Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright © 2009 Keith Packard
   3 *
   4 * Permission to use, copy, modify, distribute, and sell this software and its
   5 * documentation for any purpose is hereby granted without fee, provided that
   6 * the above copyright notice appear in all copies and that both that copyright
   7 * notice and this permission notice appear in supporting documentation, and
   8 * that the name of the copyright holders not be used in advertising or
   9 * publicity pertaining to distribution of the software without specific,
  10 * written prior permission.  The copyright holders make no representations
  11 * about the suitability of this software for any purpose.  It is provided "as
  12 * is" without express or implied warranty.
  13 *
  14 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
  15 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
  16 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
  17 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
  18 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  19 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
  20 * OF THIS SOFTWARE.
  21 */
  22
  23#include <linux/backlight.h>
  24#include <linux/delay.h>
  25#include <linux/errno.h>
  26#include <linux/i2c.h>
  27#include <linux/init.h>
  28#include <linux/kernel.h>
  29#include <linux/module.h>
  30#include <linux/sched.h>
  31#include <linux/seq_file.h>
  32#include <linux/string_helpers.h>
  33#include <linux/dynamic_debug.h>
  34
  35#include <drm/display/drm_dp_helper.h>
  36#include <drm/display/drm_dp_mst_helper.h>
  37#include <drm/drm_edid.h>
  38#include <drm/drm_fixed.h>
  39#include <drm/drm_print.h>
  40#include <drm/drm_vblank.h>
  41#include <drm/drm_panel.h>
  42
  43#include "drm_dp_helper_internal.h"
  44
  45DECLARE_DYNDBG_CLASSMAP(drm_debug_classes, DD_CLASS_TYPE_DISJOINT_BITS, 0,
  46			"DRM_UT_CORE",
  47			"DRM_UT_DRIVER",
  48			"DRM_UT_KMS",
  49			"DRM_UT_PRIME",
  50			"DRM_UT_ATOMIC",
  51			"DRM_UT_VBL",
  52			"DRM_UT_STATE",
  53			"DRM_UT_LEASE",
  54			"DRM_UT_DP",
  55			"DRM_UT_DRMRES");
  56
  57struct dp_aux_backlight {
  58	struct backlight_device *base;
  59	struct drm_dp_aux *aux;
  60	struct drm_edp_backlight_info info;
  61	bool enabled;
  62};
  63
  64/**
  65 * DOC: dp helpers
  66 *
  67 * These functions contain some common logic and helpers at various abstraction
  68 * levels to deal with Display Port sink devices and related things like DP aux
  69 * channel transfers, EDID reading over DP aux channels, decoding certain DPCD
  70 * blocks, ...
  71 */
  72
  73/* Helpers for DP link training */
  74static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r)
  75{
  76	return link_status[r - DP_LANE0_1_STATUS];
  77}
  78
  79static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],
  80			     int lane)
  81{
  82	int i = DP_LANE0_1_STATUS + (lane >> 1);
  83	int s = (lane & 1) * 4;
  84	u8 l = dp_link_status(link_status, i);
  85
  86	return (l >> s) & 0xf;
  87}
  88
  89bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
  90			  int lane_count)
  91{
  92	u8 lane_align;
  93	u8 lane_status;
  94	int lane;
  95
  96	lane_align = dp_link_status(link_status,
  97				    DP_LANE_ALIGN_STATUS_UPDATED);
  98	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  99		return false;
 100	for (lane = 0; lane < lane_count; lane++) {
 101		lane_status = dp_get_lane_status(link_status, lane);
 102		if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
 103			return false;
 104	}
 105	return true;
 106}
 107EXPORT_SYMBOL(drm_dp_channel_eq_ok);
 108
 109bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
 110			      int lane_count)
 111{
 112	int lane;
 113	u8 lane_status;
 114
 115	for (lane = 0; lane < lane_count; lane++) {
 116		lane_status = dp_get_lane_status(link_status, lane);
 117		if ((lane_status & DP_LANE_CR_DONE) == 0)
 118			return false;
 119	}
 120	return true;
 121}
 122EXPORT_SYMBOL(drm_dp_clock_recovery_ok);
 123
 124u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],
 125				     int lane)
 126{
 127	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
 128	int s = ((lane & 1) ?
 129		 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
 130		 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
 131	u8 l = dp_link_status(link_status, i);
 132
 133	return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
 134}
 135EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage);
 136
 137u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],
 138					  int lane)
 139{
 140	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
 141	int s = ((lane & 1) ?
 142		 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
 143		 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
 144	u8 l = dp_link_status(link_status, i);
 145
 146	return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
 147}
 148EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis);
 149
 150/* DP 2.0 128b/132b */
 151u8 drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE],
 152				   int lane)
 153{
 154	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
 155	int s = ((lane & 1) ?
 156		 DP_ADJUST_TX_FFE_PRESET_LANE1_SHIFT :
 157		 DP_ADJUST_TX_FFE_PRESET_LANE0_SHIFT);
 158	u8 l = dp_link_status(link_status, i);
 159
 160	return (l >> s) & 0xf;
 161}
 162EXPORT_SYMBOL(drm_dp_get_adjust_tx_ffe_preset);
 163
 164/* DP 2.0 errata for 128b/132b */
 165bool drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE],
 166					  int lane_count)
 167{
 168	u8 lane_align, lane_status;
 169	int lane;
 170
 171	lane_align = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
 172	if (!(lane_align & DP_INTERLANE_ALIGN_DONE))
 173		return false;
 174
 175	for (lane = 0; lane < lane_count; lane++) {
 176		lane_status = dp_get_lane_status(link_status, lane);
 177		if (!(lane_status & DP_LANE_CHANNEL_EQ_DONE))
 178			return false;
 179	}
 180	return true;
 181}
 182EXPORT_SYMBOL(drm_dp_128b132b_lane_channel_eq_done);
 183
 184/* DP 2.0 errata for 128b/132b */
 185bool drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE],
 186					int lane_count)
 187{
 188	u8 lane_status;
 189	int lane;
 190
 191	for (lane = 0; lane < lane_count; lane++) {
 192		lane_status = dp_get_lane_status(link_status, lane);
 193		if (!(lane_status & DP_LANE_SYMBOL_LOCKED))
 194			return false;
 195	}
 196	return true;
 197}
 198EXPORT_SYMBOL(drm_dp_128b132b_lane_symbol_locked);
 199
 200/* DP 2.0 errata for 128b/132b */
 201bool drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
 202{
 203	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
 204
 205	return status & DP_128B132B_DPRX_EQ_INTERLANE_ALIGN_DONE;
 206}
 207EXPORT_SYMBOL(drm_dp_128b132b_eq_interlane_align_done);
 208
 209/* DP 2.0 errata for 128b/132b */
 210bool drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
 211{
 212	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
 213
 214	return status & DP_128B132B_DPRX_CDS_INTERLANE_ALIGN_DONE;
 215}
 216EXPORT_SYMBOL(drm_dp_128b132b_cds_interlane_align_done);
 217
 218/* DP 2.0 errata for 128b/132b */
 219bool drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE])
 220{
 221	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
 222
 223	return status & DP_128B132B_LT_FAILED;
 224}
 225EXPORT_SYMBOL(drm_dp_128b132b_link_training_failed);
 226
 227static int __8b10b_clock_recovery_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
 228{
 229	if (rd_interval > 4)
 230		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
 231			    aux->name, rd_interval);
 232
 233	if (rd_interval == 0)
 234		return 100;
 235
 236	return rd_interval * 4 * USEC_PER_MSEC;
 237}
 238
 239static int __8b10b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
 240{
 241	if (rd_interval > 4)
 242		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
 243			    aux->name, rd_interval);
 244
 245	if (rd_interval == 0)
 246		return 400;
 247
 248	return rd_interval * 4 * USEC_PER_MSEC;
 249}
 250
 251static int __128b132b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
 252{
 253	switch (rd_interval) {
 254	default:
 255		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x\n",
 256			    aux->name, rd_interval);
 257		fallthrough;
 258	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_400_US:
 259		return 400;
 260	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_4_MS:
 261		return 4000;
 262	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_8_MS:
 263		return 8000;
 264	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_12_MS:
 265		return 12000;
 266	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_16_MS:
 267		return 16000;
 268	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_32_MS:
 269		return 32000;
 270	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_64_MS:
 271		return 64000;
 272	}
 273}
 274
 275/*
 276 * The link training delays are different for:
 277 *
 278 *  - Clock recovery vs. channel equalization
 279 *  - DPRX vs. LTTPR
 280 *  - 128b/132b vs. 8b/10b
 281 *  - DPCD rev 1.3 vs. later
 282 *
 283 * Get the correct delay in us, reading DPCD if necessary.
 284 */
 285static int __read_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
 286			enum drm_dp_phy dp_phy, bool uhbr, bool cr)
 287{
 288	int (*parse)(const struct drm_dp_aux *aux, u8 rd_interval);
 289	unsigned int offset;
 290	u8 rd_interval, mask;
 291
 292	if (dp_phy == DP_PHY_DPRX) {
 293		if (uhbr) {
 294			if (cr)
 295				return 100;
 296
 297			offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL;
 298			mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
 299			parse = __128b132b_channel_eq_delay_us;
 300		} else {
 301			if (cr && dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
 302				return 100;
 303
 304			offset = DP_TRAINING_AUX_RD_INTERVAL;
 305			mask = DP_TRAINING_AUX_RD_MASK;
 306			if (cr)
 307				parse = __8b10b_clock_recovery_delay_us;
 308			else
 309				parse = __8b10b_channel_eq_delay_us;
 310		}
 311	} else {
 312		if (uhbr) {
 313			offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
 314			mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
 315			parse = __128b132b_channel_eq_delay_us;
 316		} else {
 317			if (cr)
 318				return 100;
 319
 320			offset = DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
 321			mask = DP_TRAINING_AUX_RD_MASK;
 322			parse = __8b10b_channel_eq_delay_us;
 323		}
 324	}
 325
 326	if (offset < DP_RECEIVER_CAP_SIZE) {
 327		rd_interval = dpcd[offset];
 328	} else {
 329		if (drm_dp_dpcd_readb(aux, offset, &rd_interval) != 1) {
 330			drm_dbg_kms(aux->drm_dev, "%s: failed rd interval read\n",
 331				    aux->name);
 332			/* arbitrary default delay */
 333			return 400;
 334		}
 335	}
 336
 337	return parse(aux, rd_interval & mask);
 338}
 339
 340int drm_dp_read_clock_recovery_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
 341				     enum drm_dp_phy dp_phy, bool uhbr)
 342{
 343	return __read_delay(aux, dpcd, dp_phy, uhbr, true);
 344}
 345EXPORT_SYMBOL(drm_dp_read_clock_recovery_delay);
 346
 347int drm_dp_read_channel_eq_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
 348				 enum drm_dp_phy dp_phy, bool uhbr)
 349{
 350	return __read_delay(aux, dpcd, dp_phy, uhbr, false);
 351}
 352EXPORT_SYMBOL(drm_dp_read_channel_eq_delay);
 353
 354/* Per DP 2.0 Errata */
 355int drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux *aux)
 356{
 357	int unit;
 358	u8 val;
 359
 360	if (drm_dp_dpcd_readb(aux, DP_128B132B_TRAINING_AUX_RD_INTERVAL, &val) != 1) {
 361		drm_err(aux->drm_dev, "%s: failed rd interval read\n",
 362			aux->name);
 363		/* default to max */
 364		val = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
 365	}
 366
 367	unit = (val & DP_128B132B_TRAINING_AUX_RD_INTERVAL_1MS_UNIT) ? 1 : 2;
 368	val &= DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
 369
 370	return (val + 1) * unit * 1000;
 371}
 372EXPORT_SYMBOL(drm_dp_128b132b_read_aux_rd_interval);
 373
 374void drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux *aux,
 375					    const u8 dpcd[DP_RECEIVER_CAP_SIZE])
 376{
 377	u8 rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
 378		DP_TRAINING_AUX_RD_MASK;
 379	int delay_us;
 380
 381	if (dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
 382		delay_us = 100;
 383	else
 384		delay_us = __8b10b_clock_recovery_delay_us(aux, rd_interval);
 385
 386	usleep_range(delay_us, delay_us * 2);
 387}
 388EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay);
 389
 390static void __drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
 391						 u8 rd_interval)
 392{
 393	int delay_us = __8b10b_channel_eq_delay_us(aux, rd_interval);
 394
 395	usleep_range(delay_us, delay_us * 2);
 396}
 397
 398void drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
 399					const u8 dpcd[DP_RECEIVER_CAP_SIZE])
 400{
 401	__drm_dp_link_train_channel_eq_delay(aux,
 402					     dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
 403					     DP_TRAINING_AUX_RD_MASK);
 404}
 405EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay);
 406
 407/**
 408 * drm_dp_phy_name() - Get the name of the given DP PHY
 409 * @dp_phy: The DP PHY identifier
 410 *
 411 * Given the @dp_phy, get a user friendly name of the DP PHY, either "DPRX" or
 412 * "LTTPR <N>", or "<INVALID DP PHY>" on errors. The returned string is always
 413 * non-NULL and valid.
 414 *
 415 * Returns: Name of the DP PHY.
 416 */
 417const char *drm_dp_phy_name(enum drm_dp_phy dp_phy)
 418{
 419	static const char * const phy_names[] = {
 420		[DP_PHY_DPRX] = "DPRX",
 421		[DP_PHY_LTTPR1] = "LTTPR 1",
 422		[DP_PHY_LTTPR2] = "LTTPR 2",
 423		[DP_PHY_LTTPR3] = "LTTPR 3",
 424		[DP_PHY_LTTPR4] = "LTTPR 4",
 425		[DP_PHY_LTTPR5] = "LTTPR 5",
 426		[DP_PHY_LTTPR6] = "LTTPR 6",
 427		[DP_PHY_LTTPR7] = "LTTPR 7",
 428		[DP_PHY_LTTPR8] = "LTTPR 8",
 429	};
 430
 431	if (dp_phy < 0 || dp_phy >= ARRAY_SIZE(phy_names) ||
 432	    WARN_ON(!phy_names[dp_phy]))
 433		return "<INVALID DP PHY>";
 434
 435	return phy_names[dp_phy];
 436}
 437EXPORT_SYMBOL(drm_dp_phy_name);
 438
 439void drm_dp_lttpr_link_train_clock_recovery_delay(void)
 440{
 441	usleep_range(100, 200);
 442}
 443EXPORT_SYMBOL(drm_dp_lttpr_link_train_clock_recovery_delay);
 444
 445static u8 dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE], int r)
 446{
 447	return phy_cap[r - DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1];
 448}
 449
 450void drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
 451					      const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE])
 452{
 453	u8 interval = dp_lttpr_phy_cap(phy_cap,
 454				       DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1) &
 455		      DP_TRAINING_AUX_RD_MASK;
 456
 457	__drm_dp_link_train_channel_eq_delay(aux, interval);
 458}
 459EXPORT_SYMBOL(drm_dp_lttpr_link_train_channel_eq_delay);
 460
 461u8 drm_dp_link_rate_to_bw_code(int link_rate)
 462{
 463	switch (link_rate) {
 464	case 1000000:
 465		return DP_LINK_BW_10;
 466	case 1350000:
 467		return DP_LINK_BW_13_5;
 468	case 2000000:
 469		return DP_LINK_BW_20;
 470	default:
 471		/* Spec says link_bw = link_rate / 0.27Gbps */
 472		return link_rate / 27000;
 473	}
 474}
 475EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code);
 476
 477int drm_dp_bw_code_to_link_rate(u8 link_bw)
 478{
 479	switch (link_bw) {
 480	case DP_LINK_BW_10:
 481		return 1000000;
 482	case DP_LINK_BW_13_5:
 483		return 1350000;
 484	case DP_LINK_BW_20:
 485		return 2000000;
 486	default:
 487		/* Spec says link_rate = link_bw * 0.27Gbps */
 488		return link_bw * 27000;
 489	}
 490}
 491EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate);
 492
 493#define AUX_RETRY_INTERVAL 500 /* us */
 494
 495static inline void
 496drm_dp_dump_access(const struct drm_dp_aux *aux,
 497		   u8 request, uint offset, void *buffer, int ret)
 498{
 499	const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-";
 500
 501	if (ret > 0)
 502		drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d) %*ph\n",
 503			   aux->name, offset, arrow, ret, min(ret, 20), buffer);
 504	else
 505		drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d)\n",
 506			   aux->name, offset, arrow, ret);
 507}
 508
 509/**
 510 * DOC: dp helpers
 511 *
 512 * The DisplayPort AUX channel is an abstraction to allow generic, driver-
 513 * independent access to AUX functionality. Drivers can take advantage of
 514 * this by filling in the fields of the drm_dp_aux structure.
 515 *
 516 * Transactions are described using a hardware-independent drm_dp_aux_msg
 517 * structure, which is passed into a driver's .transfer() implementation.
 518 * Both native and I2C-over-AUX transactions are supported.
 519 */
 520
 521static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request,
 522			      unsigned int offset, void *buffer, size_t size)
 523{
 524	struct drm_dp_aux_msg msg;
 525	unsigned int retry, native_reply;
 526	int err = 0, ret = 0;
 527
 528	memset(&msg, 0, sizeof(msg));
 529	msg.address = offset;
 530	msg.request = request;
 531	msg.buffer = buffer;
 532	msg.size = size;
 533
 534	mutex_lock(&aux->hw_mutex);
 535
 536	/*
 537	 * If the device attached to the aux bus is powered down then there's
 538	 * no reason to attempt a transfer. Error out immediately.
 539	 */
 540	if (aux->powered_down) {
 541		ret = -EBUSY;
 542		goto unlock;
 543	}
 544
 545	/*
 546	 * The specification doesn't give any recommendation on how often to
 547	 * retry native transactions. We used to retry 7 times like for
 548	 * aux i2c transactions but real world devices this wasn't
 549	 * sufficient, bump to 32 which makes Dell 4k monitors happier.
 550	 */
 551	for (retry = 0; retry < 32; retry++) {
 552		if (ret != 0 && ret != -ETIMEDOUT) {
 553			usleep_range(AUX_RETRY_INTERVAL,
 554				     AUX_RETRY_INTERVAL + 100);
 555		}
 556
 557		ret = aux->transfer(aux, &msg);
 558		if (ret >= 0) {
 559			native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK;
 560			if (native_reply == DP_AUX_NATIVE_REPLY_ACK) {
 561				if (ret == size)
 562					goto unlock;
 563
 564				ret = -EPROTO;
 565			} else
 566				ret = -EIO;
 567		}
 568
 569		/*
 570		 * We want the error we return to be the error we received on
 571		 * the first transaction, since we may get a different error the
 572		 * next time we retry
 573		 */
 574		if (!err)
 575			err = ret;
 576	}
 577
 578	drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up. First error: %d\n",
 579		    aux->name, err);
 580	ret = err;
 581
 582unlock:
 583	mutex_unlock(&aux->hw_mutex);
 584	return ret;
 585}
 586
 587/**
 588 * drm_dp_dpcd_probe() - probe a given DPCD address with a 1-byte read access
 589 * @aux: DisplayPort AUX channel (SST)
 590 * @offset: address of the register to probe
 591 *
 592 * Probe the provided DPCD address by reading 1 byte from it. The function can
 593 * be used to trigger some side-effect the read access has, like waking up the
 594 * sink, without the need for the read-out value.
 595 *
 596 * Returns 0 if the read access suceeded, or a negative error code on failure.
 597 */
 598int drm_dp_dpcd_probe(struct drm_dp_aux *aux, unsigned int offset)
 599{
 600	u8 buffer;
 601	int ret;
 602
 603	ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, 1);
 604	WARN_ON(ret == 0);
 605
 606	drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, ret);
 607
 608	return ret < 0 ? ret : 0;
 609}
 610EXPORT_SYMBOL(drm_dp_dpcd_probe);
 611
 612/**
 613 * drm_dp_dpcd_set_powered() - Set whether the DP device is powered
 614 * @aux: DisplayPort AUX channel; for convenience it's OK to pass NULL here
 615 *       and the function will be a no-op.
 616 * @powered: true if powered; false if not
 617 *
 618 * If the endpoint device on the DP AUX bus is known to be powered down
 619 * then this function can be called to make future transfers fail immediately
 620 * instead of needing to time out.
 621 *
 622 * If this function is never called then a device defaults to being powered.
 623 */
 624void drm_dp_dpcd_set_powered(struct drm_dp_aux *aux, bool powered)
 625{
 626	if (!aux)
 627		return;
 628
 629	mutex_lock(&aux->hw_mutex);
 630	aux->powered_down = !powered;
 631	mutex_unlock(&aux->hw_mutex);
 632}
 633EXPORT_SYMBOL(drm_dp_dpcd_set_powered);
 634
 635/**
 636 * drm_dp_dpcd_read() - read a series of bytes from the DPCD
 637 * @aux: DisplayPort AUX channel (SST or MST)
 638 * @offset: address of the (first) register to read
 639 * @buffer: buffer to store the register values
 640 * @size: number of bytes in @buffer
 641 *
 642 * Returns the number of bytes transferred on success, or a negative error
 643 * code on failure. -EIO is returned if the request was NAKed by the sink or
 644 * if the retry count was exceeded. If not all bytes were transferred, this
 645 * function returns -EPROTO. Errors from the underlying AUX channel transfer
 646 * function, with the exception of -EBUSY (which causes the transaction to
 647 * be retried), are propagated to the caller.
 648 */
 649ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset,
 650			 void *buffer, size_t size)
 651{
 652	int ret;
 653
 654	/*
 655	 * HP ZR24w corrupts the first DPCD access after entering power save
 656	 * mode. Eg. on a read, the entire buffer will be filled with the same
 657	 * byte. Do a throw away read to avoid corrupting anything we care
 658	 * about. Afterwards things will work correctly until the monitor
 659	 * gets woken up and subsequently re-enters power save mode.
 660	 *
 661	 * The user pressing any button on the monitor is enough to wake it
 662	 * up, so there is no particularly good place to do the workaround.
 663	 * We just have to do it before any DPCD access and hope that the
 664	 * monitor doesn't power down exactly after the throw away read.
 665	 */
 666	if (!aux->is_remote) {
 667		ret = drm_dp_dpcd_probe(aux, DP_DPCD_REV);
 668		if (ret < 0)
 669			return ret;
 670	}
 671
 672	if (aux->is_remote)
 673		ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size);
 674	else
 675		ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset,
 676					 buffer, size);
 677
 678	drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret);
 679	return ret;
 680}
 681EXPORT_SYMBOL(drm_dp_dpcd_read);
 682
 683/**
 684 * drm_dp_dpcd_write() - write a series of bytes to the DPCD
 685 * @aux: DisplayPort AUX channel (SST or MST)
 686 * @offset: address of the (first) register to write
 687 * @buffer: buffer containing the values to write
 688 * @size: number of bytes in @buffer
 689 *
 690 * Returns the number of bytes transferred on success, or a negative error
 691 * code on failure. -EIO is returned if the request was NAKed by the sink or
 692 * if the retry count was exceeded. If not all bytes were transferred, this
 693 * function returns -EPROTO. Errors from the underlying AUX channel transfer
 694 * function, with the exception of -EBUSY (which causes the transaction to
 695 * be retried), are propagated to the caller.
 696 */
 697ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset,
 698			  void *buffer, size_t size)
 699{
 700	int ret;
 701
 702	if (aux->is_remote)
 703		ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size);
 704	else
 705		ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset,
 706					 buffer, size);
 707
 708	drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret);
 709	return ret;
 710}
 711EXPORT_SYMBOL(drm_dp_dpcd_write);
 712
 713/**
 714 * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207)
 715 * @aux: DisplayPort AUX channel
 716 * @status: buffer to store the link status in (must be at least 6 bytes)
 717 *
 718 * Returns the number of bytes transferred on success or a negative error
 719 * code on failure.
 720 */
 721int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux,
 722				 u8 status[DP_LINK_STATUS_SIZE])
 723{
 724	return drm_dp_dpcd_read(aux, DP_LANE0_1_STATUS, status,
 725				DP_LINK_STATUS_SIZE);
 726}
 727EXPORT_SYMBOL(drm_dp_dpcd_read_link_status);
 728
 729/**
 730 * drm_dp_dpcd_read_phy_link_status - get the link status information for a DP PHY
 731 * @aux: DisplayPort AUX channel
 732 * @dp_phy: the DP PHY to get the link status for
 733 * @link_status: buffer to return the status in
 734 *
 735 * Fetch the AUX DPCD registers for the DPRX or an LTTPR PHY link status. The
 736 * layout of the returned @link_status matches the DPCD register layout of the
 737 * DPRX PHY link status.
 738 *
 739 * Returns 0 if the information was read successfully or a negative error code
 740 * on failure.
 741 */
 742int drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux *aux,
 743				     enum drm_dp_phy dp_phy,
 744				     u8 link_status[DP_LINK_STATUS_SIZE])
 745{
 746	int ret;
 747
 748	if (dp_phy == DP_PHY_DPRX) {
 749		ret = drm_dp_dpcd_read(aux,
 750				       DP_LANE0_1_STATUS,
 751				       link_status,
 752				       DP_LINK_STATUS_SIZE);
 753
 754		if (ret < 0)
 755			return ret;
 756
 757		WARN_ON(ret != DP_LINK_STATUS_SIZE);
 758
 759		return 0;
 760	}
 761
 762	ret = drm_dp_dpcd_read(aux,
 763			       DP_LANE0_1_STATUS_PHY_REPEATER(dp_phy),
 764			       link_status,
 765			       DP_LINK_STATUS_SIZE - 1);
 766
 767	if (ret < 0)
 768		return ret;
 769
 770	WARN_ON(ret != DP_LINK_STATUS_SIZE - 1);
 771
 772	/* Convert the LTTPR to the sink PHY link status layout */
 773	memmove(&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS + 1],
 774		&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS],
 775		DP_LINK_STATUS_SIZE - (DP_SINK_STATUS - DP_LANE0_1_STATUS) - 1);
 776	link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS] = 0;
 777
 778	return 0;
 779}
 780EXPORT_SYMBOL(drm_dp_dpcd_read_phy_link_status);
 781
 782static bool is_edid_digital_input_dp(const struct drm_edid *drm_edid)
 783{
 784	/* FIXME: get rid of drm_edid_raw() */
 785	const struct edid *edid = drm_edid_raw(drm_edid);
 786
 787	return edid && edid->revision >= 4 &&
 788		edid->input & DRM_EDID_INPUT_DIGITAL &&
 789		(edid->input & DRM_EDID_DIGITAL_TYPE_MASK) == DRM_EDID_DIGITAL_TYPE_DP;
 790}
 791
 792/**
 793 * drm_dp_downstream_is_type() - is the downstream facing port of certain type?
 794 * @dpcd: DisplayPort configuration data
 795 * @port_cap: port capabilities
 796 * @type: port type to be checked. Can be:
 797 * 	  %DP_DS_PORT_TYPE_DP, %DP_DS_PORT_TYPE_VGA, %DP_DS_PORT_TYPE_DVI,
 798 * 	  %DP_DS_PORT_TYPE_HDMI, %DP_DS_PORT_TYPE_NON_EDID,
 799 *	  %DP_DS_PORT_TYPE_DP_DUALMODE or %DP_DS_PORT_TYPE_WIRELESS.
 800 *
 801 * Caveat: Only works with DPCD 1.1+ port caps.
 802 *
 803 * Returns: whether the downstream facing port matches the type.
 804 */
 805bool drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
 806			       const u8 port_cap[4], u8 type)
 807{
 808	return drm_dp_is_branch(dpcd) &&
 809		dpcd[DP_DPCD_REV] >= 0x11 &&
 810		(port_cap[0] & DP_DS_PORT_TYPE_MASK) == type;
 811}
 812EXPORT_SYMBOL(drm_dp_downstream_is_type);
 813
 814/**
 815 * drm_dp_downstream_is_tmds() - is the downstream facing port TMDS?
 816 * @dpcd: DisplayPort configuration data
 817 * @port_cap: port capabilities
 818 * @drm_edid: EDID
 819 *
 820 * Returns: whether the downstream facing port is TMDS (HDMI/DVI).
 821 */
 822bool drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
 823			       const u8 port_cap[4],
 824			       const struct drm_edid *drm_edid)
 825{
 826	if (dpcd[DP_DPCD_REV] < 0x11) {
 827		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
 828		case DP_DWN_STRM_PORT_TYPE_TMDS:
 829			return true;
 830		default:
 831			return false;
 832		}
 833	}
 834
 835	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
 836	case DP_DS_PORT_TYPE_DP_DUALMODE:
 837		if (is_edid_digital_input_dp(drm_edid))
 838			return false;
 839		fallthrough;
 840	case DP_DS_PORT_TYPE_DVI:
 841	case DP_DS_PORT_TYPE_HDMI:
 842		return true;
 843	default:
 844		return false;
 845	}
 846}
 847EXPORT_SYMBOL(drm_dp_downstream_is_tmds);
 848
 849/**
 850 * drm_dp_send_real_edid_checksum() - send back real edid checksum value
 851 * @aux: DisplayPort AUX channel
 852 * @real_edid_checksum: real edid checksum for the last block
 853 *
 854 * Returns:
 855 * True on success
 856 */
 857bool drm_dp_send_real_edid_checksum(struct drm_dp_aux *aux,
 858				    u8 real_edid_checksum)
 859{
 860	u8 link_edid_read = 0, auto_test_req = 0, test_resp = 0;
 861
 862	if (drm_dp_dpcd_read(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
 863			     &auto_test_req, 1) < 1) {
 864		drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
 865			aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
 866		return false;
 867	}
 868	auto_test_req &= DP_AUTOMATED_TEST_REQUEST;
 869
 870	if (drm_dp_dpcd_read(aux, DP_TEST_REQUEST, &link_edid_read, 1) < 1) {
 871		drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
 872			aux->name, DP_TEST_REQUEST);
 873		return false;
 874	}
 875	link_edid_read &= DP_TEST_LINK_EDID_READ;
 876
 877	if (!auto_test_req || !link_edid_read) {
 878		drm_dbg_kms(aux->drm_dev, "%s: Source DUT does not support TEST_EDID_READ\n",
 879			    aux->name);
 880		return false;
 881	}
 882
 883	if (drm_dp_dpcd_write(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
 884			      &auto_test_req, 1) < 1) {
 885		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
 886			aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
 887		return false;
 888	}
 889
 890	/* send back checksum for the last edid extension block data */
 891	if (drm_dp_dpcd_write(aux, DP_TEST_EDID_CHECKSUM,
 892			      &real_edid_checksum, 1) < 1) {
 893		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
 894			aux->name, DP_TEST_EDID_CHECKSUM);
 895		return false;
 896	}
 897
 898	test_resp |= DP_TEST_EDID_CHECKSUM_WRITE;
 899	if (drm_dp_dpcd_write(aux, DP_TEST_RESPONSE, &test_resp, 1) < 1) {
 900		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
 901			aux->name, DP_TEST_RESPONSE);
 902		return false;
 903	}
 904
 905	return true;
 906}
 907EXPORT_SYMBOL(drm_dp_send_real_edid_checksum);
 908
 909static u8 drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
 910{
 911	u8 port_count = dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_PORT_COUNT_MASK;
 912
 913	if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE && port_count > 4)
 914		port_count = 4;
 915
 916	return port_count;
 917}
 918
 919static int drm_dp_read_extended_dpcd_caps(struct drm_dp_aux *aux,
 920					  u8 dpcd[DP_RECEIVER_CAP_SIZE])
 921{
 922	u8 dpcd_ext[DP_RECEIVER_CAP_SIZE];
 923	int ret;
 924
 925	/*
 926	 * Prior to DP1.3 the bit represented by
 927	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
 928	 * If it is set DP_DPCD_REV at 0000h could be at a value less than
 929	 * the true capability of the panel. The only way to check is to
 930	 * then compare 0000h and 2200h.
 931	 */
 932	if (!(dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
 933	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
 934		return 0;
 935
 936	ret = drm_dp_dpcd_read(aux, DP_DP13_DPCD_REV, &dpcd_ext,
 937			       sizeof(dpcd_ext));
 938	if (ret < 0)
 939		return ret;
 940	if (ret != sizeof(dpcd_ext))
 941		return -EIO;
 942
 943	if (dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
 944		drm_dbg_kms(aux->drm_dev,
 945			    "%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n",
 946			    aux->name, dpcd[DP_DPCD_REV], dpcd_ext[DP_DPCD_REV]);
 947		return 0;
 948	}
 949
 950	if (!memcmp(dpcd, dpcd_ext, sizeof(dpcd_ext)))
 951		return 0;
 952
 953	drm_dbg_kms(aux->drm_dev, "%s: Base DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
 954
 955	memcpy(dpcd, dpcd_ext, sizeof(dpcd_ext));
 956
 957	return 0;
 958}
 959
 960/**
 961 * drm_dp_read_dpcd_caps() - read DPCD caps and extended DPCD caps if
 962 * available
 963 * @aux: DisplayPort AUX channel
 964 * @dpcd: Buffer to store the resulting DPCD in
 965 *
 966 * Attempts to read the base DPCD caps for @aux. Additionally, this function
 967 * checks for and reads the extended DPRX caps (%DP_DP13_DPCD_REV) if
 968 * present.
 969 *
 970 * Returns: %0 if the DPCD was read successfully, negative error code
 971 * otherwise.
 972 */
 973int drm_dp_read_dpcd_caps(struct drm_dp_aux *aux,
 974			  u8 dpcd[DP_RECEIVER_CAP_SIZE])
 975{
 976	int ret;
 977
 978	ret = drm_dp_dpcd_read(aux, DP_DPCD_REV, dpcd, DP_RECEIVER_CAP_SIZE);
 979	if (ret < 0)
 980		return ret;
 981	if (ret != DP_RECEIVER_CAP_SIZE || dpcd[DP_DPCD_REV] == 0)
 982		return -EIO;
 983
 984	ret = drm_dp_read_extended_dpcd_caps(aux, dpcd);
 985	if (ret < 0)
 986		return ret;
 987
 988	drm_dbg_kms(aux->drm_dev, "%s: DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
 989
 990	return ret;
 991}
 992EXPORT_SYMBOL(drm_dp_read_dpcd_caps);
 993
 994/**
 995 * drm_dp_read_downstream_info() - read DPCD downstream port info if available
 996 * @aux: DisplayPort AUX channel
 997 * @dpcd: A cached copy of the port's DPCD
 998 * @downstream_ports: buffer to store the downstream port info in
 999 *
1000 * See also:
1001 * drm_dp_downstream_max_clock()
1002 * drm_dp_downstream_max_bpc()
1003 *
1004 * Returns: 0 if either the downstream port info was read successfully or
1005 * there was no downstream info to read, or a negative error code otherwise.
1006 */
1007int drm_dp_read_downstream_info(struct drm_dp_aux *aux,
1008				const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1009				u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])
1010{
1011	int ret;
1012	u8 len;
1013
1014	memset(downstream_ports, 0, DP_MAX_DOWNSTREAM_PORTS);
1015
1016	/* No downstream info to read */
1017	if (!drm_dp_is_branch(dpcd) || dpcd[DP_DPCD_REV] == DP_DPCD_REV_10)
1018		return 0;
1019
1020	/* Some branches advertise having 0 downstream ports, despite also advertising they have a
1021	 * downstream port present. The DP spec isn't clear on if this is allowed or not, but since
1022	 * some branches do it we need to handle it regardless.
1023	 */
1024	len = drm_dp_downstream_port_count(dpcd);
1025	if (!len)
1026		return 0;
1027
1028	if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE)
1029		len *= 4;
1030
1031	ret = drm_dp_dpcd_read(aux, DP_DOWNSTREAM_PORT_0, downstream_ports, len);
1032	if (ret < 0)
1033		return ret;
1034	if (ret != len)
1035		return -EIO;
1036
1037	drm_dbg_kms(aux->drm_dev, "%s: DPCD DFP: %*ph\n", aux->name, len, downstream_ports);
1038
1039	return 0;
1040}
1041EXPORT_SYMBOL(drm_dp_read_downstream_info);
1042
1043/**
1044 * drm_dp_downstream_max_dotclock() - extract downstream facing port max dot clock
1045 * @dpcd: DisplayPort configuration data
1046 * @port_cap: port capabilities
1047 *
1048 * Returns: Downstream facing port max dot clock in kHz on success,
1049 * or 0 if max clock not defined
1050 */
1051int drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1052				   const u8 port_cap[4])
1053{
1054	if (!drm_dp_is_branch(dpcd))
1055		return 0;
1056
1057	if (dpcd[DP_DPCD_REV] < 0x11)
1058		return 0;
1059
1060	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1061	case DP_DS_PORT_TYPE_VGA:
1062		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1063			return 0;
1064		return port_cap[1] * 8000;
1065	default:
1066		return 0;
1067	}
1068}
1069EXPORT_SYMBOL(drm_dp_downstream_max_dotclock);
1070
1071/**
1072 * drm_dp_downstream_max_tmds_clock() - extract downstream facing port max TMDS clock
1073 * @dpcd: DisplayPort configuration data
1074 * @port_cap: port capabilities
1075 * @drm_edid: EDID
1076 *
1077 * Returns: HDMI/DVI downstream facing port max TMDS clock in kHz on success,
1078 * or 0 if max TMDS clock not defined
1079 */
1080int drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1081				     const u8 port_cap[4],
1082				     const struct drm_edid *drm_edid)
1083{
1084	if (!drm_dp_is_branch(dpcd))
1085		return 0;
1086
1087	if (dpcd[DP_DPCD_REV] < 0x11) {
1088		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1089		case DP_DWN_STRM_PORT_TYPE_TMDS:
1090			return 165000;
1091		default:
1092			return 0;
1093		}
1094	}
1095
1096	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1097	case DP_DS_PORT_TYPE_DP_DUALMODE:
1098		if (is_edid_digital_input_dp(drm_edid))
1099			return 0;
1100		/*
1101		 * It's left up to the driver to check the
1102		 * DP dual mode adapter's max TMDS clock.
1103		 *
1104		 * Unfortunately it looks like branch devices
1105		 * may not fordward that the DP dual mode i2c
1106		 * access so we just usually get i2c nak :(
1107		 */
1108		fallthrough;
1109	case DP_DS_PORT_TYPE_HDMI:
1110		 /*
1111		  * We should perhaps assume 165 MHz when detailed cap
1112		  * info is not available. But looks like many typical
1113		  * branch devices fall into that category and so we'd
1114		  * probably end up with users complaining that they can't
1115		  * get high resolution modes with their favorite dongle.
1116		  *
1117		  * So let's limit to 300 MHz instead since DPCD 1.4
1118		  * HDMI 2.0 DFPs are required to have the detailed cap
1119		  * info. So it's more likely we're dealing with a HDMI 1.4
1120		  * compatible* device here.
1121		  */
1122		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1123			return 300000;
1124		return port_cap[1] * 2500;
1125	case DP_DS_PORT_TYPE_DVI:
1126		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1127			return 165000;
1128		/* FIXME what to do about DVI dual link? */
1129		return port_cap[1] * 2500;
1130	default:
1131		return 0;
1132	}
1133}
1134EXPORT_SYMBOL(drm_dp_downstream_max_tmds_clock);
1135
1136/**
1137 * drm_dp_downstream_min_tmds_clock() - extract downstream facing port min TMDS clock
1138 * @dpcd: DisplayPort configuration data
1139 * @port_cap: port capabilities
1140 * @drm_edid: EDID
1141 *
1142 * Returns: HDMI/DVI downstream facing port min TMDS clock in kHz on success,
1143 * or 0 if max TMDS clock not defined
1144 */
1145int drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1146				     const u8 port_cap[4],
1147				     const struct drm_edid *drm_edid)
1148{
1149	if (!drm_dp_is_branch(dpcd))
1150		return 0;
1151
1152	if (dpcd[DP_DPCD_REV] < 0x11) {
1153		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1154		case DP_DWN_STRM_PORT_TYPE_TMDS:
1155			return 25000;
1156		default:
1157			return 0;
1158		}
1159	}
1160
1161	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1162	case DP_DS_PORT_TYPE_DP_DUALMODE:
1163		if (is_edid_digital_input_dp(drm_edid))
1164			return 0;
1165		fallthrough;
1166	case DP_DS_PORT_TYPE_DVI:
1167	case DP_DS_PORT_TYPE_HDMI:
1168		/*
1169		 * Unclear whether the protocol converter could
1170		 * utilize pixel replication. Assume it won't.
1171		 */
1172		return 25000;
1173	default:
1174		return 0;
1175	}
1176}
1177EXPORT_SYMBOL(drm_dp_downstream_min_tmds_clock);
1178
1179/**
1180 * drm_dp_downstream_max_bpc() - extract downstream facing port max
1181 *                               bits per component
1182 * @dpcd: DisplayPort configuration data
1183 * @port_cap: downstream facing port capabilities
1184 * @drm_edid: EDID
1185 *
1186 * Returns: Max bpc on success or 0 if max bpc not defined
1187 */
1188int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1189			      const u8 port_cap[4],
1190			      const struct drm_edid *drm_edid)
1191{
1192	if (!drm_dp_is_branch(dpcd))
1193		return 0;
1194
1195	if (dpcd[DP_DPCD_REV] < 0x11) {
1196		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1197		case DP_DWN_STRM_PORT_TYPE_DP:
1198			return 0;
1199		default:
1200			return 8;
1201		}
1202	}
1203
1204	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1205	case DP_DS_PORT_TYPE_DP:
1206		return 0;
1207	case DP_DS_PORT_TYPE_DP_DUALMODE:
1208		if (is_edid_digital_input_dp(drm_edid))
1209			return 0;
1210		fallthrough;
1211	case DP_DS_PORT_TYPE_HDMI:
1212	case DP_DS_PORT_TYPE_DVI:
1213	case DP_DS_PORT_TYPE_VGA:
1214		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1215			return 8;
1216
1217		switch (port_cap[2] & DP_DS_MAX_BPC_MASK) {
1218		case DP_DS_8BPC:
1219			return 8;
1220		case DP_DS_10BPC:
1221			return 10;
1222		case DP_DS_12BPC:
1223			return 12;
1224		case DP_DS_16BPC:
1225			return 16;
1226		default:
1227			return 8;
1228		}
1229		break;
1230	default:
1231		return 8;
1232	}
1233}
1234EXPORT_SYMBOL(drm_dp_downstream_max_bpc);
1235
1236/**
1237 * drm_dp_downstream_420_passthrough() - determine downstream facing port
1238 *                                       YCbCr 4:2:0 pass-through capability
1239 * @dpcd: DisplayPort configuration data
1240 * @port_cap: downstream facing port capabilities
1241 *
1242 * Returns: whether the downstream facing port can pass through YCbCr 4:2:0
1243 */
1244bool drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1245				       const u8 port_cap[4])
1246{
1247	if (!drm_dp_is_branch(dpcd))
1248		return false;
1249
1250	if (dpcd[DP_DPCD_REV] < 0x13)
1251		return false;
1252
1253	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1254	case DP_DS_PORT_TYPE_DP:
1255		return true;
1256	case DP_DS_PORT_TYPE_HDMI:
1257		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1258			return false;
1259
1260		return port_cap[3] & DP_DS_HDMI_YCBCR420_PASS_THROUGH;
1261	default:
1262		return false;
1263	}
1264}
1265EXPORT_SYMBOL(drm_dp_downstream_420_passthrough);
1266
1267/**
1268 * drm_dp_downstream_444_to_420_conversion() - determine downstream facing port
1269 *                                             YCbCr 4:4:4->4:2:0 conversion capability
1270 * @dpcd: DisplayPort configuration data
1271 * @port_cap: downstream facing port capabilities
1272 *
1273 * Returns: whether the downstream facing port can convert YCbCr 4:4:4 to 4:2:0
1274 */
1275bool drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1276					     const u8 port_cap[4])
1277{
1278	if (!drm_dp_is_branch(dpcd))
1279		return false;
1280
1281	if (dpcd[DP_DPCD_REV] < 0x13)
1282		return false;
1283
1284	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1285	case DP_DS_PORT_TYPE_HDMI:
1286		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1287			return false;
1288
1289		return port_cap[3] & DP_DS_HDMI_YCBCR444_TO_420_CONV;
1290	default:
1291		return false;
1292	}
1293}
1294EXPORT_SYMBOL(drm_dp_downstream_444_to_420_conversion);
1295
1296/**
1297 * drm_dp_downstream_rgb_to_ycbcr_conversion() - determine downstream facing port
1298 *                                               RGB->YCbCr conversion capability
1299 * @dpcd: DisplayPort configuration data
1300 * @port_cap: downstream facing port capabilities
1301 * @color_spc: Colorspace for which conversion cap is sought
1302 *
1303 * Returns: whether the downstream facing port can convert RGB->YCbCr for a given
1304 * colorspace.
1305 */
1306bool drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1307					       const u8 port_cap[4],
1308					       u8 color_spc)
1309{
1310	if (!drm_dp_is_branch(dpcd))
1311		return false;
1312
1313	if (dpcd[DP_DPCD_REV] < 0x13)
1314		return false;
1315
1316	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1317	case DP_DS_PORT_TYPE_HDMI:
1318		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1319			return false;
1320
1321		return port_cap[3] & color_spc;
1322	default:
1323		return false;
1324	}
1325}
1326EXPORT_SYMBOL(drm_dp_downstream_rgb_to_ycbcr_conversion);
1327
1328/**
1329 * drm_dp_downstream_mode() - return a mode for downstream facing port
1330 * @dev: DRM device
1331 * @dpcd: DisplayPort configuration data
1332 * @port_cap: port capabilities
1333 *
1334 * Provides a suitable mode for downstream facing ports without EDID.
1335 *
1336 * Returns: A new drm_display_mode on success or NULL on failure
1337 */
1338struct drm_display_mode *
1339drm_dp_downstream_mode(struct drm_device *dev,
1340		       const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1341		       const u8 port_cap[4])
1342
1343{
1344	u8 vic;
1345
1346	if (!drm_dp_is_branch(dpcd))
1347		return NULL;
1348
1349	if (dpcd[DP_DPCD_REV] < 0x11)
1350		return NULL;
1351
1352	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1353	case DP_DS_PORT_TYPE_NON_EDID:
1354		switch (port_cap[0] & DP_DS_NON_EDID_MASK) {
1355		case DP_DS_NON_EDID_720x480i_60:
1356			vic = 6;
1357			break;
1358		case DP_DS_NON_EDID_720x480i_50:
1359			vic = 21;
1360			break;
1361		case DP_DS_NON_EDID_1920x1080i_60:
1362			vic = 5;
1363			break;
1364		case DP_DS_NON_EDID_1920x1080i_50:
1365			vic = 20;
1366			break;
1367		case DP_DS_NON_EDID_1280x720_60:
1368			vic = 4;
1369			break;
1370		case DP_DS_NON_EDID_1280x720_50:
1371			vic = 19;
1372			break;
1373		default:
1374			return NULL;
1375		}
1376		return drm_display_mode_from_cea_vic(dev, vic);
1377	default:
1378		return NULL;
1379	}
1380}
1381EXPORT_SYMBOL(drm_dp_downstream_mode);
1382
1383/**
1384 * drm_dp_downstream_id() - identify branch device
1385 * @aux: DisplayPort AUX channel
1386 * @id: DisplayPort branch device id
1387 *
1388 * Returns branch device id on success or NULL on failure
1389 */
1390int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6])
1391{
1392	return drm_dp_dpcd_read(aux, DP_BRANCH_ID, id, 6);
1393}
1394EXPORT_SYMBOL(drm_dp_downstream_id);
1395
1396/**
1397 * drm_dp_downstream_debug() - debug DP branch devices
1398 * @m: pointer for debugfs file
1399 * @dpcd: DisplayPort configuration data
1400 * @port_cap: port capabilities
1401 * @drm_edid: EDID
1402 * @aux: DisplayPort AUX channel
1403 *
1404 */
1405void drm_dp_downstream_debug(struct seq_file *m,
1406			     const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1407			     const u8 port_cap[4],
1408			     const struct drm_edid *drm_edid,
1409			     struct drm_dp_aux *aux)
1410{
1411	bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1412				 DP_DETAILED_CAP_INFO_AVAILABLE;
1413	int clk;
1414	int bpc;
1415	char id[7];
1416	int len;
1417	uint8_t rev[2];
1418	int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1419	bool branch_device = drm_dp_is_branch(dpcd);
1420
1421	seq_printf(m, "\tDP branch device present: %s\n",
1422		   str_yes_no(branch_device));
1423
1424	if (!branch_device)
1425		return;
1426
1427	switch (type) {
1428	case DP_DS_PORT_TYPE_DP:
1429		seq_puts(m, "\t\tType: DisplayPort\n");
1430		break;
1431	case DP_DS_PORT_TYPE_VGA:
1432		seq_puts(m, "\t\tType: VGA\n");
1433		break;
1434	case DP_DS_PORT_TYPE_DVI:
1435		seq_puts(m, "\t\tType: DVI\n");
1436		break;
1437	case DP_DS_PORT_TYPE_HDMI:
1438		seq_puts(m, "\t\tType: HDMI\n");
1439		break;
1440	case DP_DS_PORT_TYPE_NON_EDID:
1441		seq_puts(m, "\t\tType: others without EDID support\n");
1442		break;
1443	case DP_DS_PORT_TYPE_DP_DUALMODE:
1444		seq_puts(m, "\t\tType: DP++\n");
1445		break;
1446	case DP_DS_PORT_TYPE_WIRELESS:
1447		seq_puts(m, "\t\tType: Wireless\n");
1448		break;
1449	default:
1450		seq_puts(m, "\t\tType: N/A\n");
1451	}
1452
1453	memset(id, 0, sizeof(id));
1454	drm_dp_downstream_id(aux, id);
1455	seq_printf(m, "\t\tID: %s\n", id);
1456
1457	len = drm_dp_dpcd_read(aux, DP_BRANCH_HW_REV, &rev[0], 1);
1458	if (len > 0)
1459		seq_printf(m, "\t\tHW: %d.%d\n",
1460			   (rev[0] & 0xf0) >> 4, rev[0] & 0xf);
1461
1462	len = drm_dp_dpcd_read(aux, DP_BRANCH_SW_REV, rev, 2);
1463	if (len > 0)
1464		seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]);
1465
1466	if (detailed_cap_info) {
1467		clk = drm_dp_downstream_max_dotclock(dpcd, port_cap);
1468		if (clk > 0)
1469			seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk);
1470
1471		clk = drm_dp_downstream_max_tmds_clock(dpcd, port_cap, drm_edid);
1472		if (clk > 0)
1473			seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk);
1474
1475		clk = drm_dp_downstream_min_tmds_clock(dpcd, port_cap, drm_edid);
1476		if (clk > 0)
1477			seq_printf(m, "\t\tMin TMDS clock: %d kHz\n", clk);
1478
1479		bpc = drm_dp_downstream_max_bpc(dpcd, port_cap, drm_edid);
1480
1481		if (bpc > 0)
1482			seq_printf(m, "\t\tMax bpc: %d\n", bpc);
1483	}
1484}
1485EXPORT_SYMBOL(drm_dp_downstream_debug);
1486
1487/**
1488 * drm_dp_subconnector_type() - get DP branch device type
1489 * @dpcd: DisplayPort configuration data
1490 * @port_cap: port capabilities
1491 */
1492enum drm_mode_subconnector
1493drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1494			 const u8 port_cap[4])
1495{
1496	int type;
1497	if (!drm_dp_is_branch(dpcd))
1498		return DRM_MODE_SUBCONNECTOR_Native;
1499	/* DP 1.0 approach */
1500	if (dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) {
1501		type = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1502		       DP_DWN_STRM_PORT_TYPE_MASK;
1503
1504		switch (type) {
1505		case DP_DWN_STRM_PORT_TYPE_TMDS:
1506			/* Can be HDMI or DVI-D, DVI-D is a safer option */
1507			return DRM_MODE_SUBCONNECTOR_DVID;
1508		case DP_DWN_STRM_PORT_TYPE_ANALOG:
1509			/* Can be VGA or DVI-A, VGA is more popular */
1510			return DRM_MODE_SUBCONNECTOR_VGA;
1511		case DP_DWN_STRM_PORT_TYPE_DP:
1512			return DRM_MODE_SUBCONNECTOR_DisplayPort;
1513		case DP_DWN_STRM_PORT_TYPE_OTHER:
1514		default:
1515			return DRM_MODE_SUBCONNECTOR_Unknown;
1516		}
1517	}
1518	type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1519
1520	switch (type) {
1521	case DP_DS_PORT_TYPE_DP:
1522	case DP_DS_PORT_TYPE_DP_DUALMODE:
1523		return DRM_MODE_SUBCONNECTOR_DisplayPort;
1524	case DP_DS_PORT_TYPE_VGA:
1525		return DRM_MODE_SUBCONNECTOR_VGA;
1526	case DP_DS_PORT_TYPE_DVI:
1527		return DRM_MODE_SUBCONNECTOR_DVID;
1528	case DP_DS_PORT_TYPE_HDMI:
1529		return DRM_MODE_SUBCONNECTOR_HDMIA;
1530	case DP_DS_PORT_TYPE_WIRELESS:
1531		return DRM_MODE_SUBCONNECTOR_Wireless;
1532	case DP_DS_PORT_TYPE_NON_EDID:
1533	default:
1534		return DRM_MODE_SUBCONNECTOR_Unknown;
1535	}
1536}
1537EXPORT_SYMBOL(drm_dp_subconnector_type);
1538
1539/**
1540 * drm_dp_set_subconnector_property - set subconnector for DP connector
1541 * @connector: connector to set property on
1542 * @status: connector status
1543 * @dpcd: DisplayPort configuration data
1544 * @port_cap: port capabilities
1545 *
1546 * Called by a driver on every detect event.
1547 */
1548void drm_dp_set_subconnector_property(struct drm_connector *connector,
1549				      enum drm_connector_status status,
1550				      const u8 *dpcd,
1551				      const u8 port_cap[4])
1552{
1553	enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown;
1554
1555	if (status == connector_status_connected)
1556		subconnector = drm_dp_subconnector_type(dpcd, port_cap);
1557	drm_object_property_set_value(&connector->base,
1558			connector->dev->mode_config.dp_subconnector_property,
1559			subconnector);
1560}
1561EXPORT_SYMBOL(drm_dp_set_subconnector_property);
1562
1563/**
1564 * drm_dp_read_sink_count_cap() - Check whether a given connector has a valid sink
1565 * count
1566 * @connector: The DRM connector to check
1567 * @dpcd: A cached copy of the connector's DPCD RX capabilities
1568 * @desc: A cached copy of the connector's DP descriptor
1569 *
1570 * See also: drm_dp_read_sink_count()
1571 *
1572 * Returns: %True if the (e)DP connector has a valid sink count that should
1573 * be probed, %false otherwise.
1574 */
1575bool drm_dp_read_sink_count_cap(struct drm_connector *connector,
1576				const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1577				const struct drm_dp_desc *desc)
1578{
1579	/* Some eDP panels don't set a valid value for the sink count */
1580	return connector->connector_type != DRM_MODE_CONNECTOR_eDP &&
1581		dpcd[DP_DPCD_REV] >= DP_DPCD_REV_11 &&
1582		dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
1583		!drm_dp_has_quirk(desc, DP_DPCD_QUIRK_NO_SINK_COUNT);
1584}
1585EXPORT_SYMBOL(drm_dp_read_sink_count_cap);
1586
1587/**
1588 * drm_dp_read_sink_count() - Retrieve the sink count for a given sink
1589 * @aux: The DP AUX channel to use
1590 *
1591 * See also: drm_dp_read_sink_count_cap()
1592 *
1593 * Returns: The current sink count reported by @aux, or a negative error code
1594 * otherwise.
1595 */
1596int drm_dp_read_sink_count(struct drm_dp_aux *aux)
1597{
1598	u8 count;
1599	int ret;
1600
1601	ret = drm_dp_dpcd_readb(aux, DP_SINK_COUNT, &count);
1602	if (ret < 0)
1603		return ret;
1604	if (ret != 1)
1605		return -EIO;
1606
1607	return DP_GET_SINK_COUNT(count);
1608}
1609EXPORT_SYMBOL(drm_dp_read_sink_count);
1610
1611/*
1612 * I2C-over-AUX implementation
1613 */
1614
1615static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter)
1616{
1617	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
1618	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
1619	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
1620	       I2C_FUNC_10BIT_ADDR;
1621}
1622
1623static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg)
1624{
1625	/*
1626	 * In case of i2c defer or short i2c ack reply to a write,
1627	 * we need to switch to WRITE_STATUS_UPDATE to drain the
1628	 * rest of the message
1629	 */
1630	if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) {
1631		msg->request &= DP_AUX_I2C_MOT;
1632		msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE;
1633	}
1634}
1635
1636#define AUX_PRECHARGE_LEN 10 /* 10 to 16 */
1637#define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */
1638#define AUX_STOP_LEN 4
1639#define AUX_CMD_LEN 4
1640#define AUX_ADDRESS_LEN 20
1641#define AUX_REPLY_PAD_LEN 4
1642#define AUX_LENGTH_LEN 8
1643
1644/*
1645 * Calculate the duration of the AUX request/reply in usec. Gives the
1646 * "best" case estimate, ie. successful while as short as possible.
1647 */
1648static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg)
1649{
1650	int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1651		AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN;
1652
1653	if ((msg->request & DP_AUX_I2C_READ) == 0)
1654		len += msg->size * 8;
1655
1656	return len;
1657}
1658
1659static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg)
1660{
1661	int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1662		AUX_CMD_LEN + AUX_REPLY_PAD_LEN;
1663
1664	/*
1665	 * For read we expect what was asked. For writes there will
1666	 * be 0 or 1 data bytes. Assume 0 for the "best" case.
1667	 */
1668	if (msg->request & DP_AUX_I2C_READ)
1669		len += msg->size * 8;
1670
1671	return len;
1672}
1673
1674#define I2C_START_LEN 1
1675#define I2C_STOP_LEN 1
1676#define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */
1677#define I2C_DATA_LEN 9 /* DATA + ACK/NACK */
1678
1679/*
1680 * Calculate the length of the i2c transfer in usec, assuming
1681 * the i2c bus speed is as specified. Gives the "worst"
1682 * case estimate, ie. successful while as long as possible.
1683 * Doesn't account the "MOT" bit, and instead assumes each
1684 * message includes a START, ADDRESS and STOP. Neither does it
1685 * account for additional random variables such as clock stretching.
1686 */
1687static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg,
1688				   int i2c_speed_khz)
1689{
1690	/* AUX bitrate is 1MHz, i2c bitrate as specified */
1691	return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN +
1692			     msg->size * I2C_DATA_LEN +
1693			     I2C_STOP_LEN) * 1000, i2c_speed_khz);
1694}
1695
1696/*
1697 * Determine how many retries should be attempted to successfully transfer
1698 * the specified message, based on the estimated durations of the
1699 * i2c and AUX transfers.
1700 */
1701static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg,
1702			      int i2c_speed_khz)
1703{
1704	int aux_time_us = drm_dp_aux_req_duration(msg) +
1705		drm_dp_aux_reply_duration(msg);
1706	int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz);
1707
1708	return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL);
1709}
1710
1711/*
1712 * FIXME currently assumes 10 kHz as some real world devices seem
1713 * to require it. We should query/set the speed via DPCD if supported.
1714 */
1715static int dp_aux_i2c_speed_khz __read_mostly = 10;
1716module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644);
1717MODULE_PARM_DESC(dp_aux_i2c_speed_khz,
1718		 "Assumed speed of the i2c bus in kHz, (1-400, default 10)");
1719
1720/*
1721 * Transfer a single I2C-over-AUX message and handle various error conditions,
1722 * retrying the transaction as appropriate.  It is assumed that the
1723 * &drm_dp_aux.transfer function does not modify anything in the msg other than the
1724 * reply field.
1725 *
1726 * Returns bytes transferred on success, or a negative error code on failure.
1727 */
1728static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1729{
1730	unsigned int retry, defer_i2c;
1731	int ret;
1732	/*
1733	 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device
1734	 * is required to retry at least seven times upon receiving AUX_DEFER
1735	 * before giving up the AUX transaction.
1736	 *
1737	 * We also try to account for the i2c bus speed.
1738	 */
1739	int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz));
1740
1741	for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) {
1742		ret = aux->transfer(aux, msg);
1743		if (ret < 0) {
1744			if (ret == -EBUSY)
1745				continue;
1746
1747			/*
1748			 * While timeouts can be errors, they're usually normal
1749			 * behavior (for instance, when a driver tries to
1750			 * communicate with a non-existent DisplayPort device).
1751			 * Avoid spamming the kernel log with timeout errors.
1752			 */
1753			if (ret == -ETIMEDOUT)
1754				drm_dbg_kms_ratelimited(aux->drm_dev, "%s: transaction timed out\n",
1755							aux->name);
1756			else
1757				drm_dbg_kms(aux->drm_dev, "%s: transaction failed: %d\n",
1758					    aux->name, ret);
1759			return ret;
1760		}
1761
1762
1763		switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) {
1764		case DP_AUX_NATIVE_REPLY_ACK:
1765			/*
1766			 * For I2C-over-AUX transactions this isn't enough, we
1767			 * need to check for the I2C ACK reply.
1768			 */
1769			break;
1770
1771		case DP_AUX_NATIVE_REPLY_NACK:
1772			drm_dbg_kms(aux->drm_dev, "%s: native nack (result=%d, size=%zu)\n",
1773				    aux->name, ret, msg->size);
1774			return -EREMOTEIO;
1775
1776		case DP_AUX_NATIVE_REPLY_DEFER:
1777			drm_dbg_kms(aux->drm_dev, "%s: native defer\n", aux->name);
1778			/*
1779			 * We could check for I2C bit rate capabilities and if
1780			 * available adjust this interval. We could also be
1781			 * more careful with DP-to-legacy adapters where a
1782			 * long legacy cable may force very low I2C bit rates.
1783			 *
1784			 * For now just defer for long enough to hopefully be
1785			 * safe for all use-cases.
1786			 */
1787			usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1788			continue;
1789
1790		default:
1791			drm_err(aux->drm_dev, "%s: invalid native reply %#04x\n",
1792				aux->name, msg->reply);
1793			return -EREMOTEIO;
1794		}
1795
1796		switch (msg->reply & DP_AUX_I2C_REPLY_MASK) {
1797		case DP_AUX_I2C_REPLY_ACK:
1798			/*
1799			 * Both native ACK and I2C ACK replies received. We
1800			 * can assume the transfer was successful.
1801			 */
1802			if (ret != msg->size)
1803				drm_dp_i2c_msg_write_status_update(msg);
1804			return ret;
1805
1806		case DP_AUX_I2C_REPLY_NACK:
1807			drm_dbg_kms(aux->drm_dev, "%s: I2C nack (result=%d, size=%zu)\n",
1808				    aux->name, ret, msg->size);
1809			aux->i2c_nack_count++;
1810			return -EREMOTEIO;
1811
1812		case DP_AUX_I2C_REPLY_DEFER:
1813			drm_dbg_kms(aux->drm_dev, "%s: I2C defer\n", aux->name);
1814			/* DP Compliance Test 4.2.2.5 Requirement:
1815			 * Must have at least 7 retries for I2C defers on the
1816			 * transaction to pass this test
1817			 */
1818			aux->i2c_defer_count++;
1819			if (defer_i2c < 7)
1820				defer_i2c++;
1821			usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1822			drm_dp_i2c_msg_write_status_update(msg);
1823
1824			continue;
1825
1826		default:
1827			drm_err(aux->drm_dev, "%s: invalid I2C reply %#04x\n",
1828				aux->name, msg->reply);
1829			return -EREMOTEIO;
1830		}
1831	}
1832
1833	drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up\n", aux->name);
1834	return -EREMOTEIO;
1835}
1836
1837static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg,
1838				       const struct i2c_msg *i2c_msg)
1839{
1840	msg->request = (i2c_msg->flags & I2C_M_RD) ?
1841		DP_AUX_I2C_READ : DP_AUX_I2C_WRITE;
1842	if (!(i2c_msg->flags & I2C_M_STOP))
1843		msg->request |= DP_AUX_I2C_MOT;
1844}
1845
1846/*
1847 * Keep retrying drm_dp_i2c_do_msg until all data has been transferred.
1848 *
1849 * Returns an error code on failure, or a recommended transfer size on success.
1850 */
1851static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg)
1852{
1853	int err, ret = orig_msg->size;
1854	struct drm_dp_aux_msg msg = *orig_msg;
1855
1856	while (msg.size > 0) {
1857		err = drm_dp_i2c_do_msg(aux, &msg);
1858		if (err <= 0)
1859			return err == 0 ? -EPROTO : err;
1860
1861		if (err < msg.size && err < ret) {
1862			drm_dbg_kms(aux->drm_dev,
1863				    "%s: Partial I2C reply: requested %zu bytes got %d bytes\n",
1864				    aux->name, msg.size, err);
1865			ret = err;
1866		}
1867
1868		msg.size -= err;
1869		msg.buffer += err;
1870	}
1871
1872	return ret;
1873}
1874
1875/*
1876 * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX
1877 * packets to be as large as possible. If not, the I2C transactions never
1878 * succeed. Hence the default is maximum.
1879 */
1880static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES;
1881module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644);
1882MODULE_PARM_DESC(dp_aux_i2c_transfer_size,
1883		 "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)");
1884
1885static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
1886			   int num)
1887{
1888	struct drm_dp_aux *aux = adapter->algo_data;
1889	unsigned int i, j;
1890	unsigned transfer_size;
1891	struct drm_dp_aux_msg msg;
1892	int err = 0;
1893
1894	if (aux->powered_down)
1895		return -EBUSY;
1896
1897	dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES);
1898
1899	memset(&msg, 0, sizeof(msg));
1900
1901	for (i = 0; i < num; i++) {
1902		msg.address = msgs[i].addr;
1903		drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1904		/* Send a bare address packet to start the transaction.
1905		 * Zero sized messages specify an address only (bare
1906		 * address) transaction.
1907		 */
1908		msg.buffer = NULL;
1909		msg.size = 0;
1910		err = drm_dp_i2c_do_msg(aux, &msg);
1911
1912		/*
1913		 * Reset msg.request in case in case it got
1914		 * changed into a WRITE_STATUS_UPDATE.
1915		 */
1916		drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1917
1918		if (err < 0)
1919			break;
1920		/* We want each transaction to be as large as possible, but
1921		 * we'll go to smaller sizes if the hardware gives us a
1922		 * short reply.
1923		 */
1924		transfer_size = dp_aux_i2c_transfer_size;
1925		for (j = 0; j < msgs[i].len; j += msg.size) {
1926			msg.buffer = msgs[i].buf + j;
1927			msg.size = min(transfer_size, msgs[i].len - j);
1928
1929			err = drm_dp_i2c_drain_msg(aux, &msg);
1930
1931			/*
1932			 * Reset msg.request in case in case it got
1933			 * changed into a WRITE_STATUS_UPDATE.
1934			 */
1935			drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1936
1937			if (err < 0)
1938				break;
1939			transfer_size = err;
1940		}
1941		if (err < 0)
1942			break;
1943	}
1944	if (err >= 0)
1945		err = num;
1946	/* Send a bare address packet to close out the transaction.
1947	 * Zero sized messages specify an address only (bare
1948	 * address) transaction.
1949	 */
1950	msg.request &= ~DP_AUX_I2C_MOT;
1951	msg.buffer = NULL;
1952	msg.size = 0;
1953	(void)drm_dp_i2c_do_msg(aux, &msg);
1954
1955	return err;
1956}
1957
1958static const struct i2c_algorithm drm_dp_i2c_algo = {
1959	.functionality = drm_dp_i2c_functionality,
1960	.master_xfer = drm_dp_i2c_xfer,
1961};
1962
1963static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c)
1964{
1965	return container_of(i2c, struct drm_dp_aux, ddc);
1966}
1967
1968static void lock_bus(struct i2c_adapter *i2c, unsigned int flags)
1969{
1970	mutex_lock(&i2c_to_aux(i2c)->hw_mutex);
1971}
1972
1973static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags)
1974{
1975	return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex);
1976}
1977
1978static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags)
1979{
1980	mutex_unlock(&i2c_to_aux(i2c)->hw_mutex);
1981}
1982
1983static const struct i2c_lock_operations drm_dp_i2c_lock_ops = {
1984	.lock_bus = lock_bus,
1985	.trylock_bus = trylock_bus,
1986	.unlock_bus = unlock_bus,
1987};
1988
1989static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc)
1990{
1991	u8 buf, count;
1992	int ret;
1993
1994	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
1995	if (ret < 0)
1996		return ret;
1997
1998	WARN_ON(!(buf & DP_TEST_SINK_START));
1999
2000	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK_MISC, &buf);
2001	if (ret < 0)
2002		return ret;
2003
2004	count = buf & DP_TEST_COUNT_MASK;
2005	if (count == aux->crc_count)
2006		return -EAGAIN; /* No CRC yet */
2007
2008	aux->crc_count = count;
2009
2010	/*
2011	 * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes
2012	 * per component (RGB or CrYCb).
2013	 */
2014	ret = drm_dp_dpcd_read(aux, DP_TEST_CRC_R_CR, crc, 6);
2015	if (ret < 0)
2016		return ret;
2017
2018	return 0;
2019}
2020
2021static void drm_dp_aux_crc_work(struct work_struct *work)
2022{
2023	struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux,
2024					      crc_work);
2025	struct drm_crtc *crtc;
2026	u8 crc_bytes[6];
2027	uint32_t crcs[3];
2028	int ret;
2029
2030	if (WARN_ON(!aux->crtc))
2031		return;
2032
2033	crtc = aux->crtc;
2034	while (crtc->crc.opened) {
2035		drm_crtc_wait_one_vblank(crtc);
2036		if (!crtc->crc.opened)
2037			break;
2038
2039		ret = drm_dp_aux_get_crc(aux, crc_bytes);
2040		if (ret == -EAGAIN) {
2041			usleep_range(1000, 2000);
2042			ret = drm_dp_aux_get_crc(aux, crc_bytes);
2043		}
2044
2045		if (ret == -EAGAIN) {
2046			drm_dbg_kms(aux->drm_dev, "%s: Get CRC failed after retrying: %d\n",
2047				    aux->name, ret);
2048			continue;
2049		} else if (ret) {
2050			drm_dbg_kms(aux->drm_dev, "%s: Failed to get a CRC: %d\n", aux->name, ret);
2051			continue;
2052		}
2053
2054		crcs[0] = crc_bytes[0] | crc_bytes[1] << 8;
2055		crcs[1] = crc_bytes[2] | crc_bytes[3] << 8;
2056		crcs[2] = crc_bytes[4] | crc_bytes[5] << 8;
2057		drm_crtc_add_crc_entry(crtc, false, 0, crcs);
2058	}
2059}
2060
2061/**
2062 * drm_dp_remote_aux_init() - minimally initialise a remote aux channel
2063 * @aux: DisplayPort AUX channel
2064 *
2065 * Used for remote aux channel in general. Merely initialize the crc work
2066 * struct.
2067 */
2068void drm_dp_remote_aux_init(struct drm_dp_aux *aux)
2069{
2070	INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2071}
2072EXPORT_SYMBOL(drm_dp_remote_aux_init);
2073
2074/**
2075 * drm_dp_aux_init() - minimally initialise an aux channel
2076 * @aux: DisplayPort AUX channel
2077 *
2078 * If you need to use the drm_dp_aux's i2c adapter prior to registering it with
2079 * the outside world, call drm_dp_aux_init() first. For drivers which are
2080 * grandparents to their AUX adapters (e.g. the AUX adapter is parented by a
2081 * &drm_connector), you must still call drm_dp_aux_register() once the connector
2082 * has been registered to allow userspace access to the auxiliary DP channel.
2083 * Likewise, for such drivers you should also assign &drm_dp_aux.drm_dev as
2084 * early as possible so that the &drm_device that corresponds to the AUX adapter
2085 * may be mentioned in debugging output from the DRM DP helpers.
2086 *
2087 * For devices which use a separate platform device for their AUX adapters, this
2088 * may be called as early as required by the driver.
2089 *
2090 */
2091void drm_dp_aux_init(struct drm_dp_aux *aux)
2092{
2093	mutex_init(&aux->hw_mutex);
2094	mutex_init(&aux->cec.lock);
2095	INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2096
2097	aux->ddc.algo = &drm_dp_i2c_algo;
2098	aux->ddc.algo_data = aux;
2099	aux->ddc.retries = 3;
2100
2101	aux->ddc.lock_ops = &drm_dp_i2c_lock_ops;
2102}
2103EXPORT_SYMBOL(drm_dp_aux_init);
2104
2105/**
2106 * drm_dp_aux_register() - initialise and register aux channel
2107 * @aux: DisplayPort AUX channel
2108 *
2109 * Automatically calls drm_dp_aux_init() if this hasn't been done yet. This
2110 * should only be called once the parent of @aux, &drm_dp_aux.dev, is
2111 * initialized. For devices which are grandparents of their AUX channels,
2112 * &drm_dp_aux.dev will typically be the &drm_connector &device which
2113 * corresponds to @aux. For these devices, it's advised to call
2114 * drm_dp_aux_register() in &drm_connector_funcs.late_register, and likewise to
2115 * call drm_dp_aux_unregister() in &drm_connector_funcs.early_unregister.
2116 * Functions which don't follow this will likely Oops when
2117 * %CONFIG_DRM_DISPLAY_DP_AUX_CHARDEV is enabled.
2118 *
2119 * For devices where the AUX channel is a device that exists independently of
2120 * the &drm_device that uses it, such as SoCs and bridge devices, it is
2121 * recommended to call drm_dp_aux_register() after a &drm_device has been
2122 * assigned to &drm_dp_aux.drm_dev, and likewise to call
2123 * drm_dp_aux_unregister() once the &drm_device should no longer be associated
2124 * with the AUX channel (e.g. on bridge detach).
2125 *
2126 * Drivers which need to use the aux channel before either of the two points
2127 * mentioned above need to call drm_dp_aux_init() in order to use the AUX
2128 * channel before registration.
2129 *
2130 * Returns 0 on success or a negative error code on failure.
2131 */
2132int drm_dp_aux_register(struct drm_dp_aux *aux)
2133{
2134	int ret;
2135
2136	WARN_ON_ONCE(!aux->drm_dev);
2137
2138	if (!aux->ddc.algo)
2139		drm_dp_aux_init(aux);
2140
2141	aux->ddc.owner = THIS_MODULE;
2142	aux->ddc.dev.parent = aux->dev;
2143
2144	strscpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev),
2145		sizeof(aux->ddc.name));
2146
2147	ret = drm_dp_aux_register_devnode(aux);
2148	if (ret)
2149		return ret;
2150
2151	ret = i2c_add_adapter(&aux->ddc);
2152	if (ret) {
2153		drm_dp_aux_unregister_devnode(aux);
2154		return ret;
2155	}
2156
2157	return 0;
2158}
2159EXPORT_SYMBOL(drm_dp_aux_register);
2160
2161/**
2162 * drm_dp_aux_unregister() - unregister an AUX adapter
2163 * @aux: DisplayPort AUX channel
2164 */
2165void drm_dp_aux_unregister(struct drm_dp_aux *aux)
2166{
2167	drm_dp_aux_unregister_devnode(aux);
2168	i2c_del_adapter(&aux->ddc);
2169}
2170EXPORT_SYMBOL(drm_dp_aux_unregister);
2171
2172#define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x)
2173
2174/**
2175 * drm_dp_psr_setup_time() - PSR setup in time usec
2176 * @psr_cap: PSR capabilities from DPCD
2177 *
2178 * Returns:
2179 * PSR setup time for the panel in microseconds,  negative
2180 * error code on failure.
2181 */
2182int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])
2183{
2184	static const u16 psr_setup_time_us[] = {
2185		PSR_SETUP_TIME(330),
2186		PSR_SETUP_TIME(275),
2187		PSR_SETUP_TIME(220),
2188		PSR_SETUP_TIME(165),
2189		PSR_SETUP_TIME(110),
2190		PSR_SETUP_TIME(55),
2191		PSR_SETUP_TIME(0),
2192	};
2193	int i;
2194
2195	i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT;
2196	if (i >= ARRAY_SIZE(psr_setup_time_us))
2197		return -EINVAL;
2198
2199	return psr_setup_time_us[i];
2200}
2201EXPORT_SYMBOL(drm_dp_psr_setup_time);
2202
2203#undef PSR_SETUP_TIME
2204
2205/**
2206 * drm_dp_start_crc() - start capture of frame CRCs
2207 * @aux: DisplayPort AUX channel
2208 * @crtc: CRTC displaying the frames whose CRCs are to be captured
2209 *
2210 * Returns 0 on success or a negative error code on failure.
2211 */
2212int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc)
2213{
2214	u8 buf;
2215	int ret;
2216
2217	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2218	if (ret < 0)
2219		return ret;
2220
2221	ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START);
2222	if (ret < 0)
2223		return ret;
2224
2225	aux->crc_count = 0;
2226	aux->crtc = crtc;
2227	schedule_work(&aux->crc_work);
2228
2229	return 0;
2230}
2231EXPORT_SYMBOL(drm_dp_start_crc);
2232
2233/**
2234 * drm_dp_stop_crc() - stop capture of frame CRCs
2235 * @aux: DisplayPort AUX channel
2236 *
2237 * Returns 0 on success or a negative error code on failure.
2238 */
2239int drm_dp_stop_crc(struct drm_dp_aux *aux)
2240{
2241	u8 buf;
2242	int ret;
2243
2244	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2245	if (ret < 0)
2246		return ret;
2247
2248	ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START);
2249	if (ret < 0)
2250		return ret;
2251
2252	flush_work(&aux->crc_work);
2253	aux->crtc = NULL;
2254
2255	return 0;
2256}
2257EXPORT_SYMBOL(drm_dp_stop_crc);
2258
2259struct dpcd_quirk {
2260	u8 oui[3];
2261	u8 device_id[6];
2262	bool is_branch;
2263	u32 quirks;
2264};
2265
2266#define OUI(first, second, third) { (first), (second), (third) }
2267#define DEVICE_ID(first, second, third, fourth, fifth, sixth) \
2268	{ (first), (second), (third), (fourth), (fifth), (sixth) }
2269
2270#define DEVICE_ID_ANY	DEVICE_ID(0, 0, 0, 0, 0, 0)
2271
2272static const struct dpcd_quirk dpcd_quirk_list[] = {
2273	/* Analogix 7737 needs reduced M and N at HBR2 link rates */
2274	{ OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2275	/* LG LP140WF6-SPM1 eDP panel */
2276	{ OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2277	/* Apple panels need some additional handling to support PSR */
2278	{ OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) },
2279	/* CH7511 seems to leave SINK_COUNT zeroed */
2280	{ OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) },
2281	/* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */
2282	{ OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) },
2283	/* Synaptics DP1.4 MST hubs require DSC for some modes on which it applies HBLANK expansion. */
2284	{ OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_HBLANK_EXPANSION_REQUIRES_DSC) },
2285	/* MediaTek panels (at least in U3224KBA) require DSC for modes with a short HBLANK on UHBR links. */
2286	{ OUI(0x00, 0x0C, 0xE7), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_HBLANK_EXPANSION_REQUIRES_DSC) },
2287	/* Apple MacBookPro 2017 15 inch eDP Retina panel reports too low DP_MAX_LINK_RATE */
2288	{ OUI(0x00, 0x10, 0xfa), DEVICE_ID(101, 68, 21, 101, 98, 97), false, BIT(DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS) },
2289};
2290
2291#undef OUI
2292
2293/*
2294 * Get a bit mask of DPCD quirks for the sink/branch device identified by
2295 * ident. The quirk data is shared but it's up to the drivers to act on the
2296 * data.
2297 *
2298 * For now, only the OUI (first three bytes) is used, but this may be extended
2299 * to device identification string and hardware/firmware revisions later.
2300 */
2301static u32
2302drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch)
2303{
2304	const struct dpcd_quirk *quirk;
2305	u32 quirks = 0;
2306	int i;
2307	u8 any_device[] = DEVICE_ID_ANY;
2308
2309	for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) {
2310		quirk = &dpcd_quirk_list[i];
2311
2312		if (quirk->is_branch != is_branch)
2313			continue;
2314
2315		if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0)
2316			continue;
2317
2318		if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 &&
2319		    memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0)
2320			continue;
2321
2322		quirks |= quirk->quirks;
2323	}
2324
2325	return quirks;
2326}
2327
2328#undef DEVICE_ID_ANY
2329#undef DEVICE_ID
2330
2331static int drm_dp_read_ident(struct drm_dp_aux *aux, unsigned int offset,
2332			     struct drm_dp_dpcd_ident *ident)
2333{
2334	int ret;
2335
2336	ret = drm_dp_dpcd_read(aux, offset, ident, sizeof(*ident));
2337
2338	return ret < 0 ? ret : 0;
2339}
2340
2341static void drm_dp_dump_desc(struct drm_dp_aux *aux,
2342			     const char *device_name, const struct drm_dp_desc *desc)
2343{
2344	const struct drm_dp_dpcd_ident *ident = &desc->ident;
2345
2346	drm_dbg_kms(aux->drm_dev,
2347		    "%s: %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n",
2348		    aux->name, device_name,
2349		    (int)sizeof(ident->oui), ident->oui,
2350		    (int)strnlen(ident->device_id, sizeof(ident->device_id)), ident->device_id,
2351		    ident->hw_rev >> 4, ident->hw_rev & 0xf,
2352		    ident->sw_major_rev, ident->sw_minor_rev,
2353		    desc->quirks);
2354}
2355
2356/**
2357 * drm_dp_read_desc - read sink/branch descriptor from DPCD
2358 * @aux: DisplayPort AUX channel
2359 * @desc: Device descriptor to fill from DPCD
2360 * @is_branch: true for branch devices, false for sink devices
2361 *
2362 * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the
2363 * identification.
2364 *
2365 * Returns 0 on success or a negative error code on failure.
2366 */
2367int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc,
2368		     bool is_branch)
2369{
2370	struct drm_dp_dpcd_ident *ident = &desc->ident;
2371	unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI;
2372	int ret;
2373
2374	ret = drm_dp_read_ident(aux, offset, ident);
2375	if (ret < 0)
2376		return ret;
2377
2378	desc->quirks = drm_dp_get_quirks(ident, is_branch);
2379
2380	drm_dp_dump_desc(aux, is_branch ? "DP branch" : "DP sink", desc);
2381
2382	return 0;
2383}
2384EXPORT_SYMBOL(drm_dp_read_desc);
2385
2386/**
2387 * drm_dp_dump_lttpr_desc - read and dump the DPCD descriptor for an LTTPR PHY
2388 * @aux: DisplayPort AUX channel
2389 * @dp_phy: LTTPR PHY instance
2390 *
2391 * Read the DPCD LTTPR PHY descriptor for @dp_phy and print a debug message
2392 * with its details to dmesg.
2393 *
2394 * Returns 0 on success or a negative error code on failure.
2395 */
2396int drm_dp_dump_lttpr_desc(struct drm_dp_aux *aux, enum drm_dp_phy dp_phy)
2397{
2398	struct drm_dp_desc desc = {};
2399	int ret;
2400
2401	if (drm_WARN_ON(aux->drm_dev, dp_phy < DP_PHY_LTTPR1 || dp_phy > DP_MAX_LTTPR_COUNT))
2402		return -EINVAL;
2403
2404	ret = drm_dp_read_ident(aux, DP_OUI_PHY_REPEATER(dp_phy), &desc.ident);
2405	if (ret < 0)
2406		return ret;
2407
2408	drm_dp_dump_desc(aux, drm_dp_phy_name(dp_phy), &desc);
2409
2410	return 0;
2411}
2412EXPORT_SYMBOL(drm_dp_dump_lttpr_desc);
2413
2414/**
2415 * drm_dp_dsc_sink_bpp_incr() - Get bits per pixel increment
2416 * @dsc_dpcd: DSC capabilities from DPCD
2417 *
2418 * Returns the bpp precision supported by the DP sink.
2419 */
2420u8 drm_dp_dsc_sink_bpp_incr(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2421{
2422	u8 bpp_increment_dpcd = dsc_dpcd[DP_DSC_BITS_PER_PIXEL_INC - DP_DSC_SUPPORT];
2423
2424	switch (bpp_increment_dpcd & DP_DSC_BITS_PER_PIXEL_MASK) {
2425	case DP_DSC_BITS_PER_PIXEL_1_16:
2426		return 16;
2427	case DP_DSC_BITS_PER_PIXEL_1_8:
2428		return 8;
2429	case DP_DSC_BITS_PER_PIXEL_1_4:
2430		return 4;
2431	case DP_DSC_BITS_PER_PIXEL_1_2:
2432		return 2;
2433	case DP_DSC_BITS_PER_PIXEL_1_1:
2434		return 1;
2435	}
2436
2437	return 0;
2438}
2439EXPORT_SYMBOL(drm_dp_dsc_sink_bpp_incr);
2440
2441/**
2442 * drm_dp_dsc_sink_max_slice_count() - Get the max slice count
2443 * supported by the DSC sink.
2444 * @dsc_dpcd: DSC capabilities from DPCD
2445 * @is_edp: true if its eDP, false for DP
2446 *
2447 * Read the slice capabilities DPCD register from DSC sink to get
2448 * the maximum slice count supported. This is used to populate
2449 * the DSC parameters in the &struct drm_dsc_config by the driver.
2450 * Driver creates an infoframe using these parameters to populate
2451 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2452 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2453 *
2454 * Returns:
2455 * Maximum slice count supported by DSC sink or 0 its invalid
2456 */
2457u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2458				   bool is_edp)
2459{
2460	u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT];
2461
2462	if (is_edp) {
2463		/* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */
2464		if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2465			return 4;
2466		if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2467			return 2;
2468		if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2469			return 1;
2470	} else {
2471		/* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */
2472		u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT];
2473
2474		if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK)
2475			return 24;
2476		if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK)
2477			return 20;
2478		if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK)
2479			return 16;
2480		if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK)
2481			return 12;
2482		if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK)
2483			return 10;
2484		if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK)
2485			return 8;
2486		if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK)
2487			return 6;
2488		if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2489			return 4;
2490		if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2491			return 2;
2492		if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2493			return 1;
2494	}
2495
2496	return 0;
2497}
2498EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count);
2499
2500/**
2501 * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits
2502 * @dsc_dpcd: DSC capabilities from DPCD
2503 *
2504 * Read the DSC DPCD register to parse the line buffer depth in bits which is
2505 * number of bits of precision within the decoder line buffer supported by
2506 * the DSC sink. This is used to populate the DSC parameters in the
2507 * &struct drm_dsc_config by the driver.
2508 * Driver creates an infoframe using these parameters to populate
2509 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2510 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2511 *
2512 * Returns:
2513 * Line buffer depth supported by DSC panel or 0 its invalid
2514 */
2515u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2516{
2517	u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT];
2518
2519	switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) {
2520	case DP_DSC_LINE_BUF_BIT_DEPTH_9:
2521		return 9;
2522	case DP_DSC_LINE_BUF_BIT_DEPTH_10:
2523		return 10;
2524	case DP_DSC_LINE_BUF_BIT_DEPTH_11:
2525		return 11;
2526	case DP_DSC_LINE_BUF_BIT_DEPTH_12:
2527		return 12;
2528	case DP_DSC_LINE_BUF_BIT_DEPTH_13:
2529		return 13;
2530	case DP_DSC_LINE_BUF_BIT_DEPTH_14:
2531		return 14;
2532	case DP_DSC_LINE_BUF_BIT_DEPTH_15:
2533		return 15;
2534	case DP_DSC_LINE_BUF_BIT_DEPTH_16:
2535		return 16;
2536	case DP_DSC_LINE_BUF_BIT_DEPTH_8:
2537		return 8;
2538	}
2539
2540	return 0;
2541}
2542EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth);
2543
2544/**
2545 * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component
2546 * values supported by the DSC sink.
2547 * @dsc_dpcd: DSC capabilities from DPCD
2548 * @dsc_bpc: An array to be filled by this helper with supported
2549 *           input bpcs.
2550 *
2551 * Read the DSC DPCD from the sink device to parse the supported bits per
2552 * component values. This is used to populate the DSC parameters
2553 * in the &struct drm_dsc_config by the driver.
2554 * Driver creates an infoframe using these parameters to populate
2555 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2556 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2557 *
2558 * Returns:
2559 * Number of input BPC values parsed from the DPCD
2560 */
2561int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2562					 u8 dsc_bpc[3])
2563{
2564	int num_bpc = 0;
2565	u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT];
2566
2567	if (!drm_dp_sink_supports_dsc(dsc_dpcd))
2568		return 0;
2569
2570	if (color_depth & DP_DSC_12_BPC)
2571		dsc_bpc[num_bpc++] = 12;
2572	if (color_depth & DP_DSC_10_BPC)
2573		dsc_bpc[num_bpc++] = 10;
2574
2575	/* A DP DSC Sink device shall support 8 bpc. */
2576	dsc_bpc[num_bpc++] = 8;
2577
2578	return num_bpc;
2579}
2580EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs);
2581
2582static int drm_dp_read_lttpr_regs(struct drm_dp_aux *aux,
2583				  const u8 dpcd[DP_RECEIVER_CAP_SIZE], int address,
2584				  u8 *buf, int buf_size)
2585{
2586	/*
2587	 * At least the DELL P2715Q monitor with a DPCD_REV < 0x14 returns
2588	 * corrupted values when reading from the 0xF0000- range with a block
2589	 * size bigger than 1.
2590	 */
2591	int block_size = dpcd[DP_DPCD_REV] < 0x14 ? 1 : buf_size;
2592	int offset;
2593	int ret;
2594
2595	for (offset = 0; offset < buf_size; offset += block_size) {
2596		ret = drm_dp_dpcd_read(aux,
2597				       address + offset,
2598				       &buf[offset], block_size);
2599		if (ret < 0)
2600			return ret;
2601
2602		WARN_ON(ret != block_size);
2603	}
2604
2605	return 0;
2606}
2607
2608/**
2609 * drm_dp_read_lttpr_common_caps - read the LTTPR common capabilities
2610 * @aux: DisplayPort AUX channel
2611 * @dpcd: DisplayPort configuration data
2612 * @caps: buffer to return the capability info in
2613 *
2614 * Read capabilities common to all LTTPRs.
2615 *
2616 * Returns 0 on success or a negative error code on failure.
2617 */
2618int drm_dp_read_lttpr_common_caps(struct drm_dp_aux *aux,
2619				  const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2620				  u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2621{
2622	return drm_dp_read_lttpr_regs(aux, dpcd,
2623				      DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV,
2624				      caps, DP_LTTPR_COMMON_CAP_SIZE);
2625}
2626EXPORT_SYMBOL(drm_dp_read_lttpr_common_caps);
2627
2628/**
2629 * drm_dp_read_lttpr_phy_caps - read the capabilities for a given LTTPR PHY
2630 * @aux: DisplayPort AUX channel
2631 * @dpcd: DisplayPort configuration data
2632 * @dp_phy: LTTPR PHY to read the capabilities for
2633 * @caps: buffer to return the capability info in
2634 *
2635 * Read the capabilities for the given LTTPR PHY.
2636 *
2637 * Returns 0 on success or a negative error code on failure.
2638 */
2639int drm_dp_read_lttpr_phy_caps(struct drm_dp_aux *aux,
2640			       const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2641			       enum drm_dp_phy dp_phy,
2642			       u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2643{
2644	return drm_dp_read_lttpr_regs(aux, dpcd,
2645				      DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy),
2646				      caps, DP_LTTPR_PHY_CAP_SIZE);
2647}
2648EXPORT_SYMBOL(drm_dp_read_lttpr_phy_caps);
2649
2650static u8 dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE], int r)
2651{
2652	return caps[r - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
2653}
2654
2655/**
2656 * drm_dp_lttpr_count - get the number of detected LTTPRs
2657 * @caps: LTTPR common capabilities
2658 *
2659 * Get the number of detected LTTPRs from the LTTPR common capabilities info.
2660 *
2661 * Returns:
2662 *   -ERANGE if more than supported number (8) of LTTPRs are detected
2663 *   -EINVAL if the DP_PHY_REPEATER_CNT register contains an invalid value
2664 *   otherwise the number of detected LTTPRs
2665 */
2666int drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2667{
2668	u8 count = dp_lttpr_common_cap(caps, DP_PHY_REPEATER_CNT);
2669
2670	switch (hweight8(count)) {
2671	case 0:
2672		return 0;
2673	case 1:
2674		return 8 - ilog2(count);
2675	case 8:
2676		return -ERANGE;
2677	default:
2678		return -EINVAL;
2679	}
2680}
2681EXPORT_SYMBOL(drm_dp_lttpr_count);
2682
2683/**
2684 * drm_dp_lttpr_max_link_rate - get the maximum link rate supported by all LTTPRs
2685 * @caps: LTTPR common capabilities
2686 *
2687 * Returns the maximum link rate supported by all detected LTTPRs.
2688 */
2689int drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2690{
2691	u8 rate = dp_lttpr_common_cap(caps, DP_MAX_LINK_RATE_PHY_REPEATER);
2692
2693	return drm_dp_bw_code_to_link_rate(rate);
2694}
2695EXPORT_SYMBOL(drm_dp_lttpr_max_link_rate);
2696
2697/**
2698 * drm_dp_lttpr_max_lane_count - get the maximum lane count supported by all LTTPRs
2699 * @caps: LTTPR common capabilities
2700 *
2701 * Returns the maximum lane count supported by all detected LTTPRs.
2702 */
2703int drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2704{
2705	u8 max_lanes = dp_lttpr_common_cap(caps, DP_MAX_LANE_COUNT_PHY_REPEATER);
2706
2707	return max_lanes & DP_MAX_LANE_COUNT_MASK;
2708}
2709EXPORT_SYMBOL(drm_dp_lttpr_max_lane_count);
2710
2711/**
2712 * drm_dp_lttpr_voltage_swing_level_3_supported - check for LTTPR vswing3 support
2713 * @caps: LTTPR PHY capabilities
2714 *
2715 * Returns true if the @caps for an LTTPR TX PHY indicate support for
2716 * voltage swing level 3.
2717 */
2718bool
2719drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2720{
2721	u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2722
2723	return txcap & DP_VOLTAGE_SWING_LEVEL_3_SUPPORTED;
2724}
2725EXPORT_SYMBOL(drm_dp_lttpr_voltage_swing_level_3_supported);
2726
2727/**
2728 * drm_dp_lttpr_pre_emphasis_level_3_supported - check for LTTPR preemph3 support
2729 * @caps: LTTPR PHY capabilities
2730 *
2731 * Returns true if the @caps for an LTTPR TX PHY indicate support for
2732 * pre-emphasis level 3.
2733 */
2734bool
2735drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2736{
2737	u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2738
2739	return txcap & DP_PRE_EMPHASIS_LEVEL_3_SUPPORTED;
2740}
2741EXPORT_SYMBOL(drm_dp_lttpr_pre_emphasis_level_3_supported);
2742
2743/**
2744 * drm_dp_get_phy_test_pattern() - get the requested pattern from the sink.
2745 * @aux: DisplayPort AUX channel
2746 * @data: DP phy compliance test parameters.
2747 *
2748 * Returns 0 on success or a negative error code on failure.
2749 */
2750int drm_dp_get_phy_test_pattern(struct drm_dp_aux *aux,
2751				struct drm_dp_phy_test_params *data)
2752{
2753	int err;
2754	u8 rate, lanes;
2755
2756	err = drm_dp_dpcd_readb(aux, DP_TEST_LINK_RATE, &rate);
2757	if (err < 0)
2758		return err;
2759	data->link_rate = drm_dp_bw_code_to_link_rate(rate);
2760
2761	err = drm_dp_dpcd_readb(aux, DP_TEST_LANE_COUNT, &lanes);
2762	if (err < 0)
2763		return err;
2764	data->num_lanes = lanes & DP_MAX_LANE_COUNT_MASK;
2765
2766	if (lanes & DP_ENHANCED_FRAME_CAP)
2767		data->enhanced_frame_cap = true;
2768
2769	err = drm_dp_dpcd_readb(aux, DP_PHY_TEST_PATTERN, &data->phy_pattern);
2770	if (err < 0)
2771		return err;
2772
2773	switch (data->phy_pattern) {
2774	case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
2775		err = drm_dp_dpcd_read(aux, DP_TEST_80BIT_CUSTOM_PATTERN_7_0,
2776				       &data->custom80, sizeof(data->custom80));
2777		if (err < 0)
2778			return err;
2779
2780		break;
2781	case DP_PHY_TEST_PATTERN_CP2520:
2782		err = drm_dp_dpcd_read(aux, DP_TEST_HBR2_SCRAMBLER_RESET,
2783				       &data->hbr2_reset,
2784				       sizeof(data->hbr2_reset));
2785		if (err < 0)
2786			return err;
2787	}
2788
2789	return 0;
2790}
2791EXPORT_SYMBOL(drm_dp_get_phy_test_pattern);
2792
2793/**
2794 * drm_dp_set_phy_test_pattern() - set the pattern to the sink.
2795 * @aux: DisplayPort AUX channel
2796 * @data: DP phy compliance test parameters.
2797 * @dp_rev: DP revision to use for compliance testing
2798 *
2799 * Returns 0 on success or a negative error code on failure.
2800 */
2801int drm_dp_set_phy_test_pattern(struct drm_dp_aux *aux,
2802				struct drm_dp_phy_test_params *data, u8 dp_rev)
2803{
2804	int err, i;
2805	u8 test_pattern;
2806
2807	test_pattern = data->phy_pattern;
2808	if (dp_rev < 0x12) {
2809		test_pattern = (test_pattern << 2) &
2810			       DP_LINK_QUAL_PATTERN_11_MASK;
2811		err = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET,
2812					 test_pattern);
2813		if (err < 0)
2814			return err;
2815	} else {
2816		for (i = 0; i < data->num_lanes; i++) {
2817			err = drm_dp_dpcd_writeb(aux,
2818						 DP_LINK_QUAL_LANE0_SET + i,
2819						 test_pattern);
2820			if (err < 0)
2821				return err;
2822		}
2823	}
2824
2825	return 0;
2826}
2827EXPORT_SYMBOL(drm_dp_set_phy_test_pattern);
2828
2829static const char *dp_pixelformat_get_name(enum dp_pixelformat pixelformat)
2830{
2831	if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2832		return "Invalid";
2833
2834	switch (pixelformat) {
2835	case DP_PIXELFORMAT_RGB:
2836		return "RGB";
2837	case DP_PIXELFORMAT_YUV444:
2838		return "YUV444";
2839	case DP_PIXELFORMAT_YUV422:
2840		return "YUV422";
2841	case DP_PIXELFORMAT_YUV420:
2842		return "YUV420";
2843	case DP_PIXELFORMAT_Y_ONLY:
2844		return "Y_ONLY";
2845	case DP_PIXELFORMAT_RAW:
2846		return "RAW";
2847	default:
2848		return "Reserved";
2849	}
2850}
2851
2852static const char *dp_colorimetry_get_name(enum dp_pixelformat pixelformat,
2853					   enum dp_colorimetry colorimetry)
2854{
2855	if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2856		return "Invalid";
2857
2858	switch (colorimetry) {
2859	case DP_COLORIMETRY_DEFAULT:
2860		switch (pixelformat) {
2861		case DP_PIXELFORMAT_RGB:
2862			return "sRGB";
2863		case DP_PIXELFORMAT_YUV444:
2864		case DP_PIXELFORMAT_YUV422:
2865		case DP_PIXELFORMAT_YUV420:
2866			return "BT.601";
2867		case DP_PIXELFORMAT_Y_ONLY:
2868			return "DICOM PS3.14";
2869		case DP_PIXELFORMAT_RAW:
2870			return "Custom Color Profile";
2871		default:
2872			return "Reserved";
2873		}
2874	case DP_COLORIMETRY_RGB_WIDE_FIXED: /* and DP_COLORIMETRY_BT709_YCC */
2875		switch (pixelformat) {
2876		case DP_PIXELFORMAT_RGB:
2877			return "Wide Fixed";
2878		case DP_PIXELFORMAT_YUV444:
2879		case DP_PIXELFORMAT_YUV422:
2880		case DP_PIXELFORMAT_YUV420:
2881			return "BT.709";
2882		default:
2883			return "Reserved";
2884		}
2885	case DP_COLORIMETRY_RGB_WIDE_FLOAT: /* and DP_COLORIMETRY_XVYCC_601 */
2886		switch (pixelformat) {
2887		case DP_PIXELFORMAT_RGB:
2888			return "Wide Float";
2889		case DP_PIXELFORMAT_YUV444:
2890		case DP_PIXELFORMAT_YUV422:
2891		case DP_PIXELFORMAT_YUV420:
2892			return "xvYCC 601";
2893		default:
2894			return "Reserved";
2895		}
2896	case DP_COLORIMETRY_OPRGB: /* and DP_COLORIMETRY_XVYCC_709 */
2897		switch (pixelformat) {
2898		case DP_PIXELFORMAT_RGB:
2899			return "OpRGB";
2900		case DP_PIXELFORMAT_YUV444:
2901		case DP_PIXELFORMAT_YUV422:
2902		case DP_PIXELFORMAT_YUV420:
2903			return "xvYCC 709";
2904		default:
2905			return "Reserved";
2906		}
2907	case DP_COLORIMETRY_DCI_P3_RGB: /* and DP_COLORIMETRY_SYCC_601 */
2908		switch (pixelformat) {
2909		case DP_PIXELFORMAT_RGB:
2910			return "DCI-P3";
2911		case DP_PIXELFORMAT_YUV444:
2912		case DP_PIXELFORMAT_YUV422:
2913		case DP_PIXELFORMAT_YUV420:
2914			return "sYCC 601";
2915		default:
2916			return "Reserved";
2917		}
2918	case DP_COLORIMETRY_RGB_CUSTOM: /* and DP_COLORIMETRY_OPYCC_601 */
2919		switch (pixelformat) {
2920		case DP_PIXELFORMAT_RGB:
2921			return "Custom Profile";
2922		case DP_PIXELFORMAT_YUV444:
2923		case DP_PIXELFORMAT_YUV422:
2924		case DP_PIXELFORMAT_YUV420:
2925			return "OpYCC 601";
2926		default:
2927			return "Reserved";
2928		}
2929	case DP_COLORIMETRY_BT2020_RGB: /* and DP_COLORIMETRY_BT2020_CYCC */
2930		switch (pixelformat) {
2931		case DP_PIXELFORMAT_RGB:
2932			return "BT.2020 RGB";
2933		case DP_PIXELFORMAT_YUV444:
2934		case DP_PIXELFORMAT_YUV422:
2935		case DP_PIXELFORMAT_YUV420:
2936			return "BT.2020 CYCC";
2937		default:
2938			return "Reserved";
2939		}
2940	case DP_COLORIMETRY_BT2020_YCC:
2941		switch (pixelformat) {
2942		case DP_PIXELFORMAT_YUV444:
2943		case DP_PIXELFORMAT_YUV422:
2944		case DP_PIXELFORMAT_YUV420:
2945			return "BT.2020 YCC";
2946		default:
2947			return "Reserved";
2948		}
2949	default:
2950		return "Invalid";
2951	}
2952}
2953
2954static const char *dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)
2955{
2956	switch (dynamic_range) {
2957	case DP_DYNAMIC_RANGE_VESA:
2958		return "VESA range";
2959	case DP_DYNAMIC_RANGE_CTA:
2960		return "CTA range";
2961	default:
2962		return "Invalid";
2963	}
2964}
2965
2966static const char *dp_content_type_get_name(enum dp_content_type content_type)
2967{
2968	switch (content_type) {
2969	case DP_CONTENT_TYPE_NOT_DEFINED:
2970		return "Not defined";
2971	case DP_CONTENT_TYPE_GRAPHICS:
2972		return "Graphics";
2973	case DP_CONTENT_TYPE_PHOTO:
2974		return "Photo";
2975	case DP_CONTENT_TYPE_VIDEO:
2976		return "Video";
2977	case DP_CONTENT_TYPE_GAME:
2978		return "Game";
2979	default:
2980		return "Reserved";
2981	}
2982}
2983
2984void drm_dp_vsc_sdp_log(struct drm_printer *p, const struct drm_dp_vsc_sdp *vsc)
2985{
2986	drm_printf(p, "DP SDP: VSC, revision %u, length %u\n",
2987		   vsc->revision, vsc->length);
2988	drm_printf(p, "    pixelformat: %s\n",
2989		   dp_pixelformat_get_name(vsc->pixelformat));
2990	drm_printf(p, "    colorimetry: %s\n",
2991		   dp_colorimetry_get_name(vsc->pixelformat, vsc->colorimetry));
2992	drm_printf(p, "    bpc: %u\n", vsc->bpc);
2993	drm_printf(p, "    dynamic range: %s\n",
2994		   dp_dynamic_range_get_name(vsc->dynamic_range));
2995	drm_printf(p, "    content type: %s\n",
2996		   dp_content_type_get_name(vsc->content_type));
2997}
2998EXPORT_SYMBOL(drm_dp_vsc_sdp_log);
2999
3000void drm_dp_as_sdp_log(struct drm_printer *p, const struct drm_dp_as_sdp *as_sdp)
3001{
3002	drm_printf(p, "DP SDP: AS_SDP, revision %u, length %u\n",
3003		   as_sdp->revision, as_sdp->length);
3004	drm_printf(p, "    vtotal: %d\n", as_sdp->vtotal);
3005	drm_printf(p, "    target_rr: %d\n", as_sdp->target_rr);
3006	drm_printf(p, "    duration_incr_ms: %d\n", as_sdp->duration_incr_ms);
3007	drm_printf(p, "    duration_decr_ms: %d\n", as_sdp->duration_decr_ms);
3008	drm_printf(p, "    operation_mode: %d\n", as_sdp->mode);
3009}
3010EXPORT_SYMBOL(drm_dp_as_sdp_log);
3011
3012/**
3013 * drm_dp_as_sdp_supported() - check if adaptive sync sdp is supported
3014 * @aux: DisplayPort AUX channel
3015 * @dpcd: DisplayPort configuration data
3016 *
3017 * Returns true if adaptive sync sdp is supported, else returns false
3018 */
3019bool drm_dp_as_sdp_supported(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE])
3020{
3021	u8 rx_feature;
3022
3023	if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_13)
3024		return false;
3025
3026	if (drm_dp_dpcd_readb(aux, DP_DPRX_FEATURE_ENUMERATION_LIST_CONT_1,
3027			      &rx_feature) != 1) {
3028		drm_dbg_dp(aux->drm_dev,
3029			   "Failed to read DP_DPRX_FEATURE_ENUMERATION_LIST_CONT_1\n");
3030		return false;
3031	}
3032
3033	return (rx_feature & DP_ADAPTIVE_SYNC_SDP_SUPPORTED);
3034}
3035EXPORT_SYMBOL(drm_dp_as_sdp_supported);
3036
3037/**
3038 * drm_dp_vsc_sdp_supported() - check if vsc sdp is supported
3039 * @aux: DisplayPort AUX channel
3040 * @dpcd: DisplayPort configuration data
3041 *
3042 * Returns true if vsc sdp is supported, else returns false
3043 */
3044bool drm_dp_vsc_sdp_supported(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE])
3045{
3046	u8 rx_feature;
3047
3048	if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_13)
3049		return false;
3050
3051	if (drm_dp_dpcd_readb(aux, DP_DPRX_FEATURE_ENUMERATION_LIST, &rx_feature) != 1) {
3052		drm_dbg_dp(aux->drm_dev, "failed to read DP_DPRX_FEATURE_ENUMERATION_LIST\n");
3053		return false;
3054	}
3055
3056	return (rx_feature & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED);
3057}
3058EXPORT_SYMBOL(drm_dp_vsc_sdp_supported);
3059
3060/**
3061 * drm_dp_vsc_sdp_pack() - pack a given vsc sdp into generic dp_sdp
3062 * @vsc: vsc sdp initialized according to its purpose as defined in
3063 *       table 2-118 - table 2-120 in DP 1.4a specification
3064 * @sdp: valid handle to the generic dp_sdp which will be packed
3065 *
3066 * Returns length of sdp on success and error code on failure
3067 */
3068ssize_t drm_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc,
3069			    struct dp_sdp *sdp)
3070{
3071	size_t length = sizeof(struct dp_sdp);
3072
3073	memset(sdp, 0, sizeof(struct dp_sdp));
3074
3075	/*
3076	 * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119
3077	 * VSC SDP Header Bytes
3078	 */
3079	sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */
3080	sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */
3081	sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */
3082	sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */
3083
3084	if (vsc->revision == 0x6) {
3085		sdp->db[0] = 1;
3086		sdp->db[3] = 1;
3087	}
3088
3089	/*
3090	 * Revision 0x5 and revision 0x7 supports Pixel Encoding/Colorimetry
3091	 * Format as per DP 1.4a spec and DP 2.0 respectively.
3092	 */
3093	if (!(vsc->revision == 0x5 || vsc->revision == 0x7))
3094		goto out;
3095
3096	/* VSC SDP Payload for DB16 through DB18 */
3097	/* Pixel Encoding and Colorimetry Formats  */
3098	sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */
3099	sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */
3100
3101	switch (vsc->bpc) {
3102	case 6:
3103		/* 6bpc: 0x0 */
3104		break;
3105	case 8:
3106		sdp->db[17] = 0x1; /* DB17[3:0] */
3107		break;
3108	case 10:
3109		sdp->db[17] = 0x2;
3110		break;
3111	case 12:
3112		sdp->db[17] = 0x3;
3113		break;
3114	case 16:
3115		sdp->db[17] = 0x4;
3116		break;
3117	default:
3118		WARN(1, "Missing case %d\n", vsc->bpc);
3119		return -EINVAL;
3120	}
3121
3122	/* Dynamic Range and Component Bit Depth */
3123	if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA)
3124		sdp->db[17] |= 0x80;  /* DB17[7] */
3125
3126	/* Content Type */
3127	sdp->db[18] = vsc->content_type & 0x7;
3128
3129out:
3130	return length;
3131}
3132EXPORT_SYMBOL(drm_dp_vsc_sdp_pack);
3133
3134/**
3135 * drm_dp_get_pcon_max_frl_bw() - maximum frl supported by PCON
3136 * @dpcd: DisplayPort configuration data
3137 * @port_cap: port capabilities
3138 *
3139 * Returns maximum frl bandwidth supported by PCON in GBPS,
3140 * returns 0 if not supported.
3141 */
3142int drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
3143			       const u8 port_cap[4])
3144{
3145	int bw;
3146	u8 buf;
3147
3148	buf = port_cap[2];
3149	bw = buf & DP_PCON_MAX_FRL_BW;
3150
3151	switch (bw) {
3152	case DP_PCON_MAX_9GBPS:
3153		return 9;
3154	case DP_PCON_MAX_18GBPS:
3155		return 18;
3156	case DP_PCON_MAX_24GBPS:
3157		return 24;
3158	case DP_PCON_MAX_32GBPS:
3159		return 32;
3160	case DP_PCON_MAX_40GBPS:
3161		return 40;
3162	case DP_PCON_MAX_48GBPS:
3163		return 48;
3164	case DP_PCON_MAX_0GBPS:
3165	default:
3166		return 0;
3167	}
3168
3169	return 0;
3170}
3171EXPORT_SYMBOL(drm_dp_get_pcon_max_frl_bw);
3172
3173/**
3174 * drm_dp_pcon_frl_prepare() - Prepare PCON for FRL.
3175 * @aux: DisplayPort AUX channel
3176 * @enable_frl_ready_hpd: Configure DP_PCON_ENABLE_HPD_READY.
3177 *
3178 * Returns 0 if success, else returns negative error code.
3179 */
3180int drm_dp_pcon_frl_prepare(struct drm_dp_aux *aux, bool enable_frl_ready_hpd)
3181{
3182	int ret;
3183	u8 buf = DP_PCON_ENABLE_SOURCE_CTL_MODE |
3184		 DP_PCON_ENABLE_LINK_FRL_MODE;
3185
3186	if (enable_frl_ready_hpd)
3187		buf |= DP_PCON_ENABLE_HPD_READY;
3188
3189	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3190
3191	return ret;
3192}
3193EXPORT_SYMBOL(drm_dp_pcon_frl_prepare);
3194
3195/**
3196 * drm_dp_pcon_is_frl_ready() - Is PCON ready for FRL
3197 * @aux: DisplayPort AUX channel
3198 *
3199 * Returns true if success, else returns false.
3200 */
3201bool drm_dp_pcon_is_frl_ready(struct drm_dp_aux *aux)
3202{
3203	int ret;
3204	u8 buf;
3205
3206	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3207	if (ret < 0)
3208		return false;
3209
3210	if (buf & DP_PCON_FRL_READY)
3211		return true;
3212
3213	return false;
3214}
3215EXPORT_SYMBOL(drm_dp_pcon_is_frl_ready);
3216
3217/**
3218 * drm_dp_pcon_frl_configure_1() - Set HDMI LINK Configuration-Step1
3219 * @aux: DisplayPort AUX channel
3220 * @max_frl_gbps: maximum frl bw to be configured between PCON and HDMI sink
3221 * @frl_mode: FRL Training mode, it can be either Concurrent or Sequential.
3222 * In Concurrent Mode, the FRL link bring up can be done along with
3223 * DP Link training. In Sequential mode, the FRL link bring up is done prior to
3224 * the DP Link training.
3225 *
3226 * Returns 0 if success, else returns negative error code.
3227 */
3228
3229int drm_dp_pcon_frl_configure_1(struct drm_dp_aux *aux, int max_frl_gbps,
3230				u8 frl_mode)
3231{
3232	int ret;
3233	u8 buf;
3234
3235	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3236	if (ret < 0)
3237		return ret;
3238
3239	if (frl_mode == DP_PCON_ENABLE_CONCURRENT_LINK)
3240		buf |= DP_PCON_ENABLE_CONCURRENT_LINK;
3241	else
3242		buf &= ~DP_PCON_ENABLE_CONCURRENT_LINK;
3243
3244	switch (max_frl_gbps) {
3245	case 9:
3246		buf |=  DP_PCON_ENABLE_MAX_BW_9GBPS;
3247		break;
3248	case 18:
3249		buf |=  DP_PCON_ENABLE_MAX_BW_18GBPS;
3250		break;
3251	case 24:
3252		buf |=  DP_PCON_ENABLE_MAX_BW_24GBPS;
3253		break;
3254	case 32:
3255		buf |=  DP_PCON_ENABLE_MAX_BW_32GBPS;
3256		break;
3257	case 40:
3258		buf |=  DP_PCON_ENABLE_MAX_BW_40GBPS;
3259		break;
3260	case 48:
3261		buf |=  DP_PCON_ENABLE_MAX_BW_48GBPS;
3262		break;
3263	case 0:
3264		buf |=  DP_PCON_ENABLE_MAX_BW_0GBPS;
3265		break;
3266	default:
3267		return -EINVAL;
3268	}
3269
3270	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3271	if (ret < 0)
3272		return ret;
3273
3274	return 0;
3275}
3276EXPORT_SYMBOL(drm_dp_pcon_frl_configure_1);
3277
3278/**
3279 * drm_dp_pcon_frl_configure_2() - Set HDMI Link configuration Step-2
3280 * @aux: DisplayPort AUX channel
3281 * @max_frl_mask : Max FRL BW to be tried by the PCON with HDMI Sink
3282 * @frl_type : FRL training type, can be Extended, or Normal.
3283 * In Normal FRL training, the PCON tries each frl bw from the max_frl_mask
3284 * starting from min, and stops when link training is successful. In Extended
3285 * FRL training, all frl bw selected in the mask are trained by the PCON.
3286 *
3287 * Returns 0 if success, else returns negative error code.
3288 */
3289int drm_dp_pcon_frl_configure_2(struct drm_dp_aux *aux, int max_frl_mask,
3290				u8 frl_type)
3291{
3292	int ret;
3293	u8 buf = max_frl_mask;
3294
3295	if (frl_type == DP_PCON_FRL_LINK_TRAIN_EXTENDED)
3296		buf |= DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3297	else
3298		buf &= ~DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3299
3300	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_2, buf);
3301	if (ret < 0)
3302		return ret;
3303
3304	return 0;
3305}
3306EXPORT_SYMBOL(drm_dp_pcon_frl_configure_2);
3307
3308/**
3309 * drm_dp_pcon_reset_frl_config() - Re-Set HDMI Link configuration.
3310 * @aux: DisplayPort AUX channel
3311 *
3312 * Returns 0 if success, else returns negative error code.
3313 */
3314int drm_dp_pcon_reset_frl_config(struct drm_dp_aux *aux)
3315{
3316	int ret;
3317
3318	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, 0x0);
3319	if (ret < 0)
3320		return ret;
3321
3322	return 0;
3323}
3324EXPORT_SYMBOL(drm_dp_pcon_reset_frl_config);
3325
3326/**
3327 * drm_dp_pcon_frl_enable() - Enable HDMI link through FRL
3328 * @aux: DisplayPort AUX channel
3329 *
3330 * Returns 0 if success, else returns negative error code.
3331 */
3332int drm_dp_pcon_frl_enable(struct drm_dp_aux *aux)
3333{
3334	int ret;
3335	u8 buf = 0;
3336
3337	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3338	if (ret < 0)
3339		return ret;
3340	if (!(buf & DP_PCON_ENABLE_SOURCE_CTL_MODE)) {
3341		drm_dbg_kms(aux->drm_dev, "%s: PCON in Autonomous mode, can't enable FRL\n",
3342			    aux->name);
3343		return -EINVAL;
3344	}
3345	buf |= DP_PCON_ENABLE_HDMI_LINK;
3346	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3347	if (ret < 0)
3348		return ret;
3349
3350	return 0;
3351}
3352EXPORT_SYMBOL(drm_dp_pcon_frl_enable);
3353
3354/**
3355 * drm_dp_pcon_hdmi_link_active() - check if the PCON HDMI LINK status is active.
3356 * @aux: DisplayPort AUX channel
3357 *
3358 * Returns true if link is active else returns false.
3359 */
3360bool drm_dp_pcon_hdmi_link_active(struct drm_dp_aux *aux)
3361{
3362	u8 buf;
3363	int ret;
3364
3365	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3366	if (ret < 0)
3367		return false;
3368
3369	return buf & DP_PCON_HDMI_TX_LINK_ACTIVE;
3370}
3371EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_active);
3372
3373/**
3374 * drm_dp_pcon_hdmi_link_mode() - get the PCON HDMI LINK MODE
3375 * @aux: DisplayPort AUX channel
3376 * @frl_trained_mask: pointer to store bitmask of the trained bw configuration.
3377 * Valid only if the MODE returned is FRL. For Normal Link training mode
3378 * only 1 of the bits will be set, but in case of Extended mode, more than
3379 * one bits can be set.
3380 *
3381 * Returns the link mode : TMDS or FRL on success, else returns negative error
3382 * code.
3383 */
3384int drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux *aux, u8 *frl_trained_mask)
3385{
3386	u8 buf;
3387	int mode;
3388	int ret;
3389
3390	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_POST_FRL_STATUS, &buf);
3391	if (ret < 0)
3392		return ret;
3393
3394	mode = buf & DP_PCON_HDMI_LINK_MODE;
3395
3396	if (frl_trained_mask && DP_PCON_HDMI_MODE_FRL == mode)
3397		*frl_trained_mask = (buf & DP_PCON_HDMI_FRL_TRAINED_BW) >> 1;
3398
3399	return mode;
3400}
3401EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_mode);
3402
3403/**
3404 * drm_dp_pcon_hdmi_frl_link_error_count() - print the error count per lane
3405 * during link failure between PCON and HDMI sink
3406 * @aux: DisplayPort AUX channel
3407 * @connector: DRM connector
3408 * code.
3409 **/
3410
3411void drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux *aux,
3412					   struct drm_connector *connector)
3413{
3414	u8 buf, error_count;
3415	int i, num_error;
3416	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3417
3418	for (i = 0; i < hdmi->max_lanes; i++) {
3419		if (drm_dp_dpcd_readb(aux, DP_PCON_HDMI_ERROR_STATUS_LN0 + i, &buf) < 0)
3420			return;
3421
3422		error_count = buf & DP_PCON_HDMI_ERROR_COUNT_MASK;
3423		switch (error_count) {
3424		case DP_PCON_HDMI_ERROR_COUNT_HUNDRED_PLUS:
3425			num_error = 100;
3426			break;
3427		case DP_PCON_HDMI_ERROR_COUNT_TEN_PLUS:
3428			num_error = 10;
3429			break;
3430		case DP_PCON_HDMI_ERROR_COUNT_THREE_PLUS:
3431			num_error = 3;
3432			break;
3433		default:
3434			num_error = 0;
3435		}
3436
3437		drm_err(aux->drm_dev, "%s: More than %d errors since the last read for lane %d",
3438			aux->name, num_error, i);
3439	}
3440}
3441EXPORT_SYMBOL(drm_dp_pcon_hdmi_frl_link_error_count);
3442
3443/*
3444 * drm_dp_pcon_enc_is_dsc_1_2 - Does PCON Encoder supports DSC 1.2
3445 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3446 *
3447 * Returns true is PCON encoder is DSC 1.2 else returns false.
3448 */
3449bool drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3450{
3451	u8 buf;
3452	u8 major_v, minor_v;
3453
3454	buf = pcon_dsc_dpcd[DP_PCON_DSC_VERSION - DP_PCON_DSC_ENCODER];
3455	major_v = (buf & DP_PCON_DSC_MAJOR_MASK) >> DP_PCON_DSC_MAJOR_SHIFT;
3456	minor_v = (buf & DP_PCON_DSC_MINOR_MASK) >> DP_PCON_DSC_MINOR_SHIFT;
3457
3458	if (major_v == 1 && minor_v == 2)
3459		return true;
3460
3461	return false;
3462}
3463EXPORT_SYMBOL(drm_dp_pcon_enc_is_dsc_1_2);
3464
3465/*
3466 * drm_dp_pcon_dsc_max_slices - Get max slices supported by PCON DSC Encoder
3467 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3468 *
3469 * Returns maximum no. of slices supported by the PCON DSC Encoder.
3470 */
3471int drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3472{
3473	u8 slice_cap1, slice_cap2;
3474
3475	slice_cap1 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_1 - DP_PCON_DSC_ENCODER];
3476	slice_cap2 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_2 - DP_PCON_DSC_ENCODER];
3477
3478	if (slice_cap2 & DP_PCON_DSC_24_PER_DSC_ENC)
3479		return 24;
3480	if (slice_cap2 & DP_PCON_DSC_20_PER_DSC_ENC)
3481		return 20;
3482	if (slice_cap2 & DP_PCON_DSC_16_PER_DSC_ENC)
3483		return 16;
3484	if (slice_cap1 & DP_PCON_DSC_12_PER_DSC_ENC)
3485		return 12;
3486	if (slice_cap1 & DP_PCON_DSC_10_PER_DSC_ENC)
3487		return 10;
3488	if (slice_cap1 & DP_PCON_DSC_8_PER_DSC_ENC)
3489		return 8;
3490	if (slice_cap1 & DP_PCON_DSC_6_PER_DSC_ENC)
3491		return 6;
3492	if (slice_cap1 & DP_PCON_DSC_4_PER_DSC_ENC)
3493		return 4;
3494	if (slice_cap1 & DP_PCON_DSC_2_PER_DSC_ENC)
3495		return 2;
3496	if (slice_cap1 & DP_PCON_DSC_1_PER_DSC_ENC)
3497		return 1;
3498
3499	return 0;
3500}
3501EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slices);
3502
3503/*
3504 * drm_dp_pcon_dsc_max_slice_width() - Get max slice width for Pcon DSC encoder
3505 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3506 *
3507 * Returns maximum width of the slices in pixel width i.e. no. of pixels x 320.
3508 */
3509int drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3510{
3511	u8 buf;
3512
3513	buf = pcon_dsc_dpcd[DP_PCON_DSC_MAX_SLICE_WIDTH - DP_PCON_DSC_ENCODER];
3514
3515	return buf * DP_DSC_SLICE_WIDTH_MULTIPLIER;
3516}
3517EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slice_width);
3518
3519/*
3520 * drm_dp_pcon_dsc_bpp_incr() - Get bits per pixel increment for PCON DSC encoder
3521 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3522 *
3523 * Returns the bpp precision supported by the PCON encoder.
3524 */
3525int drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3526{
3527	u8 buf;
3528
3529	buf = pcon_dsc_dpcd[DP_PCON_DSC_BPP_INCR - DP_PCON_DSC_ENCODER];
3530
3531	switch (buf & DP_PCON_DSC_BPP_INCR_MASK) {
3532	case DP_PCON_DSC_ONE_16TH_BPP:
3533		return 16;
3534	case DP_PCON_DSC_ONE_8TH_BPP:
3535		return 8;
3536	case DP_PCON_DSC_ONE_4TH_BPP:
3537		return 4;
3538	case DP_PCON_DSC_ONE_HALF_BPP:
3539		return 2;
3540	case DP_PCON_DSC_ONE_BPP:
3541		return 1;
3542	}
3543
3544	return 0;
3545}
3546EXPORT_SYMBOL(drm_dp_pcon_dsc_bpp_incr);
3547
3548static
3549int drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux *aux, u8 pps_buf_config)
3550{
3551	u8 buf;
3552	int ret;
3553
3554	ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3555	if (ret < 0)
3556		return ret;
3557
3558	buf |= DP_PCON_ENABLE_DSC_ENCODER;
3559
3560	if (pps_buf_config <= DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER) {
3561		buf &= ~DP_PCON_ENCODER_PPS_OVERRIDE_MASK;
3562		buf |= pps_buf_config << 2;
3563	}
3564
3565	ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3566	if (ret < 0)
3567		return ret;
3568
3569	return 0;
3570}
3571
3572/**
3573 * drm_dp_pcon_pps_default() - Let PCON fill the default pps parameters
3574 * for DSC1.2 between PCON & HDMI2.1 sink
3575 * @aux: DisplayPort AUX channel
3576 *
3577 * Returns 0 on success, else returns negative error code.
3578 */
3579int drm_dp_pcon_pps_default(struct drm_dp_aux *aux)
3580{
3581	int ret;
3582
3583	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_DISABLED);
3584	if (ret < 0)
3585		return ret;
3586
3587	return 0;
3588}
3589EXPORT_SYMBOL(drm_dp_pcon_pps_default);
3590
3591/**
3592 * drm_dp_pcon_pps_override_buf() - Configure PPS encoder override buffer for
3593 * HDMI sink
3594 * @aux: DisplayPort AUX channel
3595 * @pps_buf: 128 bytes to be written into PPS buffer for HDMI sink by PCON.
3596 *
3597 * Returns 0 on success, else returns negative error code.
3598 */
3599int drm_dp_pcon_pps_override_buf(struct drm_dp_aux *aux, u8 pps_buf[128])
3600{
3601	int ret;
3602
3603	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVERRIDE_BASE, &pps_buf, 128);
3604	if (ret < 0)
3605		return ret;
3606
3607	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3608	if (ret < 0)
3609		return ret;
3610
3611	return 0;
3612}
3613EXPORT_SYMBOL(drm_dp_pcon_pps_override_buf);
3614
3615/*
3616 * drm_dp_pcon_pps_override_param() - Write PPS parameters to DSC encoder
3617 * override registers
3618 * @aux: DisplayPort AUX channel
3619 * @pps_param: 3 Parameters (2 Bytes each) : Slice Width, Slice Height,
3620 * bits_per_pixel.
3621 *
3622 * Returns 0 on success, else returns negative error code.
3623 */
3624int drm_dp_pcon_pps_override_param(struct drm_dp_aux *aux, u8 pps_param[6])
3625{
3626	int ret;
3627
3628	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_HEIGHT, &pps_param[0], 2);
3629	if (ret < 0)
3630		return ret;
3631	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_WIDTH, &pps_param[2], 2);
3632	if (ret < 0)
3633		return ret;
3634	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_BPP, &pps_param[4], 2);
3635	if (ret < 0)
3636		return ret;
3637
3638	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3639	if (ret < 0)
3640		return ret;
3641
3642	return 0;
3643}
3644EXPORT_SYMBOL(drm_dp_pcon_pps_override_param);
3645
3646/*
3647 * drm_dp_pcon_convert_rgb_to_ycbcr() - Configure the PCon to convert RGB to Ycbcr
3648 * @aux: displayPort AUX channel
3649 * @color_spc: Color-space/s for which conversion is to be enabled, 0 for disable.
3650 *
3651 * Returns 0 on success, else returns negative error code.
3652 */
3653int drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux *aux, u8 color_spc)
3654{
3655	int ret;
3656	u8 buf;
3657
3658	ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3659	if (ret < 0)
3660		return ret;
3661
3662	if (color_spc & DP_CONVERSION_RGB_YCBCR_MASK)
3663		buf |= (color_spc & DP_CONVERSION_RGB_YCBCR_MASK);
3664	else
3665		buf &= ~DP_CONVERSION_RGB_YCBCR_MASK;
3666
3667	ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3668	if (ret < 0)
3669		return ret;
3670
3671	return 0;
3672}
3673EXPORT_SYMBOL(drm_dp_pcon_convert_rgb_to_ycbcr);
3674
3675/**
3676 * drm_edp_backlight_set_level() - Set the backlight level of an eDP panel via AUX
3677 * @aux: The DP AUX channel to use
3678 * @bl: Backlight capability info from drm_edp_backlight_init()
3679 * @level: The brightness level to set
3680 *
3681 * Sets the brightness level of an eDP panel's backlight. Note that the panel's backlight must
3682 * already have been enabled by the driver by calling drm_edp_backlight_enable().
3683 *
3684 * Returns: %0 on success, negative error code on failure
3685 */
3686int drm_edp_backlight_set_level(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3687				u16 level)
3688{
3689	int ret;
3690	u8 buf[2] = { 0 };
3691
3692	/* The panel uses the PWM for controlling brightness levels */
3693	if (!bl->aux_set)
3694		return 0;
3695
3696	if (bl->lsb_reg_used) {
3697		buf[0] = (level & 0xff00) >> 8;
3698		buf[1] = (level & 0x00ff);
3699	} else {
3700		buf[0] = level;
3701	}
3702
3703	ret = drm_dp_dpcd_write(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, sizeof(buf));
3704	if (ret != sizeof(buf)) {
3705		drm_err(aux->drm_dev,
3706			"%s: Failed to write aux backlight level: %d\n",
3707			aux->name, ret);
3708		return ret < 0 ? ret : -EIO;
3709	}
3710
3711	return 0;
3712}
3713EXPORT_SYMBOL(drm_edp_backlight_set_level);
3714
3715static int
3716drm_edp_backlight_set_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3717			     bool enable)
3718{
3719	int ret;
3720	u8 buf;
3721
3722	/* This panel uses the EDP_BL_PWR GPIO for enablement */
3723	if (!bl->aux_enable)
3724		return 0;
3725
3726	ret = drm_dp_dpcd_readb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, &buf);
3727	if (ret != 1) {
3728		drm_err(aux->drm_dev, "%s: Failed to read eDP display control register: %d\n",
3729			aux->name, ret);
3730		return ret < 0 ? ret : -EIO;
3731	}
3732	if (enable)
3733		buf |= DP_EDP_BACKLIGHT_ENABLE;
3734	else
3735		buf &= ~DP_EDP_BACKLIGHT_ENABLE;
3736
3737	ret = drm_dp_dpcd_writeb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, buf);
3738	if (ret != 1) {
3739		drm_err(aux->drm_dev, "%s: Failed to write eDP display control register: %d\n",
3740			aux->name, ret);
3741		return ret < 0 ? ret : -EIO;
3742	}
3743
3744	return 0;
3745}
3746
3747/**
3748 * drm_edp_backlight_enable() - Enable an eDP panel's backlight using DPCD
3749 * @aux: The DP AUX channel to use
3750 * @bl: Backlight capability info from drm_edp_backlight_init()
3751 * @level: The initial backlight level to set via AUX, if there is one
3752 *
3753 * This function handles enabling DPCD backlight controls on a panel over DPCD, while additionally
3754 * restoring any important backlight state such as the given backlight level, the brightness byte
3755 * count, backlight frequency, etc.
3756 *
3757 * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3758 * that the driver handle enabling/disabling the panel through implementation-specific means using
3759 * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3760 * this function becomes a no-op, and the driver is expected to handle powering the panel on using
3761 * the EDP_BL_PWR GPIO.
3762 *
3763 * Returns: %0 on success, negative error code on failure.
3764 */
3765int drm_edp_backlight_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3766			     const u16 level)
3767{
3768	int ret;
3769	u8 dpcd_buf;
3770
3771	if (bl->aux_set)
3772		dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD;
3773	else
3774		dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_PWM;
3775
3776	if (bl->pwmgen_bit_count) {
3777		ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, bl->pwmgen_bit_count);
3778		if (ret != 1)
3779			drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3780				    aux->name, ret);
3781	}
3782
3783	if (bl->pwm_freq_pre_divider) {
3784		ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_FREQ_SET, bl->pwm_freq_pre_divider);
3785		if (ret != 1)
3786			drm_dbg_kms(aux->drm_dev,
3787				    "%s: Failed to write aux backlight frequency: %d\n",
3788				    aux->name, ret);
3789		else
3790			dpcd_buf |= DP_EDP_BACKLIGHT_FREQ_AUX_SET_ENABLE;
3791	}
3792
3793	ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, dpcd_buf);
3794	if (ret != 1) {
3795		drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux backlight mode: %d\n",
3796			    aux->name, ret);
3797		return ret < 0 ? ret : -EIO;
3798	}
3799
3800	ret = drm_edp_backlight_set_level(aux, bl, level);
3801	if (ret < 0)
3802		return ret;
3803	ret = drm_edp_backlight_set_enable(aux, bl, true);
3804	if (ret < 0)
3805		return ret;
3806
3807	return 0;
3808}
3809EXPORT_SYMBOL(drm_edp_backlight_enable);
3810
3811/**
3812 * drm_edp_backlight_disable() - Disable an eDP backlight using DPCD, if supported
3813 * @aux: The DP AUX channel to use
3814 * @bl: Backlight capability info from drm_edp_backlight_init()
3815 *
3816 * This function handles disabling DPCD backlight controls on a panel over AUX.
3817 *
3818 * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3819 * that the driver handle enabling/disabling the panel through implementation-specific means using
3820 * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3821 * this function becomes a no-op, and the driver is expected to handle powering the panel off using
3822 * the EDP_BL_PWR GPIO.
3823 *
3824 * Returns: %0 on success or no-op, negative error code on failure.
3825 */
3826int drm_edp_backlight_disable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl)
3827{
3828	int ret;
3829
3830	ret = drm_edp_backlight_set_enable(aux, bl, false);
3831	if (ret < 0)
3832		return ret;
3833
3834	return 0;
3835}
3836EXPORT_SYMBOL(drm_edp_backlight_disable);
3837
3838static inline int
3839drm_edp_backlight_probe_max(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3840			    u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE])
3841{
3842	int fxp, fxp_min, fxp_max, fxp_actual, f = 1;
3843	int ret;
3844	u8 pn, pn_min, pn_max;
3845
3846	if (!bl->aux_set)
3847		return 0;
3848
3849	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT, &pn);
3850	if (ret != 1) {
3851		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap: %d\n",
3852			    aux->name, ret);
3853		return -ENODEV;
3854	}
3855
3856	pn &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3857	bl->max = (1 << pn) - 1;
3858	if (!driver_pwm_freq_hz)
3859		return 0;
3860
3861	/*
3862	 * Set PWM Frequency divider to match desired frequency provided by the driver.
3863	 * The PWM Frequency is calculated as 27Mhz / (F x P).
3864	 * - Where F = PWM Frequency Pre-Divider value programmed by field 7:0 of the
3865	 *             EDP_BACKLIGHT_FREQ_SET register (DPCD Address 00728h)
3866	 * - Where P = 2^Pn, where Pn is the value programmed by field 4:0 of the
3867	 *             EDP_PWMGEN_BIT_COUNT register (DPCD Address 00724h)
3868	 */
3869
3870	/* Find desired value of (F x P)
3871	 * Note that, if F x P is out of supported range, the maximum value or minimum value will
3872	 * applied automatically. So no need to check that.
3873	 */
3874	fxp = DIV_ROUND_CLOSEST(1000 * DP_EDP_BACKLIGHT_FREQ_BASE_KHZ, driver_pwm_freq_hz);
3875
3876	/* Use highest possible value of Pn for more granularity of brightness adjustment while
3877	 * satisfying the conditions below.
3878	 * - Pn is in the range of Pn_min and Pn_max
3879	 * - F is in the range of 1 and 255
3880	 * - FxP is within 25% of desired value.
3881	 *   Note: 25% is arbitrary value and may need some tweak.
3882	 */
3883	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MIN, &pn_min);
3884	if (ret != 1) {
3885		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap min: %d\n",
3886			    aux->name, ret);
3887		return 0;
3888	}
3889	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MAX, &pn_max);
3890	if (ret != 1) {
3891		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap max: %d\n",
3892			    aux->name, ret);
3893		return 0;
3894	}
3895	pn_min &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3896	pn_max &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3897
3898	/* Ensure frequency is within 25% of desired value */
3899	fxp_min = DIV_ROUND_CLOSEST(fxp * 3, 4);
3900	fxp_max = DIV_ROUND_CLOSEST(fxp * 5, 4);
3901	if (fxp_min < (1 << pn_min) || (255 << pn_max) < fxp_max) {
3902		drm_dbg_kms(aux->drm_dev,
3903			    "%s: Driver defined backlight frequency (%d) out of range\n",
3904			    aux->name, driver_pwm_freq_hz);
3905		return 0;
3906	}
3907
3908	for (pn = pn_max; pn >= pn_min; pn--) {
3909		f = clamp(DIV_ROUND_CLOSEST(fxp, 1 << pn), 1, 255);
3910		fxp_actual = f << pn;
3911		if (fxp_min <= fxp_actual && fxp_actual <= fxp_max)
3912			break;
3913	}
3914
3915	ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, pn);
3916	if (ret != 1) {
3917		drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3918			    aux->name, ret);
3919		return 0;
3920	}
3921	bl->pwmgen_bit_count = pn;
3922	bl->max = (1 << pn) - 1;
3923
3924	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_FREQ_AUX_SET_CAP) {
3925		bl->pwm_freq_pre_divider = f;
3926		drm_dbg_kms(aux->drm_dev, "%s: Using backlight frequency from driver (%dHz)\n",
3927			    aux->name, driver_pwm_freq_hz);
3928	}
3929
3930	return 0;
3931}
3932
3933static inline int
3934drm_edp_backlight_probe_state(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3935			      u8 *current_mode)
3936{
3937	int ret;
3938	u8 buf[2];
3939	u8 mode_reg;
3940
3941	ret = drm_dp_dpcd_readb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, &mode_reg);
3942	if (ret != 1) {
3943		drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight mode: %d\n",
3944			    aux->name, ret);
3945		return ret < 0 ? ret : -EIO;
3946	}
3947
3948	*current_mode = (mode_reg & DP_EDP_BACKLIGHT_CONTROL_MODE_MASK);
3949	if (!bl->aux_set)
3950		return 0;
3951
3952	if (*current_mode == DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD) {
3953		int size = 1 + bl->lsb_reg_used;
3954
3955		ret = drm_dp_dpcd_read(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, size);
3956		if (ret != size) {
3957			drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight level: %d\n",
3958				    aux->name, ret);
3959			return ret < 0 ? ret : -EIO;
3960		}
3961
3962		if (bl->lsb_reg_used)
3963			return (buf[0] << 8) | buf[1];
3964		else
3965			return buf[0];
3966	}
3967
3968	/*
3969	 * If we're not in DPCD control mode yet, the programmed brightness value is meaningless and
3970	 * the driver should assume max brightness
3971	 */
3972	return bl->max;
3973}
3974
3975/**
3976 * drm_edp_backlight_init() - Probe a display panel's TCON using the standard VESA eDP backlight
3977 * interface.
3978 * @aux: The DP aux device to use for probing
3979 * @bl: The &drm_edp_backlight_info struct to fill out with information on the backlight
3980 * @driver_pwm_freq_hz: Optional PWM frequency from the driver in hz
3981 * @edp_dpcd: A cached copy of the eDP DPCD
3982 * @current_level: Where to store the probed brightness level, if any
3983 * @current_mode: Where to store the currently set backlight control mode
3984 *
3985 * Initializes a &drm_edp_backlight_info struct by probing @aux for it's backlight capabilities,
3986 * along with also probing the current and maximum supported brightness levels.
3987 *
3988 * If @driver_pwm_freq_hz is non-zero, this will be used as the backlight frequency. Otherwise, the
3989 * default frequency from the panel is used.
3990 *
3991 * Returns: %0 on success, negative error code on failure.
3992 */
3993int
3994drm_edp_backlight_init(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3995		       u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE],
3996		       u16 *current_level, u8 *current_mode)
3997{
3998	int ret;
3999
4000	if (edp_dpcd[1] & DP_EDP_BACKLIGHT_AUX_ENABLE_CAP)
4001		bl->aux_enable = true;
4002	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_AUX_SET_CAP)
4003		bl->aux_set = true;
4004	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_BYTE_COUNT)
4005		bl->lsb_reg_used = true;
4006
4007	/* Sanity check caps */
4008	if (!bl->aux_set && !(edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_PWM_PIN_CAP)) {
4009		drm_dbg_kms(aux->drm_dev,
4010			    "%s: Panel supports neither AUX or PWM brightness control? Aborting\n",
4011			    aux->name);
4012		return -EINVAL;
4013	}
4014
4015	ret = drm_edp_backlight_probe_max(aux, bl, driver_pwm_freq_hz, edp_dpcd);
4016	if (ret < 0)
4017		return ret;
4018
4019	ret = drm_edp_backlight_probe_state(aux, bl, current_mode);
4020	if (ret < 0)
4021		return ret;
4022	*current_level = ret;
4023
4024	drm_dbg_kms(aux->drm_dev,
4025		    "%s: Found backlight: aux_set=%d aux_enable=%d mode=%d\n",
4026		    aux->name, bl->aux_set, bl->aux_enable, *current_mode);
4027	if (bl->aux_set) {
4028		drm_dbg_kms(aux->drm_dev,
4029			    "%s: Backlight caps: level=%d/%d pwm_freq_pre_divider=%d lsb_reg_used=%d\n",
4030			    aux->name, *current_level, bl->max, bl->pwm_freq_pre_divider,
4031			    bl->lsb_reg_used);
4032	}
4033
4034	return 0;
4035}
4036EXPORT_SYMBOL(drm_edp_backlight_init);
4037
4038#if IS_BUILTIN(CONFIG_BACKLIGHT_CLASS_DEVICE) || \
4039	(IS_MODULE(CONFIG_DRM_KMS_HELPER) && IS_MODULE(CONFIG_BACKLIGHT_CLASS_DEVICE))
4040
4041static int dp_aux_backlight_update_status(struct backlight_device *bd)
4042{
4043	struct dp_aux_backlight *bl = bl_get_data(bd);
4044	u16 brightness = backlight_get_brightness(bd);
4045	int ret = 0;
4046
4047	if (!backlight_is_blank(bd)) {
4048		if (!bl->enabled) {
4049			drm_edp_backlight_enable(bl->aux, &bl->info, brightness);
4050			bl->enabled = true;
4051			return 0;
4052		}
4053		ret = drm_edp_backlight_set_level(bl->aux, &bl->info, brightness);
4054	} else {
4055		if (bl->enabled) {
4056			drm_edp_backlight_disable(bl->aux, &bl->info);
4057			bl->enabled = false;
4058		}
4059	}
4060
4061	return ret;
4062}
4063
4064static const struct backlight_ops dp_aux_bl_ops = {
4065	.update_status = dp_aux_backlight_update_status,
4066};
4067
4068/**
4069 * drm_panel_dp_aux_backlight - create and use DP AUX backlight
4070 * @panel: DRM panel
4071 * @aux: The DP AUX channel to use
4072 *
4073 * Use this function to create and handle backlight if your panel
4074 * supports backlight control over DP AUX channel using DPCD
4075 * registers as per VESA's standard backlight control interface.
4076 *
4077 * When the panel is enabled backlight will be enabled after a
4078 * successful call to &drm_panel_funcs.enable()
4079 *
4080 * When the panel is disabled backlight will be disabled before the
4081 * call to &drm_panel_funcs.disable().
4082 *
4083 * A typical implementation for a panel driver supporting backlight
4084 * control over DP AUX will call this function at probe time.
4085 * Backlight will then be handled transparently without requiring
4086 * any intervention from the driver.
4087 *
4088 * drm_panel_dp_aux_backlight() must be called after the call to drm_panel_init().
4089 *
4090 * Return: 0 on success or a negative error code on failure.
4091 */
4092int drm_panel_dp_aux_backlight(struct drm_panel *panel, struct drm_dp_aux *aux)
4093{
4094	struct dp_aux_backlight *bl;
4095	struct backlight_properties props = { 0 };
4096	u16 current_level;
4097	u8 current_mode;
4098	u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE];
4099	int ret;
4100
4101	if (!panel || !panel->dev || !aux)
4102		return -EINVAL;
4103
4104	ret = drm_dp_dpcd_read(aux, DP_EDP_DPCD_REV, edp_dpcd,
4105			       EDP_DISPLAY_CTL_CAP_SIZE);
4106	if (ret < 0)
4107		return ret;
4108
4109	if (!drm_edp_backlight_supported(edp_dpcd)) {
4110		DRM_DEV_INFO(panel->dev, "DP AUX backlight is not supported\n");
4111		return 0;
4112	}
4113
4114	bl = devm_kzalloc(panel->dev, sizeof(*bl), GFP_KERNEL);
4115	if (!bl)
4116		return -ENOMEM;
4117
4118	bl->aux = aux;
4119
4120	ret = drm_edp_backlight_init(aux, &bl->info, 0, edp_dpcd,
4121				     &current_level, &current_mode);
4122	if (ret < 0)
4123		return ret;
4124
4125	props.type = BACKLIGHT_RAW;
4126	props.brightness = current_level;
4127	props.max_brightness = bl->info.max;
4128
4129	bl->base = devm_backlight_device_register(panel->dev, "dp_aux_backlight",
4130						  panel->dev, bl,
4131						  &dp_aux_bl_ops, &props);
4132	if (IS_ERR(bl->base))
4133		return PTR_ERR(bl->base);
4134
4135	backlight_disable(bl->base);
4136
4137	panel->backlight = bl->base;
4138
4139	return 0;
4140}
4141EXPORT_SYMBOL(drm_panel_dp_aux_backlight);
4142
4143#endif
4144
4145/* See DP Standard v2.1 2.6.4.4.1.1, 2.8.4.4, 2.8.7 */
4146static int drm_dp_link_symbol_cycles(int lane_count, int pixels, int bpp_x16,
4147				     int symbol_size, bool is_mst)
4148{
4149	int cycles = DIV_ROUND_UP(pixels * bpp_x16, 16 * symbol_size * lane_count);
4150	int align = is_mst ? 4 / lane_count : 1;
4151
4152	return ALIGN(cycles, align);
4153}
4154
4155static int drm_dp_link_dsc_symbol_cycles(int lane_count, int pixels, int slice_count,
4156					 int bpp_x16, int symbol_size, bool is_mst)
4157{
4158	int slice_pixels = DIV_ROUND_UP(pixels, slice_count);
4159	int slice_data_cycles = drm_dp_link_symbol_cycles(lane_count, slice_pixels,
4160							  bpp_x16, symbol_size, is_mst);
4161	int slice_eoc_cycles = is_mst ? 4 / lane_count : 1;
4162
4163	return slice_count * (slice_data_cycles + slice_eoc_cycles);
4164}
4165
4166/**
4167 * drm_dp_bw_overhead - Calculate the BW overhead of a DP link stream
4168 * @lane_count: DP link lane count
4169 * @hactive: pixel count of the active period in one scanline of the stream
4170 * @dsc_slice_count: DSC slice count if @flags/DRM_DP_LINK_BW_OVERHEAD_DSC is set
4171 * @bpp_x16: bits per pixel in .4 binary fixed point
4172 * @flags: DRM_DP_OVERHEAD_x flags
4173 *
4174 * Calculate the BW allocation overhead of a DP link stream, depending
4175 * on the link's
4176 * - @lane_count
4177 * - SST/MST mode (@flags / %DRM_DP_OVERHEAD_MST)
4178 * - symbol size (@flags / %DRM_DP_OVERHEAD_UHBR)
4179 * - FEC mode (@flags / %DRM_DP_OVERHEAD_FEC)
4180 * - SSC/REF_CLK mode (@flags / %DRM_DP_OVERHEAD_SSC_REF_CLK)
4181 * as well as the stream's
4182 * - @hactive timing
4183 * - @bpp_x16 color depth
4184 * - compression mode (@flags / %DRM_DP_OVERHEAD_DSC).
4185 * Note that this overhead doesn't account for the 8b/10b, 128b/132b
4186 * channel coding efficiency, for that see
4187 * @drm_dp_link_bw_channel_coding_efficiency().
4188 *
4189 * Returns the overhead as 100% + overhead% in 1ppm units.
4190 */
4191int drm_dp_bw_overhead(int lane_count, int hactive,
4192		       int dsc_slice_count,
4193		       int bpp_x16, unsigned long flags)
4194{
4195	int symbol_size = flags & DRM_DP_BW_OVERHEAD_UHBR ? 32 : 8;
4196	bool is_mst = flags & DRM_DP_BW_OVERHEAD_MST;
4197	u32 overhead = 1000000;
4198	int symbol_cycles;
4199
4200	if (lane_count == 0 || hactive == 0 || bpp_x16 == 0) {
4201		DRM_DEBUG_KMS("Invalid BW overhead params: lane_count %d, hactive %d, bpp_x16 " FXP_Q4_FMT "\n",
4202			      lane_count, hactive,
4203			      FXP_Q4_ARGS(bpp_x16));
4204		return 0;
4205	}
4206
4207	/*
4208	 * DP Standard v2.1 2.6.4.1
4209	 * SSC downspread and ref clock variation margin:
4210	 *   5300ppm + 300ppm ~ 0.6%
4211	 */
4212	if (flags & DRM_DP_BW_OVERHEAD_SSC_REF_CLK)
4213		overhead += 6000;
4214
4215	/*
4216	 * DP Standard v2.1 2.6.4.1.1, 3.5.1.5.4:
4217	 * FEC symbol insertions for 8b/10b channel coding:
4218	 * After each 250 data symbols on 2-4 lanes:
4219	 *   250 LL + 5 FEC_PARITY_PH + 1 CD_ADJ   (256 byte FEC block)
4220	 * After each 2 x 250 data symbols on 1 lane:
4221	 *   2 * 250 LL + 11 FEC_PARITY_PH + 1 CD_ADJ (512 byte FEC block)
4222	 * After 256 (2-4 lanes) or 128 (1 lane) FEC blocks:
4223	 *   256 * 256 bytes + 1 FEC_PM
4224	 * or
4225	 *   128 * 512 bytes + 1 FEC_PM
4226	 * (256 * 6 + 1) / (256 * 250) = 2.4015625 %
4227	 */
4228	if (flags & DRM_DP_BW_OVERHEAD_FEC)
4229		overhead += 24016;
4230
4231	/*
4232	 * DP Standard v2.1 2.7.9, 5.9.7
4233	 * The FEC overhead for UHBR is accounted for in its 96.71% channel
4234	 * coding efficiency.
4235	 */
4236	WARN_ON((flags & DRM_DP_BW_OVERHEAD_UHBR) &&
4237		(flags & DRM_DP_BW_OVERHEAD_FEC));
4238
4239	if (flags & DRM_DP_BW_OVERHEAD_DSC)
4240		symbol_cycles = drm_dp_link_dsc_symbol_cycles(lane_count, hactive,
4241							      dsc_slice_count,
4242							      bpp_x16, symbol_size,
4243							      is_mst);
4244	else
4245		symbol_cycles = drm_dp_link_symbol_cycles(lane_count, hactive,
4246							  bpp_x16, symbol_size,
4247							  is_mst);
4248
4249	return DIV_ROUND_UP_ULL(mul_u32_u32(symbol_cycles * symbol_size * lane_count,
4250					    overhead * 16),
4251				hactive * bpp_x16);
4252}
4253EXPORT_SYMBOL(drm_dp_bw_overhead);
4254
4255/**
4256 * drm_dp_bw_channel_coding_efficiency - Get a DP link's channel coding efficiency
4257 * @is_uhbr: Whether the link has a 128b/132b channel coding
4258 *
4259 * Return the channel coding efficiency of the given DP link type, which is
4260 * either 8b/10b or 128b/132b (aka UHBR). The corresponding overhead includes
4261 * the 8b -> 10b, 128b -> 132b pixel data to link symbol conversion overhead
4262 * and for 128b/132b any link or PHY level control symbol insertion overhead
4263 * (LLCP, FEC, PHY sync, see DP Standard v2.1 3.5.2.18). For 8b/10b the
4264 * corresponding FEC overhead is BW allocation specific, included in the value
4265 * returned by drm_dp_bw_overhead().
4266 *
4267 * Returns the efficiency in the 100%/coding-overhead% ratio in
4268 * 1ppm units.
4269 */
4270int drm_dp_bw_channel_coding_efficiency(bool is_uhbr)
4271{
4272	if (is_uhbr)
4273		return 967100;
4274	else
4275		/*
4276		 * Note that on 8b/10b MST the efficiency is only
4277		 * 78.75% due to the 1 out of 64 MTPH packet overhead,
4278		 * not accounted for here.
4279		 */
4280		return 800000;
4281}
4282EXPORT_SYMBOL(drm_dp_bw_channel_coding_efficiency);
4283
4284/**
4285 * drm_dp_max_dprx_data_rate - Get the max data bandwidth of a DPRX sink
4286 * @max_link_rate: max DPRX link rate in 10kbps units
4287 * @max_lanes: max DPRX lane count
4288 *
4289 * Given a link rate and lanes, get the data bandwidth.
4290 *
4291 * Data bandwidth is the actual payload rate, which depends on the data
4292 * bandwidth efficiency and the link rate.
4293 *
4294 * Note that protocol layers above the DPRX link level considered here can
4295 * further limit the maximum data rate. Such layers are the MST topology (with
4296 * limits on the link between the source and first branch device as well as on
4297 * the whole MST path until the DPRX link) and (Thunderbolt) DP tunnels -
4298 * which in turn can encapsulate an MST link with its own limit - with each
4299 * SST or MST encapsulated tunnel sharing the BW of a tunnel group.
4300 *
4301 * Returns the maximum data rate in kBps units.
4302 */
4303int drm_dp_max_dprx_data_rate(int max_link_rate, int max_lanes)
4304{
4305	int ch_coding_efficiency =
4306		drm_dp_bw_channel_coding_efficiency(drm_dp_is_uhbr_rate(max_link_rate));
4307
4308	return DIV_ROUND_DOWN_ULL(mul_u32_u32(max_link_rate * 10 * max_lanes,
4309					      ch_coding_efficiency),
4310				  1000000 * 8);
4311}
4312EXPORT_SYMBOL(drm_dp_max_dprx_data_rate);