Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
Note: File does not exist in v3.1.
  1/*
  2 * Copyright © 2014 Intel Corporation
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice (including the next
 12 * paragraph) shall be included in all copies or substantial portions of the
 13 * Software.
 14 *
 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 21 * DEALINGS IN THE SOFTWARE.
 22 *
 23 * Authors:
 24 *	Daniel Vetter <daniel.vetter@ffwll.ch>
 25 */
 26
 27/**
 28 * DOC: frontbuffer tracking
 29 *
 30 * Many features require us to track changes to the currently active
 31 * frontbuffer, especially rendering targeted at the frontbuffer.
 32 *
 33 * To be able to do so we track frontbuffers using a bitmask for all possible
 34 * frontbuffer slots through intel_frontbuffer_track(). The functions in this
 35 * file are then called when the contents of the frontbuffer are invalidated,
 36 * when frontbuffer rendering has stopped again to flush out all the changes
 37 * and when the frontbuffer is exchanged with a flip. Subsystems interested in
 38 * frontbuffer changes (e.g. PSR, FBC, DRRS) should directly put their callbacks
 39 * into the relevant places and filter for the frontbuffer slots that they are
 40 * interested int.
 41 *
 42 * On a high level there are two types of powersaving features. The first one
 43 * work like a special cache (FBC and PSR) and are interested when they should
 44 * stop caching and when to restart caching. This is done by placing callbacks
 45 * into the invalidate and the flush functions: At invalidate the caching must
 46 * be stopped and at flush time it can be restarted. And maybe they need to know
 47 * when the frontbuffer changes (e.g. when the hw doesn't initiate an invalidate
 48 * and flush on its own) which can be achieved with placing callbacks into the
 49 * flip functions.
 50 *
 51 * The other type of display power saving feature only cares about busyness
 52 * (e.g. DRRS). In that case all three (invalidate, flush and flip) indicate
 53 * busyness. There is no direct way to detect idleness. Instead an idle timer
 54 * work delayed work should be started from the flush and flip functions and
 55 * cancelled as soon as busyness is detected.
 56 */
 57
 58#include <drm/drm_gem.h>
 59
 60#include "i915_active.h"
 61#include "i915_drv.h"
 62#include "intel_bo.h"
 63#include "intel_display_trace.h"
 64#include "intel_display_types.h"
 65#include "intel_dp.h"
 66#include "intel_drrs.h"
 67#include "intel_fbc.h"
 68#include "intel_frontbuffer.h"
 69#include "intel_psr.h"
 70#include "intel_tdf.h"
 71
 72/**
 73 * frontbuffer_flush - flush frontbuffer
 74 * @i915: i915 device
 75 * @frontbuffer_bits: frontbuffer plane tracking bits
 76 * @origin: which operation caused the flush
 77 *
 78 * This function gets called every time rendering on the given planes has
 79 * completed and frontbuffer caching can be started again. Flushes will get
 80 * delayed if they're blocked by some outstanding asynchronous rendering.
 81 *
 82 * Can be called without any locks held.
 83 */
 84static void frontbuffer_flush(struct drm_i915_private *i915,
 85			      unsigned int frontbuffer_bits,
 86			      enum fb_op_origin origin)
 87{
 88	struct intel_display *display = &i915->display;
 89
 90	/* Delay flushing when rings are still busy.*/
 91	spin_lock(&i915->display.fb_tracking.lock);
 92	frontbuffer_bits &= ~i915->display.fb_tracking.busy_bits;
 93	spin_unlock(&i915->display.fb_tracking.lock);
 94
 95	if (!frontbuffer_bits)
 96		return;
 97
 98	trace_intel_frontbuffer_flush(display, frontbuffer_bits, origin);
 99
100	might_sleep();
101	intel_td_flush(i915);
102	intel_drrs_flush(i915, frontbuffer_bits);
103	intel_psr_flush(display, frontbuffer_bits, origin);
104	intel_fbc_flush(i915, frontbuffer_bits, origin);
105}
106
107/**
108 * intel_frontbuffer_flip_prepare - prepare asynchronous frontbuffer flip
109 * @i915: i915 device
110 * @frontbuffer_bits: frontbuffer plane tracking bits
111 *
112 * This function gets called after scheduling a flip on @obj. The actual
113 * frontbuffer flushing will be delayed until completion is signalled with
114 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
115 * flush will be cancelled.
116 *
117 * Can be called without any locks held.
118 */
119void intel_frontbuffer_flip_prepare(struct drm_i915_private *i915,
120				    unsigned frontbuffer_bits)
121{
122	spin_lock(&i915->display.fb_tracking.lock);
123	i915->display.fb_tracking.flip_bits |= frontbuffer_bits;
124	/* Remove stale busy bits due to the old buffer. */
125	i915->display.fb_tracking.busy_bits &= ~frontbuffer_bits;
126	spin_unlock(&i915->display.fb_tracking.lock);
127}
128
129/**
130 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flip
131 * @i915: i915 device
132 * @frontbuffer_bits: frontbuffer plane tracking bits
133 *
134 * This function gets called after the flip has been latched and will complete
135 * on the next vblank. It will execute the flush if it hasn't been cancelled yet.
136 *
137 * Can be called without any locks held.
138 */
139void intel_frontbuffer_flip_complete(struct drm_i915_private *i915,
140				     unsigned frontbuffer_bits)
141{
142	spin_lock(&i915->display.fb_tracking.lock);
143	/* Mask any cancelled flips. */
144	frontbuffer_bits &= i915->display.fb_tracking.flip_bits;
145	i915->display.fb_tracking.flip_bits &= ~frontbuffer_bits;
146	spin_unlock(&i915->display.fb_tracking.lock);
147
148	if (frontbuffer_bits)
149		frontbuffer_flush(i915, frontbuffer_bits, ORIGIN_FLIP);
150}
151
152/**
153 * intel_frontbuffer_flip - synchronous frontbuffer flip
154 * @i915: i915 device
155 * @frontbuffer_bits: frontbuffer plane tracking bits
156 *
157 * This function gets called after scheduling a flip on @obj. This is for
158 * synchronous plane updates which will happen on the next vblank and which will
159 * not get delayed by pending gpu rendering.
160 *
161 * Can be called without any locks held.
162 */
163void intel_frontbuffer_flip(struct drm_i915_private *i915,
164			    unsigned frontbuffer_bits)
165{
166	spin_lock(&i915->display.fb_tracking.lock);
167	/* Remove stale busy bits due to the old buffer. */
168	i915->display.fb_tracking.busy_bits &= ~frontbuffer_bits;
169	spin_unlock(&i915->display.fb_tracking.lock);
170
171	frontbuffer_flush(i915, frontbuffer_bits, ORIGIN_FLIP);
172}
173
174void __intel_fb_invalidate(struct intel_frontbuffer *front,
175			   enum fb_op_origin origin,
176			   unsigned int frontbuffer_bits)
177{
178	struct intel_display *display = to_intel_display(front->obj->dev);
179	struct drm_i915_private *i915 = to_i915(display->drm);
180
181	if (origin == ORIGIN_CS) {
182		spin_lock(&display->fb_tracking.lock);
183		display->fb_tracking.busy_bits |= frontbuffer_bits;
184		display->fb_tracking.flip_bits &= ~frontbuffer_bits;
185		spin_unlock(&display->fb_tracking.lock);
186	}
187
188	trace_intel_frontbuffer_invalidate(display, frontbuffer_bits, origin);
189
190	might_sleep();
191	intel_psr_invalidate(display, frontbuffer_bits, origin);
192	intel_drrs_invalidate(i915, frontbuffer_bits);
193	intel_fbc_invalidate(i915, frontbuffer_bits, origin);
194}
195
196void __intel_fb_flush(struct intel_frontbuffer *front,
197		      enum fb_op_origin origin,
198		      unsigned int frontbuffer_bits)
199{
200	struct intel_display *display = to_intel_display(front->obj->dev);
201	struct drm_i915_private *i915 = to_i915(display->drm);
202
203	if (origin == ORIGIN_CS) {
204		spin_lock(&display->fb_tracking.lock);
205		/* Filter out new bits since rendering started. */
206		frontbuffer_bits &= display->fb_tracking.busy_bits;
207		display->fb_tracking.busy_bits &= ~frontbuffer_bits;
208		spin_unlock(&display->fb_tracking.lock);
209	}
210
211	if (frontbuffer_bits)
212		frontbuffer_flush(i915, frontbuffer_bits, origin);
213}
214
215static void intel_frontbuffer_flush_work(struct work_struct *work)
216{
217	struct intel_frontbuffer *front =
218		container_of(work, struct intel_frontbuffer, flush_work);
219
220	intel_bo_flush_if_display(front->obj);
221	intel_frontbuffer_flush(front, ORIGIN_DIRTYFB);
222	intel_frontbuffer_put(front);
223}
224
225/**
226 * intel_frontbuffer_queue_flush - queue flushing frontbuffer object
227 * @front: GEM object to flush
228 *
229 * This function is targeted for our dirty callback for queueing flush when
230 * dma fence is signales
231 */
232void intel_frontbuffer_queue_flush(struct intel_frontbuffer *front)
233{
234	if (!front)
235		return;
236
237	kref_get(&front->ref);
238	if (!schedule_work(&front->flush_work))
239		intel_frontbuffer_put(front);
240}
241
242static int frontbuffer_active(struct i915_active *ref)
243{
244	struct intel_frontbuffer *front =
245		container_of(ref, typeof(*front), write);
246
247	kref_get(&front->ref);
248	return 0;
249}
250
251static void frontbuffer_retire(struct i915_active *ref)
252{
253	struct intel_frontbuffer *front =
254		container_of(ref, typeof(*front), write);
255
256	intel_frontbuffer_flush(front, ORIGIN_CS);
257	intel_frontbuffer_put(front);
258}
259
260static void frontbuffer_release(struct kref *ref)
261	__releases(&to_intel_display(front->obj->dev)->fb_tracking.lock)
262{
263	struct intel_frontbuffer *ret, *front =
264		container_of(ref, typeof(*front), ref);
265	struct drm_gem_object *obj = front->obj;
266	struct intel_display *display = to_intel_display(obj->dev);
267
268	drm_WARN_ON(display->drm, atomic_read(&front->bits));
269
270	i915_ggtt_clear_scanout(to_intel_bo(obj));
271
272	ret = intel_bo_set_frontbuffer(obj, NULL);
273	drm_WARN_ON(display->drm, ret);
274	spin_unlock(&display->fb_tracking.lock);
275
276	i915_active_fini(&front->write);
277	kfree_rcu(front, rcu);
278}
279
280struct intel_frontbuffer *
281intel_frontbuffer_get(struct drm_gem_object *obj)
282{
283	struct drm_i915_private *i915 = to_i915(obj->dev);
284	struct intel_frontbuffer *front, *cur;
285
286	front = intel_bo_get_frontbuffer(obj);
287	if (front)
288		return front;
289
290	front = kmalloc(sizeof(*front), GFP_KERNEL);
291	if (!front)
292		return NULL;
293
294	front->obj = obj;
295	kref_init(&front->ref);
296	atomic_set(&front->bits, 0);
297	i915_active_init(&front->write,
298			 frontbuffer_active,
299			 frontbuffer_retire,
300			 I915_ACTIVE_RETIRE_SLEEPS);
301	INIT_WORK(&front->flush_work, intel_frontbuffer_flush_work);
302
303	spin_lock(&i915->display.fb_tracking.lock);
304	cur = intel_bo_set_frontbuffer(obj, front);
305	spin_unlock(&i915->display.fb_tracking.lock);
306	if (cur != front)
307		kfree(front);
308	return cur;
309}
310
311void intel_frontbuffer_put(struct intel_frontbuffer *front)
312{
313	kref_put_lock(&front->ref,
314		      frontbuffer_release,
315		      &to_intel_display(front->obj->dev)->fb_tracking.lock);
316}
317
318/**
319 * intel_frontbuffer_track - update frontbuffer tracking
320 * @old: current buffer for the frontbuffer slots
321 * @new: new buffer for the frontbuffer slots
322 * @frontbuffer_bits: bitmask of frontbuffer slots
323 *
324 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
325 * from @old and setting them in @new. Both @old and @new can be NULL.
326 */
327void intel_frontbuffer_track(struct intel_frontbuffer *old,
328			     struct intel_frontbuffer *new,
329			     unsigned int frontbuffer_bits)
330{
331	/*
332	 * Control of individual bits within the mask are guarded by
333	 * the owning plane->mutex, i.e. we can never see concurrent
334	 * manipulation of individual bits. But since the bitfield as a whole
335	 * is updated using RMW, we need to use atomics in order to update
336	 * the bits.
337	 */
338	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
339		     BITS_PER_TYPE(atomic_t));
340	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32);
341	BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE);
342
343	if (old) {
344		struct intel_display *display = to_intel_display(old->obj->dev);
345
346		drm_WARN_ON(display->drm,
347			    !(atomic_read(&old->bits) & frontbuffer_bits));
348		atomic_andnot(frontbuffer_bits, &old->bits);
349	}
350
351	if (new) {
352		struct intel_display *display = to_intel_display(new->obj->dev);
353
354		drm_WARN_ON(display->drm,
355			    atomic_read(&new->bits) & frontbuffer_bits);
356		atomic_or(frontbuffer_bits, &new->bits);
357	}
358}