
3612	enum pipe pipe = ffs(dbuf_state->active_pipes) - 1;
3613	const struct intel_crtc_state *new_crtc_state;
3614	struct intel_crtc *crtc;
3615
3616	drm_WARN_ON(&i915->drm, !dbuf_state->joined_mbus);
3617	drm_WARN_ON(&i915->drm, !is_power_of_2(dbuf_state->active_pipes));
3618
3619	crtc = intel_crtc_for_pipe(display, pipe);
3620	new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
3621
3622	if (new_crtc_state && !intel_crtc_needs_modeset(new_crtc_state))
3623		return pipe;
3624	else
3625		return INVALID_PIPE;
3626}
3627
3628static void intel_dbuf_mbus_join_update(struct intel_atomic_state *state,
3629					enum pipe pipe)
3630{
3631	struct drm_i915_private *i915 = to_i915(state->base.dev);
3632	const struct intel_dbuf_state *old_dbuf_state =
3633		intel_atomic_get_old_dbuf_state(state);
3634	const struct intel_dbuf_state *new_dbuf_state =
3635		intel_atomic_get_new_dbuf_state(state);
3636	u32 mbus_ctl;
3637
3638	drm_dbg_kms(&i915->drm, "Changing mbus joined: %s -> %s (pipe: %c)\n",
3639		    str_yes_no(old_dbuf_state->joined_mbus),
3640		    str_yes_no(new_dbuf_state->joined_mbus),
3641		    pipe != INVALID_PIPE ? pipe_name(pipe) : '*');
3642
3643	if (new_dbuf_state->joined_mbus)
3644		mbus_ctl = MBUS_HASHING_MODE_1x4 | MBUS_JOIN;
3645	else
3646		mbus_ctl = MBUS_HASHING_MODE_2x2;
3647
3648	if (pipe != INVALID_PIPE)
3649		mbus_ctl |= MBUS_JOIN_PIPE_SELECT(pipe);
3650	else
3651		mbus_ctl |= MBUS_JOIN_PIPE_SELECT_NONE;
3652
3653	intel_de_rmw(i915, MBUS_CTL,
3654		     MBUS_HASHING_MODE_MASK | MBUS_JOIN |
3655		     MBUS_JOIN_PIPE_SELECT_MASK, mbus_ctl);
3656}
3657
3658void intel_dbuf_mbus_pre_ddb_update(struct intel_atomic_state *state)
3659{
3660	const struct intel_dbuf_state *new_dbuf_state =
3661		intel_atomic_get_new_dbuf_state(state);
3662	const struct intel_dbuf_state *old_dbuf_state =
3663		intel_atomic_get_old_dbuf_state(state);
3664
3665	if (!new_dbuf_state)
3666		return;
3667
3668	if (!old_dbuf_state->joined_mbus && new_dbuf_state->joined_mbus) {
3669		enum pipe pipe = intel_mbus_joined_pipe(state, new_dbuf_state);
3670
3671		WARN_ON(!new_dbuf_state->base.changed);
3672
3673		intel_dbuf_mbus_join_update(state, pipe);
3674		intel_mbus_dbox_update(state);
3675		intel_dbuf_mdclk_min_tracker_update(state);
3676	}
3677}
3678
3679void intel_dbuf_mbus_post_ddb_update(struct intel_atomic_state *state)
3680{
3681	struct intel_display *display = to_intel_display(state);
3682	const struct intel_dbuf_state *new_dbuf_state =
3683		intel_atomic_get_new_dbuf_state(state);
3684	const struct intel_dbuf_state *old_dbuf_state =
3685		intel_atomic_get_old_dbuf_state(state);
3686
3687	if (!new_dbuf_state)
3688		return;
3689
3690	if (old_dbuf_state->joined_mbus && !new_dbuf_state->joined_mbus) {
3691		enum pipe pipe = intel_mbus_joined_pipe(state, old_dbuf_state);
3692
3693		WARN_ON(!new_dbuf_state->base.changed);
3694
3695		intel_dbuf_mdclk_min_tracker_update(state);
3696		intel_mbus_dbox_update(state);
3697		intel_dbuf_mbus_join_update(state, pipe);
3698
3699		if (pipe != INVALID_PIPE) {
3700			struct intel_crtc *crtc = intel_crtc_for_pipe(display, pipe);
3701
3702			intel_crtc_wait_for_next_vblank(crtc);
3703		}
3704	} else if (old_dbuf_state->joined_mbus == new_dbuf_state->joined_mbus &&
3705		   old_dbuf_state->active_pipes != new_dbuf_state->active_pipes) {
3706		WARN_ON(!new_dbuf_state->base.changed);
3707
3708		intel_dbuf_mdclk_min_tracker_update(state);
3709		intel_mbus_dbox_update(state);
3710	}
3711
3712}
3713
3714void intel_dbuf_pre_plane_update(struct intel_atomic_state *state)
3715{
3716	struct drm_i915_private *i915 = to_i915(state->base.dev);
3717	const struct intel_dbuf_state *new_dbuf_state =
3718		intel_atomic_get_new_dbuf_state(state);
3719	const struct intel_dbuf_state *old_dbuf_state =
3720		intel_atomic_get_old_dbuf_state(state);
3721	u8 old_slices, new_slices;
3722
3723	if (!new_dbuf_state)
3724		return;
3725
3726	old_slices = old_dbuf_state->enabled_slices;
3727	new_slices = old_dbuf_state->enabled_slices | new_dbuf_state->enabled_slices;
3728
3729	if (old_slices == new_slices)
3730		return;
3731
3732	WARN_ON(!new_dbuf_state->base.changed);
3733
3734	gen9_dbuf_slices_update(i915, new_slices);
3735}
3736
3737void intel_dbuf_post_plane_update(struct intel_atomic_state *state)
3738{
3739	struct drm_i915_private *i915 = to_i915(state->base.dev);
3740	const struct intel_dbuf_state *new_dbuf_state =
3741		intel_atomic_get_new_dbuf_state(state);
3742	const struct intel_dbuf_state *old_dbuf_state =
3743		intel_atomic_get_old_dbuf_state(state);
3744	u8 old_slices, new_slices;
3745
3746	if (!new_dbuf_state)
3747		return;
3748
3749	old_slices = old_dbuf_state->enabled_slices | new_dbuf_state->enabled_slices;
3750	new_slices = new_dbuf_state->enabled_slices;
3751
3752	if (old_slices == new_slices)
3753		return;
3754
3755	WARN_ON(!new_dbuf_state->base.changed);
3756
3757	gen9_dbuf_slices_update(i915, new_slices);
3758}
3759
3760static int skl_watermark_ipc_status_show(struct seq_file *m, void *data)
3761{
3762	struct drm_i915_private *i915 = m->private;
3763
3764	seq_printf(m, "Isochronous Priority Control: %s\n",
3765		   str_yes_no(skl_watermark_ipc_enabled(i915)));
3766	return 0;
3767}
3768
3769static int skl_watermark_ipc_status_open(struct inode *inode, struct file *file)
3770{
3771	struct drm_i915_private *i915 = inode->i_private;
3772
3773	return single_open(file, skl_watermark_ipc_status_show, i915);
3774}
3775
3776static ssize_t skl_watermark_ipc_status_write(struct file *file,
3777					      const char __user *ubuf,
3778					      size_t len, loff_t *offp)
3779{
3780	struct seq_file *m = file->private_data;
3781	struct drm_i915_private *i915 = m->private;
3782	intel_wakeref_t wakeref;
3783	bool enable;
3784	int ret;
3785
3786	ret = kstrtobool_from_user(ubuf, len, &enable);
3787	if (ret < 0)
3788		return ret;
3789
3790	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
3791		if (!skl_watermark_ipc_enabled(i915) && enable)
3792			drm_info(&i915->drm,
3793				 "Enabling IPC: WM will be proper only after next commit\n");
3794		i915->display.wm.ipc_enabled = enable;
3795		skl_watermark_ipc_update(i915);
3796	}
3797
3798	return len;
3799}
3800
3801static const struct file_operations skl_watermark_ipc_status_fops = {
3802	.owner = THIS_MODULE,
3803	.open = skl_watermark_ipc_status_open,
3804	.read = seq_read,
3805	.llseek = seq_lseek,
3806	.release = single_release,
3807	.write = skl_watermark_ipc_status_write
3808};
3809
3810static int intel_sagv_status_show(struct seq_file *m, void *unused)
3811{
3812	struct drm_i915_private *i915 = m->private;
3813	static const char * const sagv_status[] = {
3814		[I915_SAGV_UNKNOWN] = "unknown",
3815		[I915_SAGV_DISABLED] = "disabled",
3816		[I915_SAGV_ENABLED] = "enabled",
3817		[I915_SAGV_NOT_CONTROLLED] = "not controlled",
3818	};
3819
3820	seq_printf(m, "SAGV available: %s\n", str_yes_no(intel_has_sagv(i915)));
3821	seq_printf(m, "SAGV modparam: %s\n",
3822		   str_enabled_disabled(i915->display.params.enable_sagv));
3823	seq_printf(m, "SAGV status: %s\n", sagv_status[i915->display.sagv.status]);
3824	seq_printf(m, "SAGV block time: %d usec\n", i915->display.sagv.block_time_us);
3825
3826	return 0;
3827}
3828
3829DEFINE_SHOW_ATTRIBUTE(intel_sagv_status);
3830
3831void skl_watermark_debugfs_register(struct drm_i915_private *i915)
3832{
3833	struct drm_minor *minor = i915->drm.primary;
3834
3835	if (HAS_IPC(i915))
3836		debugfs_create_file("i915_ipc_status", 0644, minor->debugfs_root, i915,
3837				    &skl_watermark_ipc_status_fops);
3838
3839	if (HAS_SAGV(i915))
3840		debugfs_create_file("i915_sagv_status", 0444, minor->debugfs_root, i915,
3841				    &intel_sagv_status_fops);
3842}
3843
3844unsigned int skl_watermark_max_latency(struct drm_i915_private *i915, int initial_wm_level)
3845{
3846	int level;
3847
3848	for (level = i915->display.wm.num_levels - 1; level >= initial_wm_level; level--) {
3849		unsigned int latency = skl_wm_latency(i915, level, NULL);
3850
3851		if (latency)
3852			return latency;
3853	}
3854
3855	return 0;
3856}